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Eighteenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida, U.S.A, October 26 & 27, 2006 

 
 
Elastic post-buckling behavior of uniformly compressed plates 
 

M. C. M. Bakker1, M. Rosmanit2, and H. Hofmeyer3 
 
Abstract 
 
In this paper it is discussed how existing analytical and semi-analytical formulas 
for describing the elastic-post-buckling behavior of uniformly compressed 
square plates with initial imperfections, for loads up to three times the buckling 
load can be simplified and improved. For loads larger than about twice the 
buckling load the influence of changes in the buckling shape, assumed 
sinusoidal, cannot be neglected anymore. These changes can be taken into 
account by using the perturbation approach. The existing and improved formulas 
are compared to the results of finite element simulations.  
 
Introduction 
 
In this paper the post-buckling behavior of square plates, as shown in fig. 1. 
is studied. All edges of the plate are simply supported (uz = 0). The edges loaded 
by the compression force are forced to remain straight, but free to experience 
Poisson’s contraction. The other two edges are free to wave in-plane, thus 
membrane stresses in the y-direction are equal to zero. These boundary condi-
tions correspond to the boundary conditions usually used for the modeling of 
compression flanges in thin-walled steel deck sections. The reason to choose 
these boundary conditions is, that the research described in this paper is part of 
a research project on the strength of cold-formed deck sections subjected to the 
combined action of bending moment and concentrated load (see Hofmeyer et al, 
2001, 2006). The concentrated load causes deformations of the compression 
flange which may be quite large. Therefore it was decided to study the behavior 
of uniformly compressed plates for loads up to three times the buckling load, 
and for initial imperfections up to two times the plate thickness.  
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When a perfectly flat simply supported plate is subjected to uniaxial compres-
sion, the stress distribution is uniform over the plate, until the buckling load is 
reached. After buckling the stress distribution becomes non-uniform, both over 
the width b and the length a of the plate. For plates with initial imperfections the 
stress distribution is non-uniform from the onset of loading. In this paper, it is 
assumed that the plate has a sinusoidal initial imperfection, with the maximum 
imperfection w0 occurring at the center of the plate.  
 

a)

x
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z
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uz= 0

uz= 0

uz= 0

ux u= = 0z

uy= 0
ux

(straight edge) F
w0

b

a= b

A
B

A

b)

(resultant)

 
Fig. 1: Schematic view of numerical model: 
 a) Boundary conditions; 
 b) Initial imperfection, load, measures and location of points A and B. 
 
In this paper the following results will be discussed as functions of the out-of-
plane deflection w at the center of the plate, where w is the total out-of-plane 
deflection at the center of the plate, including the initial imperfection w0: 
- the load F or average stress in x-direction: σx;av = F/(bt); 
- the axial shortening u or the average strain in x-direction: εx;av = u/a; 
- membrane stresses σx;A  and σx;B  in the x-direction at points A and B.  
 
These results can be made dimensionless, by using the buckling stress 
 ( )tbDKcr

22 /πσ = , (1) 
from which we can define the critical strain 
 Ecrcr /σε = , (2) 
the critical axial shortening 
 Eaau crcrcr /)(σε == , (3) 
and the critical load 
 crcr btF σ= . (4) 
In these equations D is the plate flexural rigidity factor: 
  ( ))1(12/ 23 ν−= EtD , (5) 
t is the plate thickness, a and b are the length and width of the plate (for a square 
plate a = b), E is the modulus of elasticity and K is the buckling coefficient.  
 
In the following first a small-deflection solution summarized by Rhodes (1982) 
and a large-deflection solution given by Williams and Walker (1975) are 
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discussed. Then two new solutions are proposed: a modified large-deflection 
solution which is consistent with the small-deflection solution and a modified 
strip model based on the strip model of Calladine (1985).  The results of these 
four different solutions are compared to the results of a parameter study with the 
finite element program ANSYS.   
 
The results discussed clearly illustrate the existing and newly proposed 
solutions. Other results (bending moments mx;B and my;B, and membrane stress 
σy;B) are discussed in Rosmanit and Bakker (2006). These results can be used to 
determine the failure loads of compressed square plates. 
 
Small-deflection solution  
 
The elastic post-buckling behavior of thin plates with initial imperfections is 
governed by Marguerre’s equations; Marguerre (1938). Approximate analytical 
solutions for these equations can be found by postulating a form for the out-of-
plane deflections w. At loads below about twice the buckling load the 
assumption of an unchanging buckled form gives results of engineering 
accuracy. According to Rhodes (1982) the solution based on an unchanging 
sinusoidal buckling shape can be described by the following equations:  
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A is a coefficient, E* is an effective Young’s modulus and the ratio 

Ax

avx

;

;

σ
σ
∂
∂

 is a partial variation of the average stress σx;av. 

Rhodes gives values for the coefficients K, A, 
E
E *

 and 
Ax

avx

;

;

σ
σ
∂
∂

 depending on the 

ratio e = a / b of the buckle half width a and the plate width b of the plate. 
For the case e = 1 (square plates), he gives the following values for a simply 
supported plate with stress-free unloaded edges: 
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K = 4 A = 2.31 408.0
*

=
E
E  26.0

;

; =
∂
∂

Ax

avx

σ
σ

 

 

These values are valid for Poisson’s ratio ν = 0.3. The resulting AF, Au and Aσx;A  
values are given in Table 1. 
 
Rhodes did not give solutions for the membrane stresses σx;B . Using the solution 
of the Marguerre equations given in Murray (1986) it can be derived that: 

 η
σ
σ

σ Bx
cr

Bx A
w
w

;
0; )1( +−= . (10) 

The thus determined Aσx;B value is also given in Table 1. 
 
Large-deflection solution  
 
For loads larger than about twice the buckling load the changes in the buckling 
form must be accounted for. Williams and Walker (1975) gave an explicit 
solution for the elastic large-deflection analysis of compressed plates. The 
format of their expressions is based on the perturbation approach, but the value 
of the constants in these expressions has been determined from numerical 
simulations (using the finite difference method).  
 
Their solution takes the following form:  
 ηφφ =+ 3&& WW

w
WW

w BA , (11) 
in which  
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For a square plate with simply supported edges, subjected to uniaxial 
compression with the unloaded edges stress free, Williams and Walker (1975) 
give the following values for the coefficients (valid for ν = 0.3): 
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WW
wA & = 2.157   and  WW

wB &  = 0.010 WW
uA & =   0.341  and  WW

uB &  = 0.013 

WW
AxA &

;σ = 0.628   and  WW
AxB &

;σ  = 0.010 WW
BxA &

;σ = - 0.383  and  WW
BxB &

;σ  = 0.011 

 
It was found that eqs. (11) to (15) can be rewritten in a format similar to eqs. (6), 
(7), (8) and (10). Therefore first the coefficient φ  is solved from eq. (11) (using 
the Mathematica program), resulting in: 

 
C

C 24567.2671765.2 +−
=φ , (16) 

with  

 ( ) 3
1

678.1480027.00027.0 ηη ++=C . (17) 
 
From eqs. (12), (16) and (17) the load F can be solved: 

 
w
w
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cr

0
22

14567.2671765.2
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +−
= . (18) 

 
Using a power series expansion for F/Fcr about the point η = 0 and leaving out 
negligible small terms, this equation can be further simplified to get: 
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σ
σ

FF
cr

avx

cr

BA
w
w

F
F

++−== . (19) 

 
Using eq. (19) the eqs. (13) to (15) can be written as: 
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The resulting A and B values are given in Table 1. 
 
Modified large-deflection solution 
 
In the perturbation approach by Williams and Walker (1975), both the 
coefficients WWA &  and WWB &  were determined from the results of numerical 
solutions. In this paper it is proposed to take the coefficients A equal to the 
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coefficients determined in the small-deflection solution of the Marguerre 
equations, and fitting the coefficient B to the results of numerical simulations, 
using the format of eqs. (19) to (22) instead of (11) to (15). The resulting 
coefficients are given in table 1. The coefficients B where fitted for w0 = t and 
F/Fcr = 3.0, because it was found that these specific values yield the best results. 
For more results see Rosmanit and Bakker (2006). 
 
Modified strip model  
 
Calladine (1985) used a simple two-element model to represent the behavior of 
the plate (see fig. 2). In this model there are two edge strips with a total width 
bed that always remain straight, and one central strip with a width bce = b - bed 
which behaves like a classical Euler column (i.e. it buckles at constant stress, 
equal to the buckling stress σcr of the plate). According to this model the total 
load carried by the plate can be calculated as: 
 tbbtbF ceededed σσ )( −+= . (23) 
 
This formula can also be written as: 
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Fig. 2: a) Strip model of the compressed plate by Calladine (1985). 
 b) Deformed strip model of the compressed plate by Calladine (1985). 
 
The strain of the central strip can be calculated as the sum of the elastic 
compressive strain and the geometric strain εg: 
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where εg is calculated from the shortening u of the central strip due to out-of-
plane deflections (in the shape of a half-sine wave): 
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The central strip behaves likes an Euler column, so that the imperfection 
amplification factor ξ = wce / w0;ce can be determined as: 

 
1+

=
n

nξ  with 
cr

cen
σ
σ

= . (27) 

 
Eq. (27) can be used to calculate the stress in the central strip as a function of the 
out-of-plane deflection of the plate: 

 
ce

ce

cr

ce

w
w ;01)/11( −=−= ξ

σ
σ . (28) 

 
Calladine (1985) assumed that the maximum lateral deflections w and w0 of the 
plate are equal to the maximum lateral deflections wce and w0;ce of the central 
strip. In this paper it will be assumed that the maximum deflection of the central 
strip can be written as:  
 wCw wce = ,  (29) 
and the maximum initial deformation of the central strip can be written as: 
 0;0 wCw wce = . (30) 
 
Using eqs. (26) and (28) to (30), eq. (25) can be rewritten to give: 

 η
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It can be shown that for elastic edge strip and elastic central strip behavior the 
modified strip model and the small-deflection model give identical strains if: 

 22

2

)1(3 b
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= . (32) 

 
Compatibility requires that the strain in the edge strip equals the strain in the 
central strip: 
 avxceed ;εεε == . (33) 
 
The stress in the edge strip can be calculated as: 
 eded Eεσ = . (34) 
 
Using eqs. (28) to (34), eq. (24) can be written as: 
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Comparing Eq. (35) with Eq. (6) it can be seen that these two equations give 
identical results when:  

 
u

Fed

A
A

E
E

b
b

==
*

,               (36) 

where the coefficients AF and Au should be taken from the small-deflection 
solution. 
 
The modified strip model can also be used in the large-deflection range by using 
eq. (20) instead of eq. (6) to determine the strains, resulting in:  
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Eqs. (37) and (19) give identical results if: 
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where the coefficients A and B should be taken from the modified large-
deflection solution. 
 

 
Fig. 3: Two models of stress distribution over the central cross section. 
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Calladine assumed that the stress in the edge strip equals the stress at the edges 
of the plate (σed = σx;A). A more accurate edge stress can be calculated by 
assuming a linear stress distribution over the edge strip and a parabolic stress 
distribution in the central strip. By taking σed and σce equal to the average stress 
over edge and central strip, and requiring that the stresses and the stress gradi-
ents are continuous at the border between central strip and edge strip (see fig. 3), 
the membrane stresses at the edge and center of the plate can be calculated as: 
 ededAx σσσ Δ+=; , (39) 

 ed
ed

ce
ceBx b

b
σσσ Δ−=

3
1

; , (40) 

with 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=Δ

ed

ce
ceeded b

b
3
21/σσσ . (41) 

 
Note that by using this method the stresses can be calculated without knowing 
the small-deflection solution for stresses, and without curve fitting on stresses.  
 
Using the Mathematica program and leaving out negligible small terms, eq. (39) 
and (40) can also be written in the format of the eq. for the stresses according to 
the modified large-deflection model (eqs. (21) and (22)). The resulting A and B 
values are given in Table 1.  
 
The modified strip model is an interesting model, also for educational purposes, 
because it explains the various non-linear effects in the plate. It may be a useful 
tool for devising simple, rational rules for the design of plates in compression.   
 
Tab. 1: Table of coefficients A and B. 

 coefficients small-
deflection 

large-
deflection 

mod. large-
deflection mod. strip 

AF 0.2356 0.2149 0.2356 F/Fcr BF 0 -0.4283.10-3 -0.3137.10-2 
Au 0.5775 0.5559 0.5775 u/ucr Bu 0 0.1257.10-1 0.7799.10-2 

Aσx;A 0.9062 0.8429 0.9062 0.8710 σx;A 
/σcr Bσx;A 0 0.9572.10-2 -0.2608.10-2 0.5223.10-2 

Aσx;B -0.1676 -0.1681 -0.1676 -0.1420 σx;B 
/σcr Bσx;B 0 0.1057.10-1 0.4489.10-2 -0.5189.10-2 
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Dependency of coefficients A and B on Poisson’s coefficient 
 
The coefficients A and B given in table 1, are determined for plates with ν = 0.3. 
Looking at a purely theoretical perturbation solution given by Walker (1969), it 
can be derived (Rosmanit and Bakker (2006)) that for plates with a coefficient of 
Poisson ν different from 0.3, the coefficients A and B can be calculated as: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= 2

2

3.01
1)( νν AA  (42) 

and 

 
2

2

2

3.01
1)( ⎟⎟

⎠

⎞
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⎝

⎛
−
−

=
νν BB  (43) 

 
Finite element simulations 
 
With the finite element program ANSYS 8.1 a numerical parameter study has 
been carried out. Using eqs. (1), (2), (3), (4), (19) and (20) it can be show that 
for elastic calculations only one specific geometry of compressed plate (with one 
critical stress) is needed. Therefore the plate length and width, plate thickness, 
Young’s modulus and Poisson’s coefficient were kept constant in the parameter 
study: a = b = 99.8 mm, t = 0.7 mm, E = 210000N/mm2, ν = 0.3; resulting in 
a critical stress σcr = 37.5 N/mm2. 
 
All boundary conditions, axis convention and the specific points on the plate are 
presented in fig.1. The used initial imperfections were 0.01t, 0.1t, 0.25t, 0.5t, 
1.0t, 1.5t and 2.0t.  In the model rectangular elements Shell43 were used. The 
element has six degrees of freedom at each node: translations in the nodal x-, y-, 
and z-directions and rotations along the nodal axes. Calculations with this 
element are based on Mindlin plate theory. The deformation shapes are linear in 
both in-plane directions. The mesh density for each plate was 40 x 40 elements. 
In the calculations the effect of large deformations was included. The numerical 
analyses were performed for loads up to three times the buckling load.  
 
Comparison of results 
 
Graphical and numerical comparisons of a representative selection of results are 
shown in figs. 4-7, respectively at table 2. In this paper only the relations 
mentioned in the introduction were compared. For more results see Rosmanit 
and Baker (2006). 
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Fig. 4: Comparison of theories: F/Fcr and w/t relation. 
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Fig. 5: Comparison of theories: u/ucr and w/t relation. 
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Fig. 6: Comparison of theories: σx;A /σcr and w/t relation. 
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Fig. 7: Comparison of theories: σx;B /σcr and w/t relation. 
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Tab. 2: Comparison of theories: The ratio’s F/Fcr when the first 5 % error 
occurs – safe validity of the theory. 

initial deflection variable theory method 
0.01t 0.10t 0.25t 0.50t 1.00t 1.50t 2.00t 

small-def. 2.16 2.14 2.09 2.03 1.90 1.77 1.63 
large-def. 3.00 3.00 3.00 3.00 3.00 3.00 3.00 F/Fcr 

mod. large-def. 3.00 3.00 3.00 3.00 3.00* 3.00* 3.00* 

small-def. 2.10 2.05 1.95 1.76 1.20 0.35 0.00 
large-def. 3.00 1.77 1.66 1.42 0.80 0.00 0.00 u/ucr 

mod. large-def. 3.00 3.00 3.00 3.00 3.00 3.00 3.00* 

small-def. 3.00 3.00 3.00 3.00 3.00 3.00 3.00 
large-def. 2.91 3.00 3.00 3.00 0.48 0.00 0.00 

mod. large-def. 3.00 3.00 3.00 3.00 3.00 3.00 3.00 
σx;A 
/σcr 

mod. strip 3.00 3.00 3.00 2.99 2.95 2.94 2.96* 

small-def. 1.49 1.39 1.20 0.82 0.00 0.00 0.00 
large-def. 1.54 1.48 1.40 1.30 0.00 0.00 0.00 

mod. large-def. 2.38 2.38 1.58 1.02 0.00 0.00 0.00 F
/F

cr
  a

cc
or

di
ng

 to
 fi

rs
t 5

 %
 e

rr
or

  

σx;B 
/σcr 

mod. strip 1.71 1.63 1.48 1.21 0.50 0.00 0.00 
 

- When the first 5 % error does not occur in the ratio F/Fcr = 3.0, then it is 3.0. 
* Although errors are more than 5 % during the first part of the range observed, 

they are less than 5 % for the most relevant part (at least 1.14 < F/Fcr < 3.00). 
 
Discussion 
 
The comparison of results shows that the modified large-deflection method 
gives the most accurate results for the ratio’s F/Fcr and u/ucr. For small 
imperfections the small-deflection solution gives results within 5 % error for 
loads up to about twice the buckling load, but for large initial imperfections the 
5 % error occurs at lower loads. With respect to the membrane stresses σx;A , it is 
surprising to see that the small-deflection solution gives better results than the 
large-deflection solution, even for large initial imperfections and/or large 
deflections. The modified large-deflection solution does not really improve the 
small-deflection solution; the modified strip method is slightly less accurate. 
The accuracy of the membrane stress σx;B is less than the accuracy of the 
membrane stress σx;A., for all models, and deteriorates with increasing initial 
imperfection. Thus as a final result, the modified large-deflection model gives 
the best results, followed by the modified strip method.  
 
Conclusions 
 
By rewriting the equations of the large-deflection solution given by Williams 
and Walker in a format similar to the format of the small-deflection solution 
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given by Rhodes these equations become easier to use. A more consistent large-
deflection solution can be found by using the coefficients A from the small-
deflection model, and fitting only the coefficients B to the results of finite 
element simulations. The thus determined modified large-deflection solution is 
more accurate than the large-deflection solution and gives results of engineering 
accuracy for the ratios F/Fcr , u/ucr and σx;A/ σcr  for loads up to three times the 
buckling load, and initial imperfections up to two times the plate thickness. For 
the ratio σx;B/ σcr  engineering accuracy is obtained for smaller load ranges, which 
rapidly decrease with increasing initial imperfection. 
 
The modified strip model, based on the strip model by Calladine is identical to 
the modified large-deflection solution, in the prediction of the ratios F/Fcr and 
u/ucr. Using this model membrane stresses in point A and B can be calculated 
without fitting coefficients to stress results from numerical simulations. As such, 
the modified strip model can presumably play an important role in future web-
crippling design rules. 
 
It should be checked whether the proposed modified large-deflection method 
and modified strip model can also be used for other plate geometries, and other 
boundary conditions. 
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Appendix. – Notation 
 
Ai, Bi coefficients 
D   plate flexural rigidity factor, see (5) 
E   Young’s modulus of elasticity 

E* effective Young’s modulus of elasticity by Rhodes (1982) 
F   load – compression longitudinal force 
Fcr   critical load, see (4) 
K buckling coefficient 
mi;j moment around axis i (x- or y-) at point j (A or B), see fig. 1 

a, b plate length/width; for a square plate a = b 
bce, bed width of the centre respectively edge strip, see figs. 2 and 3 
t   plate thickness 
u, ucr   axial shortening respectively critical axial shortening 
w, w0   total respectively initial out-of-plane deflection at the centre of the plate 

εce, εed average strain at centre respectively edge strip according to σce, σed 
εcr   critical strain of the plate, see (2) 
εg   geometric strain, see (26) 
εx;av   average strain in x-direction, εx;av = u/a 
η   second degree relation of w0 and w, see (9) 

υ   Poisson’s ratio 
ξ   imperfection amplification factor, see (27) 
σce, σed average membrane stress at centre respectively edge strip, see fig. 3 
σcr   critical stress of the plate, see (1) 
σi;j   membrane stress on direction i at point j, see fig. 1 
σx;av   average stress in x-direction, σx;av = F/(bt) 
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