

Missouri University of Science and Technology

Scholars' Mine

International Specialty Conference on Cold-Formed Steel Structures (2008) - 19th International Specialty Conference on Cold-Formed Steel Structures

Oct 14th, 12:00 AM

Behavior of Arc Spot Weld Connections Subjected to Combined Shear and Tension Forces

Laura K. Stirnemann

Roger A. LaBoube Missouri University of Science and Technology, laboube@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/isccss

Part of the Structural Engineering Commons

Recommended Citation

Stirnemann, Laura K. and LaBoube, Roger A., "Behavior of Arc Spot Weld Connections Subjected to Combined Shear and Tension Forces" (2008). *International Specialty Conference on Cold-Formed Steel Structures*. 2.

https://scholarsmine.mst.edu/isccss/19iccfss/19iccfss-session9/2

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Nineteenth International Specialty Conference on Cold-Formed Steel Structures St. Louis, Missouri, U.S.A., October 14 & 15 2008

Behavior of Arc Spot Weld Connections Subjected to Combined Shear and Tension Forces

L. K. Stirnemann¹ and R. A. LaBoube²

Abstract

In North America the design of arc spot weld connections is currently limited by the lack of understanding of the behavior of the welded connection when it is subject to combined shear and tension forces. An experimental investigation was conducted at the University of Missouri – Rolla to study the behavior and to develop design recommendations for the relationship (interaction) of the tension and shear forces on an arc spot weld connection. The experimental study focused on six variables that were deemed to be the key parameters that may influence the strength of the arc spot weld connection. These variables were the sheet thickness; sheet material properties to included yield strength, tensile strength and ductility of the sheet; visible diameter of the arc spot weld; and the relationship between the magnitude of the shear force and tension force. Based on an analysis of the test results, both a linear and non-linear interaction equation was developed and design recommendations were formulated based on these equations.

INTRODUCTION

Since the early 1940's, cold-formed steel construction has been widely used throughout the United States and other countries. In building construction, arc spot welds, commonly known as puddle welds, are widely used for connecting roof deck to support members (Figure 1). These support members are typically hot-rolled steel beams or girders, or open web steel joists. An arc spot weld is formed by burning a hole through the decking and then filling it with weld metal, thus fusing the sheet to the structural member.

¹ Former graduate student, University of Missouri-Rolla, Rolla, MO ² Distinguished Teaching Professor, University of Missouri-Rolla

An arc spot weld will be subjected to different stress conditions as a result of imposed loading conditions. For example, a wind load acting on a structural system may impose both a shear and tension force on the roof when the deck is functioning as a structural diaphragm.

The use of cold-formed steel in the United States has been guided by the American Iron and Steel Institute (AISI) since it published the first edition of Light Gage Cold-Formed Steel Design Manual in 1946 (AISI, 1946). The most recent edition, published in 2007, includes specifications that extend the use of the document into Canada and Mexico (AISI, 2007). This resource for structural design only provides design information for arc spot weld connections in pure tension or pure shear.

Additional design guidance was needed for predicting the strength when the weld connection was subjected to simultaneous shear forces and tension forces. A study at the University of Missouri-Rolla focused on spot weld connections for steel deck and structural members in combined tension and shear loading.

Figure 1. Arc Spot Weld Connected Roof System

LITERATURE REVIEW

Studies have been completed regarding a pure shear force and a pure tension force on arc spot weld connections (Pekoz and McGuire, 1979; LaBoube and Yu, 1991; LaBoube, 2001), but no test data concerning a combination load is available.

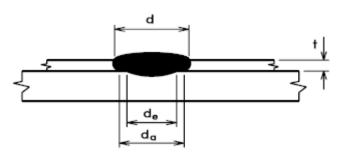


Figure 2. Definition of Parameters

The American Iron and Steel Institute's *North American Specification for the Design of Cold Formed Steel Members* (2007) provides criteria for the design of cold-formed steel members and connections. The specification includes the most updated design guidelines for the industry's use. The specification includes the pure shear or pure tension as summarized by Yu (2000). Contained in the specification are recommendations for double sheet connections, connections with weld washers, connections that are concentrically or eccentrically loaded, side lap connections, and connections made at an edge of roof. The applicable nominal strength, P_n , equations are as follows:

For Shear Alone:
If
$$(d_a/t) \le 0.815\sqrt{(E/F_u)}$$
, then
 $P_n = 2.20td_aF_u$ (Eq. 2-11)
If $0.815\sqrt{(E/F_u)} < (d_a/t) < 1.397\sqrt{(E/F_u)}$, then
 $P_n = 0.280\left[1 + 5.59\frac{\sqrt{E/F_u}}{d_a/t}\right]td_aF_u$ (Eq. 2-12)
Eq. (1.40) (Eq. 2-12)

If
$$(d_a/t) \ge 1.397 \sqrt{(E/F_u)}$$
, then $P_n = 1.40t d_a F_u$ (Eq. 2-13)

For Tension Alone:

$$P_n = 0.8(F_u / F_y)^2 t d_a F_u$$
 (Eq. 2-14)

$$P_n = \frac{\pi d_e^2}{4} 0.75 F_{xx}$$
 (Eq. 2-15)

For tension the following limits apply: $td_aF_u \le 3$ kips (13.34 kN), $e_{min} \ge d$, $F_{xx} \ge 60$ ksi, $F_u \ge 60$ ksi, and $F_{xx} > F_u$.

Where, as illustrated by Figure 2, $P_n = Nominal strength$ (resistance) of arc spot weld, d = visible diameter of outer surface of arc spot weld, d_a = the average diameter of the arc spot weld at mid thickness of t (where d_a = (d-t) for single or multiple sheets not more than four lapped sheets over a supporting member), d_e = 0.7d - 1.5t \leq 0.55d, d_e = effective diameter of fused area at plane of maximum shear transfer, t = total combined base steel thickness (exclusive of coatings) of sheets involved in shear transfer above plane of maximum shear transfer. Also, F_{xx} = tensile strength of electrode classification, F_u = tensile strength as specified in Section A2.1, A2.2 or A2.3.2 (AISI 2007) and e_{min}= minimum edge distance.

EXPERIMENTAL INVESTIGATION

Six parameters were considered in the UMR test program. These parameters included the sheet thickness, yield strength, tensile strength and ductility of the sheet, diameter of the weld, and the variation in the relationship between the shear force and tension force.

Standard B deck was used for all deck that was tested. The nominal deck dimensions are shown in Figure 3.

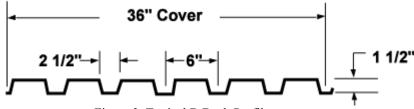


Figure 3. Typical B Deck Profile

The mechanical properties of the deck material were determined by performing standard tensile coupon tests in accordance with ASTM A370. A summary of the average results can be found in Table 3.

In addition to the thickness of the sheet, yield strength, tensile strength and ductility of the sheet, the weld diameter varied between 0.498 in. and 1.062 in.

To vary the interaction of shear and tension forces on the spot weld connection, the test setup considered three orientation angles, measuring from the vertical plane were tested: thirty degrees, sixty degrees, and seventy-five degrees (Figure 4).

	Uncoated	Viald Daint	Tensile	E /E	Percent
	Thickness	Yield Point	Strength	F _u /F _y	Elongation
Deck Type	Т	Fy	F _u		
	(in.)	(ksi)	(ksi)		%
B1	0.0577	97.57	99.50	1.02	0.60
B2	0.0293	100.63	104.77	1.04	0.83
B3	0.0580	48.10	59.30	1.23	20.06
B4	0.0300	42.10	52.70	1.25	20.98

Table 3. Materials Properties

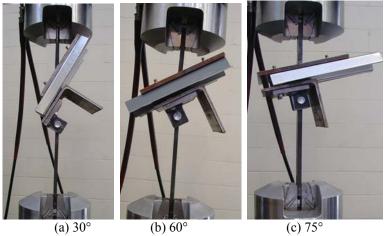


Figure 4. Orientation of Test Setup

Test Specimen Fabrication. Each test specimen consisted of a 12 in. x 12 in. deck section spot welded to a 6 in. x 6 in. x 3/8 in. hot-rolled angle (Figure 5). Details of the test specimen fabrication are given by Stirnemann and LaBoube (2007).

Figure 5. Test Specimen

Test Fixture. The test fixture consisted of an upper welded T-section (Figure 6) and a rotating arm (Figure 6). The welded T-section consisted of a flat plate 12 in. x 12 in. x 3/8 in. welded to a stem plate 2 in. x 9 in. x 3/8 in. The T-sections were fabricated at angles of 30° , 60° , and 75° the 30° and 60° T-section.

Each test specimen was attached to the test fixture. The completed test specimen attached to the test fixture and mounted in the test machine is shown by Figure 6.

Test Procedure. The test specimen was placed in a MTS 880 Universal Testing machine where it was loaded in tension. The test fixture's rotating arm, allowed the test specimen to be pulled through the vertical line of action of the spot weld, such that there was no out-of-plane bending forces applied to the specimen. The tension load was continuously applied until the test specimen failed.

TEST RESULTS

A total of seventy-nine tests were performed in this test program. Thirty-five test specimens had $F_u/F_y \le 1.04$ (Deck Type B1 and B2) and forty-four test specimens had $F_u/F_y \ge 1.23$ (Deck Type B3 and B4).

A typical failure mode, regardless of weld size, was a peeling, fracture and tearing of the deck around the perimeter of the weld, as shown in Figure 7.

687

Figure 6. Test Specimen Mounted in the Test Fixture

Figure 7. Typical Failed Test Specimen

Deck Types B3 and B4. For the decks with $F_u/F_y \ge 1.23$, two thicknesses were tested, 0.058 in. and 0.030 in. Each thickness was tested using a thirty degree T-section and a sixty degree T-section. A limited number of the Deck Type B4 were also tested using a seventy-five degree T-section.

Fracture of the deck was reached for all of the tests. In both Deck Types B3 and B4 the deck experienced large amounts of plastic deformation before the sheet failed, as depicted in Figure 8. As the deck was loaded the deck around the contour of the weld became noticeably deformed. Although the load application for the 44 test specimens was concentric with respect to the center of the weld, the distortion of the sheet during loading resulted in a non-uniform deformation around the perimeter of the weld. This can be seen in Figure 9.

688

Figure 8. Deformation of Deck Type B3 and B4

Figure 9. Deformed Deck Around Contour of Weld

For each test specimen the average diameter, d_a , and the effective diameter, d_e , computed per the AISI specification, the ultimate test load, P_u , and the tension and shear components of the ultimate load, P_{ut} and P_{uv} were recorded and can be found in Stirnemann and LaBoube (2007).

Deck Types B1 and B2. For the decks with a $F_u/F_y \le 1.04$ there were two thicknesses tested, 0.058 in. and 0.030 in. Each thickness was tested using a thirty degree welded T-section and a sixty degree T-section. A limited number of the Deck Type B2 were also tested using a seventy-five degree T-section.

Similar to Deck Types B3 and B4, the ultimate capacity of the deck was reached for all of the tests. However, the lower ductility steel did not show the same signs of deformation as the higher ductility steel. For the lower ductility steel typical deformations can be seen in Figure 10. The failure mode of the lower ductility deck was most often a simultaneous fracture around the entire weld instead of a tearing failure exhibited by the normal ductility deck types. Test specimen details and test results for the low ductility specimens can be found in Stirnemann and LaBoube (2007).

Figure 10. Deformation of Deck Type B1 and B2

DATA ANALYSIS

The data obtained from this test program was analyzed using the current nominal tensile and shear strengths provided by AISI in the 2001 Specification, Equations 2-11 through 2-15.

DATA ANALYSIS USING AISI SPECIFICATION

The data obtained from this test program was analyzed with the current nominal tensile and shear strengths provided by AISI in the 2007 Specification, Equations 12 through 15. Data from LaBoube and Yu (1991) and Pekoz and McGuire (1979) is presented to define the limits of pure tension and pure shear strength.

Nominal Strength. For each test specimen the nominal tensile strength, P_{nt} , and nominal shear strength, P_{nv} , were computed by AISI Equations 2-11 through 2-15 and are listed in Tables 2 to 5. Also summarized in Tables 4-5 to 4.8 are the tension and shear ultimate load components, P_{ut} and P_{uv} . Ratios of P_{ut}/P_{nt} and P_{uv}/P_{nv} were computed and the values can be found for Deck Types B3, B1, B2, and B4 in Tables 2, 3, 4, and 5, respectively.

Deck Type							
B3							
Specimen		Put	P _{uv}		P _{nv}	\underline{P}_{ut}	\underline{P}_{uv}
No.	P_u (lbs.)	(lbs.)	(lbs.)	P_{nt} (lbs.)	(lbs.)	P _{nt}	P _{nv}
B3-1	2817	1408	2439	2325	4207	0.606	0.580
B3-2	2803	1401	2427	2180	3944	0.643	0.616
B3-3	2335	1168	2022	2355	4260	0.496	0.475
B3-4	2288	1144	1982	2191	3964	0.522	0.500
B3-5	2731	1365	2365	2116	3829	0.645	0.618
B3-6	2772	1386	2401	2168	3923	0.639	0.612
B3-7	3379	1690	2926	2973	5380	0.568	0.544
B3-8	2602	1301	2253	2939	5318	0.443	0.424
B3-9	2803	1401	2427	2076	3757	0.675	0.646
B3-10	3387	1693	2933	2935	5311	0.577	0.552
B3-11	1703	1475	852	2189	3960	0.674	0.215
B3-12	3119	2701	1559	3037	5495	0.889	0.284
B3-13	1003	868	501	1929	3490	0.450	0.144
B3-14	2620	2269	1310	3042	5503	0.746	0.238
B3-15	2798	2423	1399	2700	4886	0.897	0.286
B3-16	3832	3318	1916	3123	5651	1.062	0.339
B3-17	2856	2474	1428	2817	5096	0.878	0.280
B3-18	1599	1385	799	2044	3699	0.677	0.216
B3-19	1228	1064	614	2179	3942	0.488	0.156
B3-20	1821	1577	910	2114	3825	0.746	0.238

Table 2 AISI Analysis for Deck Type B3

Ultimate Capacity vs. Nominal Capacity. To assess the interaction between the tension force and shear force in an arc spot weld connection, the ratios of the ultimate capacity and the nominal capacity were evaluated. The P_{ut}/P_{nt} and P_{uv}/P_{nv} ratios are listed in Tables 2 through 5 and illustrated in Figure 11. Data from LaBoube and Yu (1991) and Pekoz and McGuire (1979) are included on Figure 11 to provide boundary conditions for pure tension and pure shear.

	<u>60P_{nv}</u>	0.492	0.470	0.530	0.540	0.554	0.511	0.552	0.491	0.506	0.218	0.203	0.243	0.227	0.223
	<u>Eut</u> .60P _{nt}	0.751	0.718	0.809	0.825	0.845	0.781	0.843	0.750	0.777	1.000	0.928	1.115	1.042	1.019
	.60P _n	4876	4891	4160	4933	4702	4337	3783	4399	4488	4368	6094	5827	5935	4057
	.60P _{nt}	1844	1850	1573	1865	1778	1640	1431	1663	1687	1652	2305	2204	2245	1534
	75Pm	0.393	0.376	0.423	0.432	0.442	0.409	0.441	0.393	0.404	0.174	0.162	0.194	0.181	0.178
	.75P _{nt}	0.600	0.574 0.376	0.647 0.423	0.660 0.432	0.676 0.442	0.624	0.674	0.600	0.621	0.800	0.742	0.891	0.833 0.181	5071 0.815 0.178
	.75P _m	6095	6114	5200	6167	5878	5421	4729	5498	5610	5460	7618	7284	7419	5071
	.75P _{nt}	2305	2312	1967	2332	2223	2050	1788	2079	2109	2065	2881	2754	2806	1918
	P <u>w</u> Pw	0.295	0.282	0.318	0.324	0.332	0.307	0.331	0.295	0.304	0.131	0.122	0.146	0.136	0.134
	Р Б	0.451	0.431	0.485	0.495	0.507	0.468	0.506	0.450	0.466	0.600	0.557	0.669	0.625	6761 0.612
	P _{nv} (Ibs.)	8127	8152	6933	8222	7837	7228	6306	7331	7436	7280	10157	9712	9892	6761
	P _{nt} (Ibs.)	3074	3083	2622	3109	2964	2733	2385	2772	2812	2753	3841	3673	3741	2557
	P _{uv} (lbs.)	2399	2301	2204	2666	2604	2217	2089	2161	2270	954	1235	1418	1350	903
	P _{ut} (Ibs.)	1385	1329	1273	1539	1503	1280	1206	1248	1311	1652	2139	2456	2338	1564
	P _u (lbs.)	2771	2657	2545	3078	3006	2561	2412	2495	2622	1908	2469	2836	2700	1806
Deck Type B1	Specimen No.	B1-1	B1-2	B1-3	B1-4	B1-5	B1-6	B1-7	B1-8	B1-9	B1-10	B1-11	B1-12	B1-13	B1-14

Table 3. AISI Analysis of Deck Type B1

	0.517	0.384	0.510	0.428	0.593	0.558	0.525	0.501	0.375	0.505	0.249	0.219	0.211	0.184	0.223	0.173	0.226	0.246	0.219	0.202	0.114
.60P _{ut}	0.609	0.435	0.612	0.626	0.553	0.520	0.489	0.467	0.428	0.589	0.697	0.613	0.713	0.639	0.763	0.578	0.631	0.687	0.711	0.563	0.726
.06P _w	1636	1648	1630	1879	1933	2249	2030	2180	1645	1638	2010	2032	1649	1640	1646	1653	2152	2135	1664	1918	1697
.60P _{nt}	801	840	784	741	1198	1393	1257	1350	832	810	1245	1259	844	817	833	855	1333	1323	890	1188	992
<u>75P</u> w	0.413	0.307	0.408	0.342	0.474	0.446	0.419	0.400	0.299	0.403	0.199	0.175	0.168	0.146	0.178	0.138	0.180	0.196	0.175	0.161	0.090
<u>- P_{ut} .75P_{nt}</u>	0.487	0.348	0.489	0.501	0.442	0.415	0.391	0.373	0.342	0.471	0.557	0.490	0.570	0.511	0.610	0.462	0.505	0.549	0.568	0.450	0.580
.75P _w	2045	2060	2037	2349	2417	2812	2537	2725	2057	2048	2513	2540	2062	2051	2057	2066	2690	2669	2080	2398	2121
.75P _{nt}	1002	1050	980	926	1497	1742	1572	1688	1039	1013	1556	1573	1055	1021	1042	1069	1666	1653	1112	1485	1240
칠~	0.310	0.230	0.306	0.257	0.356	0.335	0.315	0.301	0.225	0.303	0.150	0.131	0.126	0.110	0.134	0.104	0.135	0.147	0.132	0.121	0.068
비 다 고 다	0.365	0.261	0.367	0.376	0.332	0.312	0.293	0.280	0.257	0.354	0.418	0.368	0.428	0.384	0.458	0.347	0.379	0.412	0.426	0.338	0.435
P _m (lbs.)	2726	2747	2716	3132	3222	3749	3383	3633	2742	2730	3350	3387	2749	2734	2743	2755	3587	3559	2773	3197	2828
P _{nt} (Ibs.)	1336	1400	1307	1234	1996	2322	2096	2250	1386	1350	2075	2098	1407	1361	1389	1425	2222	2204	1483	1980	1653
P _w (lbs.)	846	633	832	804	1146	1254	1065	1092	617	827	501	445	347	301	367	286	486	525	365	387	193
P _{ut} (lbs.)	488	366	480	464	662	724	615	631	356	477	868	771	602	522	636	495	841	606	632	670	720
P _u (lbs.)	976	731	960	928	1323	1449	1230	1261	712	955	1002	890	695	603	735	571	971	1050	730	773	745
Deck Type B2 Specimen No.	B2-1	B2-2	B2-3	B2-4	B2-5	B2-6	B2-7	B2-8	B2-9	B2-10	B2-11	B2-12	B2-13	B2-14	B2-15	B2-16	B2-17	B2-18	B2-19	B2-20	B2-21

AISI Analysis of Deck Type B2 Table 4.

Deck Type							
B4							
Specimen	Pu	P _{ut}	P _{uv}		P _{nv}	<u>P_{ut}</u>	<u>P_{uv}</u>
No.	(lbs.)	(lbs.)	(lbs.)	P_{nt} (lbs.)	(lbs.)	P _{nt}	P _{nv}
B4-1	1562	781	1353	913	1602	0.856	0.845
B4-2	1562	781	1353	1224	2015	0.638	0.671
B4-3	1562	781	1353	1511	2079	0.517	0.651
B4-4	1030	515	892	1036	1817	0.497	0.491
B4-5	985	493	853	1026	1801	0.480	0.474
B4-6	1021	510	884	868	1523	0.588	0.580
B4-7	1076	538	932	951	1669	0.566	0.558
B4-8	1236	618	1071	1963	2180	0.315	0.491
B4-9	1561	781	1352	1424	2060	0.548	0.657
B4-10	864	748	432	1148	1198	0.652	0.361
B4-11	938	812	469	1150	1998	0.706	0.235
B4-12	739	640	370	1020	1790	0.628	0.206
B4-13	877	760	439	1070	1877	0.710	0.234
B4-14	1051	911	526	1187	2007	0.767	0.262
B4-15	676	585	338	1743	2131	0.336	0.159
B4-16	738	639	369	1531	2083	0.418	0.177
B4-17	1106	958	553	2046	2285	0.468	0.242
B4-18	1125	974	563	1729	2128	0.564	0.264
B4-19	656	634	170	1048	1839	0.605	0.092
B4-20	745	720	193	1261	2023	0.571	0.095
B4-21	638	616	165	1020	1790	0.604	0.092
B4-22	931	899	241	1292	2030	0.696	0.119
B4-23	1139	1100	295	1313	2035	0.837	0.145
B4-24	600	579	155	1140	1996	0.508	0.078

Table 5 AISI Analysis for Deck Type B4

Adjustment For Low Ductility Steel. To better align the normal and low ductility test results, the nominal strengths of Deck Type B1 and B2 were multiplied by a factor, L, equal to 0.75. Interestingly, the 0.75 factor is required by AISI Specification Section A.2.3.2 for low ductile steels. For Deck Type B3 and B4 L, was taken as unity. Figure 4.4 illustrates this modified interaction relationship.

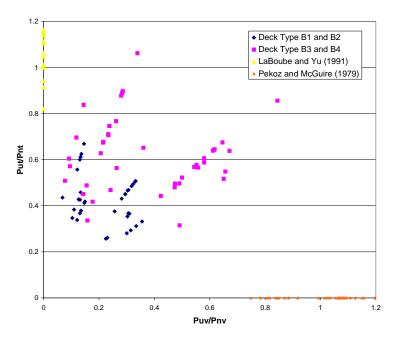


Figure 11. Interaction of Shear and Tension using AISI Equations

DEVELOPMENT OF INTERACTION EQUATION

Based on the data analysis, both a non-linear and linear interaction equation was developed.

Non-linear Interaction Equation. Using the data of Figure 11 an interaction equation was developed and can be seen graphically by Figure 12. To better align the normal and low ductility test results, the nominal strengths of Deck Type B1 and B2 were multiplied by a factor, L, equal to 0.75. Interestingly, the 0.75 factor is required by AISI Specification Section A.2.3.2 for low ductile steels. For Deck Type B3 and B4, L, was taken as unity.

The test data for Figure 11 can be found in Tables 2 through 5.

$$\left(\frac{P_{ut}}{LP_{nt}}\right)^{.6} + \left(\frac{P_{uv}}{LP_{nv}}\right) \le 1.0$$
 (Eq. 17)

where:

 $\begin{array}{l} L=1.0, \mbox{ for } F_u/F_y\!\!\geq\!\!1.23 \\ L=0.75, \mbox{ for } F_u/F_y\!\!\leq\!\!1.04 \\ P_{nv}=\mbox{ AISI Nominal Shear Strength (Eqs. 12 and 13)} \\ P_{nt}=\mbox{ AISI Nominal Tension Strength (Eq. 15)} \end{array}$

Linear Interaction Equation. A linear equation was developed however an L value of 0.60 for Deck Types B1 and B2 was used for both P_{nt} and P_{nv} . For normal ductility decks, Deck Types B3 and B4, L was taken as unity.

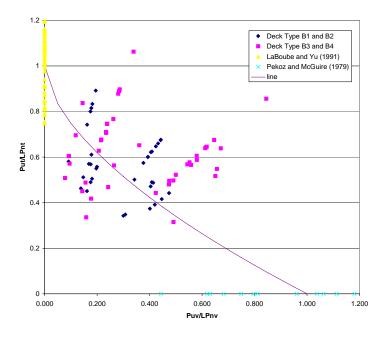


Figure 12. Non-linear Interaction Relationship

The linear interaction Equation 18 can be seen graphically by Figure 13.

$$\left(\frac{P_{ut}}{LP_{nt}}\right) + \left(\frac{P_{uv}}{LP_{nv}}\right) \le 1.0$$
 (Eq. 18)

where:

L = 1.0, for $F_u/F_y \ge 1.23$

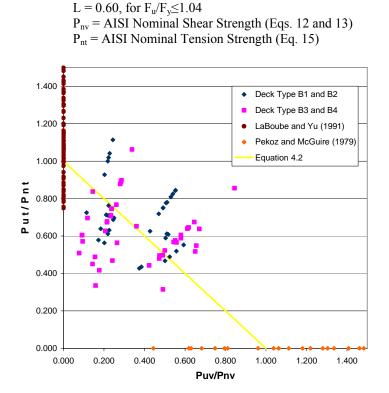


Figure 13. Linear Interaction Relationship

CONCLUSIONS AND DESIGN RECOMMENDATIONS

A total of seventy-five specimens were tested in order to establish an understanding of the behavior of arc spot weld connections subjected to combined shear and tension and develop a design methodology. Based on an analysis of the test data, an interaction equation was derived.

ACKNOWLEDGEMENTS

This investigation was sponsored by the American Iron and Steel Institute and their financial support is gratefully acknowledged. The AISI Subcommittee on Connections (A.J. Harrold, former chairperson) is acknowledged for providing valuable technical guidance. Special thanks are also extended to Dr. Helen Chen, Senior Structural Engineer, for the American Iron and Steel Institute and

Mr. John Mattingly of Nicholas J. Bouras for their assistance and technical guidance throughout the research study. The steel deck used for test specimens was provided by Nicholas J. Bouras and the hot-rolled angle was donated by Terry Zwick of Atlas Iron Works. The generosity of these individuals and organizations is gratefully acknowledged. Appreciation is also expressed to technical staff of the UMR Civil Engineering Department for their assistance in the preparation, fabrication, and performance of the test program.

BIBLIOGRAPHY

American Iron Steel Institute, AISI. (2007). "North American Specification for the Design of Cold-Formed Steel Structural Members." 2007 Edition, Washington DC

American Iron Steel Insititute, AISI. (1946). "Light Gage Cold-Formed Steel Design Manual." 1946. New York.

LaBoube, R. A., (2001), "Tension on Arc Spot Welded Connections – AISI Section E2.2.2," University of Missouri – Rolla, Rolla, MO

LaBoube, R. A., and Yu, W. W. (1991). "Tensile Strength of Welded Connections." Civil Engineering Study 91-3 Cold Formed Steel Series. Rolla, MO., June, 1991, University of Missouri-Rolla, Center for Cold-Formed Steel Structures.

Pekoz, T., and McGuire, W. (1979). "Welding of Sheet Steel." Report SG 79-2. American Iron and Steel Institute, Washington, DC

Steel Deck Institute, SDI. (2004). "Diaphragm Design Manual." Third Edition. Fox River Grove, IL.

Stirnemann, L.K. and LaBoube, R.A. (2007). "Behavior of Arc Spot Weld Connections Subjected to Combined Shear and Tension Forces." Final Report, Cold-Formed Steel Series, Department of Civil Engineering, Wei-Wen Yu Center for Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, Missouri

Yu, W. W. (2000). "Cold-Formed Steel Design." Second Edition. John Wiley and Sons, Inc, New York, NY.