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Nuno M.F. Silva1, Dinar Camotim2 and Nuno Silvestre3 
 

Abstract 

This paper presents the formulation and illustrates the application of a novel 
Generalized Beam Theory (GBT) formulation able to handle the influence of localized 
effects on the buckling behavior of prismatic thin-walled members (e.g., cold-formed 
steel profiles) − for instance, this formulation accounts for effects stemming from (i) the 
position of transverse loads (with respect to cross-section shear centers) or (ii) the 
occurrence of web buckling phenomena (e.g., web crippling). In order to achieve this 
goal, the GBT formulation traditionally employed in buckling analyses must be 
enhanced by including specific (i) non-linear terms and (ii) transverse extension 
modes. Due to its unique modal nature and computational efficiency, this GBT 
formulation/implementation is a very advantageous alternative to shell finite element 
analyses − at present, the only available method to capture the above localized effects 
rigorously. In order to illustrate the application and capabilities of the proposed 
GBT formulation-implementation, one presents and discusses numerical results 
concerning the buckling behavior of (i) hat and I-section cantilevers acted by transverse 
tip point loads applied at various cross-section points, and (ii) I-section simply 
supported beams under top-flange distributed and point loads – one also assesses how 
end support transverse web stiffeners improve the beam buckling behavior. For 
validation, the GBT results are compared with values reported in the literature and/or 
yielded by ABAQUS shell finite element analyses. 

                                                           
1Ph.D. Student, 2Associate Professor and 3Assistant Professor, Department of Civil Engineering and Architecture, 
IST/ICIST, Technical University of Lisbon, Portugal. 
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Introduction 

Due to the growing demand for structural configurations that are progressively more 
efficient and/or “architecturally daring” (i.e., leaving a lasting aesthetic impression), 
steel designers have been frequently led to solutions involving extremely slender 
thin-walled members (e.g., cold-formed steel profiles). However, optimizing the 
geometry of a member, thus minimizing the material expenditure and/or maximizing the 
visual impact, invariably renders it highly susceptible to several types of instability: 
global, local and localized buckling phenomena − the latter, which receive particular 
attention in this work, often stem from the existence of very slender walls (usually 
webs) and/or from the presence of transverse loads, which may act at different cross-
section points. 

It is well known that the lateral-torsional buckling behavior of thin-walled metal or 
FRP composite beams is strongly affected by the locations of the points of 
application of transversal loads acting on them − the relevant quantity is the vertical 
distance to the cross-section shear centers. While this effect has been properly 
quantified in steel beams for decades (e.g., Trahair 1993), the same is not true in the 
case of FRP composite beams − for instance, it was only a dozen years ago that 
Turvey (1996) addressed this issue: he conducted an experimental, analytical and 
numerical investigation on the lateral-torsional buckling behavior of I-section pultruded 
cantilevers acted by tip point loads applied in the top flange, bottom flange and shear 
center. However, concerning the influence of the transverse load position on the 
member local-plate, distortional and/or localized buckling phenomena2 (i.e., those 
involving cross-section in-plane deformations), the amount of available research work is 
much more scarce, a statement that is particularly true for distortional buckling − to the 
authors best knowledge, this topic has only been addressed by (i) Gonçalves & 
Camotim (2004) and Gonçalves (2007), who only studied a specific problem (hat-
section cantilever under acted by a tip load) using an approximate one-dimensional 
model, and (ii) Samanta & Kumar (2006) and Kumar & Samanta (2006), who used 
shell finite elements to investigate the “distortional buckling”3 of singly symmetric 
I-section beams acted by transverse loads applied at their top and bottom flanges. 
                                                           
2 Note that local-plate and distortional buckling are sometimes grouped under the designation “local 

buckling”, characterized by the fact that the member axis remains undeformed. On the other hand, local-
plate buckling is often termed “local buckling”. As for distortional buckling, it may occur in members with 
end-stiffened lipped flanges (e.g., lipped channel, hat-section or rack-section profiles) and always involves rigid 
body rotations of member wall assemblies − e.g., a compressed flange-lip assembly rotating about the 
corresponding web-flange longitudinal edge). 

3 It is important to mention that this “distortional buckling” phenomenon is not the same that was described in 
the previous footnote (which cannot occur in I-section beams with no lipped flanges). Indeed, it is triggered by 
the (lateral) transverse bending and has been originally designated as “lateral-distortional buckling” by Bradford 
(1992) − this designation was subsequently also used by Pi and Trahair (1997), Very recently, Dinis et al. 
(2008) proposed “lateral-torsional-distortional buckling”, a wording that, in their opinion, reflects more closely 
the mechanics of this phenomenon. 
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Concerning the localized buckling phenomena that stem from the high 
slenderness of the member walls (usually webs), they may arise in several practical 
applications − for instance, industrial crane girders and large-span steel or composite 
(steel-concrete) bridges. In both cases, the beams have virtually always very slender 
webs and, when acted by top-flange point loads, often experience web localized 
buckling phenomena, such as web crippling or shear buckling. Unlike lateral-torsional 
and local-plate buckling, which are rather well studied and understood phenomena, is 
it fair to say that there are practically no simplified (one-dimensional) models to assess, 
with reasonable accuracy, instabilities stemming from transverse normal and/or shear 
stresses – indeed, the few available models either (i) are of a semi-empirical nature and 
exhibit a low and somewhat unpredictable accuracy (e.g., the design formulae and 
methodologies prescribed by most of the current steel codes, such as the very recently 
published Part 1-5 of Eurocode 3 − CEN 2006), or (ii) have a limited range of 
application (e.g., cannot handle buckling mode coupling effects). Therefore, it is 
not surprising that nearly all the works reported on localized buckling phenomena 
in thin-walled members (mostly involving I-beam webs) concern experimental 
and/or shell finite element numerical simulations. In this context, it is worth 
mentioning two recent publications: (i) the experimental study carried out by Lucic & 
Scepanivic (2004), dealing with web crippling of transversally stiffened I-section beams 
acted by transverse loads applied eccentrically with respect to the web plane, and (ii) the 
numerical investigation conducted by Topkaya (2006), who analyzed the 
buckling behavior of simply supported I-beams with laterally restrained 
compression flanges. The latter provided evidence that such I-beams may exhibit a 
critical buckling mode that combines lateral-torsional and web local-plate buckling 
features – moreover, the author (i) performed a parametric study and, on the basis of 
the results obtained, (ii) developed semi-empirical formulae to estimate the critical 
loads/stresses associated with this “mixed” buckling mode. 
Despite the fairly intense research activity currently going on in this area, steel designers 
are not yet equipped with numerical tools allowing them to assess efficiently and 
rigorously the localized web buckling behavior in thin-walled members with arbitrary 
loadings and support conditions. Indeed, they must either (i) use the semi-empirical 
design formulae and methodologies prescribed by the steel codes or (ii) resort to rather 
complex shell finite element analyses − this last option is very time consuming (besides 
the computational needs, one must not also forget the laborious data input and result 
interpretation) and clearly incompatible with the current design office practice in 
routine applications. 

Recently, a novel approach to analyze the local and global buckling behavior of 
prismatic thin-walled members has been explored and shown to constitute a very 
attractive/advantageous alternative to the shell finite element modeling – this approach 
is based on the Generalized Beam Theory (GBT), which may be seen as a beam (one-
dimensional) theory that (i) incorporates local (in-plane cross-section) deformations 
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and (ii) exhibits very convenient modal features. By expressing the member 
deformed configuration (or buckling mode shape) as a combination of deformation 
modes with clear structural meanings (local-plate, distortional and global modes), GBT 
provides elegant, rigorous and computationally efficient solutions for several structural 
problems concerning prismatic thin-walled members (e.g., Camotim et al. 2004, 2006a, 
2006b, and Bebiano et al. 2007) − these solutions include the majority of the 
(geometrically) linear and non-linear effects captured by the shell finite element 
analyses, but at a much lower computational cost. 

The aim of this paper is (i) to present main steps involved in the formulation and 
implementation, and (ii) illustrate the application of a GBT-based beam finite element 
that incorporates non-linear terms stemming from the presence of pre-buckling 
normal (longitudinal and transverse) and shear stresses. This makes it possible to 
capture (i) the influence of the location of a transverse load point of application4 and also 
(ii) localized wall (web) buckling effects. The illustrative numerical results presented 
and discussed concern the buckling behavior of (i) hat and I-section cantilevers acted 
by transverse tip point loads applied at various cross-section points, and (ii) I-section 
simply supported beams under top-flange distributed and point loads (i.e., highly 
prone to web crippling) – one also assesses how the inclusion of end support transverse 
web stiffeners improve the beam buckling behaviour. In order to provide validation for 
the proposed approach and, at the same time, offer a better grasp of its capabilities, 
the GBT-based results are compared with values yielded by shell finite element 
analyses carried out in the code ABAQUS (HKS 2002). 

Fundamental GBT Equations 

Consider the arbitrary thin-walled prismatic member shown in figure 1, where x, s and z 
are local coordinates along the longitudinal direction (member axis), cross-section mid-
line and the wall thickness – u(x, s), v(x, s) and w(x, s) are the corresponding member mid-
surface displacement fields. The key GBT feature is the fact that these displacement 
components are expressed by means of a linear combination of cross-section 
deformation modes − i.e., one has 
 

)()(),()()(),()()(),( , xswsxwxsvsxvxsusxu kkkkxkk φφφ ===  ,   (1) 
 

                                                           
4 As mentioned earlier, Gonçalves & Camotim (2004) and Gonçalves (2007) also used GBT to study the 

influence of the location of a tip transverse load point of application point on the distortional and lateral-
torsional buckling behaviour of hat-section cantilevers. Although the approximate methodology adopted by 
these authors proved to be adequate to analyse this particular problem (as far as anti-symmetric distortional and 
lateral-torsional buckling are concerned), it lacks generality − e.g., the symmetrical distortional and local-
plate buckling behaviours of these same hat-section cantilevers are not handled properly (the web in-plane 
rotations are no longer rigid-body ones, due to significant transversal bending). 
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where uk(s), vk(s) and wk(s) (k=1,..,n) are deformation mode shapes and φk(x) functions 
providing the longitudinal variation of their amplitudes. The cross-section deformation 
modes may be either (i) global (axial extension, major/minor axis bending and 
torsion), (ii) local (distortional and local-plate), (iii) (warping) shear or (iv) transversal 
extension ones − moreover, they are determined by means of a GBT “trademark” 
 

 
Fig. 1: (a) Geometry and (b) local coordinate system and corresponding 

displacement field and local of an arbitrary thin-walled cross-section 
 
procedure termed cross-section analysis. The concepts and operations involved in this 
procedure, which are not addressed here, can be found in a very recent paper by the 
authors (Silva et al. 2008) − similar (but not identical) procedures have also been 
proposed by other authors, namely Silvestre & Camotim (2002) and Gonçalves 
(2007). 

Assuming that the member is made of a material with linear elastic constitutive law, it is 
possible to derive the GBT equations governing its first order and buckling 
behaviors − they are given by 
 

 ( ) −+−++ kikxxkikkiikxxxxkik BDEEC φφφ ,,  

( ) ( )( ) 00
,

0
,,

0
,,,

0
, =−−−+− ikjjikxkxjjkixkxjjikxxkxxjjik qBDDC φφφφφφφφλ  ,   (2) 

 
where (i) the second-order tensors (matrices) Cik, Bik, Dik and Eik account for the linear 
stiffness values associated with (i1) longitudinal extensions, (i2) transverse extensions, 
(i3) shear strains and (i4) coupling between longitudinal and transverse extensions due to 
Poisson effects5, and (ii) the third-order tensors Cjik, Bjik and Djik take into consideration 
the member geometric stiffness and concern the works done by the (ii1) longitudinal 
normal, (ii2) transverse normal and (ii3) shear stresses, corresponding to the non-linear 
terms of the longitudinal extensions ( ) 2/22

,x,x
NL
xx wvε += , transverse extensions 

( 2/2
,s

NL
ss w=ε ) and shear strains ( sx

NL
ss ww ,,=γ ). The components of these second 

and third-order tensors are given by the expressions 

                                                           
5 The tensor components Eik should not be confused with the material Young’s modulus E. 
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Finally, a vector qi component represents the work per unit length done by a distributed 
load having components qx, qs and qz (deemed to be applied at the wall mid-surfaces) 
and associated with deformation mode i − thus, one has 
 
 ( )∫ −+=

b
ixxizisi dsuqwqvqq ,  .   (5) 

 
As mentioned above, system (2) provides the equilibrium equations governing the 
member first-order and buckling behaviors − they are obtained by assigning null values 
to either (i) the load parameter λ (first-order behavior) or (ii) the vector qi components 
(buckling behavior). One should still mention that, when calculating the third-order tensor 
(geometric stiffness) components, the inclusion of the pre-buckling stresses and 
deformations effects is accomplished by means of the modal amplitude functions 0

jφ  
(see (2)). These pre-buckling stresses (i) are the solution of the member first-order 
analysis under a reference loading profile (loading profile multiplying the load parameter 
λ in buckling analyses), and (ii) include the transverse normal stresses that appear when 
the loads are not applied at the cross-section shear center6 − they may be compressive or 
tensile, depending on whether the load is applied above or below this shear center. 

                                                           
6 Indeed, this is precisely the effect that this work aims at investigating. 
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GBT-Based Finite Element Solutions 

The member first-order and buckling analyses are performed by means of  GBT-
based beam finite element formulations, which are similar to the one originally 
developed by Silvestre & Camotim (2003), in the context of the buckling analysis of 
pultruded FRP columns. The following strategy is adopted to approximate (discretize) the 
modal amplitude functions φi(x): (i) the functions concerning deformation modes 
involving non-null transverse displacements vi(s) and/or wi(s) are approximated by 
means of Hermite cubic polynomials, and (ii) those related with deformation modes 
involving only axial displacements ui(s) (i.e., the axial extension and shear modes) are 
approximated using linear Lagrange polynomials. The corresponding element linear 
and geometric stiffness matrices are given by 
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where (i) subscripts i, j, k identify the deformation modes, (ii) subscripts α, β concern 
the φi(x) approximation nature (Hermite/Lagrange polynomials) and (iii) 0

ηjd are the 
pre-buckling generalized displacement components − the latter are obtained through the 
finite element solution of the first-order problem 
 
 010 fKd −=  ,   (8) 
 
where K and f0 are the member overall linear stiffness matrix and load vector. Finally, a 
member buckling analysis involves solving the eigenvalue problem 
 
 ( ) 0=− dGK λ  ,   (9) 
 
where vector d assembles the (discretized) degrees of freedom. 

It is still worth pointing out that the GBT analyses required to solve the above first-order 
and buckling problems do not necessarily have to involve the same sets of 
deformation modes. For instance, very often one does not need to include shear and 
transverse extension modes in the buckling analyses. On the other hand, the inclusion of 
such deformation modes in the first-order analyses is absolutely crucial to obtain precise 
pre-buckling generalized displacement components 0

ηjd  − they are then used to 
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evaluate “exact” pre-buckling stresses, which play a key role in determining accurate 
geometric stiffness values. 

Illustrative Examples 

In this section one presents and discusses numerical results that illustrate the application 
and potential of the developed GBT formulation − all are elastic buckling problems. 
The first two problems concern simply supported I-beams with slender webs are 
intended to (i) illustrate the various types of buckling phenomena that may occur in 
the presence of transverse loadings (applied at the top flange), (ii) assess the (beneficial) 
effect of adding end support transverse web stiffeners and (iii) validate the proposed 
GBT model, by comparing its results with ABAQUS shell finite element values. The last 
two problems concern the effect of the position of the load point of application point on 
the buckling behavior of I-section and hat-section cantilevers − in this case, the 
GBT-based results are validates through the comparison with values (i) reported by 
Bebiano et al. (2007), for the I-section cantilevers, and (ii) again yielded by ABAQUS 
shell finite element analyses, for the hat-section cantilevers. 

Simply Supported I-Beams. The first two illustrative examples concern simply 
supported beams7 made of S460 steel (E=210 GPa, ν=0.3, fyk=460 MPa) and exhibiting 
the I-section geometry depicted in figure 2(a). They are acted by two transverse 
loadings applied at the top flange: either (i) two point loads (i.e., distributed over a very 
small area, to be more precise) or (ii) a uniformly distributed load along the whole 
beam span. It is worth noting that, due to the high web slenderness, this cross-section 
is classified as “Class 4” according to Eurocode 3 (CEN 2005) − this implies that 
the beam ultimate strengths are strongly influenced by the occurrence of web-
triggered local and/or localized buckling phenomena. For the discretization shown 
in figure 2(b), the GBT cross-section analysis leads to 30 deformation modes: global 
(1-4), local-plate (5-12), shear (13-21) and transverse extension (22-30) modes8 − 
the main features of the most relevant of them are displayed in figure 39. 

First, one analyzes the beam schematically depicted in figure 4, (i) with length L=200 

cm, (ii) with the simple supports located in the bottom flange and (iii) acted by two 
symmetric vertical point loads applied at the top flange and in 

                                                           
7 The end cross-sections can deform freely, since only the web-flange corner displacements are restrained − 

thy are strictly necessary to avoid cross-section rigid-body motions (global modes). 
8 All deformation modes are normalized to exhibit unit maximum displacement components − either (i) v 

or w (if they are not both null) or (ii) u (if v and w are both null). 
9 Recall that the shear and transverse extension deformation modes only have to be included in the 

member first-order analyses. 
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Fig. 2: I-section (a) geometry and dimensions, and (b) GBT nodal discretization 

 

 
Fig. 3: Main features of the most relevant I-section deformation modes: global (1-4), 

local-plate (5-12), shear (13-21) and transverse extension (22-30) 

1 2 3 4 5 6

7 10 13 14 15 18
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Fig. 4: Simply supported I-section beam acted by two symmetric point loads 

 
the plane of web − their points of application are a (variable) distance d apart. One 
assumes that (i) the point loads are effectively uniformly distributed over a length 
s=5 cm (see fig. 4) (ii) the beam is only laterally restrained at the top and bottom 
flanges of the end cross-sections (supports), and (iii) the flange displacements are 
free along the whole beam length. Concerning the presence of web transverse 
stiffeners, one addresses two cases: (i) no stiffeners and (ii) stiffeners only at the 
beam end cross-sections − each stiffener is formed by two steel plates of 
thickness ts=5 mm, normal to the web and connecting the two flanges along their 
full widths. 

GBT-based analyses are employed to assess the variation of the critical loadings 
Pcr with the parameter d/L (normalized distance between the two point loads), both 
for beams with and without web transverse stiffeners at the supports − all 30 
deformation modes are included in the analyses10 and the beams are discretized 
into 22 finite elements with different lengths (smaller in the vicinity of the supports, 
as can be seen in figs. 7(a) and 7(c)), which corresponds to a total of 1143 degrees 
of freedom (d.o.f.). For validation purposes, one also performs shell finite element 
analyses in the code ABAQUS − the beams are discretized into fine meshes involving 
1280 S9R5 elements (9-node shell elements with 5 d.o.f. per node and reduced 
integration), which corresponds to an overall amount of about 27000 d.o.f.. The 
numerical results are presented in figures 5, 6(a)-(b) and 7(a)-(d): (i) Pcr vs. d/L 
curves, yielded by the GBT and ABAQUS analyses, (ii) GBT modal participation 
diagrams providing the variation, with d/L, of the deformation mode contributions 
to the beam critical buckling modes and (iii) the GBT and ABAQUS critical 
buckling mode shapes concerning the beams with d/L=0.3. The observation of 
these results prompts the following comments: 
(i) As expected, the unstiffened beam instability is always triggered by the buckling 

of the web near the supports (see fig. 7(a)), due to the combined action of shear 
and transverse normal stresses. Obviously, this means that Pcr does not depend 
on d/L (provided that the loads are not applied in the close vicinity of the 

                                                           
10 As mentioned earlier, it will be shown that the shear and transverse extension deformation modes do 

not participate in the beams critical buckling modes, which means that they can be omitted from the 
buckling analyses. Their role is restricted to the first-order analyses. 
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supports) − therefore, it is not surprising that the critical load remains practically 
constant (Pcr≈17 kN) up to d/L=0.8, and then gradually decreases to about half 
that value (Pcr=8.46 kN for d/L=1). For d/L=0.3 (Pcr=16.98 kN) all the 
contributions to the beam critical buckling mode come from local-plate and 
global deformation modes: 7 (50%), 5 (30.6%), 4 (8%), 10 (5.6%), 6 (3.5%) and 3 
(1.9%)11. 

(ii) Again as expected, the stiffened beam instability is also triggered by the buckling 
of the web, but now in the regions where the loads are applied (see fig. 7(c)). This 
explains why Pcr decreases monotonically as the two 

 

 
Fig. 5: Pcr vs. d/L curves for the unstiffened and stiffened I-beams 

                                                           
11 The participations of the GBT deformation modes in the beam critical buckling mode are obtained 

from the maximum values, along the beam length, of the various modal amplitude functions (e.g., Silva et 
al. 2008) − thus, each deformation mode contribution is expressed as a percentage value pi. To have all 
deformation mode amplitudes with the same dimensions, the torsion mode one corresponds to the maximum 
displacement component causes by it (like for all other modes) − note that the “usual” torsion mode 
amplitude corresponds to a rotation value. 
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Fig. 6: GBT modal participation diagrams of the (a) unstiffened and (b) stiffened 

I-beams 
 

 
Fig. 7: Critical buckling mode shapes provided by the GBT and ABAQUS analyses 

for the (a+b) unstiffened and (c+d) stiffened beams with d/L=0.3 
  
 loads get closer (i.e., as d/L decreases) − the lower and higher values are 19.67 

kN (mid-span loading) and 170.28 kN (support loading). For d/L=0.3 
(Pcr=32.01 kN), the critical buckling mode combines relevant participations 
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from local-plate and global deformation modes: 5 (27.5%), 7 (27.5%), 4 (22.8%), 
3 (9.9%), 10 (6.3%) and 6 (5%)12. 

(iii) The presence of the end web stiffeners obviously improves the beam buckling 
behavior − this improvement becomes more relevant as the loads get closer to 
the supports (unlike in the unstiffened beams, the stiffened beam Pcr value 
grows exponentially as d/L tends to 1). The percentage difference between 
the critical buckling loads of the two beam (iii1) is of 18% for d/L=0 and (iii2) 
increases rapidly with d/L − e.g., for d/L=0.3 this difference is already equal 
to 89%. 

(iv) The GBT modal participation diagrams shown in figures 6(a)-(b) provide in-depth 
insight into the beam buckling behavior. For instance, they readily reveal that 
(iv1) the global deformation modes 3 and 4 are much more important in the 
stiffened beams than in the unstiffened ones, (iv2) the local-plate deformation 
modes 5 and 7 always prevail (regardless of the load position), particularly in 
the unstiffened beams, and (iv3) the maximum global (flexural-torsional) 
contribution to the critical buckling mode occurs for the stiffened beam with 
d/L=0.2. 

(v) Finally, note the very good agreement between the GBT and ABAQUS results − 
as clearly shown in figures 5 and 7, there is a virtually perfect match between 
both the critical load values and the buckling mode shapes, as long as one has d/L≤ 

0.8. Indeed, the Pcr differences never reach either 1.2% (unstiffened beams) or 
3.0%, (stiffened beams). For d/L> 0.8, on the other hand, these differences may be 
as high as 10%, which is due to the GBT web stiffener modeling13. In order to 
illustrate the above statements, one presents next some critical load values 
provided by the ABAQUS and GBT analyses for the unstiffened and stiffened 
beams with d/L=0.3: (v1) Pcr.GBT=32.01 kN and Pcr.ABQ=32.40 kN (stiffened 
beam) and (v2) Pcr.GBT=16.97 kN and Pcr.ABQ=16.79 kN (unstiffened beam). 

The second beam analyzed differs from the first one (depicted in fig. 4) in the fact that 
the loading consists now of a uniformly distributed load spanning the whole member 
length and applied at the beam top flange (in the plane of the web) − its value is 
p=2P/L, which leads to support reactions equal to P. The GBT and ABAQUS critical 
buckling loads of the unstiffened and stiffened beams are given in table 1. In order to 
assess the relevance of including the non-linear term of the transverse extensions 
( 2/2

,s
NL
ss w=ε − see Bjik in (4)) in the buckling analysis of beams with slender 

                                                           
12 The participation of the global modes are now much more relevant, since the cross-sections that are most 

involved in the beam critical buckling mode critical are located far away from the supports − thus, they 
exhibit a considerably smaller “global stiffness”. 

13 In GBT, the web stiffeners are modeled by restraining the local-plate and transverse extension mode 
amplitudes in the beam end cross-sections − this corresponds to assuming that the stiffening plates are 
fully rigid in their own-planes and completely flexible out of them, which does not correspond to the 
ABAQUS shell finite element modeling. Additionally, GBT does not take into account the stresses 
developing in the stiffeners, thus making it impossible to capture their own (localized) buckling behaviors. 
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webs acted by transverse loads, table 1 also contains Pcr values obtained from 
GBT analyses that neglect this term. As for figures 8(a)-(d), they show the two beam 
critical buckling mode shapes yielded by GBT and ABAQUS analyses. Finally, 
figure 9 displays the pre-buckling shear and transverse normal stresses obtained 
from first-order analyses carried out in ABAQUS. After observing these results, one is 
led to the following conclusions: 
(i) As before, the unstiffened beam instability is triggered by the buckling of the 

web near the supports (see fig. 8(a)). It occurs for Pcr=16.16 kN, i.e., practically 
the same critical buckling load of the beam acted by point loads applied far 
away from the supports − this is not surprising, since the critical buckling load 
is governed by the support reaction value, which is the same in both cases. 
Concerning the beam critical buckling mode, the participations of the various 
GBT deformation modes also attest the enormous similarity with the previous 
one, easily confirmed by looking at figures 8(a) and 7(a) − indeed, the main 
contributions come from modes 7 (52.6%), 5 (32.4%), 10 (5.3%), 4 (4.8%), 6 
(3.6%) and 3 (0.8%), i.e., practically the same as before. 

(ii) When the transverse extension non-linear term is neglected, the GBT analysis of 
the unstiffened beam yields Pcr=64.73 kN, a value four times higher than the 
correct one. Moreover, the participations of global modes in the beam critical 
buckling mode become considerably higher − the main contributions come are 
now from modes 7 (27.3%), 4 (22.8%), 5 (18.8%), 3 (14.2%), 10 (8.3%), 6 
(7.4%) and 11 (0.9%). 

(iii) Localized web buckling no longer occurs in the stiffened beam, given the absence 
of point loads − buckling now takes place in a mode that (iii1) combines global 
deformation modes (minor axis bending and torsion) with web-governed local-
plate ones, and (iii2) extends throughout the 

 
Table 1: Pcr values of the I-beams acted by uniformly distributed loads 

 

Beam Pcr.ABQ 
[kN] 

Pcr.GBT 
[kN] Δ (%) 

Pcr.GBT 

without NL
ssε  [kN] Δ (%) 

without 
stiffeners 15.98 16.16 +1.1 64.73 +305.1 

with 
stiffeners 55.88 53.69 −3.9% 84.40 +51.0 
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Fig. 8: GBT and ABAQUS critical buckling mode shapes for the (a+b) unstiffened 

and (c+d) stiffened beams under uniformly distributed loads 
 
 whole beam length (see fig. 8(c)). One has Pcr=53.69 kN and the most relevant 

critical buckling mode contributions come from deformation modes 4 (40.7%), 
3 (20.8%), 7 (16%), 5 (15.7%), 10 (3.5%) and 6 (2.7%). 

(iv) When the transverse extension non-linear term is neglected, the GBT analysis of 
the stiffened beam yields Pcr=84.40 kN, which corresponds to a 57% increase with 
respect to the correct value. As for the deformation mode contributions to the 
beam critical buckling mode, they also change 
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Fig. 9: (a+c) Shear and (b+d) transverse normal stress distributions near the supports 

of the unstiffened and stiffened beams (uniformly distributed load) 
 
 considerably − the main ones concern modes 7 (31.4%), 4 (24.9%), 3 

(20.2%), 10 (9.7%), 5 (7.3%), 6 (4.4%) and 11 (1.8%). 
(v) As shown above, the transverse extension non-linear term plays a pivotal role, as 

far as assessing the web-triggered instability of beams acted by transverse loads 
not applied at the cross-section shear center is concerned. Therefore, GBT models 
not incorporating this term (to the authors’ best knowledge, all the ones developed 
up to now) may lead to considerably erroneous results when adopted to 
analyze this type of problems. 

(vi) There is again very good agreement between the GBT and ABAQUS critical 
buckling loads (table 1) and mode shapes (figs. 8(a)-(d)). The Pcr differences 
values are equal to either 1.1% (unstiffened beam) or 3.9% (stiffened beam) − 
concerning the latter, the stiffener modeling explains again the lower value 
yielded by the GBT analysis. 

(vii) Obviously, the support reactions are transmitted distinctly in the stiffened and 
unstiffened beams. In the latter case, higher and more widespread (vii1) shear and 
(vii2) compressive transverse normal stresses develop in the web − this can be 
readily attested by comparing figures 9(a+b) and 9(c+d). Naturally, these stress 
distributions render the unstiffened beam much more prone to undergo web 
localized buckling (or web crippling). 

 
I-Section Cantilevers. One analyses now an I-section cantilever (i) with the cross-
section and material properties indicated in figure 10(a) and (ii) acted by a tip 
transverse point load Q causing major axis bending and applied at either the end cross-
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section (i) top flange, (ii) shear center or (iii) bottom flange − no nodal displacement 
and/or rotations is allowed at the fixed end cross-section. Adopting the cross-
section discretization shown in figure 10(b), the GBT cross-section analysis leads to 
a set of 39 deformation modes − the 18 most relevant for the analyses under 
consideration are displayed in figure 11. As for the longitudinal discretization, it 
involves 12 finite elements, thus corresponding to a total of 780 degrees of freedom. 

First, recall once again that it is essential to include the shear and transverse 
extension deformation modes in the first-order analysis aimed at determining 
accurately the pre-buckling stresses, thus capturing all relevant geometrically non-
linear effects. Figure 12 shows curves that provide the variation of the cantilever 
critical buckling moment (Mcr=Qcr.L) with its length (L), for the three tip transverse 
load locations mentioned above − the modal participation diagrams of the 
corresponding critical buckling modes are displayed in figure 13. As for figure 
14, it depicts the GBT-based critical buckling mode shapes of cantilevers with 
various lengths and the three tip load locations. The observation of these buckling 
results prompts the following comments: 
(i) The cantilever critical buckling mode may be either lateral-torsional or local-

plate (see fig. 14) − the latter may be triggered by the compressed flange (near the 
fixed end) or the web (near the load application region). 

 

 
Fig. 10: Cantilever I-section (a) geometry and dimensions and elastic constants, 

and (b) GBT nodal discretization 
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Fig. 11: Most relevant cantilever I-section deformation modes: global (1-4), local-

plate (5-12), shear (13-21) and transverse extension (22-30) 
 
(ii) The flange-triggered local-plate buckling is not affected by the load position. 

Conversely, the lateral-torsional and web-triggered local-plate buckling 
phenomena are strongly influenced by this parameter. 

(iii) As far as lateral-torsional buckling is concerned, an upward motion of the load 
point of application (iii1) leads to a Mcr decrease and (iii2) causes 

 

 
Fig. 12: I-section cantilevers: Mcr(L) buckling curves concerning the three 

positions of the tip point transverse load 
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Fig. 13: GBT modal participation diagrams of I-section cantilevers under tip point 

loads acting at the (a) top flange, (b) shear center and (c) bottom flange 
 

 

 
Fig. 14: I-section cantilever: GBT-based critical buckling mode shapes for various 

lengths and the three load positions under consideration 
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 this buckling phenomenon to be critical for shorter cantilevers. Moreover, the GBT 
modal participation diagrams presented in figures 13(a)-(c) show clearly that the 
torsion mode 4 contribution to the lateral-torsional buckling mode decreases as 
(iii1) L increases (for a given load position) and (iii2) the load position moves 
downwards (for a given L). 

(iv) Besides the expected contributions from the global deformation modes 3 and 4, 
the cantilever so-called “lateral-torsional buckling modes” also exhibit small 
participations from local-plate modes − however, they decrease as the 
cantilevers become longer (see figs. 13 (a)-(c)). For instance, consider the 
L=200 cm cantilever subjected to shear center loading, for which one has 
Mcr=5.30 kN.m and a critical buckling mode combining deformation modes 3 
(51.9%), 4 (42.9%), 5 (3%), 9 (1.3%) and 6 (0.8%) − for top flange loading, Mcr 
drops to1.99 kN.m and the modal participations (iv1) increase for modes 4 
(73.6%) and 6 (1.9%), and (iv1) decrease for modes 3 (24.3%) and 5 (0.2%) 
and 9 (0%). 

(v) In cantilevers with lengths comprised between 40 cm and 70 cm, the local-plate 
critical buckling mode is always triggered by the compressed flange near the fixed 
end, regardless of the load position − since it is applied far away from the 
region where the instability occurs, the Mcr values are exactly the same for 
the three load positions. For instance, the L=50 cm cantilever has Mcr=7.96 

kN.m and a critical buckling mode combining of mostly the local-plate 
deformations modes 6 (45.7%), 5 (44.2%) and 9 (6.9%) – figures 13 (a)-(c) 
show clearly that the modal participations do not vary within the 40-70 cm length 
range (note that, in the shear center and bottom flange loading cases, the modal 
participations are exactly the same for L=40-160 cm). 

(vi) The cantilevers with L < 40 cm and subjected to top flange loading buckle in 
local-plate triggered by the web zone close to the cantilever free end (see fig. 
14 − L=20 cm). Within this length range, Mcr increases with L, because the length 
increase overshadows the (logical) drop in the critical buckling load Qcr (the 
cantilever becomes more flexible). For L=20 cm, one has Qcr=22.4 kN 
(Mcr=4.48 kN.m) and the critical buckling mode has (vi1) predominant 
contributions from the symmetric local-plate modes 5 (55.6%) and 9 (28.2%), 
and (vi2) lesser participations from modes 6 (7.6%), 10 (5.2%), 12 (1.4%) and 
4 (0.8%). 

(vii) As expected, the Mcr (or Qcr) values associated with the shear center loading 
virtually replicate those recently published by Bebiano et al. (2007). Note, 
however, that the model developed by these authors only includes non-linear 
terms of the works done by the longitudinal normal and shear stresses, as there is 
no such term concerning the work done by the transverse normal stresses − this 
absence precludes the capture of all effects stemming from the load position with 
respect to the shear center. 
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Hat-Section Cantilevers. The last illustrative example concerns the buckling behavior 
of hat-section cantilevers (i) with the geometry and elastic constants given in figure 
15(a) and (ii) acted by two identical tip transverse point loads applied at either the 
web-flange or web-lip corners − the value of each of them is Q/2 (i.e., Q is the total 
applied load). The adopted GBT cross-section discretization, depicted in figure 
15(b), leads to 39 deformation modes − the 18 most relevant ones are displayed in 
figure 16. Moreover, the longitudinal discretization always involves 8 beam finite 
elements, leading to a total of 520 degrees of freedom. For validation purposes, one 
also performs ABAQUS shell finite element analyses − as before (simply supported I-
beams), these cantilevers are discretized into fine S9R5 element meshes. 

The main objective is to assess the influence of the load position on the 
cantilever critical buckling moment (Mcr=Qcr.L) and mode shape. Figures 17, 18 and 
19 present, for the two loadings considered, (i) Mcr(L) buckling curves, (ii) the 
corresponding GBT modal participations diagrams and (iii) the GBT-based critical 
buckling mode shapes of cantilevers with four lengths. The observation of these 
buckling results leads to the following conclusions: 
 

 
Fig 15: Cantilever hat-section (a) geometry, dimensions and elastic constants, 

and (b) GBT nodal discretization 
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Fig. 16: Most relevant hat-section deformation modes: global (1-4), distortional (5-6), 

local-plate (7-15), shear (16-19) and transverse extension (28-32) 
 
(i) There is a very visible difference between the cantilever critical buckling 

behaviors associated with the two loadings (loads applied at the web-flange and 
web-lip corners, i.e., top and bottom loading) − Mcr values and mode shapes. 
Concerning the critical buckling moments, the values corresponding to top 
loading may be more than 40% lower than their bottom loading counterparts (see 
fig. 17). In both cases, the critical buckling modes include relevant contributions 
from global, distortional and local-plate deformation modes, as clearly shown in 
figures 18 (a)-(b) – they combine (i1) symmetric distortional (5) and local-plate 
(7, 9, 11, 13, 15) modes, for L<55 cm, or (i2) anti-symmetric global (3, 4), 
distortional (6) and local-plate (8, 10) modes, for L<55 cm. 

(ii) In order to illustrate the statements made in the previous item, consider the L=50 

cm and L=100 cm cantilevers, associated with the two critical buckling mode 
types. In the first case, one has (ii1) Mcr=14.26 kN.m and critical buckling 
mode participations from deformation modes 5 (66.2%), 7 (21.9%), 9 (7.3%), 11 
(2%), 13 (1.7%) and 15 (0.9%), for top loading, and (ii2) Mcr=24.65 kN.m and 
contributions from modes 7 (41.6%), 5 (27.6%), 9 (18.6%), 13 (6%), 11 
(3.0%) and 15 (2.5%), for bottom loading – note the 73% critical moment 
increase. In the second 

 case, one has (ii1) Mcr=10.67 kN.m and contributions to the critical buckling 
mode from deformation modes 4 (80.2%), 6 (15.9%), 3 (2.4%), 
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Fig. 17: Hat-section cantilevers: Mcr(L) buckling curves concerning the two 

positions of the tip point loads 
 

 
Fig. 18: GBT modal participation diagrams of hat -section cantilevers under (a) top 

(web-flange corners) and (b) bottom (web-lip corners) tip loading 
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Fig. 19: Hat-section cantilevers: GBT-based critical buckling mode shapes for four 

lengths and the two loadings under consideration 
 
 8 (0.7%) and 10 (0.5%), for top loading, and (ii2) Mcr=14.84 kN.m and 

participations from modes 4 (43.9%), 6 (40.5%), 3 (11.2%), 8 (2.7%), 10 (0.6%) 
and 12 (0.5%), for bottom loading − now, besides the 39% critical moment 
increase, the participation of mode 4 (torsion) decreases, while those of modes 3 
(bending) and 6 (distortion) increase (see figs. 18(a)-(b)). 

(iii) The comparison between the critical buckling moment provided by the GBT 
and ABAQUS analyses showed an excellent agreement for all cantilever 
lengths, as can be readily attested by looking at figure 17 − the differences never 
exceed 4%, thus confirming the great accuracy of the GBT analyses (in spite of 
the small number of d.o.f. involved)14. 

Conclusion 

This paper presented a novel GBT formulation that includes a non-linear transverse 
extension term, thus making it possible to handle rigorously the influence of 
localized effects on the local (local-plate or distortional) and global buckling behavior 
of prismatic thin-walled members − in particular, this formulation accounts for 
effects stemming from (i) the position of transverse loads (with respect to cross-
section shear centers) or (ii) the occurrence of localized web buckling phenomena. 
In order to illustrate the application and potential of the developed and implemented 

                                                           
14 The adopted shell finite element discretizations involve between 120 and 12000 elements (depending on 

the cantilever length), corresponding to 1250 to 125000  degrees of freedom. 
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GBT formulation, one presented and discussed numerical results concerning the 
buckling behavior of (i) hat and I-section cantilevers acted by transverse tip point 
loads applied at various cross-section points, and (ii) I-section simply supported 
beams under top-flange distributed and point loads – one also assessed how end 
support transverse web stiffeners improve the beam buckling behavior. The GBT-based 
buckling results were validated through the comparison with values yielded by 
ABAQUS shell finite element analyses (most cases) or reported in the literature. 
Among the various conclusions drawn from the performance of this work, the 
following ones deserve a special mention: 
(i) The proposed GBT formulation/implementation was shown to provide accurate 

buckling results and also to be computationally very efficient (its application 
always requires a fairly small number of degrees of freedom) − it requires 
sequentially performing first-order and buckling analyses. Moreover, an 
excellent agreement was consistently found between the critical buckling 
loads/moments and mode shapes provided by the GBT and ABAQUS (shell 
finite element) analyses. 

(ii) It is essential to include the transversal extension non-linear term in the GBT 
analyses intended to study global, local and/or localized wall buckling 
phenomena caused by transverse loads – the influence of this term becomes 
particularly noticeable when the load (or support reaction) point of application 
does not coincide with the cross-section shear center, thus entailing the 
development of significant (membrane) transverse normal stresses. In one 
illustrative example addressed in this work, omitting the transverse 
extension non-linear term from the analyses led to an overestimation of the 
critical buckling loads/moments that reached 50% (end stiffened beams) or 
300% (unstiffened beams). 

(iii) As expected, the numerical results confirmed the relevance of including web 
transverse stiffeners at the simply supported I-beam end supports − critical 
buckling load/moment increases of up to 250% were observed. 

(iv) The GBT modal nature made it possible to acquire more in-depth insight on the 
mechanics underlying the thin-walled member buckling behavior (through the 
analysis of the corresponding modal participation diagrams). 
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