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Close-coupling and distorted-wave calculations for electron-impact excitation
of the „5p56p… states of xenon
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We report on a series of calculations for electron-impact excitation of thes5p56pd states in xenon from the
ground states5p6d1S0. As in previous calculations for other noble-gas targets, we find strong evidence of
channel coupling for all incident energies considered(between threshold and 200 eV). Although qualitative
agreement with the experimental results of Fons and Lin[Phys. Rev. A58, 4603(1998)] is achieved, severe
quantitative discrepancies of sometimes more than a factor of 2 remain.
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I. INTRODUCTION

Electron scattering from xenon atoms is an important pro-
cess in laser, lighting, and plasma technology. Early mea-
surements were summarized by Fons and Lin[1], who pub-
lished a complete set of new experimental data for electron-
impact excitation cross sections from the ground state
s5p6d1S0 to the ten fine-structure states associated with the
s5p56pd configuration. After subtracting cascade effects in
the optical emission function measurements and accounting
for the strong pressure dependence in typical experimental
setups, they compared their data for a few transitions with
predictions from anR-matrix (close-coupling) calculation by
Nakazakiet al. [2]. In a previous publication[3], the latter
authors had already outlined some of the difficulties encoun-
tered in numerical calculations for these processes, generally
consisting of both the complexity of the target description
and the need to account for strong channel coupling, espe-
cially in the low-energy near-threshold regime that is domi-
nated by resonance effects.

The near-threshold resonance problem was recently inves-
tigated in more detail by Grum-Grzhimailo and Bartschat
[4], who looked at angle-integrated and angle-differential
cross sections for electron-impact excitation of thes5p56sd
states. One of the by-products of their work was a relatively
accurate(in terms of energies and oscillator strengths) de-
scription of the lowest 21 target states of xenon. The latter
was achieved mostly by generating a 6d pseudo-orbital to
improve the description of the odd-parity states, and by op-
timizing the 6p orbital on the lower six members of the
s5p56pd manifold, i.e., the states associated with the
s5p5d2P3/2 core of Xe+.

In light of the data needs not only for the near-threshold
region but also for higher impact energies, we decided to
continue our previous work on electron collisions with kryp-
ton [5,6] and argon [7–9] atoms by applying various
distorted-wave and close-coupling approaches to thee–Xe

collision problem. By performing both close-coupling and
distorted-wave calculations, using the same one-electron or-
bitals, we can explore the sensitivity of the results to
channel-coupling effects. Finally, we hoped it to be straight-
forward to generate results for the entire energy regime of
interest by combining low-energy close-coupling and high-
energy first-order distorted-wave results. As will be shown
below, however, this is not always possible, due to the ap-
parent importance of higher-order effects even at high impact
energies.

In the next section, we briefly describe the numerical
methods, which have been outlined in more detail in previ-
ous calculations listed in the references. We then discuss the
results before drawing some conclusions and providing an
outlook to future work on this type of collision processes.

II. THEORETICAL MODELS

The semirelativisticR-matrix method used in the present
work is essentially the same as described by Zeman and Bar-
tschat[10,11], except for the improved structure description
given by Grum-Grzhimailo and Bartschat[4]. The 43-state
model (to be labeled RM43 below) used in the latter calcu-
lation closely coupled the 31 states of neutral xenon with
configurations 5p6, 5p56s, 5p56p, 5p55d, and 5p57s, as well

as 12 pseudostates generated from the 5p56̄d configuration.

Here, 6̄d denotes a pseudo-orbital that was optimized on the
description of selected members of the odd-parity spectrum.
The latter target description was generated with the multi-
configurationMCHF code of Froese Fischeret al. [12]. In a
smaller 15-state calculation(RM15), we used just the states
generated from the configurations 5p6, 5p56s, and 5p56p;
finally, dropping the four states with configuration 5p56s
yielded the minimal 11-state close-coupling approach
(RM11) for the transitions of interest. Differences in the re-
sults obtained with the same target description but a different

PHYSICAL REVIEW A 69, 062706(2004)

1050-2947/2004/69(6)/062706(6)/$22.50 ©2004 The American Physical Society69 062706-1



number of coupled states provides an indication of the im-
portance of channel-coupling effects.

We then used theBELFAST suite of semirelativistic
R-matrix codes[13] to perform calculations for electron col-
lisions with Xe atoms initially in theirs5p6d1S0 ground state.
In the RM11 and RM15 calculations, theR-matrix radius
was set to 30a0, and 40 continuum orbitals per angular mo-
mentum were used to represent the projectile inside the
R-matrix box. This allowed us to push these calculations to
incident energies up to 140 eV. In the RM43 model, on the
other hand, the additional valence orbitals required a larger
box radius of 40a0, and because of the much larger number
of channels we restricted the calculation to 20 continuum
orbitals per angular momentum. Consequently, the RM43
model could only yield results for incident energies up to
30 eV. The diagonal elements of the Hamiltonian matrix
were adjusted to ensure agreement with the experimental ex-
citation thresholds and therefore to allow for a direct com-
parison between our predictions and the experimental data.
The adjustment was performed in such a way that the shift of
the states with configuration 5p56p was kept as small as
possible. Finally, the flexible asymptoticR-matrix (FARM)

package of Burke and Noble[14] was used to calculate the
transition matrix elements at each collision energy of inter-
est. We summed the numerically calculated contributions
from partial waves of total electronic angular momentumJt
of the projectile + target system up to a maximum valueJt

max

and estimated the contributions from higher partial waves
using a geometric extrapolation scheme if necessary. Specifi-
cally, we choseJt

max=31/2 for RM43 andJt
max=79/2 for

RM15 and RM11. Note that such high angular momenta re-
quire special care with the numerics, especially with respect
to the calculation of exchange integrals[13].

In addition to theR-matrix (close-coupling) calculations,
we performed calculations using two distorted-wave models
labeled DW1 and DW2 below. Both of these models were
described in detail by Dasguptaet al. [5]. In contrast to some
of our previous work, all distorted-wave calculations were
performed with the same target descriptions as the RM15
model, with one notable exception: For excitation of the 2p5
and 2p1 states with total electronic angular momentumJ=0,
the small mixing coefficients with the ground-state configu-
rations5p6d were ignored in the DW models, and the remain-
ing coefficients were renormalized to preserve their mutual
ratio while guaranteeing normalization of the states to unity.
Previous experience showed that the theoretical results are
strongly dependent on the small mixing coefficient with the

FIG. 1. Angle-integrated cross section for electron-impact exci-
tation of the 2p10 state in xenon from the ground-states5p6d1S0.
Predictions from various theoretical models described in the text are
compared with the experimental data of Fons and Lin.[1].

FIG. 2. Same as Fig. 1 for the 2p9 state.

FIG. 3. Same as Fig. 1 for the 2p8 state.

FIG. 4. Same as Fig. 1 for the 2p7 state.
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ground-state configuration and, moreover, that it is very dif-
ficult to obtain this coefficient correctly in anab initio struc-
ture calculation with a small configuration-interaction expan-
sion. In fact, best agreement with experiment in DW
calculations is often obtained by the procedure outlined
above. TheR-matrix models, on the other hand, where this
renormalization cannot be performed easily because of strict
orthogonality requirements between the initial and the final
states, typically yield very questionable results for these tran-
sitions.

Following previous experience, the static potential of the
excited state was used as the distortion potential in both the
incident and the exit channel. Finally, we note that DW1
does not include relativistic effects in the calculation of the
distorted waves while DW2 does, and DW1 unitarizes theS
matrix while DW2 does not. Generally, neither one of these
effects is expected to be important at projectile energies suf-
ficiently high such that channel coupling is no longer a domi-
nant mechanism. With increasing energy, therefore, one
would hope that the DW results converge to each other and
to theR-matrix predictions obtained with the corresponding
target description. This is an important additional test for the
consistency of the models and the importance, or lack
thereof, of channel coupling.

III. RESULTS AND DISCUSSION

Figures 1–10 exhibit our results for the angle-integrated
cross sections for electron-impact excitation of the 2p10-2p1
states in xenon from the ground-states5p6d1S0. The predic-
tions from the various theoretical models described in the
previous section are compared with the experimental data of
Fons and Lin[1]. We label the curves by “RM##,” where
“RM” stands forR-matrix and “##” indicates the number of
coupled states. Similarly, the distorted-wave models are la-
beled “DW1” and “DW2,” respectively.

Instead of commenting on each curve individually, we
will concentrate on discussing the more general trends. To
begin with, there is overall qualitative agreement between
the experimental data of Fons and Lin[1] and many of the
models, although in most cases major discrepancies remain
regarding the quantitative agreement. These discrepancies
sometimes exceed a factor of 2, particularly when the cross
sections are relatively small. The curves from the two DW
calculations generally come together around 30 eV incident
energy. For lower energies, the lack of unitarization in DW2
typically results in much too large cross sections.

Note that all these transitions are optically forbidden, and
that we represent each state in an “intermediate-coupling
scheme” as a linear combination of singlet and triplet states.
Following Henry [15], the cross sections should therefore

FIG. 5. Same as Fig. 1 for the 2p6 state.

FIG. 6. Same as Fig. 1 for the 2p5 state.

FIG. 7. Same as Fig. 1 for the 2p4 state.

FIG. 8. Same as Fig. 1 for the 2p3 state.
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fall off with increasing incident energyE according to

ssEd ~ a/E + b/E3. s1d

Here, the coefficienta originates from contributions of spin-
allowed but parity and/or orbital angular momentum forbid-
den transitions, while the coefficientb accounts for spin-
forbidden, i.e., pure exchange transitions. As can be seen in
the graphs, the cross sections indeed decrease with incident
energy beyond the maximum, but the predicted decrease is
often quite different in the theoretical curves and the experi-
mental data. The DW calculations effectively correspond to a
two-state RM model containing only the initial and final
states. Consequently, if the RM and DW results converge
towards each other, this indicates that coupling to channels
other than the initial and final ones(often referred to as
“higher-order effects”) are not important. Assuming the ex-
perimental data are reliable, the fact that the RM and DW
results do not converge therefore suggests a dominant influ-
ence of higher-order processes. This conclusion is also sup-
ported by the fact that the RM15 results sometimes differ
significantly from the RM43 predictions. The differences are
most pronounced for incident energies below 30 eV. Al-
though this is the highest energy for which RM43 calcula-
tions were performed, one can see in most cases the general
trend for the curves from the two RM models to approach
each other at higher energies. Such a convergence indicates
that the additional channels in the RM43 model, compared to
RM15, have a diminishing effect on the current results at
higher energies. At the present time, of course, we cannot
rule out that coupling to other channels, in particular the
ionization continuum, may be important as well. This possi-
bility, as well as the effect of the target-structure description,
will be further investigated in the future. In a few cases, the
DW results converge to the RM15 predictions already
around 15 eV incident energy. For most of the transitions,
however, it appears that this convergence, if at all, will not
occur until well above 200 eV. Even for these optically for-
bidden transitions, the importance of higher-order effects for
such high energies might seem surprising.

Next, it is worth commenting once more on the results for
theJ=0→J=0 transitions, i.e., excitation of the 2p5 and 2p1
states from the ground-states5p6d1S0. As already mentioned

above, the results are typically very sensitive to the mixing
coefficient corresponding to the ground-state configuration in
the excited state. Such a coefficient is more reminiscent of a
direct process such as elastic scattering(despite the energy
loss) than to a strongly forbidden transition. Indeed, this in-
terpretation is supported by the experimental data, which ex-
hibit the maximum at a higher incident energy than for all
the other transitions. For these transitions, the two distorted-
wave models and RM43 come fairly close at least to the
shape but not the magnitude of the experimental cross sec-
tion data. However, given the fact that the critical mixing
coefficient is simply dropped in DW and there are enormous
differences between the RM43 and RM15 results, with the
latter being unphysically large, any “agreement” between
theory and experiment is likely more fortuitous than justified
by the current treatments.

We finish with the discussion of a few selected examples
showing the similarity, or lack thereof, between the close-
coupling and the DW results at high energies. As seen al-
ready in the comparisons above, there often remain signifi-
cant differences between theR-matrix results and the first-
order perturbative DW predictions. In fact, only rarely is
there a clear trend for the DW results to converge to the
corresponding RM curves with increasing energy. Such a
convergence would allow for a relatively smooth connection
between the curves obtained with the different collision mod-
els. It would also dramatically reduce the computational ef-
fort required, since the DW calculations are much less CPU
demanding than an RM model, particularly if the latter has to
be pushed to higher energies. In previous work on electron
collisions with argon and krypton, we indeed often found
convergence between RM and DW results, most importantly
for optically allowed transitions where contributions from
many partial waves are required. Such a smooth curve is
highly desirable for the use of these results in modeling ap-
plications.

Figure 11 shows a comparison of the DW results with
predictions from the RM15 and RM11 models for excitation
of the 2p10, 2p9, and 2p8 states(see also Figs. 1–3). These
three cases are typical representatives of what can happen.
For the 2p10 state, the RM11 curve nicely joins up with the

FIG. 9. Same as Fig. 1 for the 2p2 state. FIG. 10. Same as Fig. 1 for the 2p1 state.
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two DW curves around 120 eV incident energy, while the
RM15 model predicts significantly bigger(almost an order
of magnitude) cross sections. These theoretical results indi-
cate that excitation of the 2p10 state at these high energies
mostly occurs through higher-order processes, with the
s5p56sd states representing important intermediate steps,
rather than through a direct first-order process. From a prac-
tical point of view, however, this particular finding may not
be too critical, since all models predict very small cross sec-
tions for this case, in agreement with the experimental find-
ings (see Fig. 1).

Channel coupling also seems to be important for excita-
tion of the 2p9 state at high energies, except this time the
s5p56sd states are far less important than for the previous
transition. Here, RM11 and RM15 yield very similar results
at high energies, but again very different from those obtained
in the first-order DW models. In this case, the RM results are
clearly supported by experiment, with the measured cross
sections even slightly bigger than predicted(see Fig. 2). Fi-
nally, the pure exchange transitions5p6d1S0→2p8s3D3d ex-
hibits a different pattern again. Here, the DW and RM results
are much closer over nearly the entire energy range, and the

agreement with experiment is at least satisfactory(see
Fig. 3).

IV. SUMMARY AND OUTLOOK

We have presented several sets of theoretical results for
electron-impact excitation of thes5p56pd states in xenon
from the ground-states5p6d1S0. Despite the remaining dis-
agreement between the predictions and the most recent and
likely most reliable set of experimental data, the current set
of numbers seems usable, though with great care, in model-
ing applications, which not only need data for these transi-
tions but also between many excited states that are difficult if
not impossible to access with current experimental technol-
ogy. Hence, comparison between theoretical predictions and
the limited set of available experimental data is most impor-
tant in order to assess the quality of the numerical results.
For such applications, it will likely be necessary to either
combine the close-coupling results for low incident energies
with distorted-wave results at the high energies, or to ex-
trapolate the close-coupling predictions using the known
asymptotic energy dependence. The present work indicates
that the latter procedure might be preferable for optically
forbidden transitions like the ones investigated here, because
of remaining higher-order effects not accounted for in the
DW approaches. Work towards generating such a set of col-
lision data is currently in progress at the Naval Research
Laboratory[16].

In order to obtain more accurate and reliable theoretical
results, it seems absolutely critical to improve upon the target
description, particularly with regard to the flexibility in the
one-electron orbitals. The traditional method of using
pseudo-orbitals to account for some of the term dependence
in these orbitals does not seem to be a viable approach for
this collision problem, especially in light of the many known
problems associated with pseudo-orbitals. A very promising
alternative lies in the extension of aB-spline R-matrix
method[17,18], particularly when combined with the possi-
bility of using nonorthogonal one-electron target orbitals, as
described by Zatsarinny and Froese Fischer[18]. In light of
the computational complexity associated with the latter ap-
proach, the nonorthogonality may need to be restricted to the
most critical valence and outer core orbitals. Also, we expect
the flexibility of B-splines and the lack of need for a Buttle
correction to be very beneficial from a numerical point of
view. These possibilities are currently being explored at
Drake University. Initial results for thee–Ne collision sys-
tem are very promising[19].
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FIG. 11. Angle-integrated cross section for electron-impact ex-
citation of the 2p10, 2p9, and 2p8 states in xenon from the ground-
states5p6d1S0, as obtained in the RM15, RM11, DW1, and DW2
models described in the text.

CLOSE-COUPLING AND DISTORTED-WAVE… PHYSICAL REVIEW A 69, 062706(2004)

062706-5



[1] J. T. Fons and C. C. Lin, Phys. Rev. A58, 4603(1998).
[2] S. Nakazaki, K. A. Berrington, W. B. Eissner, and Y. Itikawa,

J. Phys. B30, 5805(1997).
[3] S. Nakazaki, K. A. Berrington, W. B. Eissner, and Y. Itikawa,

J. Phys. B30, L59 (1997).
[4] A. N. Grum-Grzhimailo and K. Bartschat, J. Phys. B35, 3479

(2002).
[5] A. Dasgupta, K. Bartschat, D. Vaid, A. N. Grum-Grzhimailo,

D. H. Madison, M. Blaha, and J. L. Giuliani, Phys. Rev. A64,
052710(2001).

[6] A. Dasgupta, K. Bartschat, D. Vaid, A. N. Grum-Grzhimailo,
D. H. Madison, M. Blaha, and J. L. Giuliani, Phys. Rev. A65,
042724(2002).

[7] K. Bartschat and V. Zeman, Phys. Rev. A59, R2552(1999).
[8] C. M. Maloney, J. L. Peacher, K. Bartschat, and D. H. Madi-

son, Phys. Rev. A61, 022701(2000).
[9] D. H. Madison, A. Dasgupta, K. Bartschat, and D. Vaid, J.

Phys. B 37, 1073(2004).
[10] V. Zeman and K. Bartschat, J. Phys. B30, 4609(1997).
[11] V. Zeman, K. Bartschat, C. Noren, and J. W. McConkey, Phys.

Rev. A 58, 1275(1998).
[12] C. Froese Fischer, T. Brage, and P. Jönsson,Computational

Atomic Structure: An MCHF Approach(IOP, Bristol, 1997).
[13] K. A. Berrington, W. B. Eissner, and P. H. Norrington, Com-

put. Phys. Commun.92, 290 (1995).
[14] V. M. Burke and C. J. Noble, Comput. Phys. Commun.85,

471 (1995).
[15] R. J. W. Henry, Phys. Rep.68, 1 (1981).
[16] J. P. Apruzese, J. L. Giuliani, and G. M. Petrov, private com-

munication(2004).
[17] H. W. van der Hart, J. Phys. B30, 453 (1997).
[18] O. I. Zatsarinny and C. Froese Fischer, J. Phys. B33, 313

(2000).
[19] O. I. Zatsarinny and K. Bartschat, J. Phys. B37, 2173(2004).

BARTSCHAT, DASGUPTA, AND MADISON PHYSICAL REVIEW A69, 062706(2004)

062706-6


	Close-Coupling and Distorted-Wave Calculations for Electron-Impact Excitation of the (5p⁵6p) States of Xenon
	Recommended Citation

	

