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Abstract

One of the main reasons behind unfruitful software 
development projects is that it is often too late to correct 

the problems by the time they are detected. It clearly 

indicates the need for early warning about the potential 
risks. In this paper, we discuss an intelligent software 

early warning system based on fuzzy logic using an 

integrated set of software metrics. It helps to assess risks 
associated with being behind schedule, over budget, and 

poor quality in software development and maintenance 

from multiple perspectives. It handles incomplete, 
inaccurate, and imprecise information, and resolve 

conflicts in an uncertain environment in its software risk 

assessment using fuzzy linguistic variables, fuzzy sets, and 
fuzzy inference rules. Process, product, and 

organizational metrics are collected or computed based 
on solid software models. The intelligent risk assessment 

process consists of the following steps: fuzzification of 

software metrics, rule firing, derivation and aggregation 
of resulted risk fuzzy sets, and defuzzification of linguistic 

risk variables.  

1. Introduction 

1.1 Background 

It is reported that $275 billion a year is spent on 
software projects, only 26 percent of software projects are 
completed successfully, and only 72 percent of projects 
are completed at all, successfully or not. One of the main 
reasons behind this unfruitful development is that it is 
often too late to correct the problems by the time they are 
detected. In order to decrease cost and improve quality, it 
is necessary for project managers and developers to 
visualize potential risks in advance. It clearly indicates the 
need for early warning about the potential risks. Many 
early warning systems are available in our society and in 
many other fields of engineering and found to be very 
beneficial; and the software industry also needs such a  

system to reduce the risks. A few research projects are in 
preliminary stages for assessing individual risk factors 
directly based on a few software metrics. Although they have 
demonstrated clearly their benefits, many challenging issues 
remain to be resolved. Conflicting risk assessment results 
may be obtained based on multiple groups of metrics from 
multiple perspectives, and it is very difficult to reconcile 
them since they are crisp. The overall risk associated with the 
entire process or system from multiple types of risk factors 
often is not obtained. In addition, most of the existing works 
are directly based on quantitative measurements represented 
by numbers, which are sometimes inaccurate, unreliable, and 
incomplete. The quantitative measurements have a lot of 
uncertainty and their risk assessment may not reliable. 
Human common sense and knowledge, which form the basis 
of any risk management exercise, are ignored.  

On the other hand, fuzzy logic has found a lot of 
successful applications in risk assessment from financial 
markets, environment control, project control, to health care.  
It can help to detect risks as early as possible in an uncertain 
environment. More importantly, it allows us to use common 
sense and knowledge for risk detection. It provides a rich set 
of mathematical tools for assessing risks associated with 
software project management and software quality control. 

1.2 Relevant work 

Barry Boehm’s work in software metrics, such as the 
COCOMO model and the spiral model has originated 
research in software risk assessment [BOE81,BOE89, 
BOE00]. The quantitative effort and cost estimation model 
has significant impact in software engineering. Several other 
research projects have demonstrated interesting results. 
NASA’s approach of risk assessment directly based on 
software metrics shows promising results [HYAT96]. 
NASA’s WISE Project Management System [NASA95] uses 
the Internet to provide the framework for issue management 
in software development. Enhanced Measurement for Early 
Risk Assessment of Latent Defects (EMERALD) 
[NORTEL96, NOTEL98], developed in the Nortel, consists 
of decision support tools to help software designers and 
managers to assess risk to improve software quality and 
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reliability in the area of defect analysis. At various points 
in the development process EMERALD predicts which 
modules are likely to be fault-prone. In a research paper 
[Luqi2000], a formal model is introduced to assess the 
risk and the duration of software projects, based on a few 
objective indicators that can be measured early in the 
process. The approach supports (a) automation of risk 
assessment, and (b) early estimation methods for 
evolutionary software processes. Project risks related to 
schedule and budget is addressed with the help of risk 
assessment model based on software metrics. The 
indicators used are requirements volatility (RV), 
complexity (CX), and efficiency (EF). In all the above 
systems, individual risk factors are assessed directly based 
on software metrics. Overall risk associated with the 
entire process or system often is not obtained. In addition, 
conflicting results may be obtained based on multiple 
groups of metrics from multiple perspectives, and it is 
very difficult to reconcile them since they are crisp. In 
addition, all of the above works are directly based on 
quantitative measurements represented by numbers, 
which are sometimes not very accurate, reliable, and 
complete. Human common sense and knowledge, which 
form the basis of any risk management exercise, are 
ignored.

In search for best predictive technique for effort 
estimation, comparison of neural network models, fuzzy 
logic models and regression models are made in a 
research project [GRAY97]. It concludes that neuro-fuzzy 
hybrids may be used for better estimation. Researchers 
have tried to incorporate the fuzzy logic for estimation in 
software development. The use of case based reasoning 
for software project management is explored in another 
recent research project [CVAS94]. The case indices are 
expressed using fuzzy sets. Risk assessment is done by 
employing fuzzy aggregation to evaluate the cases. 
Application of fuzzy clustering for software quality 
prediction is proposed in a paper, where data set is 
modeled by fuzzy clusters and fuzzy inference technique 
is applied to predict fault-prone modules [TMK00].  The 
drawbacks of use of traditional methods for risk 
assessment like checklists, risk matrix are discussed and a 
fuzzy expert system for early operational risk assessment 
is developed in another related research project [TMK02].  

1.3 Our Approach 

We develop an intelligent early warning system using 
fuzzy logic based on an integrated set of software metrics 
from multiple perspectives to make sponsors, users, 
project managers and software developers aware of many 
potential risks as early as possible. It has the potential to 
improve software development and maintenance by a 
great margin. 

Various factors for risk assessment in software 
development can be measured quantitatively using software 
metrics. All the metrics represent measurements from many 
different perspectives. For example, ‘Size’ is associated with 
software artifact, whereas, ‘Effort’ is associated with 
development process. Similarly ‘Productivity’ is associated 
with individuals as well as organization units. Hence we use 
a ‘dimensional analytic model’ to organize the metrics from 
three different dimensions: Product, Process and 
Organization [FLIU99]. Separation of perspectives of 
different metrics helps to establish relationship between 
metrics from the same dimension. In addition we need to 
capture relationships of metrics across dimensions, as the 
software development is characterized by three dimensions as 
a whole. A set of fuzzy rules are developed based on 
individual metrics and their combinations from these three 
dimensions to identify risks.  

The system is customizable. The thresholds for many 
inference rules of risks based on metrics differ a lot for 
different organizations. Hence it is not wise to have the 
thresholds hard coded in the system. As mentioned earlier, 
only prediction of risk is not enough. The root cause of the 
risk should be found out. Our system has trace-down 
capability for the identified risk. The risk level is projected 
over all the three dimensions. The faulty module, phase or 
group can be traced-down with the help of the dimensional 
analytic model. 

2. System Architecture 

The system is designed in such a way that it provides 
warning across all phases in software engineering cycles. The 
system architecture is shown in Fig.1. It contains following 
primary components: 1) Metric Database 2) Risk Knowledge 
Base 3) Dimensional Analytic Model 4) Intelligent Risk 
Assessment Engine and 5) Visual Warning Issuing System 
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Fig 1: An Early warning system for software 
development and maintenance 

2.1 Dimensional Analytic Model for Metrics 

Database

Risk should be identified based on objective data about 
software product, process and organization. Metrics 
database stores software metrics which are used for risk 
analysis and warning generation. The software metrics 
serve as base for intelligent risk assessment in software 
development and maintenance. The metrics database 
contains three types of metrics: 1) Product Metrics 2) 
Process Metrics and 3) Organization Metrics. 
Dimensional Analytic Model is used to visualize software 
development quantitatively as shown in the Fig.2. 

         

       

Fig. 2: Dimensional analytic model 

As shown in fig. 2-(a), product dimension is divided 
into system, subsystem and module, process dimension is 
divided into project, process and task, and organization 
dimension is divided into company, division and group. 
Fig 2-(b) describes attributes that apply to all the 

dimensions through their hierarchies. Using an attribute from 
each of the dimensions, it is possible to describe the state of a 
particular software artifact at a particular point in time. By 
relating time to each of the dimensions and their related 
attributes, it is possible to identify its trend for a particular 
attribute of an artifact from a particular dimension over a 
given period of time.  

Example:  

The ‘Lines of code’ is a module-level as well as system 
level metric from product dimension. The ‘Volatility index’ 
is a system-level metric. The ‘Schedule deviation’ is a task-
level, phase-level as well as project-level metric from process 
dimension. Along organization dimension, the ‘Productivity’ 
is an individual-level, group-level and company-level metric. 

2.2 Knowledge Base 

Knowledge base contains a number of fuzzy linguistic 
variables (fuzzy sets), and a number of fuzzy inference rules. 
Semantics of fuzzy linguistic variables (fuzzy sets) are 
defined by their membership functions based on software 
metrics. It contains a list of fuzzy inference rules about risk 
detection across all phases in software life cycle. Fuzzy rules 
are basically of the IF-THEN structure. Fuzzy inference rules 
are represented in antecedent-consequence structure. 
Antecedents represent symptoms of software artifacts, 
processes or organizations in terms of risks based on fuzzy 
sets and software metrics. Since our system is based on the 
‘Dimensional Analytical Model’ rules use individual metrics 
and their combinations based on their relationships from 
different dimensions.  

Product Metric based Rule 

IF Volatility index of subsystem is HIGH 
AND Requirements quality is LOW 
THEN Schedule Risk is VERY HIGH 

Process Metric based Rule 

IF Effort deviation is HIGH 
AND Customer involvement is HIGH 
THEN Risk of schedule overrun is VERY HIGH 

Organization Metric based Rule 

IF Number of Communication paths within a group are 
HIGH  

AND Group Productivity is LOW 
THEN Schedule Risk is VERY HIGH 

Relation between product and process dimensions 

IF Customer involvement is HIGH 
AND Volatility index is HIGH 
THEN Schedule risk is VERY HIGH 

Product  
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Model 
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Individual Risk Factor Assessment 

A list of rules is used to detect individual risk factors 
and to issue warnings about them ranging from highest to 
lowest. The intensity of the symptoms and associated 
risks are expressed in terms of fuzzy variables (fuzzy sets). 
In order to identify an overall risk associated with an on-
going process or system in-built, risk factors associated 
with on-going basic units of a software process or system 
should be assessed. A number of fuzzy inference rules are 
developed to assess individual risk factors associated with 
basic units of process, product, or organization. 

2.3 Intelligent Risk Assessment  

Intelligent risk assessment is the result of fuzzy 
inference engine, which is the central processing part of 
the system. At a particular state of software development, 
all the metrics have certain values along all the three 
dimensions. These metrics form a set of input for the 
inference engine. Inference engine apply the knowledge 
base on this set of inputs to produce Quality risk, 
Schedule overrun and Cost overrun as output set. The 
input and output sets are stored over the time period for 
analysis purpose. 

Fig. 3 Fuzzy inference engine 

Various steps involved in fuzzy inference are as 
described below 

a) Fuzzify Inputs 

The first step is to take the inputs (metrics) and 
determine the degree to which they belong to each of the 
appropriate fuzzy sets via membership functions. Fig. 4 
shows metrics ‘Volatility Index’ having value 0.5 is 
mapped on trapezoidal membership function for High 
region.  

Fig. 4 Input fuzzification 

b) Apply Fuzzy Rules 

The fuzzy rules may have more than 2 antecedents. Each 
antecedent is fuzzified. OR operator is applied to the 
fuzzified values of antecedents across every rule. This results 
in maximum of the values of antecedents as output. Fig. 5 
shows the application of fuzzy rule with two antecedents. 
The antecedent part of the rules is: ‘if Volatility Index is 
High and Cyclomatic Complexity is High’ 

Fig. 5 Application of fuzzy rule 

c) Implication Method 

Before applying the implication method, we must take 
care of the rule's weight. Every rule is given a weight ranging 
from 0 to 1. Once proper weights are assigned to each rule, 
the implication method is applied. A consequent is a fuzzy 
set represented by a membership function. The resultant is an 
area of fuzzy set with degree of membership chopped. Fig. 6 
shows the implication method. The rule in Fig. 5 has one 
consequent ‘Cost risk’. The result of step (b) is projected on 
the consequent to obtain the resultant area of membership. 

High 
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Cyclomatic 
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Fig. 6 Implication method 
   

d) Aggregation 

Many rules may have same consequent. Each rule 
produce the region of such consequent separately. 
Aggregation is the process by which the fuzzy sets that 
represent such consequents are combined into a single 
fuzzy set. The input of the aggregation process is the list 
of truncated output functions returned by the implication 
process for each rule. The output of the aggregation 
process is one fuzzy set for each output variable. There 
exist many ways to combine multiple decision criteria in 
fuzzy decision science. Many aggregation operators can 
be used to fuse multiple risk factors in fuzzy risk 
assessment and fuzzy logic [ZIMMERMANN91]. They 
can be combined with t-norms, t-conorms, and 
compromise operators. The t-norms and t-conorms 
operators have been discussed extensively in fuzzy logic 
[ZIMMERMANN91]. The t-norms operators are a class 
of fuzzy conjunction operators. Examples of t-norms 
operators include MIN and algebraic product. The t-
conorms operators are a class of fuzzy disjunction 
operators. Examples of t-norms operators include MIN 
and algebraic sum. Averaging and compensatory 
operators are often used to combine multiple risk factors 
in fuzzy risk assessment if they are conflicting with each 
other. The resulting trade-offs of an average operator lie 
between the most optimistic lower bound and the most 
pessimistic upper bound. For a compensatory operator, a 
decrease in one operand can be compensated by an 
increase in another operand. Thus the "min", a t-norm 
operator, and the “max”, a t-conorm operator, is not 
compensatory. Actually, many averaging operators are 
not compensatory and vice versa. An operator is said to 
be a compromise operator if and only if it is both 
averaging and compensate operator. An example of 
aggregation of quality risk using t-norm operator based on 
system structure is shown in Fig. 7. Rules considered are, 

Fig. 7 Aggregation 

Rules considered in the figure are, 
Rule 1: If Volatility Index is MEDIUM and Cyclomatic 

Complexity is HIGH then Cost Risk is MEDIUM 
Rule 2: If Volatility Index is HIGH and Cyclomatic 

Complexity is HIGH then Cost Risk is HIGH 
Rule 3: If Volatility Index is HIGH and Cyclomatic 

Complexity is HIGH then Cost Risk is VERY HIGH 

e) Defuzzification 

The input for the defuzzification process is a fuzzy set (the 
aggregate output fuzzy set) and the output is a single number. 
As much as fuzziness helps the rule evaluation during the 
intermediate steps, the final desired output for each variable 
is generally a single number. However, the aggregate of a 
fuzzy set encompasses a range of output values, and so must 
be defuzzified in order to resolve a single output value from 
the set. Perhaps the most popular defuzzification method is 
the centroid calculation, which returns the center of area 
under the curve.  

Fig. 8 Defuzzification 

2.4 Visual Warning Issuing 

From the fuzzy inference engine, Quality, Schedule and 
Cost risks are predicted. The risk regions corresponding to 
their causes can be represented visually. Fig 9-a shows an 
example of visual warnings produced by the system. 
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Risks from product dimension
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Fig. 9-a Risks predicted from product dimension 

The graph in Fig. 9-a shows the quality, schedule and 
cost risks for all modules, predicted as result of the fuzzy 
inference system. The risks predicted are mapped on 
product dimension. From this graph manager can get 
overall picture for all the module risks. The trade-off 
between three types of risks becomes easier with such 
visual warning. For example, for module 15, Schedule 
and Cost risks are in safe region. So if Quality is not of 
main concern, then manager can decide to proceed in the 
development cycle. Else, if quality is of prime concern, 
then it is advisable to stop and reconsider the factors 
causing high quality risks. These factors can be analyzed 
from graph shown in fig. 9-b 
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Fig. 9-b Risk factor analysis in product 
dimension

This graph helps in finding the cause factors for high 
risk modules. The y-axis shows the fuzzy regions for the 
metrics values (1-Low, 2-Medium, 3-High, 4-Very High). 
Similar type of graph can be generated for process and 
organization dimensions. 

Tracing down to cause of risk 

As, mentioned earlier, only identification of risk is not 
sufficient. The risks should be traced down to find out 
their root causes. A graph in Fig. 10-a shows the quality 
risk predicted over time period of 10 months for overall 

system. Vertical axis shows the risk level (1-Low, 2-Medium, 
3-High, 4-Very High) 
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Fig. 10-a Quality risk of entire system over 10 
months period 

This risk needs to be mapped to all the three dimensions to 
search for the cause of risk for module/phase/group. 
Following graph (Fig. 10-b) shows the quality risk for all the 
modules on product dimension. This example includes four 
modules. From this graph, high risk modules are easily 
identified. 
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Fig. 10-b Module level tracing 

Further in order to find factors for the risk, each 
module/phase/group is traced down for each factor 
considered in fuzzy inference. A graph in Fig 10-c shows 
metrics of module 1 and their risk levels over the time period 
of 10 months. This example includes the following module 
metrics: size, volatility index and cyclomatic complexity. 
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Fig 10-c Metrics level tracing 
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3. Conclusion 

This paper discusses a customizable early warning 
system for software development. The system is able to 
detect the risks in very early phase of development using 
fuzzy logic. It differs from other traditional risk 
assessment methods, as it utilizes the quantifiable aspects 
of software development i.e. metrics from three different 
dimensions: product, process and organization. Direct 
utilization of metrics for risk assessment is very difficult 
task due to their imprecise nature. Intelligent risk 
detection rules utilize not only individual metrics in each 
dimension, but also their combinations from these three 
dimensions. This improves the accuracy risk prediction by 
fuzzy inference engine. The quality, schedule and cost 
risks assessed can be traced down to the module, 
development task or group, which is responsible for the 
expected failures. The individual factors of identified 
risks can be analyzed through visual warnings. Fuzzy 
logic and neural networks can be used in combination to 
further enhance fuzzy inference engine in our future 
research. 
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