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REVIEW

Mesenchymal stem cells in the treatment 
of osteogenesis imperfecta
Erica Lang and Julie A. Semon*   

Abstract 

Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal 
forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects 
of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomod-
ulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded 
in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical 
and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from 
different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low 
levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine 
mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
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Background
Osteogenesis imperfecta (OI), also known as brittle 
bone disease, is a genetic disorder of connective tissue 
and is identified by bone dysplasia and fragility (Mar-
tin and Shapiro 2007; Forlino and Marini 2016). With 
an estimated 25,000-50,0000 cases in the United States, 
it affects approximately 1 out of 10,000-20,000 live 
births worldwide (Palomo et  al. 2017; Götherström and 
Walther-Jallow 2020; Otsuru et  al. 2012). OI cases have 
not been reported to have a gender bias, but some types 
of OI may be more prevalent in different ethnic groups 
(Martin and Shapiro 2007).

Osteogenesis imperfecta
Epidemiology and clinical manifestation
OI can be mild, severe, or perinatal lethal. The severity 
depends on the ratio of normal to mutant type I procol-
lagen (Pochampally et  al. 2005). Those with mild forms 
of OI may go through life without a diagnosis, however, 

severe forms can be diagnosed in utero, at birth, or in 
early childhood. Diagnosis is made through clinical man-
ifestations, family history, genetic tests, and bone den-
sity scans, such as X-rays and DXA/ DEXA scans (Rossi 
et  al. 2019; Mäyränpää et  al. 2011). Fractures, bone fra-
gility, skeletal deformity, and short stature are hallmark 
clinical manifestations of all types of OI (Götherström 
and Walther-Jallow 2020; Otsuru et  al. 2012; Thomas 
and DiMeglio 2016). Typically, moderate to severe OI 
presents with multiple fractures after little or no trauma 
during the prenatal period, at birth, or in early childhood 
(Forlino and Marini 2016; Götherström and Walther-
Jallow 2020). OI patients could have a few fractures over 
a lifetime or several hundred, dependent on OI severity. 
Though all bones are at risk, long bones are more com-
monly fractured. As a systemic disorder of connective 
tissue, OI symptoms extend beyond the skeletal tissue. 
OI patients can suffer from ocular complications such as 
blue sclerae, brittle teeth known as dentinogenesis imper-
fecta (DI), hearing loss, cerebral hemorrhage caused by 
birthing trauma, heart disease (valve insufficiency and 
aneurysms), pulmonary problems (decreased function 
and repeated infections), and joint laxity (Cheung et  al. 
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2007; Van Dijk and Sillence 2014; Widmann et al. 1999; 
Etich et  al. 2020; Zhytnik et  al. 2020). Life expectancy 
may be shortened for those with severe OI types, but is 
not affected in mild OI types (Götherström and Walther-
Jallow 2020).

Classification
Initially, OI was categorized into four groups (I-IV) based 
on clinical features, including fracture severity and rate of 
occurrence, skeletal deformity, hearing loss, and sclerae 
color (Thomas and DiMeglio 2016; Sillence et  al. 1979). 
All four categories demonstrated that OI was an auto-
somal dominant (AD) disorder due to defects in type I 
collagen (Ralston and Gaston 2019). However, in 2006, 
a recessive gene was identified for OI, which opened the 
doors for further identification of additional OI genes 
(Rossi et al. 2019; Thomas and DiMeglio 2016; Valadares 
et al. 2014). The original classification system by Sillence 
et. al. was then expanded to 16 groups and was based on 
the type of genetic mutation (Ralston and Gaston 2019).

Within the expanded Sillence classification, OI symp-
toms are still inconsistent with severity and morbidity, 
even in the same classification category. Furthermore, 
there may be different manifestations and varying dis-
ease severities within individuals from the same fam-
ily (Thomas and DiMeglio 2016; Valadares et  al. 2014). 
Forlino et  al., recently proposed a novel classification 
system based on functional genetics (Table  1) (Forlino 
and Marini 2016). This method categorizes OI accord-
ing to gene products that share mechanisms because 
they function in the same pathway. In this classification, 
defects in collagen synthesis, structure, or processing are 
represented by OI group A; defects in collagen modi-
fication are included in OI group B; defects in collagen 
chaperones belong to OI group C; defects in bone miner-
alization comprise OI group D; and defects in osteoblast 
development constitute OI group E (Forlino and Marini 
2016).

OI group A
OI group A has defects in collagen synthesis, structure, 
or processing and includes Sillence types I-IV and XIII 
(Table  1). Because collagen I is decreased in all these 
groups, common symptoms of OI group A include bone 
dysplasia, a bluish discoloration of the sclerae, hyperex-
tensible joints, scoliosis, and easily bruised skin (Marom 
et  al. 2020). In classical OI types I-IV, which represents 
85-90% of OI cases, inherited AD mutations occur in 
genes COL1A1 and COL1A2, which encode proteins 
used to assemble type I collagen (Palomo et  al. 2017; 
Etich et al. 2020; Valadares et al. 2014). As only one copy 
of the altered COL1A1 or COL1A2 gene is required, 
these genetic alterations result in a reduced production 

of quality type I collagen which is essential for the com-
position of connective tissue (Rauch and Glorieux 2004). 
The defects can be considered qualitative, which is a 
structural defect that occurs when an abnormal collagen 
I molecule is produced, or they can be considered quan-
titative, which is a haploinsufficiency with type I collagen 
being structurally normal but synthesized in about half 
of normal levels (Zhytnik et al. 2019; Lindahl et al. 2015; 
Marini and Blissett 2013). Maioli et al. showed that 195 
mutations, which consisted of nonsense, frameshift, large 
rearrangement, and splice site mutations, could cause a 
quantitative defect and are related to milder phenotypes 
associated with OI type I (Maioli et al. 2019). The same 
study also showed that 114 mutations, mostly from gly-
cine substitutions, would result in qualitative defects 
associated with more severe forms such as OI types II-IV. 
In qualitative defects, the phenotypic severity has been 
correlated to gene affected, helical location of mutation, 
and predicted final protein product (Lindahl et al. 2015; 
Maioli et al. 2019; Marom et al. 2020; Morello and Rauch 
2010). However, there remains a great deal of phenotypic 
variability within each genotype of OI. Thus, it’s difficult 
to correlate genotype solely based on phenotype, and 
vice versa; it makes it further difficult to base treatment 
choice on genotype or phenotype alone.

In OI group A, OI type I is the mildest and classified as 
non-deforming with persistently blue sclera (Marom et al. 
2020). It may involve only a few fractures over a person’s 
lifetime, with the fracture count decreasing post-puberty. 
Patients also present with blue sclerae and hearing loss 
(Marini and Blissett 2013). Due to the mild nature and 
normal stature of type I OI, it is not always apparent and, 
therefore, diagnosed. While most cases of OI type I are 
associated with quantitative mutations (62%), it can be 
associated with qualitative mutations (25-32%) (Lindahl 
et al. 2015; Maioli et al. 2019). Interestingly, in a study of 
364 OI patients in Italy, clinical differences were not evi-
dent between patients carrying qualitative or quantitative 
defects (Maioli et al. 2019).

Contrary, type II OI is often diagnosed in utero and is 
typically perinatal lethal, often due to rib fractures and 
chest wall deformities (Götherström and Walther-Jallow 
2020; Marom et al. 2020). Infants who survive the peri-
natal period typically have shortened extremities, under-
developed lungs resulting in respiratory complications, 
malformed ribs and long bones, large soft spots on the 
top of the skull, and usually don’t survive the first year of 
life (Marom et al. 2020; Marini and Blissett 2013).

Type III OI is the most severe form of OI among 
patients surviving infancy. It is classified as severe with 
progressive malformation of the ribs and long bones, 
which may result in scoliosis, short stature, restricted 
mobility, and multiple fractures, especially in the fetal 
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Table 1 Overview of OI classification and phenotypes

Forlino Group Defect Sillence Type Gene Symbol OMIM # Mode of 
Inheritance

Severity Clinical 
Characteristics

Group A Collagen synthesis, 
structure, or process-
ing

I COL1A1 or COL1A2 166,200 AD Mild or non-deform-
ing

Triangular face, minimal 
bone deformity, tinted 
sclera, fractures before 
puberty, hearing loss 
possible

II COL1A1 or COL1A2 166,210 AD Perinatal lethal Numerous fractures, 
severe deformity, 
underdeveloped lungs, 
collagen improperly 
formed

III COL1A1 or COL1A2 259,420 AD Severe Fractures present at 
birth, tinted sclera, tri-
angular face and spinal 
curvature, loose joints, 
poorly developed 
muscles, aberrant col-
lagen, hearing loss, and 
respiratory problems

IV COL1A1 or COL1A2 166,220 AD Moderate Short stature, fractures 
occur before puberty, 
brittle teeth and 
hearing loss possible, 
sclera normal in color, 
barrel shaped rib cage, 
collagen improperly 
formed

XIII SP7/Osterix 614,856 AR Mild to severe Joint hyperextensibility

Group B Collagen modifica-
tion

VII CRTAP 610,682 AR Moderate to severe Clinically similarly to 
type IV and II, short 
stature, short humor-
ous and femur, coxa 
vara is common

VIII LEPRE1 610,915 AR Moderate to severe Resembles lethal types 
II and III in appearance 
and symptom, normal 
sclera, deficiency of 
P3HI, skeletal under 
mineralization, fractures

IX PPIB 259,440 AR Moderate to severe Scoliosis, short lower 
limbs, blue sclera, bow-
ing of limbs, flattened 
vertebrae, fractures. 
Similar to types II or III

XIV TMEM38B 615,066 AR Moderate to severe Multiple fractures, 
osteopenia, normal 
dentition, normal 
sclera, normal hearing

Group C Collagen chaperones X SERPINH1 613,848 AR Severe Short limbs, bowing at 
the thigh, blue sclera, 
fractures, triangular 
face, dentinogenesis 
imperfecta, respiratory 
distress, bone deform-
ing, multiple fractures, 
osteopenia

XI FKBP10 610,968 AR Moderate to severe Progressive malforma-
tion, bone fractures, 
joint contractures, and 
kyphoscoliosis, no den-
tinogenesis imperfecta
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through preschool years (Marom et al. 2020; Sinikumpu 
et al. 2015). In addition, pulmonary insufficiency and res-
piratory problems are possible due to the rib cage taking 
on a barrel shape (Etich et al. 2020). Individuals may also 
present with triangular facial appearance, hearing impair-
ment, gray or blue sclerae, and DI (Marom et  al. 2020; 
Marini and Blissett 2013). With the current standard of 
care and early treatment, patients suffering from OI type 
III may reach satisfactory health beyond the initial years 
of childhood, though they are often full-time wheelchair 
users (Sinikumpu et al. 2015; Marini and Dang 2000).

Type IV OI demonstrates clinical variability and is con-
sidered moderately severe (Marini and Dang 2000). Frac-
tures are more common before puberty or post middle 
age, with malformation of the bones varying from mild 
to severe. Similar to other groups, these patients may 
exhibit spinal curvature, hearing impairment, DI, a trian-
gular-shaped face, barrel shaped rib cages, and osteopo-
rosis (Marom et al. 2020; Marini and Dang 2000).

Type XIII OI is the only group to have an autoso-
mal recessive (AR) mutation, and the only one to have 
a mutation in a gene other than type I collagen. It’s 

mutation in the SP7/Osterix gene results in a phenotype 
similar to OI type IV (Marini and Dang 2000). Because it 
ranges from mild to severe, this group displays common 
OI symptoms, including joint hyperextensibility, bowing 
of upper and lower limbs, and Wormian bones (Morello 
and Rauch 2010; Marini and Dang 2000). Additionally, 
this group may exhibit mild scoliosis and osteoporosis 
while not presenting DI or blue sclera (Marini and Dang 
2000).

OI group B
OI group B, which includes Sillence types VII, VIII, IX, 
and XIV, are all AR and result from mutations leading to 
post-translational modification of collagen (Thomas and 
DiMeglio 2016; Sillence et al. 1979). Type VII OI, a quali-
tative defect, is caused by mutations in the CRTAP gene, 
which is responsible for collagen prolyl 3- hydroxyla-
tion (Martin and Shapiro 2007; Morello and Rauch 2010; 
Ward et al. 2002). The mutated form of CRTAP leads to 
moderate symptoms, while the absence of CRTAP results 
in lethality (Etich et  al. 2020). Clinical manifestations 
of the mutated form include fractures at birth, bluish 

Abbreviations: AD Autosomal dominant, AR Autosomal recessive

Table 1 (continued)

Forlino Group Defect Sillence Type Gene Symbol OMIM # Mode of 
Inheritance

Severity Clinical 
Characteristics

Group D Mineralization V IFITM5 610,967 AD Moderate Clinically similarly to 
type IV, large calluses 
at sites of fractures, 
calcification of mem-
brane between radius 
and ulna

VI SERPINF1 613,982 AR Moderate to severe Clinically similar to 
type III or IV, alkaline 
phosphatase activity is 
slightly elevated

Group E Osteoblast differen-
tiation

XII SP7 613,849 AR Mild to moderate Bowing of extremities, 
delayed teeth eruption, 
poor bone mineraliza-
tion, hyperextensible 
joints, low bone den-
sity, recurrent fractures, 
osteoporosis, normal 
hearing, normal sclera

XV WNT1 615,220 AR/AD Moderate to severe Short stature, low bone 
density, early onset 
fractures, vertebral 
compression and long 
bone fractures, bluish 
sclerae, no dentinogen-
esis imperfecta

XVI CREB3L1 616,229 AR Mild to severe Prenatal onset of 
fractures, blue sclerae, 
bone demineraliza-
tion, hyperextensibility, 
decreased ossification 
of the skull



Page 5 of 21Lang and Semon  Cell Regeneration            (2023) 12:7  

sclerae, coxa vara, and a short humerus, femur, and stat-
ure (Etich et  al. 2020; Ward et  al. 2002; Srisaarn et  al. 
2019; Roberts et al. 2018). Type VIII is caused by a muta-
tion in the LEPRE1 gene resulting in a deficiency of pro-
lyl 3-hydroxylase 1 (P3H1) (Otsuru et  al. 2012; Morello 
and Rauch 2010). It can be lethal or severely deforming 
with a lack of mineralization and a growth deficiency, 
thus resembling Sillence types II or III in appearance 
and symptoms (Otsuru et  al. 2012). Type IX is caused 
by a mutation in the PPIB gene, which is responsible 
for encoding CRTAP (mentioned above) (Thomas and 
DiMeglio 2016; Harrington et  al. 2014; Womack 2014). 
These patients experience severe growth deficiency as 
well as shortened and bowed limbs (Harrington et  al. 
2014; Womack 2014). Type XIV is an AR mutation in the 
TMEM38B gene, which encodes TRIC-B, an ion channel 
responsible for maintaining intracellular calcium release. 
When this ion channel is disrupted, proband type I col-
lagen synthesis is dysregulated. Patients with type XIV 
OI have blue sclera, osteoporosis, bowed limbs, and long 
slender bones (Lv et al. 2016).

OI group C
OI group C results from chaperon defects and includes 
Sillence types X and XI, which are both inherited in an 
AR manner (Cheung et al. 2007; Harrington et al. 2014). 
There is only one reported case of Type X OI in a human 
(Womack 2014). Genetic testing found a mutation in 
SERPINH1 that encodes for HSP47, which aids in the 
function of collagen trafficking (Womack 2014). HSP47 
was found to monitor the integrity of type I procollagen’s 
helix and monitor it’s travel from the endoplasmic reticu-
lum to the golgi. The parents were reported as healthy, 
but the three-year-old boy had severe OI and was born 
with a triangular face, blue sclerae, short limbs with bow-
ing at the sides, and fractures. As he aged, he developed 
renal stones, a subdural hematoma due to trauma, and 
chronic lung disease (Womack 2014). These respiratory 
complications are believed to be a result from scoliosis, 
multiple fractures to the ribs, and altered chest construc-
tion, which the boy experienced (Thiele et  al. 2012). OI 
type XI is also uncommon and is limited to a few indi-
vidual cases. It is a mutation in the FKBPP10 gene, which 
encodes the FKBP65 protein found in the endoplasmic 
reticulum. Additionally, this gene is also a known cause 
for Bruck syndrome, an AR disorder also distinguished by 
bone fragility (Yüksel Ülker et al. 2021). Type XI includes 
symptoms of progressive malformation, bone fractures, 
joint contractures, and kyphoscoliosis (Womack 2014).

OI group D
OI group D has defects in bone mineralization and 
includes Sillence types V and VI. Type V OI is inherited 

in an AD manner and is caused by a mutation that pro-
duces a new start codon for the IFITM5 gene resulting 
in abnormal collagen production due to atypical miner-
alization (Palomo et  al. 2017; Rossi et  al. 2019; Shapiro 
et al. 2013). These patients develop hyperplastic calluses 
(HPCs) after injury, which begins as soft tissue forma-
tions consisting of loose collagenous networks (Cheung 
et al. 2007; Shapiro et al. 2013). As time goes on, the cal-
lus evolves defined boundaries and eventually ossifies, 
with the innermost region of the callus showing trabecu-
lae of woven bone (Shapiro et al. 2013; Hilton 1953; Bren-
ner et  al. 1989). Cortical bone appears mesh-like under 
the microscope and lamellae are irregularly located. In 
addition to this, interosseous membrane calcification 
occurs between the radius and ulna as well as the tibia 
and fibula (Palomo et al. 2017; Grover et  al. 2013). This 
results in the difficulty of supination/pronation move-
ments. Type VI OI, inherited in an AR manner, is caused 
by a homozygous mutation in the SERPINF1 gene (Rossi 
et al. 2019; Valadares et al. 2014; Homan et al. 2011). His-
tology of the cortical bone depicts a fish scale appearance 
of the lamellae due to a deficiency of bone mineraliza-
tion (Ralston and Gaston 2019). Patients with type VI OI 
clinically resemble type IV OI with moderate severity, 
typically no fractures at birth, and tinted sclerae during 
infancy (Rossi et al. 2019).

OI group E
OI group E, including Sillence types XII, XV, and XVI, 
has defects in osteoblast development. In type XII, there 
is a frameshift mutation in SP7 which causes a premature 
stop codon. This premature stop codon produces abnor-
mal osterix, which is a transcription factor for osteoblast 
differentiation (Martin and Shapiro 2007). In one clinical 
case, fractures were noted at 3 months of age and teeth 
eruption and motor milestones were delayed (Kang et al. 
2017). Additionally, he experienced bowing of the upper 
and lower limbs, mild asymmetry of the face, and hyper-
extensible joints. His hearing was unaffected, sclerae 
presented as white, and he fell within the normal weight 
range of his age (Kang et al. 2017). Type XV OI is caused 
by a mutation to WNT1 gene, in turn causing failed acti-
vation of β-catenin signaling. This signaling pathway has 
a role in bone formation and osteoblast function. Patients 
with type XV OI present early onset fractures, bluish 
sclerae, a reduction in bone density, and short stature. 
However, similar to type XII OI, hearing and tooth devel-
opment were noted as normal (Kang et al. 2017; Symoens 
et al. 2013). In type XVI OI, there is a CREB3L1 deletion 
(Symoens et  al. 2013). This gene is known for encoding 
an endoplasmic reticulum stress transducer known as 
OASIS, which regulates type I procollagen and osteo-
blast differentiation. A Turkish family suffering from type 
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XVI presented with a nine-month-old that passed away 
from severe symptoms that included fractures, wide fon-
tanelles, beaded ribs, callus formation, and pulmonary 
infections. The second pregnancy was terminated at 19 
weeks gestation. Upon post-mortem examination, they 
discovered multiple fractures, bowed humerus and fem-
ora, and extremely thin ribs. The parents later gave birth 
to a healthy daughter who only exhibited blue sclerae 
(Symoens et al. 2013).

Treatment
There is no cure for OI, and techniques to manage the 
disease do not address the underlying molecular pathol-
ogy. Instead, treatment and management strategies 
focus on providing symptomatic relief and maximizing 
bone health by minimizing bone deformities, pain, and 
the morbidity of fractures. This is usually accomplished 
through multiple approaches, including physical therapy, 
surgical treatments, vitamin supplements, pharmaceu-
ticals, and treatment of other complications (Rossi et al. 
2019; Widmann et  al. 1999; Etich et  al. 2020). The goal 
of physical therapy and habilitation is to strengthen the 
muscles and to retain and improve mobility. It will vary 
depending on the severity of OI and may include occupa-
tional therapy, hydrotherapy, and weight-bearing physi-
cal activity. Surgical treatment may be required for more 
severe OI cases and are crucial for fixing fractures and 
correcting limb deformities (Forlino and Marini 2000; 
Hidalgo Perea and Green 2021; Laron and Pandya 2013; 
Marr et al. 2017). This can entail placing rods in the long 
bones to correct bone deformities and reduce fractures. 
Spinal fusion, which connects vertebrae, may also be 
used. Vitamin supplements, specifically Vitamin D and 
calcium, are used for therapy for both children and adults 
with all levels of severity and types of OI (Götherström 
and Walther-Jallow 2020; Thomas and DiMeglio 2016).

The current gold standard pharmaceutical agents to 
treat OI are bisphosphonates (Zhytnik et al. 2020; Drake 
et al. 2008; Dwan et al. 2016). Currently, they are widely 
used to treat moderate to severe forms of OI and are safe 
enough to use in children (Otsuru et  al. 2012; Thomas 
and DiMeglio 2016). Patients take bisphosphonates orally 
or intravenously to increase bone mass (Drake et al. 2008; 
Dwan et  al. 2016). Bisphosphonates increase bone min-
eral density by inactivating osteoclasts, thus reducing 
bone resorption (Drake et  al. 2008; Dwan et  al. 2016). 
Though bisphosphonates have been shown to increase 
overall bone mineral density, it is uncertain if it improves 
bone strength or alleviates the risk of bone fractures, 
improves functional mobility, reduces pain, or improves 
growth (Drake et  al. 2008; Dwan et  al. 2016; Chan and 
Götherström 2014). Additionally, bisphosphonates have 
been shown to negatively affect other biomechanical 

properties of bone (Mashiba et  al. 2000). Other anti-
resorption pharmaceuticals and osteoclasts inhibitors are 
being developed, including the RANKL antibody deno-
sumab (Bargman et al. 2012; Semler et al. 2012). Growth 
hormone and parathyroid hormone are also being 
explored both independently and in combination with 
other treatments, such as bisphosphonates (Antoniazzi 
et al. 1996; Antoniazzi et al. 2010; Orwoll et al. 2014).

As mentioned, the current treatments mainly manage 
the disease and do not correct the underlying molecu-
lar defect. In order to habilitate those with OI, gene and 
cell therapy strategies have been explored. A successful 
genetic treatment for OI, a model disorder for dominant 
negative defects of structural proteins, will eliminate the 
dominant negative mutant allele and degrade abnormal 
COL1A1/2 transcripts (Chan and Götherström 2014; 
Chamberlain et al. 2004). A successful cellular treatment 
for OI will safely provide exogenous cells, ideally early 
on in human development, that will decrease the sever-
ity of the disorder by contributing to bone formation 
(Jones et  al. 2014). Cellular therapy for OI, sometimes 
used in conjunction with gene therapy, has been explored 
for over 20 years (Chan and Götherström 2014; Caplan 
1995; Ramesh et al. 2021). One cell type specifically has 
shown promise in reducing the number of fractures over 
a lifetime, reducing surgical and physical habilitation, and 
even correcting underlying molecular defect: mesenchy-
mal stem cells (MSCs).

Mesenchymal stem cells
Introduction
MSCs, also referred to as medicinal signaling cells, mes-
enchymal stromal cells, and marrow stromal cells, have 
been shown to be safe and effective for cell therapy in 
numerous applications, including skeletal disorders 
(Wei et  al. 2013; Arthur and Gronthos 2020). First iso-
lated 50 years ago from the adherent portion of bone 
marrow, they are a heterogeneous cell population that 
can adhere to plastic and maintain a fibroblast-like mor-
phology (Squillaro et al. 2016; Saeed et al. 2016). Per the 
International Society for Stem Cell Research (ISSCR) and 
the International Society for Cell Therapy (ISCT), MSCs 
must express surface antigens CD73, CD90, and CD105 
and must have low to no expression of CD14, CD34, 
CD45, and CD79 (Pittenger et  al. 2019; Dominici et  al. 
2006). Per these criteria, they must also differentiate into 
bone, fat, and cartilage in vitro.

Originally identified in adult bone marrow, MSCs are 
now sourced from additional tissues, including periph-
eral blood, umbilical cord tissue and blood, dermal tis-
sue, adipose tissue, and gingival tissue (Götherström and 
Walther-Jallow 2020; Guillot et  al. 2008b; Galipeau and 
Sensébé 2018; Undale et al. 2009). Bone marrow derived 
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MSCs (BMSCs), still the most common source of MSCs 
for clinical trials, are found along the endosteum and are 
isolated by aspiration and separation with a ficoll gradi-
ent (Baghaei et  al. 2017). However, the bone marrow 
aspirate that BMSCs are isolated from is an invasive har-
vest, especially in patients with skeletal disorders such as 
OI (Galipeau and Sensébé 2018; Undale et al. 2009). Con-
sequently, autologous BMSCs used to treat OI require 
gene therapy. Dental pulp MSCs are mainly sourced from 
extracted wisdom teeth that are enzymatically digested 
and are a less invasive harvest than BMSCs. Though they 
have been reported to have a higher proliferative rate 
than BMSCs, only a low number of cells are available for 
isolation due to the small size of the dental pulp (Ponnai-
yan and Jegadeesan 2014). Adipose derived MSCs (ASCs) 
are extracted from subcutaneous fat and isolated from 
the stromal vascular fraction (SVF). They have similar 
therapeutic effects of BMSCs, are acquired by less inva-
sive means than BMSCs, and provide a large number of 
cells after isolation (Gonzalez-Rey et  al. 2010; Dykstra 
et al. 2017; Levi and Longaker 2011; Mazini et al. 2019). 
Using ultrasound guidance, cardiocentesis has been 
used to collect MSCs from peripheral blood from a first 
trimester fetus during pregnancy (Guillot et  al. 2008a; 
Vanleene et  al. 2011). These fetal MSCs (fMSCs) were 
found to be more primitive and immunologically naïve 
(Mäyränpää et al. 2011; Mazini et al. 2019) than BMSCs, 
though they are collected in low numbers (Götherström 
and Walther-Jallow 2020; Jones et al. 2014; Németh et al. 
2009). Umbilical cord MSCs are taken from the umbilical 
cord and typically hold little ethical or political ramifica-
tions due to their classification as medical waste (Jones 
et  al. 2014; Rady et  al. 2020). Similar to ASCs, they are 
less invasive to acquire than BMSCs and can provide a 
large number of MSCs (Jones et al. 2014; Rady et al. 2020; 
Salehinejad et  al. 2020; Amati et  al. 2017; Ballen et  al. 
2013; Ren et al. 2021). Placenta-derived MSCs, also called 
early chorionic stem cells (CSC), can be isolated dur-
ing ongoing pregnancy without harm to the fetus, and, 
therefore, used without ethical restrictions (Jones et  al. 
2014). These cells can be isolated from various parts of 
placental tissue including chorionic villi, deciduae, amni-
otic membrane, and chorionic membrane using differ-
ent methods (Yi et al. 2020). These cells can be harvested 
in high numbers and proliferate at higher rates in vitro, 
reducing the amount of time in culture. MSCs obtained 
from a different source, fetal livers (FL-MSCs), recently 
have increased interest due to their higher proliferative 
rates, increased differentiation capacity, and long-term 
immunomodulatory properties (Yu et  al. 2021). Similar 
to CSCs, the faster growth kinetics of FL-MSCs reduces 
the amount of time in culture.

Though each source of MSCs has limitations and 
advantages, MSCs overall have a versatile nature in the 
clinic. They can be directly injected for cell therapy, or 
they can be combined with a biomaterial(s) to develop 
tissue engineered constructs (Kangari et al. 2020; Vadalà 
et  al. 2016; Gao et  al. 2016; Kean et  al. 2013). They can 
be used as-is, mixed with other cell types, or be sorted 
out via a cell surface marker to make a more homogenous 
cell population (Zhang et al. 2015; Parekkadan and Mil-
wid 2010). They can come from autologous, allogeneic, or 
mixed sources. They can be used in an unaltered, naïve 
state; they can be primed down a desired lineage; or they 
can be modified through the addition of an external gene 
(Kangari et  al. 2020; Mount et  al. 2015). Recently, just 
their exosomes have been used, which can also be cryo-
preserved and used off-the-shelf (Zhang et al. 2015; Ots-
uru et al. 2018).

Mechanisms of actions
Originally, MSCs were of clinical interest because they 
could provide a continuous source of cells, and they 
were multipotent, differentiating into osteoblasts, chon-
drocytes, and adipocytes (Wei et  al. 2013). However, 
the current paradigm is that MSCs are useful in clinical 
applications because they are generally considered non-
immunogenic, possess immune modulatory properties, 
reduce sepsis, and secrete an extensive array of factors 
that act on endogenous cells (Németh et  al. 2009; Rady 
et al. 2020; Aggarwal and Pittenger 2005; Le Blanc 2003).

Despite the therapeutic promise of MSCs, there have 
been many inconsistencies in clinical trials in regard to 
their therapeutic efficacy (Ramesh et  al. 2021). Addi-
tionally, pre-clinical results have shown limitations that 
must be addressed to provide more clinical success for 
all types of MSCs. For example, there are several reports 
showing that MSCs are directly or indirectly involved 
with cancer (Patel et al. 2010; Strong et al. 2012; Lazen-
nec and Jorgensen 2008). BMSCs have also been shown 
to worsen bacterial infection, resulting from their anti-
inflammatory nature Saeed et  al. 2016; Meisel et  al. 
2011). Regardless of the source, MSCs senesce and dete-
riorate under standard culture conditions, as well as with 
the increasing age and poor pathology of MSC donor 
(Jones et al. 2014; Gonzalez-Rey et al. 2010; Siegel et al. 
2013; Choudhery et al. 2014; Scruggs et al. 2013; Pandey 
et  al. 2011). In some cases, the administration of cryo-
preserved MSCs, which are thawed at the bedside, have 
shown limited therapeutic effects (Otsuru et  al. 2018; 
Moll et  al. 2014; François et  al. 2012). If cryopreserved 
MSCs must be thawed and expanded in culture, it lim-
its their use to hospitals with Good Manufacturing Prac-
tice (GMP) facilities (Otsuru et al. 2018; Moll et al. 2014; 
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François et al. 2012). With only ~two dozen GMP facili-
ties in the U.S., it leaves about half the number of states 
without these abilities (Phinney and Galipeau 2019). 
MSCs from different sources appear to vary in secretion 
factors, differentiation capacity, and homing abilities. For 
example, MSCs from fetal tissue are considered more 
primitive, have longer telomeres, and a higher prolifera-
tive capability (Chan and Götherström 2014; Saeed et al. 
2016; Musiał-Wysocka et  al. 2019). In addition to this, 
their yield, differentiation capabilities, and growth kinet-
ics vary significantly between individuals (Jones et  al. 
2014; Ramesh et  al. 2021; Phinney et  al. 1999). Differ-
ent donors have provided MSCs with distinct genomes, 
different phenotypes, and varying levels of therapeutic 
efficacy (Phinney et al. 1999; Siddappa et al. 2007; Zhou 
et  al. 2008; Zhukareva et  al. 2010). The variation in the 
therapeutic efficiency of different donors causes difficul-
ties with interpreting clinical outcomes.

MSC alterations in patients with OI
Almost all of the preclinical and clinical trials for cell 
therapy in OI used allogenic cells, as getting biopsies 
from patients with systemic conditions is not favorable. 
Another limitation to using autologous cells is that, simi-
lar to other diseases, MSCs from OI patients have been 
shown to be less therapeutic (Chamberlain et  al. 2004; 
Kaneto et al. 2017).

Murine models of OI have demonstrated that MSCs 
from both bone and adipose tissue have a reduced osteo-
genic potential. While Pereira et al. showed no difference 
in growth rates between BMSCs from OI mice and wild-
type (WT) mice, the alkaline phosphatase (ALP) activ-
ity and Alizarin red stain in BMSC cultures at 2 weeks 
was drastically reduced in BMSCs cultures from OI mice 
(Pereira et  al. 1998). Similarly, Liu et  al. showed that 
ASCs from OI mice had reduced ALP and collagen lev-
els due to decreased YAP signaling, although they also 
reported a decrease in colony forming units (CFUs) from 
ASCs derived from OI mice. They reported that autolo-
gous ASCs may be able to divide and differentiate into 
osteoblasts, however, they will be defective cells that pro-
duce minimal or aberrant collagen (Liu et al. 2021).

Similar results were shown in MSCs derived from 
OI patients. During characterization, BMSCs from OI 
patients had similar surface marker profiles to BMSCs 
from patients with normal skeletal development (Kaneto 
et  al. 2017). However, BMSCs from OI patients had 
a reduced expression of osteogenic markers during 
osteogenic differentiation, a decreased commitment to 
osteogenic lineage, and a higher propensity for adipo-
genesis over osteogenesis (Kaneto et  al. 2017). Further-
more, BMSCs from OI patients have point mutations in 
COL1A1 or COL1A2, worse collagen processing, worse 

collagen stability, and worse collagen structure (Cham-
berlain et al. 2004).

ASCs derived from OI patients also demonstrated a 
reduced therapeutic potential. Abuhantash et  al., took 
ASCs from OI patients, differentiated them into osteo-
blasts, and compared their extracellular vesicles (EVs) to 
those of osteoblasts from healthy patients (Abuhantash 
et  al. 2020). The EVs from OI cells had the persistent 
expression of fibronectin, Fibulin-1 and -2, and laminas, 
which indicates an immature extracellular matrix (ECM). 
However, an organized and mature ECM is required for 
proper ECM mineralization. This study also showed that 
annexins, which are critical for ECM mineralization due 
to their calcium binding, were down regulated in EVs 
from OI cells.

As both BMSCs and ASCs derived from OI mice and 
patients have shown a reduced osteogenic potential and 
an impaired mineralization ability, it suggests these cells 
may contribute to the bone fragility in OI patients. This 
is an essential argument for restricting the use of autolo-
gous cells in OI patients. If autologous cells were to be 
used, they would always require gene therapy to correct 
their mutation.

MSCs in pre‑clinical studies
Most of the pre-clinical models of OI consist of trans-
planting murine or human MSCs into mice (Table  2). 
Success criteria for these models is typically a reduction 
in the number of fractures as well as an increase in bone 
stiffness compared to PBS-treated controls. In addition 
to evaluating the therapeutic efficacy of cell therapy, 
these models can serve as a tool to examine the molecu-
lar and cellular mechanisms of MSC treatments. Murine 
models include transgenic, naturally occurring muta-
tions, knock-outs, and knock-ins (Forlino et  al. 1999; 
Daley et al. 2010).

The development of early OI models was based on 
mutations in the proα1(I) chain of type I collagen, repre-
senting moderate-to-severe OI types. A COL1A1 knock-
out can either be homozygous or heterozygous. The 
homozygous models are lethal, as they produce no type 
I collagen. The heterozygous models represent moderate 
to severe OI, as they produce reduced amounts of normal 
type I collagen. The human minigene model is another 
early model and is based on 41 missing exons in the cen-
tral region of the COL1A1 gene. The shortened human 
minigene associates with normal murine genes, which 
reduces the amount of normal type I collagen produced 
(Khillan et al. 1991; Pereira et al. 1993; Pereira et al. 1995). 
The BrtIIV mouse model is a dominant model of OI that 
shows biochemical and phenotypic features reflective of 
moderate-to-severe human type III/IV OI (Forlino et al. 
1999; Gioia et  al. 2012). This model provides offspring 
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Table 2 Preclinical studies of MSCs in the treatment of OI

Cell Type Model Type of OI Methods Results Reference

Murine Cells or Cell Products into Mice
  Allogeneic BMSCs from WT 

mice
Transgenic mice,
3 week old,
irradiated

I IP • Low engraftment @ 1 mo
• Differentiate into fibroblasts in 
multiple tissues @ 2.5 mo
• Continual source of new cells
• Only small effects on bone pheno-
type @ 1 mo
• Increased collagen and mineral 
content @ 1 mo

Semler et al. 2012

  Allogeneic BMSCs from WT 
mice

oim mice,
8-10 week old,
irradiated

III IO • Robust engraftment @ 1 mo
• Long term engraftment @ 3 and 
6 mo
• Differentiation into osteoblasts @ 
3 mo
• Continual source of new cells @ 
6 mo
• Improved cortical structure and 
strength @ 3 and 6 mo

Strube et al. 2009

  Allogeneic BMSCs from WT 
mice

BrtIIV mice,
E13.5-14.5

III/IV IUT • Eliminated perinatal lethality
All results measured @ 2 mo of 
age
• Low engraftment
• Differentiated into functional 
osteoblasts
• Improved bone mechanics
• Improved mineralization and corti-
cal thickness

Théry et al. 2009

  Genetically modified ASCs from 
WT mice

COL1A1 knockout,
8 week old
males

I IV All results measured @ 4 weeks 
after treatment
• Genetically modified ASCs 
migrated to femur
• Genetically modified ASCs dif-
ferentiated into bone cells
• ASCs improved cortical structure 
and thickness
Further improvements when com-
bined with Nell1
Most improvement when geneti-
cally modified with NELL1

Thiele et al. 2012

  ASCs from WT mice, OI mice, 
and OI mice with genetic 
modification

COL1A1 knockout,
8 week old
males

I IO All results measured @ 4 weeks 
after treatment
• Cells migrated to femur
• Cells differentiated into osteoblasts
• Promoted bone formation
• ASCs from WT mice improved 
bone structure, thickness, and 
mechanical properties
• Genetically modified ASCs from 
OI mice improved all above but not 
as much
• ASCs from OI mice were not 
therapeutic

Shapiro et al. 2013

  BMSC-derived EVs from WT 
mice

G610C
knock in,
3 weeks old

I of IV IV
once / week,
for 4 weeks

All results measured @ 2 weeks 
after last treatment
(@ 2 mo of age)
• Increased bone growth
• miRNA depletion in EVs removed 
therapeutic effects

Pereira et al. 1995
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with phenotypic variation in bone strength, number of 
fractures, and skeletal deformities. Mice can display peri-
natal lethality or long term survival capable of reproduc-
tion. The oim mouse is the only naturally occurring OI 
mouse model. It is a recessive mouse model with a rare 
mutation in the pro-α2(I) chain (Chipman et  al. 1993). 

With progressive deformities and skeletal fractures, it 
reflects human type III OI. The G610C is a knock-in 
mouse model with a glycine substitution mimicking the 
G-to-T transversion at nucleotide 2098 found in the Old 
Order Amish (OOA) kindred of Lancaster County, Penn-
sylvania (Daley et al. 2010). Therefore, the mice have the 

Abbreviations: mo month/months, EVs Extracellular vesicles, IO Intraosseous, IV Intravenous, IP Intraperitoneal, IUT In utero transplantation, SD Sub-dermal transplant, 
NA Not addressed, WT Wild type

Table 2 (continued)

Cell Type Model Type of OI Methods Results Reference

Human Cells into Mice
  Human fMSCs,
10 week old fetus
1 donor

oim mice,
E13.5-E15

III IUT • Donor cells persisted in numerous 
tissues @ 3 mo of age
More cells found at 1 week of age 
than 3 mo of age
Retention was greater in bone (5% 
engraftment)
• Donor cells accumulated in areas 
of active bone formation, remod-
eling, and fracture sites
• Remained as progenitors in bone 
marrow but differentiated into 
osteoblasts in bone
• Improved bone mechanics @ 1, 2, 
and 3 mo after birth
• Reduced fractures @ 1, 2, and 3 mo 
after birth

Mäyränpää et al. 2011

  Human fMSCs,
10 week old fetus
1 donor

oim mice,
E13.5-E15

III IUT All results measured @ 2 mo of 
age
• Significant reduction in femoral 
fractures
• Donor cells engrafted in bone (5%)
• Differentiated into functional 
osteoblasts, expressed osteocalcin
• Increased matrix stiffness
• No changes in bone morphology

Mazini et al. 2019

  Human fMSCs,
10-12 week old fetus,
primed with SDF-1

oim mice,
2-3 day old neonates

III IP All results measured @ 2 mo of 
age, compared to unprimed cells
• Increased migration to bone and 
bone marrow
• Higher engraftment in bone and 
bone marrow
• More therapeutic benefit
• Reduced fractures

Valadares et al. 2014

  Human CSC,
9-10 week old fetus

oim mice,
2-3 day old neonates

III IP All results measured @ 2 mo of 
age
• Less fractures
• Increased bone ductility and 
volume
• did not affect bone length or corti-
cal bone formation
• Decreased bone brittleness
• Differentiated into functional 
osteoblasts
• Upregulated endogenous genes 
for ossifications
• Homed to epiphysis of long bones

L. et al. 2019

  Genetically modified BMSCs
from OI patient

NOD/SCID,
2-3 month old

NA SD All results measured @ 2 mo of 
age
• In vivo bone formation
• Increased collagen processing, 
stability, and structure

Khillan et al. 1991
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same phenotypic variation as the OOA kindred, with 
mild to moderate disease, reduced body mass, increased 
fractures, and decreased bone strength (Daley et  al. 
2010).

In our literature search of preclinical in vivo studies of 
MSC treatment for OI, we found that the most common 
mouse model used was the oim mouse (45% of papers). 
While 54% of the papers evaluated murine MSCs, 45% 
evaluated human MSCs. MSCs sources included BMSCs 
(45% of studies), fMSCs (27%), ASCs (18%), and CSC 
(9%). Cells were administered both pre- and postnatally, 
and were injected via i.v., i.p., IO, IUT.

Murine MSCs
In an early study by Pereira et al., BMSCs were extracted 
from WT mice and injected i.p. into 3-week old irra-
diated OI mice expressing the human mini gene for 
COL1A1 (Pereira et al. 1998). DNA from the donor cells 
were found in multiple tissues, with no statistical differ-
ences in engraftment levels at 1 or 2.5 months after the 
infusion. Engraftment levels were low and did require 
a high dose of radiation. However, the donor cells did 
account for a significant percentage of fibroblasts sug-
gesting that the BMSCs were a continuous source of cells. 
The effects on bone phenotype were minimal at 1 month 
post infusion. However, bone mineralization did increase 
by a small but significant amount, making them less 
prone to breakage.

In order to overcome the low engraftment of BMSCs, 
Sinder et al., transplanted BMSCs from WT mice directly 
into the bone marrow of oim mice (Sinder et  al. 2020). 
This method of cell transplantation did appear to increase 
engraftment of BMSCs, with donor cells accounting for 
~ 19% of the cells found on the cortical endosteal surface 
at 1 month post-transplantation. However, it must be 
noted that these robust results were limited to mice with 
a high dose of radiation, as engraftment remained low 
in nonirradiated mice. The engrafted cells were found 6 
months after treatment, concentrated in specific regions 
of bones. The engrafted cells were shown to have differ-
entiated into osteoblasts, suggesting BMSCs transplanted 
directly into the bone could serve as a continued source 
of osteoblast progenitors. In addition to improved cellu-
lar outcome, the cortical structure and mechanical prop-
erties of recipient bone were improved 3 months after 
treatment. As OI has been shown to only require 40-75% 
of osteoblasts to secrete aberrant collagen, directly 
injecting BMSCs into bone may provide functional cells 
in enough numbers to overcome the clinical manifesta-
tion of OI (Cabral and Marini 2004).

A limitation in the above two studies is the need to 
use a high dose radiation in order for cells to engraft. To 
overcome this, Panaroni et al., transplanted cells during 

the prenatal period when there is rapid skeletal develop-
ment and potentially spontaneous fractures occurring 
(Panaroni et al. 2009). When BMSCs from WT type were 
transplanted intrauterine into BrtIIV mice, perinatal 
death was avoided, and a higher percentage of offspring 
survived. The donor cells engrafted into both hematopoi-
etic tissue and nonhematopoietic tissues, though at low 
levels. The cells that were found engrafted in bone were 
found in clusters, similar to the results from BMSCs that 
were directly injected into bone (Sinder et al. 2020). They 
differentiated into trabecular and cortical osteoblasts 
which produced 20% of type I collagen in the mice. This 
suggests that a relatively small population of donor cells 
can provide a significant amount of normal collagen. 
Additionally, there were marked improvements in the 
bone’s mechanical properties/geometry and the minerali-
zation content at 2 months after birth.

Liu et  al., preferred to investigate ASCs because they 
are easy to acquire, have similar differentiation proper-
ties as BMSCs, and are available in large numbers (Liu 
et al. 2020). Though they showed that ASCs systemically 
administered into COL1A1 knockout mice improved 
cortical structure and thickness, they had more robust 
results with ASCs that were co-administered with Nell1, 
a pro-osteogenic factor shown to promote bone forma-
tion. The results were improved even further when ASCs 
were transduced with a lentivirus containing the NELL1 
gene. The genetically modified ASCs could be systemi-
cally administered and migrate to the femur, where they 
were able to differentiate into bone cells. Though the 
ASCs showed improved femoral microstructure and pro-
moted bone formation, the results were more so with 
NELL1 or Nell1. They did have limited improvement in 
femur performance, which may be due to a single dose 
of genetically modified ASCs or a low number of ASCs 
injected. Engraftment levels were not reported. The 
genetically modified ASCs had slightly better efficacy 
than administrating ASCs with Nell1 protein.

To increase engraftment and create longer lasting 
effects, different groups have tried to develop strategies 
to isolate MSCs from OI patients, genetically modify 
them to correct the mutation, and then return the cells 
to the same patient. Another study by Liu et al. tested if 
cells from OI mice could be genetically corrected and, 
therefore, therapeutically effective. They isolated ASCs 
from OI mice and transfected them with COL1A1 (Liu 
et al. 2021). The genetically modified ASCs were able to 
produce normal type I collagen and were able to differen-
tiate into bone-lineage cells in vitro before re-transplan-
tation to mice. They then injected the modified ASCs into 
the bone marrow of 8 week old mice and evaluated them 
4 weeks later. They significantly improved the microarchi-
tecture, improved mechanical properties, and promoted 
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bone formation. Despite this success, genetically modi-
fied strategies have a limitation when used in  vivo. The 
neomycin resistant gene used for transfection can be a 
target of the immune system for destruction. This is one 
of the biggest hurdles to evaluating genetically modified 
MSCs in the clinic.

Human MSCs
There is a high level of homology between the Col1α2 
protein in humans and mice, as well as other proteins 
involved in bone formation. Therefore, many groups 
have evaluated human MSCs in a mouse model. In 
another study designed to test the efficacy of genetically 
modified cells from OI individuals, Chamberlain et  al. 
isolated BMSCs from two OI patients and used an adeno-
associated virus to insert a construct designed to inac-
tive mutated COL1A1 alleles (Chamberlain et  al. 2004). 
They showed the defect was corrected in  vitro. Though 
they didn’t test it in an OI model, they did evaluate bone 
formation in the skin of NOD/SCID mice. In addition to 
showing bone formation in vivo, the genetically modified 
human BMSCs from an OI patient showed improved col-
lagen processing, stability, and structure.

Instead of using adult cells for therapy, Guillot et  al., 
examined a fetal to fetal approach (Guillot et al. 2008a). 
The rationale for in utero transplantation (IUT) is in 
agreement with Panaroni et  al., discussed above (Pan-
aroni et al. 2009). Guillot et al., used MSCs derived from 
first trimester fetal blood (fMSCs), as they are less lin-
age-committed, faster growing, and less immunogenic 
than adult MSCs. To determine if these primitive MSCs 
could be effective in preventing and treating OI, Guillot 
et al., transplanted human fMSCs in utero into oim mice 
(Guillot et al. 2008a). Donor cells were found to engraft 
in various sites including, heart, lung, brain, and up to 5% 
in skeletal tissues up to 8 weeks after birth. The human 
donor cells tended to gather around healing fracture 
sites as well as bone areas with active formation, similar 
to Panaroni and Sinder’s results using BMSCs from WT 
mice. The injected cells were shown to have differentiated 
into osteoblast, and bone mechanics, length, and thick-
ness were improved. Fractures were drastically reduced.

Another study further explored IUT of human fMSCs 
into oim mice (Vanleene et  al. 2011). Again, fractures 
were drastically reduced, despite low engraftment lev-
els (< 5%) measured at 8 weeks. This study showed that 
osteoblasts derived from donor cells secreted normal 
collagen, which decreased hydroxyproline content in 
the bone, creating more carbonated, or a more mature, 
apatite crystal structure. Thus, the bone matrix was 
more stiff, reducing bone brittleness. This coincides with 
Panaroni’s IUT of BMSCs that showed improvement in 
crystal homogeneity (Panaroni et al. 2009). These studies 

suggest that the decrease in fracture rate from MSC treat-
ment may be due to a change in bone tissue proper-
ties, specifically mineralization, rather than a change in 
bone shape or size. An interesting note about this study 
was that the investigators found a gender difference 
with female mice showing more mature apatite crystals. 
Though their objective was not to evaluate gender dif-
ferences, it does correlate with previous studies showing 
that gender differences can affect osteogenic potential of 
donor cells, proliferation and survival of donor cells, and 
bone healing (Hong et al. 2009; Corsi et al. 2007; Strube 
et al. 2009). This is a meaningful reminder to report the 
gender of the mice as well as the gender of the donor in 
literature.

Jones et al. also attempted to overcome the low engraft-
ment in bone and, therefore, the transient effects of 
MSCs (Jones et  al. 2012). They primed fMSCs with 
stromal cell derived factor 1 (SDF-1), a chemokine 
that upregulates CXCR4. CXCR4 increases cell migra-
tion towards bone and bone marrow. Oim neonates at 
2-3 days were injected i.p. At 8-weeks post-transplanta-
tion, primed fMSCs had higher engraftment, drastically 
reduced fractures compared to their unprimed coun-
terparts. The decrese in bone brittleness was associated 
with the higher engfatment levels of fMSCs.

Though fMSCs show great promise, they are limited 
by their low numbers and availability. Another primitive 
MSC used in a pre-clinical model of OI was placenta-
derived MSCs (CSC) (Jones et  al. 2014). Jones et  al. 
administered CSCs i.p. into neonate oim mice. At 8 weeks 
post-transplant, there were reduced fractures and 
increased bone flexibility. Bone volume was increased, 
though again, the length of the bone was unaffected. 
Similar to other studies, donor cells engrafted preferen-
tially to the growth plate and fracture sites (Sinder et al. 
2020; Panaroni et  al. 2009; Guillot et  al. 2008a). Donor 
cells differentiated into osteoblasts that produced normal 
collagen. They also showed that donor cells increasing 
hypertrophic chondrocytes, indicating fMSCs transplan-
tation may increase endogenous endochondral ossifica-
tion. Again, fractures were reduced.

Extracellular vesicles
As previously mentioned, there are limitations with 
MSCs, regardless of the source. To get around the limita-
tions of MSCs, investigators are still working to find the 
ideal source of MSCs, the optimal method to culture cells, 
and new techniques to deliver the cells. Of more and more 
interest is using extracellular vesicles (EVs), rather than 
the entire cell. EVs, including exosomes and microvesi-
cles, contain proteins, RNAs, and miRNAs (Otsuru et al. 
2018; L. et  al. 2019). EVs derived from different sources 
of MSCs have been shown to be therapeutically effective 
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in the treatment of several diseases (Otsuru et  al. 2018; 
Katsuda et al. 2013; Phinney and Pittenger 2017; Phinney 
et al. 2015; Théry et al. 2009).

Otsuru et  al. isolated EVs from both human and 
murine BMSCs (Otsuru et  al. 2018). They infused EVs 
into OI mice at 3 weeks and then once a week for a total 
of four treatments. They compared EVs between spe-
cies, to parental MSC counterpart, and all groups to 
PBS injected controls. Two weeks after the last injec-
tion, bone growth was evaluated. EV-treated groups had 
similar measurements as BMSC-infused groups, with 
some bones increasing in length while others did not. 
EV therapy increased the proliferation of chondrocytes 
in the growth plate, increasing bone growth. Looking for 
a mechanism, they narrowed it down to the miRNA(s) 
transported within the EVs, though it is unclear which 
miRNA provided this therapeutic effect. These EVs can 
be stored frozen, freshly thawed and directly infused into 
patients, and have less risk for venous thrombosis and 
pulmonary embolism.

MSCs in clinical studies
BMSCs
In a foundational clinical trial, Horwitz et  al., wanted 
to see if allografts would be accepted by OI patients, 
and if bone marrow could correct genetic disorders of 
the mesenchyme (Horwitz et  al. 1999). Evaluating three 
young children with type III OI, a single dose of unma-
nipulated bone marrow was infused i.v. into the patients 
after full myeloablative treatment (Table  3). Donor cells 
came from siblings and were HLA-identical or single-
antigen mismatched. Only one patient demonstrated 
toxicity related to the transplant, and the authors stated 
his complications were resolved by the end of the study. 
Though it was not able to be determined in one patient, 
the other two showed engraftment, albeit at low levels 
(≤2%), of donor cells that were functional for at least 6 
months. In all three patients, bone histology and miner-
alization improved, most likely due to the engraftment 
of donor cells. Bone biopsies before treatment showed 
the characteristic “woven bone” of OI, high bone turno-
ver, poor mineralization, and the disorganized formation 
of new bone. However, after treatment, there were less 
osteocytes, more osteoblasts, organized osteoblasts, and 
a substantial increase in mineralization. Interestingly, the 
accumulation of bone mineral did not increase weight 
gains or body length as expected. Results were similar 
between all three patients. With the improved architec-
ture and mineralization of bone, clinical improvement 
was seen with a drastic reduction in the number of frac-
tures and median growth velocity increased to predicted 
median values. This early study showed that allogenic 
cells could engraft, and that low engraftment could still 

lead to increased mineralization, improved bone histol-
ogy, and decreased fractures.

A follow-up study evaluated the longer term clini-
cal effects of bone marrow transplant on the type III OI 
children from the previous study (Horwitz et  al. 1999; 
Horwitz et  al. 2001). This longer term study of these 
three patients was also able to compare results against 
two control patients. The increase in median growth 
velocity seen in the immediate months after transplan-
tation slowed down, but still did increase some. Despite 
the slowed growth velocity, bone mineralization still 
increased showing that growth and mineralization are 
two separate events. The decrease in fractures seen in 
the months after transplantation continued to remain 
reduced.

A follow-up study evaluated if: 1) allogenic BMSCs 
could engraft and have a therapeutic effect without irra-
diation of the patient, 2) if allogenic BMCs could engraft 
in multiple tissues, and 3) if two doses of BMSCs would 
show toxicity or increase clinical benefits (Horwitz et al. 
2002). Six children with type III OI and who had received 
a bone marrow transplant, were given two separate i.v. 
injections of BMSCs that were transfected with  neoR 
gene. The BMSCs were from the original bone marrow 
donors, which consisted of 4 siblings and 2 unrelated 
donors. BMSCs used for the first injection were mini-
mally cultured and injected at  106 cell/kg. The timing 
of the first injection ranged from 18 to 34 months after 
the bone marrow transplant. The second dose con-
sisted of culture-expanded BMSCs and was adminis-
tered 8-21 days after the first dose. Though investigators 
aimed for a concentration of 5 ×  106 cell/kg, it ranged 
from 1-5 ×  106 cell/kg due to dissimilar growth patterns 
of BMSC donors. Engraftment at 6 weeks after the last 
BMSC infusion was seen in 5 out of 6 patients, occurred 
with both minimally cultured or expanded BMSCs, pre-
sented in different tissue types, and did not exceed 1%. 
Only one patient had a substantial increase in bone min-
eralization, however, five out of six patients had a signifi-
cant increase in growth velocity. The patient that did not 
show an increase in growth velocity was also the only 
patient to show antibodies to fetal bovine serum after 
the second infusion, as well as the lack of detection of 
any donor cells in any tissue. The expression of a foreign 
protein, such as  neoR, may cause the immune system of 
some patients to attack transduced cells. The results from 
this study showed that: 1) allogenic BMSCs can engraft 
in multiple tissues without irradiation, and 2) there are 
distinct mechanisms for bone mineralization and bone 
growth. The results of the study concluded that the 
BMSCs engrafted in the patient’s defective bone, where 
they differentiated into osteoblasts and extended the 
benefits of the bone marrow transplant (BMT).
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Table 3 Clinical studies of MSCs in the treatment of OI

Type of OI Cases Treatment Methods Results References

III 3 Unmanipulated BM, HLA-
identical or single-antigen 
mismatched siblings

IV, single infusion, moderate-
dose total-body irradiation in 
mismatched donor

• Osteocytes decreased, 
osteoblasts increased
• Increase in bone minerali-
zation
• Normalization of bone 
remodeling
• Reduced fractures
• ≤ 2% engraftment
• Accelerated linear growth, 
but transient
• 2/3 showed no toxicity

Womack 2014

• This is an extended follow-
up of the above study
• This study included 2 con-
trol patients
• Evaluate patients up until 
4 years of age
• Growth rate immediately 
after treatment slowed, but 
mineralization increased
• Decreased incidence of 
fractures remained

Yi et al. 2020

III 6 Allogeneic BMSCs, Siblings or 
unrelated donors

IV, two infusions • 5/6 patients showed 
engraftment of BMSCs @ 
6 months
• Engrafted in multiple 
tissues
• Increased growth velocity 
@ 6 months
• 1/6 had increased bone 
mineralization
• No significant toxicity

Yu et al. 2021

III 1 Allogeneic HLA-mismat-
eched FL-MSCs, 10-week 
male fetus Bisphosphonate 
treatments beginning at 
4 months old

IUT 32 weeks gestation • Engraftment was 7% at 
9 months of age
• Donor cells differentiated 
into bone cells
• Mature trabecular
• Minimal fractures within 
2 years of age
• Growth normal for child’s 
growth curve at 2 years of 
age
• IUT of FL-MSCs was safe

Zhang et al. 2015

Booster from
same FL-MSC donor

IV
at 8 years old

• After 2 yrs. of age, growth 
rate decreased and fracture 
rate increased
• Scoliosis developed
• Donor cells not found in 
tissue @ 6 years of age
• 9 months after booster, low 
engraftment levels found 
in bone
• No fractures for two years 
after booster, growth veloc-
ity resumed
• Ability to walk and partici-
pate in sports improved

Zhou et al. 2008

IV 1 Allogeneic HLA-mismat-
eched FL-MSCs,
7-week male fetus

dose 1: IUT at 31 weeks,
dose 2: IV at 19 months

• Low engraftment levels
• Growth velocity plateaued 
~ 12 months of age
• Growth velocity increased 
after both injections

Zhou et al. 2008; Zhukareva 
et al. 2010
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The goal of the Mesenchymal Stem Cell Therapy for the 
Treatment of Osteogenesis Imperfecta (TERCELOI; Clini-
calTrials.gov ID: NCT02172885) clinical trial was two-fold: 
1) to evaluate the safety and efficacy of multiple BMSC 
injections, and 2) to elucidate the mechanism of action of 
BMSC therapy in OI patients (Infante et al. 2021). Infante 
et  al. reported results from two patients who received 
a series of 5 injections of HLA-histocompatible sibling 
donor cells. One patient was 6 years of age at the begin-
ning of treatment and diagnosed with type III OI while 
the other was 8 years of age and diagnosed with type IV 
OI. Both patients received 5 infusions, with each infusion 
5-6 months apart, and then they were monitored and eval-
uated for 2 years after the last infusion. Neither patient had 
any adverse reactions to repeated cell therapy injections. 
Additionally, patients had reduced fractures and increased 
bone mineralization during treatment and follow-up; 
improved bone microstructure, although in the severe OI 
patient, it returned to pretreatment levels by the end of 
the follow-up period; the trabecular thickness remained 
constant; and the trabecular separation decreased in the 
severe patient (Ramesh et al. 2021; Infante et al. 2021). It 
is worth noting that Ramesh et al. points out that the TER-
CELOI trial uses a technique to evaluate trabecular bone 
microstructure that is not validated or ideal for pediatric 
radiographs of lower femurs (Ramesh et al. 2021).

Infante et  al. took sera samples from both patients 
before and after treatment for mechanistic studies 
(Infante et  al. 2021). They evaluated levels of proteins, 
genes, miRNAs, and transcription factors. Proteins, 
genes, and transcription factors for angiogenesis and 
adipogenesis were downregulated or inhibited. Fracture-
associated miRNAs were also decreased. Increased were 
proteins and genetic information for cell migration, cell 
survival, osteogenesis, and collagen binding. Altogether, 
this shows that BMSC treatment has a systemic, early-
osteogenic effect in OI patients via paracrine activities. 
Furthermore, the most severely affected patient had the 
most robust results with BMSC therapy as well as the 
most robust results with molecular findings. This sug-
gests the clinical improvements are a consequence of 
the BMSC treatment, and the effectiveness of the BMSC 
treatment may depend on the severity of OI disease.

FL‑MSCs
To combat the low engraftment and transient thera-
peutic effects from previous studies, Le Blanc et  al. 
used MSCs derived from fetal livers (FL-MSCs). FL-
MSCs were shown to expand at a faster rate than 
BMSCs and would, therefore, not need to have pro-
longed time in culture, which may increase their 
engraftment and differentiation (Le Blanc et al. 2005). 

Abbreviations: mo month / months, IO Intraosseous, IV Intravenous, IP Intraperitoneal, IUT In utero transplantation, ECM Extracellular matrix

Table 3 (continued)

Type of OI Cases Treatment Methods Results References

III and IV 2 HLA-haploidentical BMSCs 
from healthy siblings

5 infusions, each 5-6 mo 
apart

TERCELOI Clinical Trial
• No adverse effects with 5 
treatments
• Increased bone mineraliza-
tion, trabecular thickness 
remained constant
• Improved bone microstruc-
ture, but transient in severe 
patient
• Reduced fractures
• Treatment upregulated in 
sera: ECM, collagen binding, 
oxidoreductase activity, 
unsaturated fatty acid 
biosynthesis, osteogenic 
transcription factors
• In sera, treatment down-
regulated: hypoxia, angio-
genesis, collagen metabolic 
process, pro-adipogenic 
transcription factor

Yüksel Ülker et al. 2021

III 1 (ongoing) HLA-mismatched FL-MSCs IV and IO BOOST2B Clinical Trial 
(ongoing as of this publica-
tion)
• Increase in growth velocity

Lazennec andet al. Jorgensen 
2008

III, IV ongoing HLA-mismatched FL-MSCs IUT and IV BOOSTB4 Clinical Trial 
(ongoing)

Zhytnik et al. 2020
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They tested the hypothesis that fetal cells would sur-
vive better than adult cells in a fetal environment, so 
they isolated FL-MSCs from a 10-week old male fetus 
and expanded them until passage 2. Cells were injected 
through the umbilical vein at 32 weeks and demon-
strated a safe transplant. At 9 months of age, a biopsy 
showed ~ 7% engraftment of donor cells. Donor cells 
had differentiated into bone cells and showed evidence 
that they provided a continuous source of osteoblas-
tic progenitors. Bone morphology looked normal, 
and signs of healing were not apparent, indicating 
that undiagnosed fractures did not occur. From the 
IUT transplant until the bone biopsy at 9 months, the 
child grew at a discernable rate. Though the child was 
administered bisphosonate at 4 months due to osteo-
penia, it would not account for the growth. Thus, the 
investigators surmised it must be the FL-MSCs. By age 
of 2 years, fractures were minimal, children had a nor-
mal growth velocity for their own growth curve, and 
there were no hospitalizations.

This patient was monitored for the next few years. 
Between the ages of 2-8 years old, her growth rate 
decreased, fracture rate increased, and scoliosis devel-
oped (Götherström et al., 2014). Additionally, biopsies of 
multiple tissues at the age of 6 found no trace of donor 
cells. For these reasons, as well as a lack of patient anti-
bodies towards MSCs or FBS, a second injection of FL-
MSCs was given to the patient at the age of eight. The 
FL-MSCs came from the same donor and did not cause a 
reaction when used for a second time. After the FL-MSC 
injection, there were no fractures reported for 2 years, 
and the growth velocity resumed to normal levels. The 
patient’s ability to walk improved, and she was able to 
participate in more sports. A bone biopsy from 9 months 
after the FL-MSC booster showed engraftment, albeit 
very low levels.

A patient with type IV OI was also treated with FL-
MSCs pre- and postnatally (Götherström et  al, 2014; 
Sagar et  al. 2018). In utero, fresh and healing fractures 
were identified along with short long bones. At 31 weeks 
of gestation, the fetus was transplanted with FL-MSCs. 
For the rest of the pregnancy or infancy the baby did not 
present with any fractures, and at 1 month of age the 
patient was started on bisphosphonate therapy. Simi-
lar to the patient with type III OI, the IUT of FL-MSCs 
appeared to have a transient effect on the patient with 
type IV OI. At 1 year of age, her longitudinal length pla-
teaued. Therefore, a second injection from the same 
FL-MSC donor was given at 19 months of age. No allore-
activity or adverse reactions occurred, her growth veloc-
ity resumed to normal rates, and she started to walk at a 
normal milestone of childhood development.

There are currently two different ongoing multi-center 
clinical studies evaluating HLA-mismatched FL-MSCs 
for OI. The Boost to Brittle Bones (BOOST2B; Clinical-
Trials.gov ID: NCT04623606) clinical trial is evaluating 
the safety and tolerability of repeated i.v. and i.o. infu-
sions on children with severe OI from 1 to 4 years of age 
(Ramesh et  al. 2021; Madhuri et  al. 2021). Donor cells 
will be expanded in culture and administered in four 
doses at 4 month intervals. Patients will be evaluated at 
16 months after the 1st infusion and evaluated for tim-
ing of fractures, fracture frequency, bone mineralization, 
growth, clinical status, and bone turnover. The Boost 
Brittle Bones Before Birth (BOOSTB4; ClinicalTrials.
gov ID: NCT03706482) clinical trial will also evaluate 
culture expanded FL-MSCs, but during the prenatal and 
infancy period (Sagar et al. 2018). Focused on severe but 
not lethal forms of OI, this study is intended to evaluate 
the safety, effectiveness, cost, and public acceptability. 
The investigators have already reported that major stake-
holders, including OI families, OI clinicians, and patient 
advocate groups, have a general positive view of using 
FL-MSCs during the prenatal period. Though there were 
concerns with the origins of FL-MSCs, the safety and effi-
cacy, and the potential side effects of the treatment, most 
surveyed considered early treatment advantageous to 
decrease the severity of OI, prevent fractures, and pro-
vide psychological benefits (Hill et al. 2019).

Conclusions
The hope of cell therapy is that it extends beyond a tem-
porary clinical improvement and corrects the underlying 
cellular and molecular defect. MSCs have shown prom-
ise in preclinical and clinical studies of OI. Based on the 
above studies, MSCs from different sources share six 
notable features. First, they are generally safe with little 
to no reported signs of adverse reactions. They can be 
safely administered prenatally, postnatally, with multiple 
administrations, and through different routes. They show 
little signs of alloreactivity and can even be HLA-mis-
matched. Second, they are altered in diseased states such 
as OI. BMSCs and ASCs, from both OI mice and human 
patients, had a reduced osteogenic potential, impaired 
mineralization ability, produced an immature ECM, and 
were less therapeutic in OI models. Third, they migrate 
to fracture sites and the growth plate of long bones. 
Four, they are only able to engraft at low levels of 0-7%. 
Engraftment can be increased with high dose radiation 
or priming with chemokines. Fifth, they provide a tran-
sient improvement in clinical outcome. Boosters may be 
required for some patients. Lastly, the therapeutic effec-
tiveness of MSCs may be due, at least in part, to their 
paracrine activities.
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