
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2003

An Intelligent Early Warning System for Software Quality An Intelligent Early Warning System for Software Quality

Improvement and Project Management Improvement and Project Management

Xiaoqing Frank Liu
Missouri University of Science and Technology, fliu@mst.edu

Gautam Kane

Monu Bambroo

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
X. F. Liu et al., "An Intelligent Early Warning System for Software Quality Improvement and Project
Management," Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence,
2003, Institute of Electrical and Electronics Engineers (IEEE), Jan 2003.
The definitive version is available at https://doi.org/10.1109/TAI.2003.1250167

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TAI.2003.1250167
mailto:scholarsmine@mst.edu

1

An Intelligent Early Warning System for Software Quality

Improvement and Project Management

Xiaoqing (Frank) Liu Gautam Kane Monu Bambroo

Dept. of Comp. Sci.

Univ. of Missouri-Rolla
fliu@umr.edu

Dept. of Comp. Sci.

Univ. of Missouri-Rolla
gskz67@umr.edu

Dept. of Comp. Sci.

Univ. of Missouri-Rolla

mrbx97@umr.edu

Abstract

One of the main reasons behind unfruitful software
development projects is that it is often too late to correct

the problems by the time they are detected. It clearly

indicates the need for early warning about the potential
risks. In this paper, we discuss an intelligent software

early warning system based on fuzzy logic using an

integrated set of software metrics. It helps to assess risks
associated with being behind schedule, over budget, and

poor quality in software development and maintenance

from multiple perspectives. It handles incomplete,
inaccurate, and imprecise information, and resolve

conflicts in an uncertain environment in its software risk

assessment using fuzzy linguistic variables, fuzzy sets, and
fuzzy inference rules. Process, product, and

organizational metrics are collected or computed based
on solid software models. The intelligent risk assessment

process consists of the following steps: fuzzification of

software metrics, rule firing, derivation and aggregation
of resulted risk fuzzy sets, and defuzzification of linguistic

risk variables.

1. Introduction

1.1 Background

It is reported that $275 billion a year is spent on
software projects, only 26 percent of software projects are
completed successfully, and only 72 percent of projects
are completed at all, successfully or not. One of the main
reasons behind this unfruitful development is that it is
often too late to correct the problems by the time they are
detected. In order to decrease cost and improve quality, it
is necessary for project managers and developers to
visualize potential risks in advance. It clearly indicates the
need for early warning about the potential risks. Many
early warning systems are available in our society and in
many other fields of engineering and found to be very
beneficial; and the software industry also needs such a

system to reduce the risks. A few research projects are in
preliminary stages for assessing individual risk factors
directly based on a few software metrics. Although they have
demonstrated clearly their benefits, many challenging issues
remain to be resolved. Conflicting risk assessment results
may be obtained based on multiple groups of metrics from
multiple perspectives, and it is very difficult to reconcile
them since they are crisp. The overall risk associated with the
entire process or system from multiple types of risk factors
often is not obtained. In addition, most of the existing works
are directly based on quantitative measurements represented
by numbers, which are sometimes inaccurate, unreliable, and
incomplete. The quantitative measurements have a lot of
uncertainty and their risk assessment may not reliable.
Human common sense and knowledge, which form the basis
of any risk management exercise, are ignored.

On the other hand, fuzzy logic has found a lot of
successful applications in risk assessment from financial
markets, environment control, project control, to health care.
It can help to detect risks as early as possible in an uncertain
environment. More importantly, it allows us to use common
sense and knowledge for risk detection. It provides a rich set
of mathematical tools for assessing risks associated with
software project management and software quality control.

1.2 Relevant work

Barry Boehm’s work in software metrics, such as the
COCOMO model and the spiral model has originated
research in software risk assessment [BOE81,BOE89,
BOE00]. The quantitative effort and cost estimation model
has significant impact in software engineering. Several other
research projects have demonstrated interesting results.
NASA’s approach of risk assessment directly based on
software metrics shows promising results [HYAT96].
NASA’s WISE Project Management System [NASA95] uses
the Internet to provide the framework for issue management
in software development. Enhanced Measurement for Early
Risk Assessment of Latent Defects (EMERALD)
[NORTEL96, NOTEL98], developed in the Nortel, consists
of decision support tools to help software designers and
managers to assess risk to improve software quality and

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

2

reliability in the area of defect analysis. At various points
in the development process EMERALD predicts which
modules are likely to be fault-prone. In a research paper
[Luqi2000], a formal model is introduced to assess the
risk and the duration of software projects, based on a few
objective indicators that can be measured early in the
process. The approach supports (a) automation of risk
assessment, and (b) early estimation methods for
evolutionary software processes. Project risks related to
schedule and budget is addressed with the help of risk
assessment model based on software metrics. The
indicators used are requirements volatility (RV),
complexity (CX), and efficiency (EF). In all the above
systems, individual risk factors are assessed directly based
on software metrics. Overall risk associated with the
entire process or system often is not obtained. In addition,
conflicting results may be obtained based on multiple
groups of metrics from multiple perspectives, and it is
very difficult to reconcile them since they are crisp. In
addition, all of the above works are directly based on
quantitative measurements represented by numbers,
which are sometimes not very accurate, reliable, and
complete. Human common sense and knowledge, which
form the basis of any risk management exercise, are
ignored.

In search for best predictive technique for effort
estimation, comparison of neural network models, fuzzy
logic models and regression models are made in a
research project [GRAY97]. It concludes that neuro-fuzzy
hybrids may be used for better estimation. Researchers
have tried to incorporate the fuzzy logic for estimation in
software development. The use of case based reasoning
for software project management is explored in another
recent research project [CVAS94]. The case indices are
expressed using fuzzy sets. Risk assessment is done by
employing fuzzy aggregation to evaluate the cases.
Application of fuzzy clustering for software quality
prediction is proposed in a paper, where data set is
modeled by fuzzy clusters and fuzzy inference technique
is applied to predict fault-prone modules [TMK00]. The
drawbacks of use of traditional methods for risk
assessment like checklists, risk matrix are discussed and a
fuzzy expert system for early operational risk assessment
is developed in another related research project [TMK02].

1.3 Our Approach

We develop an intelligent early warning system using
fuzzy logic based on an integrated set of software metrics
from multiple perspectives to make sponsors, users,
project managers and software developers aware of many
potential risks as early as possible. It has the potential to
improve software development and maintenance by a
great margin.

Various factors for risk assessment in software
development can be measured quantitatively using software
metrics. All the metrics represent measurements from many
different perspectives. For example, ‘Size’ is associated with
software artifact, whereas, ‘Effort’ is associated with
development process. Similarly ‘Productivity’ is associated
with individuals as well as organization units. Hence we use
a ‘dimensional analytic model’ to organize the metrics from
three different dimensions: Product, Process and
Organization [FLIU99]. Separation of perspectives of
different metrics helps to establish relationship between
metrics from the same dimension. In addition we need to
capture relationships of metrics across dimensions, as the
software development is characterized by three dimensions as
a whole. A set of fuzzy rules are developed based on
individual metrics and their combinations from these three
dimensions to identify risks.

The system is customizable. The thresholds for many
inference rules of risks based on metrics differ a lot for
different organizations. Hence it is not wise to have the
thresholds hard coded in the system. As mentioned earlier,
only prediction of risk is not enough. The root cause of the
risk should be found out. Our system has trace-down
capability for the identified risk. The risk level is projected
over all the three dimensions. The faulty module, phase or
group can be traced-down with the help of the dimensional
analytic model.

2. System Architecture

The system is designed in such a way that it provides
warning across all phases in software engineering cycles. The
system architecture is shown in Fig.1. It contains following
primary components: 1) Metric Database 2) Risk Knowledge
Base 3) Dimensional Analytic Model 4) Intelligent Risk
Assessment Engine and 5) Visual Warning Issuing System

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

3

Fig 1: An Early warning system for software
development and maintenance

2.1 Dimensional Analytic Model for Metrics

Database

Risk should be identified based on objective data about
software product, process and organization. Metrics
database stores software metrics which are used for risk
analysis and warning generation. The software metrics
serve as base for intelligent risk assessment in software
development and maintenance. The metrics database
contains three types of metrics: 1) Product Metrics 2)
Process Metrics and 3) Organization Metrics.
Dimensional Analytic Model is used to visualize software
development quantitatively as shown in the Fig.2.

Fig. 2: Dimensional analytic model

As shown in fig. 2-(a), product dimension is divided
into system, subsystem and module, process dimension is
divided into project, process and task, and organization
dimension is divided into company, division and group.
Fig 2-(b) describes attributes that apply to all the

dimensions through their hierarchies. Using an attribute from
each of the dimensions, it is possible to describe the state of a
particular software artifact at a particular point in time. By
relating time to each of the dimensions and their related
attributes, it is possible to identify its trend for a particular
attribute of an artifact from a particular dimension over a
given period of time.

Example:

The ‘Lines of code’ is a module-level as well as system
level metric from product dimension. The ‘Volatility index’
is a system-level metric. The ‘Schedule deviation’ is a task-
level, phase-level as well as project-level metric from process
dimension. Along organization dimension, the ‘Productivity’
is an individual-level, group-level and company-level metric.

2.2 Knowledge Base

Knowledge base contains a number of fuzzy linguistic
variables (fuzzy sets), and a number of fuzzy inference rules.
Semantics of fuzzy linguistic variables (fuzzy sets) are
defined by their membership functions based on software
metrics. It contains a list of fuzzy inference rules about risk
detection across all phases in software life cycle. Fuzzy rules
are basically of the IF-THEN structure. Fuzzy inference rules
are represented in antecedent-consequence structure.
Antecedents represent symptoms of software artifacts,
processes or organizations in terms of risks based on fuzzy
sets and software metrics. Since our system is based on the
‘Dimensional Analytical Model’ rules use individual metrics
and their combinations based on their relationships from
different dimensions.

Product Metric based Rule

IF Volatility index of subsystem is HIGH
AND Requirements quality is LOW
THEN Schedule Risk is VERY HIGH

Process Metric based Rule

IF Effort deviation is HIGH
AND Customer involvement is HIGH
THEN Risk of schedule overrun is VERY HIGH

Organization Metric based Rule

IF Number of Communication paths within a group are
HIGH

AND Group Productivity is LOW
THEN Schedule Risk is VERY HIGH

Relation between product and process dimensions

IF Customer involvement is HIGH
AND Volatility index is HIGH
THEN Schedule risk is VERY HIGH

Product
Process
Organizatio
n

Metric
Database

Dimensiona
l Analytic

Model

Risk
Knowledge

Base

Intelligent Risk Assessment

Visual Warning Issuing

System
Subsystem
Module

Perspective

• Product

• Process

• Organiza

Time

Division

AttributeCompany
Division

Group

Project
Phase
Task

Process

Product

Organization

(a) (b)

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

4

Individual Risk Factor Assessment

A list of rules is used to detect individual risk factors
and to issue warnings about them ranging from highest to
lowest. The intensity of the symptoms and associated
risks are expressed in terms of fuzzy variables (fuzzy sets).
In order to identify an overall risk associated with an on-
going process or system in-built, risk factors associated
with on-going basic units of a software process or system
should be assessed. A number of fuzzy inference rules are
developed to assess individual risk factors associated with
basic units of process, product, or organization.

2.3 Intelligent Risk Assessment

Intelligent risk assessment is the result of fuzzy
inference engine, which is the central processing part of
the system. At a particular state of software development,
all the metrics have certain values along all the three
dimensions. These metrics form a set of input for the
inference engine. Inference engine apply the knowledge
base on this set of inputs to produce Quality risk,
Schedule overrun and Cost overrun as output set. The
input and output sets are stored over the time period for
analysis purpose.

Fig. 3 Fuzzy inference engine

Various steps involved in fuzzy inference are as
described below

a) Fuzzify Inputs

The first step is to take the inputs (metrics) and
determine the degree to which they belong to each of the
appropriate fuzzy sets via membership functions. Fig. 4
shows metrics ‘Volatility Index’ having value 0.5 is
mapped on trapezoidal membership function for High
region.

Fig. 4 Input fuzzification

b) Apply Fuzzy Rules

The fuzzy rules may have more than 2 antecedents. Each
antecedent is fuzzified. OR operator is applied to the
fuzzified values of antecedents across every rule. This results
in maximum of the values of antecedents as output. Fig. 5
shows the application of fuzzy rule with two antecedents.
The antecedent part of the rules is: ‘if Volatility Index is
High and Cyclomatic Complexity is High’

Fig. 5 Application of fuzzy rule

c) Implication Method

Before applying the implication method, we must take
care of the rule's weight. Every rule is given a weight ranging
from 0 to 1. Once proper weights are assigned to each rule,
the implication method is applied. A consequent is a fuzzy
set represented by a membership function. The resultant is an
area of fuzzy set with degree of membership chopped. Fig. 6
shows the implication method. The rule in Fig. 5 has one
consequent ‘Cost risk’. The result of step (b) is projected on
the consequent to obtain the resultant area of membership.

High

Cyclomatic
Complexity = 72

Cyclomatic
Complexity is HIGH

0.7 High

Volatility Index
= 0.8

Volatility Index
is HIGH

‘AND’ operator (Min)

Module Size

Inference
Engine

Product

Metrics

Process

Metrics

Organiz
ation

Metrics

Effort

Deviation

Productivity

Schedule
Overrun

Risk

Cost
Overrun

Risk

Quality Risk

High

Volatility Index = 0.5

Volatility Index is HIGH

0.7

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

5

Fig. 6 Implication method

d) Aggregation

Many rules may have same consequent. Each rule
produce the region of such consequent separately.
Aggregation is the process by which the fuzzy sets that
represent such consequents are combined into a single
fuzzy set. The input of the aggregation process is the list
of truncated output functions returned by the implication
process for each rule. The output of the aggregation
process is one fuzzy set for each output variable. There
exist many ways to combine multiple decision criteria in
fuzzy decision science. Many aggregation operators can
be used to fuse multiple risk factors in fuzzy risk
assessment and fuzzy logic [ZIMMERMANN91]. They
can be combined with t-norms, t-conorms, and
compromise operators. The t-norms and t-conorms
operators have been discussed extensively in fuzzy logic
[ZIMMERMANN91]. The t-norms operators are a class
of fuzzy conjunction operators. Examples of t-norms
operators include MIN and algebraic product. The t-
conorms operators are a class of fuzzy disjunction
operators. Examples of t-norms operators include MIN
and algebraic sum. Averaging and compensatory
operators are often used to combine multiple risk factors
in fuzzy risk assessment if they are conflicting with each
other. The resulting trade-offs of an average operator lie
between the most optimistic lower bound and the most
pessimistic upper bound. For a compensatory operator, a
decrease in one operand can be compensated by an
increase in another operand. Thus the "min", a t-norm
operator, and the “max”, a t-conorm operator, is not
compensatory. Actually, many averaging operators are
not compensatory and vice versa. An operator is said to
be a compromise operator if and only if it is both
averaging and compensate operator. An example of
aggregation of quality risk using t-norm operator based on
system structure is shown in Fig. 7. Rules considered are,

Fig. 7 Aggregation

Rules considered in the figure are,
Rule 1: If Volatility Index is MEDIUM and Cyclomatic

Complexity is HIGH then Cost Risk is MEDIUM
Rule 2: If Volatility Index is HIGH and Cyclomatic

Complexity is HIGH then Cost Risk is HIGH
Rule 3: If Volatility Index is HIGH and Cyclomatic

Complexity is HIGH then Cost Risk is VERY HIGH

e) Defuzzification

The input for the defuzzification process is a fuzzy set (the
aggregate output fuzzy set) and the output is a single number.
As much as fuzziness helps the rule evaluation during the
intermediate steps, the final desired output for each variable
is generally a single number. However, the aggregate of a
fuzzy set encompasses a range of output values, and so must
be defuzzified in order to resolve a single output value from
the set. Perhaps the most popular defuzzification method is
the centroid calculation, which returns the center of area
under the curve.

Fig. 8 Defuzzification

2.4 Visual Warning Issuing

From the fuzzy inference engine, Quality, Schedule and
Cost risks are predicted. The risk regions corresponding to
their causes can be represented visually. Fig 9-a shows an
example of visual warnings produced by the system.

Cyclomatic
Complexity

= 72

Volatility
Index =

0.8
Result of

Aggregation

Rule 1

Rule 2

Rule 3

Antecedent Consequent

High High
Very

High

Cyclomatic
Complexity

= 72

Cyclomatic
Complexity

is HIGH

Volatility
Index =

0.8

Volatility
Index

is HIGH

Cost Risk is

VERY HIGH

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

6

Risks from product dimension

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Modules

R
is

k
 L

e
v
e
l

Quality Risk Schedule Risk Cost Risk

Fig. 9-a Risks predicted from product dimension

The graph in Fig. 9-a shows the quality, schedule and
cost risks for all modules, predicted as result of the fuzzy
inference system. The risks predicted are mapped on
product dimension. From this graph manager can get
overall picture for all the module risks. The trade-off
between three types of risks becomes easier with such
visual warning. For example, for module 15, Schedule
and Cost risks are in safe region. So if Quality is not of
main concern, then manager can decide to proceed in the
development cycle. Else, if quality is of prime concern,
then it is advisable to stop and reconsider the factors
causing high quality risks. These factors can be analyzed
from graph shown in fig. 9-b

Risk factors in product dimension

0
1
2
3
4

M
o

d
u

le
 S

iz
e

M
o

d
u

le

C
o

m
p

le
x
it
y

D
e

fe
c
t
R

a
te

U
s
a

g
e

 R
a

te

C
h

a
n

g
e

R
a

te

V
o

la
ti
li
ty

In
d

e
x

R
e

q
u

ir
e

m
e

n
ts

 q
u

a
li
ty

Product metrics

F
u

z
z
y

 r
e

g
io

n

Module 1 Module 2 Module 3

Fig. 9-b Risk factor analysis in product
dimension

This graph helps in finding the cause factors for high
risk modules. The y-axis shows the fuzzy regions for the
metrics values (1-Low, 2-Medium, 3-High, 4-Very High).
Similar type of graph can be generated for process and
organization dimensions.

Tracing down to cause of risk

As, mentioned earlier, only identification of risk is not
sufficient. The risks should be traced down to find out
their root causes. A graph in Fig. 10-a shows the quality
risk predicted over time period of 10 months for overall

system. Vertical axis shows the risk level (1-Low, 2-Medium,
3-High, 4-Very High)

Quality Risk

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

Time in months

Q
u

a
li
ty

 R
is

k
 L

e
v
e
l

Quality Risk

Fig. 10-a Quality risk of entire system over 10
months period

This risk needs to be mapped to all the three dimensions to
search for the cause of risk for module/phase/group.
Following graph (Fig. 10-b) shows the quality risk for all the
modules on product dimension. This example includes four
modules. From this graph, high risk modules are easily
identified.

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

Quality risk

fuzzy region

Time in months

Module 1 Module 2 Module 3 Module 4

Modules

Fig. 10-b Module level tracing

Further in order to find factors for the risk, each
module/phase/group is traced down for each factor
considered in fuzzy inference. A graph in Fig 10-c shows
metrics of module 1 and their risk levels over the time period
of 10 months. This example includes the following module
metrics: size, volatility index and cyclomatic complexity.

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

Fuzzy

region

Time in months

Module Size Volatility Index Complexity

Product

Metrics

Fig 10-c Metrics level tracing

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

7

3. Conclusion

This paper discusses a customizable early warning
system for software development. The system is able to
detect the risks in very early phase of development using
fuzzy logic. It differs from other traditional risk
assessment methods, as it utilizes the quantifiable aspects
of software development i.e. metrics from three different
dimensions: product, process and organization. Direct
utilization of metrics for risk assessment is very difficult
task due to their imprecise nature. Intelligent risk
detection rules utilize not only individual metrics in each
dimension, but also their combinations from these three
dimensions. This improves the accuracy risk prediction by
fuzzy inference engine. The quality, schedule and cost
risks assessed can be traced down to the module,
development task or group, which is responsible for the
expected failures. The individual factors of identified
risks can be analyzed through visual warnings. Fuzzy
logic and neural networks can be used in combination to
further enhance fuzzy inference engine in our future
research.

4. Acknowledgements

This system could have not been developed without
the support and assistance of team members. We
appreciate the assistance of our Software Engineering
project team. The team comprised of Sanjeev, Toby,
Austin, Steve, Kolcu, Lee Wang, Ghatti, Sriram,
Pongupati, Praveen, Gaurav and Kaustubh. They
contributed in development of metrics and visual warning
part of the system. It’s their solidarity; constant input and
encouragement that helped us tackle most of the basic
issues.

References

[BOE81] Barry Boehm, Software Engineering Economics,
Prentice Hall, 1981.

[BOE89] Barry Boehm, Risk Management, IEEE Computer
Society Press, 1989.

[BOE00] Barry Boehm, et al., Software Cost Estimation in
COCOMO II, Prentice Hall, 2000.

[HYAT96] Linda H. Rosenberg, Lawrence E. Hyatt, Software
Metrics Program for Risk Assessment, software Assurance
Technology Center publications,
http://satc.gsfc.nasa.gov/support/IAC_OCT96/iaf.html

[NASA95] NASA Software IV & V Facility, The WWW

Integrated Software Metrics Environment, 1995
http://research.ivv.nasa.gov/projects/WISE/wise.html

[NORTEL96] Hudepohl, J.P. Aud, S.J. Khoshgoftaar, T.M. Allen,
E.B. Mayrand, J., Integrating Metrics and Models for Software Risk
Assessment, 1996. Proc. Int’l Symp. On Softw. Reliability Engg.,
1996, 93-98

[NORTEL98] Khoshgoftaar, T.M. Allen, E.B. Jones, W.D.
Hudepohl, J.P., Return on Investment of Software Quality
Predictions, Proc. IEEE Workshop on Application-Specific Softw.
Engg. Tech., 1998, 145-150.

[LUQI2000] Nogueira J. C., Luqi, Bhattacharya S., A risk
assessment model for software prototyping projects, Proc. Int’l
Workshop on Rapid System Prototyping, 2000, 28-33

[MLYU95] M. Lyu, Software Reliability Engineering, IEEE
Computer Society Press. 1995.

[NSCH75] N. Schneidewind, ‘Analysis of Error Processes in
Computer Software’, Proceedings of the International Conference
on Reliable Software, IEEE Computer Society, 21-23 April 1975,
pp. 337-346

[MUSA98] J. Musa, Software Reliability Engineering: More
Reliable Software, Faster Development and Testing, McGraw-hill,
1998.

[GRAY97] S.G. MacDonell, A.R. Gray, ‘A Comparison of
Modeling Techniques for Software Development Effort Prediction’,
International Conference on Neural Information Processing and
Intelligent Information Systems, Proceedings, pp. 869-872, 1997

[CVAS94] Vasudevan, C., ‘An experience-based approach to
software project management’, Tools with Artificial Intelligence,
Proceedings, Sixth International Conference, pp. 624-630, 1994

[TMK00] Yuan X., Khoshgoftaar T.M., Allen E.B., Ganesan K.,
‘An application of fuzzy clustering to software quality prediction’,
Application-Specific Systems and Software Engineering
Technology, Proceedings. 3rd IEEE Symposium, pp. 85-90, 2000

[TMK02] Zhiwei Xu, Khoshgoftaar T.M., Allen, E.B., ‘Early
operational risk assessment of software using fuzzy expert systems’,
World Automation Congress, Proceedings of the 5th Biannual , Vol.
13 , pp. 435 -442, 2002

[BBB95] Baisch E., Bleile T., Belschner R., ‘A neural fuzzy system
to evaluate software development productivity’, Intelligent Systems
for the 21st Century, IEEE International Conference, vol. 5, pp.
4603 -4608, 1995

[FLIU99] Liu Frank, Ravi Viswanathan, “A WWW Based Software
Metrics Environment for Software Process Management and
Software Product Quality Improvement”, Computer Software and
Applications Conference, 1999. COMPSAC '99. Proceedings. The
Twenty-Third Annual International, on page(s): 301-304, 27-29
Oct.1999, Phoenix, AZ, USA, ISBN: 0-7695-0368-3

[Zimmermann91] H. J. Zimmermann, Fuzzy set theory and its
applications, Kluwer Academic, 1991.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

	An Intelligent Early Warning System for Software Quality Improvement and Project Management
	Recommended Citation

	An intelligent early warning system for software quality improvement and project management

