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Impact of corner radius on  
cold-formed steel member strength 

 
 

V. Zeinoddini1 and B.W. Schafer2 

Abstract 

The objectives of this paper are to explore (a) how corners of cold-formed steel 
members are included or ignored in current design methods, and (b) the 
effectiveness of recent proposals for modifying the strength prediction for local 
buckling to account for corners. The impact of round corners is examined on the 
behavior and strength of isolated elements and on full members using material 
and geometric nonlinear collapse analysis with shell finite elements in 
ABAQUS. Comparisons between the available methods and the nonlinear finite 
element analysis are completed to explore the regimes in which the methods are 
accurate, as well as when they are deficient. The current approach in the main 
Specification of AISI-S100-07, which applies no reductions regardless of corner 
size, is demonstrated to be unconservative. Initial recommendations for the 
design of sections with large corner radius by effective width and direct strength 
methods are provided.  

1 Introduction 

The formation of cold-formed steel sections requires cold bending of the sheet 
steel strip. This bending introduces round corners into the cross-section, along 
with a relatively complex state of residual stresses and strains: Moen and 
Schafer 2008, Gao and Moen 2010. The longstanding effective width method of 
design uses flat plate buckling solutions as its core tool for strength prediction, 
as a result their have always been questions related to how to handle the round 
corners in design (e.g., Marsh 1997). This paper addresses the impact of corners 
in elements, and in members, and provides preliminary recommendations for 
improving current design methods. 
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2 Current design 

According to the effective width method, as implemented in the main body of 
the AISI Specification (AISI-S100-07), the strength of a cross section is 
obtained by finding the effective width of the flat part of each element and then 
forming the effective area as the sum of the effective flats plus the corners. The 
corners are always assumed to be fully effective. This creates a false optimal 
design: sections comprised of all corners are always fully effective. Eurocode 
uses a modestly different implementation of the effective width method 
employing a notional flat width that includes the actual flat width plus a portion 
of the corners (EN-1993-1-3). This approach modestly complicates design. 
 
The direct strength method of Appendix 1 of AISI-S100-07 does not separate 
the cross-section into flats and corners since full cross-section local buckling 
analysis is used as the basis, instead of actual or notional flats connected to plate 
buckling solutions. Reductions are applied to the full section and local buckling 
may be triggered by the flats, the corners, or any combination thereof. It is worth 
noting that even this approach has its limits. For extremely large corner radii the 
behavior may be driven by buckling within the shell-like large corners, instead 
of the plate-like flats; in this case, the post-buckling may be sharply reduced.  
 
Recently, in support of AISI Specification development, an improved version of 
the effective width method has been proposed by committee member Robert 
Glauz. The proposed method continues the AISI main Specification convenience 
of only reducing the flat portions of the section, but modifies the plate buckling 
coefficient (k) to account for the reduced capacity due to large rounded corners. 
The plate buckling stress for any flat of width b, thickness, t, material modulus 
E, and Poisson’s ratio , is: 

 

fcr  k
 2E

12 1 2 
t

b
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After studying elastic buckling solutions Robert Glauz proposed that the plate 
buckling coefficient, k, should be reduced as follows: 
 

kreduced  1.08  0.02
r1
t







1.08  0.02

r2

t







k  

 
where t is the thickness and r1 and r2 are the radius of the corners. This approach 
will be referred to as the “reduced k method” in this paper. 
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3 Behavior of elements 

In this section the effect of corner radius on the strength of isolated elements, 
both stiffened and unstiffened, is investigated using nonlinear finite element 
analysis, and compared with available design methods.  

3.1 Stiffened elements 
Consider a stiffened element (supported on both sides), but with corner radius at 
its edges, as shown in Figure 1. Here we examine a stiffened element where the 
centerline out-to-out width, bo, is held constant as the centerline corner radius, r, 
is varied (thus in turn varying the flat width, b). 
 

 

Figure 1: stiffened element in a section Figure 2: isolated stiffened element  
 
To isolate the stiffened element from the section the selected model, Figure 2, 
includes half of the corner radius on each edge. The resulting area, A, is: 
 

�

A  b  1
2
r t  bo  (2  1

2
 )r t  

 
As can be observed from the equation, the area of the element decreases as the 
radius increases. (If the full corner is included the area will increase with r). 
 
If the effective width method, as implemented currently in AISI-S100-07, is 
employed for the strength prediction of this element alone, then: 
 

�

Pn1  b  1
2
r tf y  

 
where fy is the yield stress and  is the effectiveness of the flat portion, defined 
by Winter’s equation as:  
 

�

  1 0.22 / /  for  > 0.673,  and

  1 for   0.673,  and    fy / fcr
 

 

bo

b

r

r
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where fcr is the buckling stress for the element, defined previously. If the usual k 
= 4.0 for stiffened elements is employed, then the preceding is the traditional 
AISI effective width approach. However, if the reduced k equation is employed, 
fcr, , , and finally Pn are modified – thus the reduced k method provides an 
alternative prediction, Pn2, with the same expression as Pn1 but a revised . 
 
The essential feature of the direct strength method approach is the reduction of 
the entire member, as opposed to just the flats. Such an approach provides a 
strength prediction for an isolated element in the following form: 
 

Pn3   b  1
2
r tf y  

 
The “effectiveness” may use Winter’s equation for , but the fcr as used in  and 
in the determination of  should be for the full element including corners (a 
proper section analysis) not just the flats. 
 
3.1.1 Stiffened element comparison with FE 
Nonlinear collapse analysis was conducted with ABAQUS to study the ultimate 
strength of the stiffened element model (Figure 2). The model utilized simply 
supported boundary conditions (out of plane displacement on the edges were 
restrained), geometric imperfections in the shape of the first local buckling mode 
with a maximum magnitude = 0.34t = 0.01in. (Schafer and Peköz 1998), and an 
elastic perfectly-plastic stress-strain relation with E=29500 ksi, ν=0.3, and fy=33 
ksi. A range of elements, 0.03 in. thick, with different width and corner radii: 
bo/t =60, 100, 120, 250, and 500; and r/t = 0, 4, 7, 10, 15, and 20, are analyzed. 
The length of the model, a, is four times the total width (a/bo=4). 
 
To compare the effectiveness of strength predictions Pn1 (traditional effective 
width ignoring corners) and Pn3 (direct strength applied to an element including 
corners) the  required for the Pn predictions to match the observed collapse 
strengths in the ABAQUS analyses were back-calculated and the results plotted 
in Figure 3. The required reduction for Pn3 to exactly match the observed 
ABAQUS results is nearly identical to Winter’s equation. For the traditional 
effective width method modifications are needed in , as at a given slenderness 
the change in corner radius has a significant impact on the needed . 
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Figure 3: comparison of local reduction factor derived from ABAQUS for whole 

cross section and for the flat part 
 
A more direct comparison of the finite element collapse strength with the 
predictions: Pn1 (traditional effective width ignoring corners) and Pn3 (direct 
strength applied to an element including corners) is provided in Figures 4 for Pn1 
and Figures 5 for Pn3. In the provided results bo is set to 3.6 in. (Figures 4a and 
5a) and 7.5 in. (Figures 4b and 5b) t = 0.03 in. and r/t is varied from 0 to 20. The 
traditional effective width prediction, Pn1, becomes progressively unconservative 
for large r/t, and in the studied cases excessively unconservative for r/t in excess 
of 10. The direct strength style prediction, Pn3 (applied to just the element and 
corner) provides a reliable and conservative prediction; though at r/t = 20 in the 
bo =3.6 in. case is modestly unconservative.  
 

a) b) 
Figure 4: comparison between ABAQUS results and Pn1 (traditional effective 
width ignoring corners). a) bo=3.6 in., b) bo=7.5 in. 
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a) b) 
Figure 5: comparison between ABAQUS results and Pn3 (direct strength applied 
to an element including corners). a) bo=3.6 in., b) bo=7.5 in. 
 
3.1.2 Reduced k method for stiffened elements 
Consider now the reduced k method, as described in Sections 2 and 3.1, and 
embodied in the strength prediction, Pn2. Figure 6 extends the studies on bo = 3.6 
and 7.5 in. stiffened elements to the reduced k method and compares them with 
both ABAQUS and the Pn1 predictions. The trend towards unconservative 
predictions as r/t increases is decreased using the reduced k method when 
compared with the Pn1 predictions. Purely from a strength standpoint, the result 
is encouraging halving the error (or better) up to r/t of 20. 
 

a) b) 
Figure 6: Comparison between the results of ABAQUS, reduced k method, and 
Pn1. a) bo=3.6 in., b) bo = 7.5 in. 
 
A wider parametric study is also conducted on the reduced k method. ABAQUS 
predicted collapse strengths for bo of 1.8, 3 and 7.5 in. are all compared to Pn2 
for increasing r/t in Figure 7. The reduced k method follows the same basic 
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trend as the expected strength; however, the method becomes more 
unconservative as radius increases, suggesting limits exist to the strategy. 
 

 
Figure 7: comparison of ABAQUS result with reduced k method (Pn2) 

 
Given the potential promise of the reduced k method additional analysis is 
conducted to investigate the kreduced expression directly. Since fcr is defined for 
the flat width, b, then the plate buckling coefficient, k, may be back-calculated 
from an elastic buckling ABAQUS analysis and compared with kreduced as 
provided in Figure 8 for bo = 1.8, 3 and 7.5 in., t = 0.03 in., and r/t varied from 0 
to 20. As Figure 8 shows, kreduced provides an average reduction when compared 
to k’s back-calculated from the actual buckling stresses. Dependence of k on 
both b/t and r/t is observed, but the b/t dependence is ignored in kreduced. 
 
Since the ultimate objective of kreduced is to provide an improved strength 
prediction then a more meaningful comparison may be to the back-calculated k 
value that would generate a Pn2 prediction equal to an ABAQUS collapse 
analysis. This comparison is provided in Figure 9 and in this context kreduced is 
observed to be an upperbound solution and again missing an observable 
dependence on b/t. 
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Figure 8: compare k’s derived from 
ABAQUS buckling analysis and 
reduced k method 

Figure 9: compare k’s derived from 
ABAQUS collapse analysis and 
reduced k method 

3.2 Unstiffened elements 
In this section finite element studies and comparisons are completed for 
unstiffened elements similar to those reported on stiffened elements in the 
previous section. However, in general, the behavior is more complicated and 
solutions are difficult to generalize. The basic unstiffened element is provided in 
Figure 10 and the idealized and isolated model with ½ of the corner included is 
detailed in Figure 11. The traditional effective width strength prediction is: 
 

�

Pn1  b  1
4

r tfy  

where  follows Winter’s equation as previously given in Section 3.1 and fcr is 
suitably updated with the unstiffened element k = 0.425. A reduced k method 
strength prediction, Pn2, utilizes the same functional form as Pn1, but with kreduced. 
replacing k in fcr. The direct strength style expression for an unstiffened element 
with a corner follows: 

�

Pn3   b 1
4

r tfy  

 

Figure 10: unstiffened element 
in a section 

Figure 11: isolated unstiffened element 
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3.2.1 Unstiffened element comparison with FE 
A series of nonlinear finite element models of unstiffened elements are analyzed 
to collapse using ABAQUS. The models utilize simply supported boundary 
conditions on the ends and the side that includes the corner, the opposite side 
has free boundary conditions. Geometric imperfections in the shape of the first 
local buckling mode with a maximum magnitude of 0.94t = 0.028 in., where t = 
0.03 in. (according to [Schafer and Peköz 1998] for type 2 element out-of-
straghtness imperfections), and an elastic perfectly-plastic stress-strain relation 
with E=29500 ksi, ν=0.3, and fy=33 ksi are employed. Models are completed at 
bo = 0.9, 1.8, 3.6, and 7.5 in. and for each bo the r/t is varied from 0 to 20. The 
length of the models is constant at four times the total width (a/bo=4). Results 
for the ABAQUS collapse analysis are compared to Pn1 and Pn3 in Figures 12. 
 

a) 
 

b) 
 

c) 
 

d) 
Figure 12: Comparison between the results of ABAQUS, Pn1 (traditional 

effective width ignoring corners) and Pn3 (direct strength applied to an element 
including corners) for unstiffened elements.: 

a) bo = 0.9 in., b) bo = 1.8 in., c) bo = 3.6 in., d) bo = 7.5 in. 
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Figure 12 demonstrates that agreement between collapse strength as predicted 
by ABAQUS and Pn1 and/or Pn3 is relatively poor. For stocky unstiffened 
elements (Figure 12a) Pn1 and Pn3 provide generally unconservative predictions, 
for slender unstiffened elements (Figure 12d) Pn1 and Pn3 provide generally 
conservative predictions and for intermediate slenderness (Figures 12b and 12c) 
the agreement is better but trends with respect to increasing r/t predicted by Pn1 
and Pn3 are not generally observed in the ABAQUS collapse analysis. Since the 
Pn1 models never reduce the corners it is no surprise that for large corner radius 
(~ r/t > 15) the Pn1 models provide strength predictions in excess of Pn3 and are 
unconservative compared with the collapse analysis strength from ABAQUS.  
 
As an aside, the plastic strain at collapse for a typical ABAQUS model of an 
unstiffened element is provided in Figure 13. Ideally, the yielding would be 
further from the ends of the member. Additional work on the modeling of the 
unstiffened elements may be beneficial before drawing final conclusions on the 
adequacy of the design methods.  

 
Figure 13: plastic strain at the peak load for an unstiffened element 

 
3.2.2 Reduced k method for unstiffened elements 
The reduced k method (and related strength prediction Pn2) may also be 
employed to predict the strength of unstiffened elements. Figures 14 and 15  
provide corollaries to the studies of Figures 12a and 12b for the reduced k 
method. Figure 14 provides comparison to ABAQUS and Pn3 (direct strength), 
while Figures 15 provide comparisons to ABAQUS and Pn3 (effective width). 
The reduced k method performs largely similar to the direct strength style 
prediction of Pn3. Figure 15b provides the most compelling comparison, 
indicating the advantage of the reduced k method over the traditional approach 
(Pn1) which is linearly and incorrectly increasing with higher r/t. 
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a) b) 
Figure14: Comparison between the results of ABAQUS, reduced k method, and 

Pn3 for unstiffened elements. a) bo = 0.9 in., b) bo = 1.8 in. 
 

a) b) 
Figure15: Comparison between the results of ABAQUS, reduced k method, and 

Pn1 for unstiffened elements. a) bo = 0.9 in., b) bo = 1.8 in. 

4 Behavior of members 

In this section the effect of corner radius on the strength of full cross sections is 
investigated. Two types of cross sections are considered: square hollow section 
tubes composed of four stiffened elements, and equal leg angles, composed of 
two unstiffened elements. Corner radius in the studied sections is varied. 

4.1 Members with stiffened elements (i.e. tubes): 
Consider a simply supported3 square hollow section stub column (a/bo = 2) 
under compressive loading with centerline out-to-out width, bo, of 3.6 in. or 7.5 
                                                           
3 all nodes at the end cross-section of the member are restricted from translation, 
thus this is a locally simply-supported, warping fixed, boundary condition. 
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in., t = 0.03 in., and modeled as elastic-perfectly plastic with E = 29500 ksi, ν = 
0.3, and fy = 33 ksi. Initial imperfections are considered as the first buckling 
mode shape with magnitude of 0.34t (Schafer and Peköz 1998). Corner radius is 
varied from 0 to 25 times the thickness. The strength of these members is 
obtained using finite element collapse modeling in ABAQUS and compared in 
Figure 16 with (a) strength prediction from the effective width method in the 
main Specification of AISI-S100-07, Pn2, and (b) strength prediction from the 
direct strength method in Appendix 1 of AISI-S100-07, Pn3. 
 
For the studied square hollow section member both the effective width (Pn1) and 
direct strength (Pn3) provide modestly unconservative solutions. However, the 
direct strength (Pn3) predictions follow the same pronounced nonlinear trends 
observed in the ABAQUS results, while the effective width method essentially 
assumes a linear change in strength as a function of r/t – a trend not borne out by 
the ABAQUS results. 
 

a) b) 
Figure16: strength of tube members under axial compression. 

 a) bo = 3.6 in. wide, b) bo = 7.5 in. wide 
 

4.2 Members with unstiffened elements (i.e. angles): 
In this section a simply supported3 angle section stub column (a/bo = 2) under 
compressive loading with centerline out-to-out width, bo, of 0.9 in., 1.8 in., 3.6 
in. or 7.5 in., t = 0.03 in., and modeled as elastic-perfectly plastic with E = 
29500 ksi, ν = 0.3, fy = 33 ksi is considered. Initial imperfections are considered 
in the shape of the first buckling mode with a magnitude of 0.94t (Schafer and 
Peköz 1998). Corner radius is varied from 0 to 25 times the thickness. The 
strength of these members is obtained using finite element collapse modeling by 
ABAQUS and compared in Figure 17 with (a) strength prediction from the 
effective width method in the main Specification of AISI-S100-07, Pn2, and (b) 
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strength prediction from the direct strength method in Appendix 1 of AISI-
S100-07, Pn3. For the direct strength (Pn3) method the distortional buckling and 
corresponding load capacity is ignored, further the critical local buckling load 
for the section is determined at the actual member length.  
 
For the studied angle member both the effective width (Pn1) and direct strength 
(Pn3) are modestly unconservative for stocky angles (Figure 17a); however for 
intermediate and high local slenderness angles (Figure 17b-d) the direct strength 
(Pn3) predictions follow the nonlinear trends observed in the ABAQUS results, 
while the effective width method again assumes a linear change in strength as a 
function of r/t – a trend not observed in the ABAQUS results. 
 

a) b) 

c) d) 
Figure 17: strength of angle members under axial compression. 

a) bo = 0.9 in. wide, b) bo = 1.6 in. wide, c) bo = 3.6 in. wide, d) bo = 7.5 in. wide 

5 Preliminary Recommendations for design 

Further study and comparison with testing is warranted, nonetheless the lack of 
any restriction on corner radius in the effective width method of AISI-S100-07 
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merits at least preliminary recommendations. It is recognized in the studies 
herein that the normalized corner radius r/t and the ratio of the area in the 
corners to the area in the flats, which is proportional to r/b, are both influential 
in determining when existing methods become systematically unconservative. 
However, r/t has greater influence (and simplicity) and is thus the focus of the 
simple recommendations provided herein. 
 
It is recommended that the AISI-S100-07 main specification B1 limits be 
expanded to include a limit of r/t < 10. For r/t > 10 this would force the engineer 
to use rational analysis. If effective width method’s are still desired for high r/t, 
then use of the reduced k method would be appropriate at least up to r/t = 20. 
Thus, it is recommended that kreduced be explicitly added to the AISI-S100 
commentary discussion of the new r/t < 10 limit. 
 
Based on the results presented here it is recommended that for the AISI-S100-07 
Appendix 1 direct strength method that the current pre-qualified limit of r/t < 10 
be liberalized to r/t < 20. At the same time, the commentary should be revised to 
include commentary consistent with Section 2, discussing why upper limits on 
r/t must still exist, even in the direct strength method. 

6 Conclusions 

The formation of cold-formed steel cross-sections requires round corners at the 
locations of plate bends. The effective width method of member strength 
determination, as implemented in AISI-S100-07, assumes all corners remain 
fully effective regardless of their size or slenderness. This approach is 
demonstrated to be unconservative by comparison to ABAQUS collapse 
analysis conducted for stiffened elements, unstiffened elements, and members 
comprised of stiffened elements (tubes) and unstiffened elements (angles); 
particularly for r/t in excess of approximately 10. A “reduced k method” which 
provides a simple correction to the plate buckling coefficient employed in the 
effective width method is demonstrated to improve the accuracy even for r/t as 
high as ~ 20; however, since it also applies no reduction on the corners it 
eventually becomes unconservative as well. The direct strength method of 
member strength determination as implemented in AISI-S100-07 Appendix 1 is 
also compared to the ABAQUS collapse analysis. The method generally 
provides good predictions for the corner radius studied. In particular, nonlinear 
trends in capacity as a function of r/t are replicated in the direct strength method 
approach. It is recommended that the existing effective width method approach 
in AISI-S100-07 be limited to r/t < 10 and that the pre-qualified limits in the 
direct strength method (AISI-S100-07 Appendix 1) be liberalized to r/t < 20.  
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