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Orlando, Florida, U.S.A, October 26 & 27, 2006 

 
 
GBT-Based Analysis of the Local and Global Buckling 

Behavior of Cold-Formed Steel Frames 
 

Cilmar Basaglia1, Dinar Camotim2 and Nuno Silvestre3 
 

Abstract 

This paper reports the results of an ongoing investigation on the use of 
Generalized Beam Theory (GBT) to assess the global and local buckling 
behavior of cold-formed steel frames. After a brief overview of the main 
concepts and procedures involved in performing a GBT buckling analysis, 
one presents the formulation and implementation of a GBT-based beam finite 
element including global and local deformation modes. Next, one addresses 
the constraint conditions used to simulate the local displacement compatibility 
at a frame joint connecting two non-aligned U-section (channel) members. 
Finally, in order to illustrate the application and capabilities of the proposed 
GBT finite element formulation, one presents and discusses numerical results 
concerning the local and global buckling behavior of a simple “L–shaped” 
frame acted by loadings causing only member compression. For validation 
purposes, most GBT-based results are compared with values yielded by shell 
finite element analyses carried out in the code ANSYS. 

Introduction 

The use of cold-formed steel profiles in the construction industry as been 
growing steadily in the last few years − this is mostly due their high structural 
efficiency (large strength-to-weight ratio), remarkable fabrication versatility and 

                                                           
1Ph.D. Student, 2Associate Professor and 3Assistant Professor, Civil Eng. Dept., IST/ICIST, 

Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. 
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 increasingly low production and erection costs. This is particularly true 
in what concerns industrial (predominantly) and residential building 
frames. However, because cold-formed steel frames are generally formed by 
open-section thin-walled columns and beams, which have low torsional 
stiffness and are highly prone to local and global buckling phenomena (as 
well as to the interaction between them), the rigorous assessment of their 
structural behavior constitutes a formidable task − at present, it can only be 
performed by resorting to shell finite element analysis, an approach that 
involves a very substantial computational effort (including the 
interpretation of the results) and is still prohibitive for routine applications 
(e.g., Masarira 2002, Kim & Kang 2004 and MacPhedran & Grondin 
2005). Therefore, this type of steel frames is currently design by means 
indirect methods, based on the safety checking of their individual 
members, often adopting the “effective width” concept to take into account 
the local buckling effects. 
In order to make the analysis of cold-formed steel frames computationally 
simpler and more accessible to the average designer, without sacrificing too 
much the accuracy of the results obtained, it is indispensable to develop 
easy-to-use numerical tools based on beam finite element analysis. However, 
before this goal can be achieved, two major difficulties must be overcome: 
(i) the inclusion of local buckling effects in a beam (one-dimensional) finite 
element formulation and (ii) the handling of the cross-section rotation, 
warping and transverse (wall) bending transmission at frame joints connecting 
non-aligned members. As far as the first aspect is concerned, one very 
promising approach is the use of beam finite elements based on Generalized 
Beam Theory (GBT), which was originally formulated by Schardt (1989) 
and has been substantially developed in the last few years (e.g., Camotim et al. 
2004, 2006). Nevertheless, because all these developments took place solely 
for isolated members, an important gap remains to be bridged before a 
GBT-based approach can be successfully applied to assess the local and 
global structural response of thin-walled frames. 
In the context of the global structural behavior of thin-walled frames, a 
number of investigations have addressed the transmission of the torsion 
rotation and warping joint transmission. Among them, it is worth mentioning 
the works due (i) to Morrell (1979) and Morrell et al. (1996), who studied the 
relationship that must exist between the end section torsional rotations of 
orthogonal U-section members, and (ii) to Sharman (1985), Krenk & Damkilde 
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(1991) and Tong et al. (2005), who investigated the warping transmission 
between the end sections of arbitrarily oriented U and I-section members 
connected at joints with different configurations. 

As a first step towards developing a GBT-based finite element approach that 
makes it possible to assess the (elastic) buckling behavior of plane and 
spatial thin-walled frames, the authors have very recently formulated and 
numerically implemented a beam finite element methodology that can 
perform this task when only global instability phenomena occur − i.e., it only 
involves the four GBT rigid-body deformation modes (Basaglia et al. 2006). 
This methodology includes the definition of “joint elements”, which translate 
the GBT modal “language” into a nodal one (more appropriate to handle 
joints), and was shown to yield virtually exact results − minute differences with 
respect to the critical load values and buckling mode shapes obtained through 
shell finite element analyses. 

The objective of this work is to present and discuss the results of an ongoing 
investigation aimed at extending the above GBT approach, so that it can also 
assess the local buckling behavior of the thin-walled frames. Following a 
very brief overview of the main concepts and procedures involved in 
performing a GBT buckling analysis, one presents the formulation and 
numerical implementation of a GBT-based beam finite element that includes 
global and local deformation modes. Next, in the context of frames built with 
U-section (channel) members1, one (i) reviews the most relevant aspects 
related to the torsion rotation and warping transmission and (ii) addresses the 
constraint conditions adopted to simulate the compatibility between the end 
section local (wall transverse bending) displacements of two non-aligned 
members connected at a frame joint. Finally, the application and capabilities 
of the proposed GBT approach are illustrated by presenting and discussing 
numerical results concerning the local and global buckling behavior of a simple 
“L–shaped” frame acted by loadings causing only member compression. 
For validation purposes, most GBT-based results are compared with values 
yielded by shell finite element analyses carried out in the code ANSYS. 

                                                           
1 Similar results can be readily obtained for frames built with I-section or Z-section members. The 

major restriction imposed on the member cross-section shape is the fact that it cannot exhibit 
distortional buckling. The authors are currently working on the removal of such restriction, thus 
rendering the proposed approach applicable to a wider variety of member cross-section shapes. 
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GBT Cross-Section Analysis 

Consider a thin-walled prismatic member with the arbitrary (n-walled) open 
cross-section shown in figure 1 − also shown are (i) the coordinates x, s and z 
(along the member length, cross-section mid-line and wall thickness) and 
(ii) the associated displacement components u, v and w. In order to comply 
with the classical thin-walled beam theory (Vlasov 1961), the displacement 
components u(x,s), v(x,s) and w(x,s) must be expressed as 
 

)()(),( , xsusxu xkk φ=  )()(),( xsvsxv kk φ=  )()(),( xswsxw kk φ=  ,   (1) 
 
where (i) (.),x ≡ d(.)/dx, (ii) the summation convention applies to subscript k, 
(iii) uk(s), vk(s) and wk(s) are the functions characterizing deformation mode k, 
yielded by the GBT cross-section analysis and satisfying Vlasov’s assumptions 
of null membrane shear strains and transverse extensions (γ M

;xs=εM
;ss=0), 

and (iv) φk(x) are mode amplitude functions defined along the member 
length. 
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Fig. 1: Arbitrary open cross-section, coordinate axes and displacements 
 
In the context of a GBT cross-section analysis, one considers a discretization 
into (i) n+1 natural nodes (wall ends) and (ii) m intermediate nodes, 
which leads to n+m+1 deformation modes: (i) the 4 classical rigid-body modes, 
(ii) n–3 distortional modes and (iii) m local-plate modes (e.g., Camotim et al. 
2004) − these mode amplitudes are the cross-section degrees of freedom. 

To provide some insight on the GBT cross-section analysis procedure and 
outcome, figures 2(b) and 3 show (i) the discretization adopted to obtain the 
numerical results presented and discussed ahead in the paper (the member 
cross-section dimensions and material properties are given in figure 2(a)) and 
(ii) the in-plane deformed configurations of the 7 (out of 13) most relevant 
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deformation modes: axial extension (1), major/minor axis bending (2, 3), 
torsion (4), and local-plate (5 to 7) modes − recall that an (unlipped) channel 
cross-section has no distortional deformation modes. 
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 c
m
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E = 205 GPa
v = 0.3 Natural node

Intermediate node
7

Natural + Intermediate node

1; 25 4 3
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8

11 12; 13109  
 (a)  (b) 

Fig. 2: Cross-section (a) dimensions and (b) GBT discretization 
 

5

1

6 7

2 3 4

 
Fig. 3: In-plane shapes of the 7 (out of 13) most relevant deformation modes 

GBT Buckling Analysis 

The key feature of a GBT analysis resides in the fact that it expresses the 
cross-section displacement field as a combination of deformation modes, 
which (i) account for both the cross-section in and out-of-plane deformation 
and (ii) provide an in-depth understanding of the member structural behavior. 
Once the deformation modes are known, one is able to establish the system of 
member equilibrium equations 
 
 0XWBDC xxkjik

0
jkikxxkikxxxxkik =−+− ,,, φλφφφ  ,   (2) 
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where (i) λ is the load parameter (ii) Xjik are geometric stiffness components 
associated with the stress resultant W0

;j (deemed uniform in this work) and 
(iii) the components of tensors (matrices) Cik, Dik and Bik are cross-section 
modal mechanical properties − while Cik and Dik are related to the warping 
displacements and torsional rotations of the cross-section walls, Bik concerns 
the cross-section in-plane deformation (distortion and/or transverse bending). 

Except for very simple cases, mostly involving simply supported members, 
system (2) can only be solved by resorting to numerical methods. This fact 
prompted Silvestre & Camotim (2003) to formulate, implement and validate a 
GBT-based beam finite element intended to perform buckling analyses of 
thin-walled members – a 2-node beam finite element with 4×(n+m+1) 
degrees of freedom, based on the mode amplitude function approximation 
 
 4k43k32k21k1k QxQxQxQxx )()()()()( ψψψψφ +++=  ,   (3) 
 
where (i) Q k1=φ k,x(0), Q k2=φ k(0), Q k3=φ k,x(Le) and Q k4=φ k(Le), and (ii) 
the functions ψ i(x) are standard Hermite cubic polynomials, defined by 
(ξ=x/Le, where Le is the element length)  

)( ξξξψ +−= 23
e1 2L       132 23

2 +−= ξξψ  
            )( 23

e3 L ξξψ −=             )( 32
4 23 ξξψ −=  

  .   (4) 
 
After introducing (3) into (2) and carrying out the appropriate integrations, 
one obtains the usual finite element matrix equation 
 
 }{}]){[]([ 0dGK eee =+λ  ,   (5) 
 
where [Ke], [Ge] and {de} are the elementary linear stiffness matrix, geometric 
stiffness matrix and generalized displacement vector (dimension 4×(n+m+1)). 

The degrees of freedom associated with each deformation mode, shown in 
figure 4, are designated as follows: (i) the major/minor axis bending transverse 
displacements and rotations (modes 2 and 3) are va (d22 + d32) and θa (d21 + d31), 
for x=0, and vb (d24 + d34) and θb (d23 + d33), for x=Le, (ii) the torsional 
rotation and its derivative (mode 4 − the latter concerns warping) are ϕa 
(d42) and aϕ′  (d41), for x=0, and ϕb (d44) and bϕ′  (d43), for x=Le, (iii) the 
axial displacement and its primitive (mode 1) are ua (d11) and ∫ua (d12), 
for x=0, and ub (d13) and ∫ub (d14), for x=Le, and (iv) the local displacements 
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and their derivative (modes k>n+1) are βa (dk2) and aβ′  (dk1), for x=0, and 
βb (dk4) and bβ′  (dk3), for x=Le − note that the inclusion the axial displacement 
primitive among the elementary degrees of freedom makes it possible 
to “homogenize” system (2), in the sense that it contains only 4th-order 
differential equations, thus enabling the use of the same Hermite cubic 
polynomials to approximate all mode amplitude functions − of course, 
φ1(x)=∫u(x) dx has no obvious physical meaning (but one has φ1,x(x)=u(x)). 
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Fig. 4: Degrees of freedom associated each deformation modes 

 
The overall linear and geometric stiffness matrices of a given structural 
system are obtained by “combining” their elementary counterparts, by 
means of the well-known “incidence matrix” concept. Although this is 
a fairly trivial procedure for isolated members (each node is shared by 
only two equally oriented elements), its extension to frames poses several 
difficulties. Indeed, the fact that the finite elements (members) connected at a 
frame joint exhibit different orientations makes it necessary to account for 
the effects stemming from the need to ensure compatibility between the 
degrees of freedom of the converging end cross-sections.  

Next, one describes the determination of the frame overall total stiffness 
matrix, on the basis of the associated GBT-based elementary matrices: 
(i) After discretizing the frame, one must handle separately the member 

(i1) internal nodes and (i2) end nodes associated with frame joints 
(connecting members with different orientations) – see figures 5(a)-
(b). In the internal nodes, the compatibility of the GBT degrees of 
freedom offers absolutely no difficulties (e.g., Silvestre & Camotim 
2003). However, the same does not remain true for the end nodes 
corresponding to frame joints (e.g., nodes br and ar+1 in fig. 5(b)), as 
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these degrees of freedom must be transferred to a “joint element” 
(see fig. 5(c)). Naturally, all the connection compatibility issues are 
incorporated into this element, through (i1) the transformation of the 
GBT modal degrees of freedom into generalized nodal displacements 
(reference axes zyx −− ) of the (idealized) point where the connection 
is assumed to take place, designated in this work by O; – (see fig. 5(d)) 
and corresponding to the intersection of the arbitrary reference axes of 
the various converging members (e.g., axis x in figure 6(a)), and (i2) 
the imposition of “constraint conditions” that simulate the end section 
local displacement behavior − these procedures make it possible to 
quantify the warping and local displacement transmission between the 
members converging at the joint. 

 
member B

frame joint

member A
r+1

r

r
r-1 a

b
r

r+1a r+2
r+1

b

 
 (a) (b) 
 

 conventional d.o.f
GBT d.o.f

joint element

 

x

U  y z

O
x

U  zU  y
Θ z

Θ y

Θ x

Θ'x
β'kβk and

  
 (c) (d) 

Fig. 5: (a) Frame joint, (b) discretisation of the converging members, 
(c) “joint element” concept and (d) associated coordinate system 

 
(ii) In order to ensure the displacement compatibility at the “joint element”, 

as illustrated in figures 6(a)-(b), one must use the transformation matrix 
[T ], defined by the expressions 
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 { } [ ]{ }dT=ξ }{
][

]][][[
d

I
LRR

1m2x1m2

6x6xzy
⎥
⎦

⎤
⎢
⎣

⎡
=

++

+  ,   (6) 

 
 T

1mnk1mnk2nk2nkxzyxzyxi UUU ][}{ ++=++=+=+= ′′Θ′ΘΘΘ= ββββξ   
  ,   (7)  

T
1mnk1mnk2nk2nkzyxzyi vvud ][}{ ++=++=+=+= ′′′= ββββϕθθϕ  

 
where ]][][[ LRR xzy+  concerns the rigid-body deformation modes: 
while (ii1) matrix ][ zyR +  describes the transformation associated with 
two successive rotations, about axes y  and z  (see fig. 6(a)), (ii2) 
matrix ][ xR  is related to the transformation related to a rotation about 
the member axis x (see fig. 6(b)) and (ii3) matrix [L] corresponds to the 
translation that accounts for the transference of the member generalized 
displacements from the member centroidal (G) or shear centre (S) 
longitudinal axis to the reference one passing in O; – (see fig. 
6(b)). Moreover, (ii1) { }ξ  is the generalized displacement vector, 
(ii2) the vector { }d  components are the GBT degrees of freedom 
and (ii3) [I] is the identity matrix associated with the local deformation 
modes and the torsional rotation derivative. The direction cosines 
appearing in matrices ][ zyR +  and ][ xR , as well as the components 
of matrix [L], were recently reported by the authors (Basaglia et al. 
2006) − due to space limitations, they are not presented here. 
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Fig. 6: (a) Global and member coordinate systems and (b) relative 
positions of the member cross-section centroid, shear centre and point O; – 
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(iii) By using the transformation matrix defined in (6), one obtains, in each 
converging member joint end section, 7 degrees of freedom associated 
with global deformation modes and 2m degrees freedom associated with 
local ones. These two sets of degrees of freedom satisfy the conditions 

 

 { } { }
1rr a

m2mx2

6x6

b

I

I

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Γ= ξξ

][

][
 ,   (8) 

 
where (iii1) [I ] is the identity matrix, (iii2) Γ  is a constant relating 
the torsional rotation derivatives, i.e., that quantifies the “warping 
transmission” at the frame joint under (a detailed explanation about 
this concept can be found in Basaglia et al. 2006). 

(iv) Concerning the local displacement compatibility at the frame joint, one 
must impose “constraint conditions” that (iv1) depend on the joint type 
and member geometry and (iv2) involve j intermediate nodes of the 
converging member end sections – they are expressed as 

 
 { } { } 0k

T
j =Δ=Π φ  ,   (9) 

 
where the vector {Δ} components are the local mode displacement 
fields wk(s) (k > n+2). The particular “constraint conditions” considered 
in this work will be addressed in the next section. 

(v) Using equations (6), (8) and (9), one readily obtains the frame total 
stiffness matrix KT, already ensuring degree of freedom compatibility 
at all nodes − as far as the rigid-body deformation modes are concerned, 
KT is associated with “mixed degrees of freedom”: GBT degrees of 
freedom (dki) in member internal nodes and “conventional” generalized 
displacements (ξ; –i ) in joint nodes. 

Once the frame total stiffness matrix KT is known, performing its buckling 
analysis merely consists of solving the standard eigenvalue problem 
 
 0KT =⋅δλ)(  ,   (10) 
 
where (i) {δ} is a “mixed” vector combining generalized displacements 
and GBT degrees of freedom and (ii) λ is the load parameter (all applied 
loads depend linearly on λ). One determines the frame bifurcation loads λb 
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and corresponding buckling mode shapes {δ}b − the critical ones are λcr 
(lowest λb) and {δ}cr. In order to provide a modal representation of the 
member deformed configurations associated with the frame buckling modes, 
one must transform the joint nodal generalized displacements (sub-vector 
{ξ; –}b of {δ}b) back into GBT degrees of freedom concerning the 
converging member end nodes (sub-vector {d}b) − this is done by means of 
the relation 
 
 { } [ ] { }b

1
b Td ξ−=  ,   (11) 

 
i.e., by performing an operation which “inverts” the one defined in (6). 

Finally, once the values of the GBT degrees of freedom are known in all 
member nodes, it is a straightforward task to obtain the modal representation 
of the frame buckling mode, i.e., to identify and quantify the individual 
contributions of the various member deformation modes. 

Constraint Conditions − Joint Connecting Two Channel Members 

Consider a frame joint schematically depicted in figure 7(a), connecting 
two identical non-aligned channel members with their flanges lying in the 
same planes. Whenever these members experience local deformations, the 
shell finite element model shown in figure 7(c) provides evidence that, at that 
joint, (i) the web remains undeformed and (ii) there is full local displacement 
continuity at the flanges. On the basis of these shell finite element results 
(and similar ones obtained for joints connecting identical I-section members 
with the flanges also lying in the same planes), it was possible to conclude 
that the constraint conditions ensuring local displacement compatibility at this 
type of joint can be expressed approximately by two sets of equations: (i) one 
imposing the equality between the transverse bending displacements 
occurring at the points of intersection of the flange free edges (points Q′  
and Q ′′ in fig. 7(a)) and (ii) the other imposing null displacements at the 
intermediate nodes of the member webs1. 

In the particular case of the joint shown in figure 7(a), the first constraint 
condition set ( I

Q′Π and I
Q"Π ) involves the flange free end nodes AQ′ , BQ′ , 

AQ ′′  and BQ ′′ , lying on member cross-sections located at a distance f from its 
                                                           
1 Although shell finite element results were obtained only for channel and I-section member joints, 

the authors believe that these findings apply also to members with other cross-section shapes. 
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end − as shown in figures 7(a)-(b), these points correspond to the “idealized” 
junctions of the members A and B flange free longitudinal edges. Then, one has 
 

0mmwxmw
1mn

2nk

1mn

2nk
QkQkQkQk

I
Q BBAA

=−=Π ∑ ∑
++

+=

++

+=

)()()()( ''''' φφ  

0mmwmmw
1mn

2nk

1mn

2nk
QkQkQkQk

I
Q BBAA

=−=Π ∑ ∑
++

+=

++

+=

)()()()( """"" φφ  
  ,   (12) 

 
where  
 
 )tan(bfxx 2QQ BB

α⋅=== "'  fLxx AQQ AA
−== "'  ,   (13) 

(i) LA is the member A length (ii) α is the angle between the member axes and 
(iii) b is the horizontal distance from the flange free end to G (see fig. 7(b)). 
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Fig. 7: (a) Joint connecting channel members (flanges in the same planes), 
(b) illustration of the nodes materializing the joint boundary conditions and 

(c) shell finite element modeling of the local displacement compatibility 
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Concerning the second set of constraint conditions II
iΠ , it enforces null 

transverse bending displacements at all the web intermediate nodes of 
members A and B1. Then, for a web with i intermediate nodes one has 
 

 ∑
++

+=

==Π
1mn

2nk
kik

II
i 0mw β)(  .   (14) 

At this stage, it should be mentioned that the well-known Lagrange multiplier 
technique (e.g., Zienkiewicz & Taylor, 2000) provides an alternative (and 
probably more effective) way to include the above constraint conditions in 
the frame buckling analysis − it leads to an “enlarged” stiffness matrix with 
more degrees of freedom. The authors are currently exploring this approach. 

Illustrative Examples 

In order to validate and illustrate the application and capabilities of the 
proposed GBT-based beam finite element approach, one now presents and 
discusses numerical results concerning the local and global elastic spatial 
buckling behavior of “L–shaped” plane frames of the type shown in figure 8, 
formed by two orthogonal channel members (members A and B) having 
identical cross-sections, connected with flange continuity and subjected to 
loads causing only member axial compression − while member A has a fixed 
and warping-prevented end section, member B is simply supported (warping 
–free and locally/globally pinned end section). The member cross-section 
dimensions are the ones given in figure 2(a) and the elastic constant values 
adopted are E=205 GPa (Young’s modulus) and v=0.3 (Poisson’s ratio). For 
validation purposes, several GBT-based buckling results are compared with 
values yielded by finite element analyses performed in the code ANSYS 
(SAS, 2004) and discretizing the frame into shell element meshes − the 
particular element adopted is termed SHELL181 (ANSYS nomenclature) and 
was used with a “full integration” option. 

Two different frame geometries (member lengths) were considered, namely 
(i) LA=LB=70 cm (Case I − two short members) and (ii) LA=70cm and 
LB=700 cm (Case II − one short and one long member). The member axial 
compression values are NA=P and NB=γ P (P is the frame load parameter) − 

                                                           
1 Note that this procedure does not enforce null web transverse bending displacements exactly. 
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one considers γ=1 in Case I and γ=0.5 in Case II. Since the members are 
connected with flange continuity, their end sections exhibit exactly the same 
warping displacements (they may be viewed as the two “faces” of a single 
cross-section), which means that the warping transmission is complete and 
direct − i.e., one has BA ϕϕ ′=′  or, equivalently, Γ=1 must be inserted in (8). 

Case I. While (i) figure 9 shows the member A and B modal amplitude 
functions associated with the frame critical buckling mode, (ii) figures 10(a)-(b) 
provide the corresponding deformed configurations obtained by means of (i) 
a GBT-based finite element analysis (considering 6 elements along the member 
length, amounting to 59 degrees of freedom) and (ii) the ANSYS shell finite 
element analysis (mesh associated with more than 5700 degrees of freedom). 
The comparison between the buckling results yielded by both formulations 
prompts the following remarks: 
(i) First of all, the critical loads obtained through the two analyses virtually 

coincide: Pcr.GBT=150.09kN and Pcr.ANSYS=150.44kN − 0.25% error). 
(ii) The buckling mode shapes shown in figures 10(a)-(b) are remarkably 

similar. Moreover, the detail of the GBT one depicted in figure 10(c) 
provides insight on how the flange transverse bending displacement 
continuity was modeled in the GBT approach: one just imposes it on the 
two common flange free edge points  − however, note that it reproduces 
quite accurately the deformed shape yielded by the ANSYS analysis. 

(iii) The frame buckles in a local mode that (iii1) involves the two members 
and (iii2) includes participations of the GBT deformation modes 5 and 6. 
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Fig. 8: “L– shaped” frame geometry, loading and end support conditions 
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Fig. 9: Member modal amplitude functions φk(x) – Case I 
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Fig. 10: Critical buckling mode shapes yielded by the (a) GBT and (b) 
ANSYS analyses (Case I); (c) detail of the GBT modeling of the frame joint 
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(iv) Obviously, the participation of the local modes is more meaningful in 
the (simply supported) member B. Moreover, this participation is higher 
between mid-span and the simple support. 

(v) The participation of mode 6 reaches a maximum in the vicinity of the 
joint and becomes null at the member A mid-span. Moreover, there is no 
transmission of mode 7 across the joint − it only appears in member B. 

Case II. Figures 11(a)-(c) show the member A and B modal amplitude 
functions concerning the frame three first buckling modes. Figures 12(a)-(c), 
on the other hand, provide the corresponding buckling mode shapes 
obtained by means of ANSYS analyses − in the second and third modes, 
only the member A deformed configuration is displayed. While the GBT 
analysis was based on a frame discretization into 16 elements (9 in member 
A and 7 in member B − 216 degrees of freedom), the ANSYS analysis involved 
more than 17000 degrees of freedom. After comparing the buckling results 
yielded by the two analyses, one is led to the following conclusions: 
(i) Once again, there is a very good correlation between the two buckling 

load sets: (i1) Pcr.GBT=153.27kN and Pcr.ANSYS=153.79kN (0.34% error) 
(i2) Pb2.GBT=160.29kN and Pb2.ANSYS=160.58kN  (0.18% error) and (i3) 
PGBT=167.82kN, PANSYS=164.27kN (2.2% error). 

(ii) There is also a rather close agreement between the buckling mode 
shapes shown in figures 12(a)-(c) and the modal amplitude functions 
displayed in figures 11(a)-(c). However, the latter are considerably 
richer, in the sense that provide a much deeper insight on both the 
frame mechanical behavior and how the joint influences it. 

(iii) The virtual coincidence of the frame buckling loads and mode shapes 
is even more remarkable and striking if one thinks that the numbers of 
degrees of freedom required to perform similarly accurate GBT and 
ANSYS analyses are very far apart (their ratio is about 80). 

(iv) The frame critical buckling occurs in a lateral-torsional mode (combination 
of deformation modes 2 and 4) which obviously involves mostly the 
longer member B − note that the contribution of mode 2 reaches its 
highest value at mid-span. 

(v) Concerning the second buckling mode, it involves the occurrence of 
local deformations in member A – 2 half-waves with a predominant 
contribution from mode 5. As for the third buckling mode, it basically 
involves the participation of (v1) local modes in member A (mostly 
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mode 5, with 3 half-waves, but also modes 6 and 7) and (v2) mode 3 
(minor axis bending with a single half-wave) in member B. 
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Fig. 11: Member modal amplitude functions φk(x) for the (a) critical, 
(b) second and (c) third buckling modes – Case II 
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Fig. 12: (a) Critical, (b) second and (c) third buckling mode shapes yielded 
by the ANSYS analysis (Case II) − only member A in the latter two 

 
(vi) Figures 11(b)-(c) clearly reveal the effects of the compatibility of the 

local displacements at the frame joint − note that, in member B, local 
modes only appear in the close vicinity of the frame joint. 

Conclusion 

This paper presented the mains steps and procedures involved in the 
formulation and numerical implementation of a GBT-based beam finite 
element intended to analyze the global and local buckling behavior of 
cold-formed steel frames. After a very brief review of the most relevant 
concepts involved in the performance of a GBT-based buckling analysis, 
the paper addressed in detail (i) the formulation of a GBT-based beam finite 
element and (ii) its use to determine the frame linear and geometric stiffness 
matrices. Next, one developed constraint conditions making it possible to 
model the local displacement compatibility at the end sections of two non-
aligned channel members connected at a frame joint (with flange continuity). 
Finally, in order to illustrate the application and capabilities of the proposed 
GBT-based beam finite element formulation, numerical results concerning 
the global and local buckling behavior of simple “L-shaped” frames were 
presented and discussed − for validation purposes, some of these results 
were also compared with values yielded by shell finite element analyses 
performed in the code ANSYS. The GBT approach was found (i) to exhibit a 
high numerical efficiency (one consistently obtained virtually exact results 
with a very small number of degrees of freedom − considerably smaller 
that the one required to perform equally accurate ANSYS analyses) and 
(ii) to provide deep insight on the mechanics of the frame buckling behavior. 
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