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Lateral torsional instability of single channels restrained by 
angle cleats 

 

G.M. Bukasa1 and M. Dundu2 MASCE. 
 

Abstract 
 

A series of experiments on the lateral torsional instability of single channels is 
presented. The channels are restrained by a purlin – angle cleat connection and 
subjected to a two point loading system in order to simulate a distributed load. 
Failure of the channels occurred by local buckling of the compression zone of the 
flange and web and lateral torsional buckling of the channels between points of 
lateral support. Tests have shown the purlin–angle cleat connection to be capable 
of restraining the frames from failing due to lateral-torsional buckling. This 
eliminates the idea of having fly-bracings, which is normally done in practice to 
restrain torsional instability.  
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Introduction 
 

Cold-formed channel beams and rafters in portal frames are usually restrained 
against lateral-torsional buckling behaviour from its top flange through an angle 
cleat-purlin connection. Additional restraint is usually provided by fly bracing. 
This restraining mode has disadvantages of either weakening the top flange of the 
main frames if it is in tension, due to tearing that occurs around the fastened 
points or fabrication costs of providing fly bracing. This study investigates a 
restraint that avoids the use of fly bracing and bolt holes in the top flange. 
Restraint of the beam or main frame is still provided by a purlin-angle cleat 
connection, however the angle is long enough so as to connect the main beam or 
frame in the web. This connection configuration is found to be better because it 
restrains both lateral and torsional movements of the member.  
 

In these tests the beam, purlin and angle cleats are all cold-formed steel sections 
to make the structure light and connected together by bolting only. The sizes of 
the beam, purlin and angle cleat section are 300x75x20x3mm, 100x50x20x2mm 
and 100x75x20x3mm, respectively. In order to obtain different buckling modes, 
the length of the channels is varied from 1.8 to 6m. The support systems were 
designed to achieve simply supported end conditions in the vertical plane; 
however the channel beams were restrained against lateral deflections and twist 
rotations at the ends. Restraints were also provided at the loading points. The 
beans were subjected to a two-point loading system at the top flange in order to 
experience pure bending in the internal span. The objectives of the tests are to 
examine the ability of thin cold-formed angle cleat to restrict lateral-torsional 
buckling and compare the test results with unfactored resistances from design 
standards.  
 

Material and section properties  
 

The channel sections used are of commercial quality steel. A total of fifteen 
coupon test specimens were cut from the web and flange of channel beams. 
Corner coupons were not tested because of the lack of appropriate tools to 
prepare and test them. The coupon were prepared and tested in a 100kN capacity 
displacement controlled testing machine according to the guidelines provided by 
the British Standard, BS 18. The thickness and width of the reduced section of 
coupons were measured and recorded on the computer system so as to calculate 
the area and subsequently the stresses. The longitudinal strain gauges, attached to 
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the coupon at the centre of each face, were used to determine the strains. The 
tensile load was applied to the prepared coupon test at a constant rate of 
3.0mm/min until failure. A 50mm gauge length was marked onto the tensile test 
specimens before testing. After fracturing the specimens the two parts are fitted 
together to measure the axial elongation of the coupons. The ductility of the steel 
is evaluated as a percentage of the elongation at failure, according to the 
following equation: 
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where, l0 is the initial length of gauge and lf the final length measured after 
fracture.  
 

The stress-strain relationship of the coupons, shown in Figure 1, is derived from 
the load-elongation relationship using its original cross-sectional area and the 
gauge length. The yield stress, ultimate stress and modulus of elasticity of the 
steel are determined from these stress-strain curves. The average yield stress and 
tensile stress of the web and flange coupons are summarized in Table 1. In this 
table, εy and εu are the yield and the ultimate strain respectively. In compliance 
with SANS-10162-1:2005, the material properties of the channels achieved the 
recommended ductility requirements, that is, the percentage elongation at failure 
exceeded 10% for a 50mm gauge length and the ratio of the specified ultimate 
tensile strength (fu) to the specified yield strength (fy) exceeded 1.08.  
 

The measured dimensions for the channels under investigation were found to be 
very close to the nominal ones from the supplier. This allowed the use of section 
properties from the Southern Africa Steel Construction Handbook (2005). 
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Figure 1 Stress-Strain Curve 

 

Table 1 Average material properties of the channels 
Specimen fy (MPa) fu (MPa) fu/fy εy εu εu/ εy εf (%) 
Web 259.17 367.62 1.42 0.015 0.028 1.83 41.75 
Flange 273.66 375.36 1.37 0.022 0.034 1.58 42.45 

 

Test programme 
 

Nine beams were tested under two point loading as illustrated by the schematic 
diagram in Figure 2. Two-point loading provides a constant moment region 
between the applied loads so that pure bending failure only is experienced. This 
loading arrangement simulates a distributed load over the entire span of the beam. 
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The span of the beams varied from 1.8m to 6 m. The support system was 
designed to ensure that the beam test is simply supported and, that both twisting 
and lateral deflections were prevented at the ends. Lateral and torsional bracing 
was also provided at the loading point as shown in the figure. Details of the span 
and points of bracing are shown in Table 2. The load was applied through the top 
flange of the channel sections, exactly at the restrained points to simulate the tests 
to the actual conditions to which a frame could be subjected under vertical load.  
 
 
 
 
 
 
 
 
 
 

Figure 2 Sketch of test set-up 
 

Table 2 Length of tested beams 
Tests Span, L  

(mm) 
Length L1 

(mm) 
Slenderness ratio 
of internal length 

Test 1 1 800 600 23.9 
Test 2 2 280 760 30.3 
Test 3 2 790 930 37.1 
Test 4 3 300 1 100 43.8 
Test 5 3 780 1 260 50.2 
Test 6 4 290 1 430 57.0 
Test 7 4 800 1 600 63.7 
Test 8 5 280 1 760 70.1 
Test 9 6 000 2000 79.7 

 

To allow for interaction to occur between members in an assembly, the beams 
were tested in pairs, as shown in Figure 3 (Baker and Eickhoff 1955, 1956; Baker 
et al. 1956; Dowling et al. 1982 and Dundu and Kemp 2006). The channels are 
oriented in the same direction as this offers greater stiffness than having the 
channels oriented in different directions (Dundu and Kemp 2006). The beam 
channels in each assembly are spaced at 1.84m, and as indicated before were 

P P

1L
1L 1L  

L
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connected together by 100x50x20x2mm cold-formed purlin sections through 
100x75x20x3mm cold-formed angle-cleats. Two, 12mm diameter bolts connects 
the angle-cleat to the web of the purlin whilst another two, 20mm diameter bolts 
connects the same angle cleat to the web of beam channel.  
 

 
 

Figure 3 Typical test set-up 
 

The beams were fully instrumented so that in-plane deflection, out-of-plane 
deflection, strains and torsion rotation of the beam could be measured. These 
measurements were recorded at the mid-span through a data logger. In-plane and 
out-of-plane deflections of the beam were measured using 3 linear variable 
differential transducers (LVDTs) as shown in Figure 3. Torsional rotation at mid-
span of the beams was monitored by means of clinometers placed inside the web. 
Strains were measured in both the top flange and bottom flange of the channel in 
order to determine the moment-curvature behaviour of the frames. A 250kN 
hydraulic instron testing machine was used to apply the loads. Each test specimen 
was incrementally loaded at the rate of 2mm/min until failure. All measurements 
were taken at each load increment, until the beam tests buckled.   
 

260



Experimental results 
 

The results of the full scale beam tests are summarised in Table 3. P and Mu are 
the maximum point load and moment applied to the base, respectively, and Mr is 
the buckling moment resistance, determined using the South African structural 
steel code, SANS10162-2:2005. This code is based on the Canadian structural 
steel code, CAN-S16.1-M89. As expected, small in-plane deflections and higher 
ultimate load were observed in short beam tests by comparison with longer 
beams. The buckling moment of resistance of the middle unbraced length is 
determined, based on modified section properties (effective width of compression 
elements) to control local buckling. The effective width concept was first 
proposed by Von Karman (1932) and calibrated for use by Winter (1947). Since 
the load was applied at the top of the channels it had a distabilising effect on the 
channels. This implies that an effective length factor of 1 for bending about the 
minor axis (assuming a partially restrained member) and moment-gradient factor 
of 1 (uniform bending moment diagram) should be adopted. A comparison of the 
experimental moment and the buckling moment resistance shows the 
experimental moment to be significantly lower than the buckling resistance. This 
is because the some of the spans used are not long enough to encourage a larger 
moment to develop. Additional tests that favour a lateral torsional buckling mode 
of failure are being pursued.   
 

Table 3 Test results 
Tests Unbraced-

length (mm) 
P  

(kN)) 
Mu 

 (kNm) 
Mr  

(kNm) 
Test 1 600 21.92 13.2 33.69 
Test 2 760 18.51* 12.8 33.69 
Test 3 930 17.98 16.9 33.69 
Test 4 1 100 15.48 17.0 33.69 
Test 5 1 260 14.50 18.41 33.69 
Test 6 1 430 13.9 20.0 33.68 
Test 7 1 600 13.03 20.8 32.8 
Test 8 1 760 11.29* 20 31.9 
Test 9 2000 11.36 22.7 30.45 

* Instron stopped during testing  
 

Local buckling failure of the compression flange-web junction was observed in 
all tested channel beams. This mode of failure occurred at the point where the 
load was applied and was probably caused by stress concentrations emanating 
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from the load itself. Figure 4 shows the observed buckling mode. No evidence of 
lateral torsional buckling failure was witnessed, implying that the angle cleat-
purling connection was able to control lateral torsional buckling. 
 

 
 

Figure 4 Failure of the compression flange-web junction 
 

Graphs of the relationship between load and displacement of frames are shown in 
Figure 5. The behaviour consists firstly of a linear response followed by a non-
linear response. After this point large deformations take place and result in the 
collapse of the frame. As shown in this figure the buckling load decreases with 
increase in length of the channel. Note that the load and deflection in these graphs 
excludes the effect of the loading system.  
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Conclusion  
 

Tests on the lateral buckling of cold-formed channels beams under two- point 
loading have been described. The following conclusions are made: 
 
● The lateral-buckling strength values obtained from the tests are in all cases 

less than the values predicted by the Canadian/South-Africa code of practice. 
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This is because some of the spans used are not long enough to encourage a 
larger moment to develop. Future tests are expected to correct this.  

● In all cases failure occurred by local buckling of the compression flange-web 
junction. The capacity reached by the channels shows that a purlin-cleat 
restraining system is able to resist lateral buckling, and it can be used without 
adding fly bracing, as is normally done in practice to restrain torsion 
instability. 

 

Acknowledgements 
 

The authors wish to thank University of Johannesburg Research Committee 
(URC) for sponsoring this research.  
 

REFERENCES  
 

Baker, J.F. and Eickhoff, K.G., “The behaviour of saw-tooth portal frames”, 
Proc., Conf. on the Correlation of Stresses and Displacements, Institute of Civil 
Engineering, U.K, 1955. 
 
Baker, J.F. and Eickhoff, K.G., “A test on a pitched roof portal, preliminary 
publication”, IABSE, 5th Congress, Lisbon, 1956. 
    
Baker, J.F. and Eickhoff, K.G., “Tests on two north-light portals”, Rep. FEI/49, 
British Welding Research Association, Cambridge, U.K, 1956. 
  
BS 18, “British standard method for tensile testing of metals”, British Standard 
Institution (BSI), 1987. 
   
CAN – S16.1 – M89, “Steel Structures for Buildings – Limit States Design”, 
Canadian Standards Association, Rexdale, Ontario, Canada, 1989. 
 
Dundu, M. and Kemp, A.R., “Plastic and Lateral-Torsional Buckling Behaviour 
of Single Cold-Formed Channels Connected Back-to-Back”, Journal of Structural 
Engineering, ASCE 2006, Vol. 132. 
 
Dundu, M. and Kemp, A.R., “Strength requirements of single cold-formed 
channels connected back-to-back”, Journal of Construction Steel Research 2006, 
62, 250-261. 

264



 
Karman, T.V., Sechler, E.E. and Donnell L.H., “The Strength of thin plates in 
Compression”, Transactions, Applied Mechanics Division, ASME 1932, 54, 
APM 54-5, 53-57. 
    
SANS 10162-2:2005, “South African Standard Code of Practice for the Structural 
use of Steel, Part 2 – Limit States Design of Cold-formed Steelwork”, South 
African Bureau of Standards, Pretoria, 2005. 
  
Southern African Institute of Steel Construction, “South African Steel 
Construction Handbook, Limit States Design”, Southern African Institute of Steel 
Construction, Third Edition 2005 
 
Winter, G., “Strength of thin Steel Compression Flanges”, Transactions, ASCE 
1947, 112, 527-554. 
 
 
 

265



 


	Lateral Torsional Instability of Single Channels Restrained by Angle Cleats
	Recommended Citation

	Lateral torsional instability of single channels restrained by angle cleats

