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HOUSEHOLD ENERGY AVAILABILITY AND USE
A SYSTEMS THEORY FORMULATION

Charles Geiger and Milton E. Harvey 
Kent State University 

Kent, Ohio

Abstract
Systems theory provides an excellent perspective, as well as 
methodology, for analyzing energy problems of availability and 
use. The linear systems format is applied here to a system 
which focuses on household energy, energy independence, and 
energy conservation. Z-transform analysis can be used to 
simplify the mathematical operations required in this model.

1. INTRODUCTION
One of the most important political, econ
omic and social issues today is that of 
energy. The President's recent speech to 
the nation described the nation's energy 
situation as a national crisis only equi
valent to that of war. Projections of 
varying accuracy tend to give the prognost
ication that the consumption of energy in 
this country will reach astronomical dimen
sions in a very short time. Another major 
area of energy study that has been of con
cern has been the prospects of substitut
ability between different energy sources. 
Most of the studies in this area are 
econometric studies of the electric utility 
industry and thus have limited scope and 
purpose.(6.,p. 217) Many others try to 
deal with determining the proportions of 
energy sources used to satisfy future energy demand.
Generally, these models cannot accomodate 
a major disturbance to either the total 
energy supply or demand. Also, most models 
attempt to predict only the demand by 
industrial or commercial consumers, almost 
completely ignoring the household, which 
we believe is the most important energy 
consuming sector.
This total energy picture can be best des
cribed in terms of systems theory, which 
can deal with such intricate and numerous 
interrelationships. Put simply, the struc
ture that systems theory assumes is that of

"sets of elements standing in interrela
tion."(l.,p. 38) The candidates for these 
elements in an energy system are many. 
Systems of source, transportation, or 
transmission nodes, or of producers or con
sumers at whatever level of accuracy could 
variously be considered. It is important 
to recognize, however, that each of these 
is not just another perspective of the 
same thing, but are different components, 
or subsystems, of the total energy system.
Since it is not possible to predict our 
energy future, we need another basis for 
making decisions concerning the availabil
ity and use of energy resources. In 
modelling this we should take advantage of 
the system structure of the actual energy 
picture. Even if we don't take every ele
ment of the actual system into account, 
the model must not ignore their influences. 
We must be able to focus on whatever part 
of the total picture we like, and yet be 
able to effect any type of change in the 
whole system that is conceivable. Above 
all, the model must be programmable, and 
the program must be simple enough to run 
quickly and often.
Linear systems theory does provide such a 
model. So far it has been almost exclu
sively used to model systems in physics 
and electronics. The few social science 
studies have worked with extremely sim
plified closed systems which ignore the 
system inputs. The use of linear systems 
theory in modelling social systems or re
source systems needs to be developed to
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a much greater degree that it has so far. 
(3. ,4. )

2. LINEAR SYSTEMS MODEL
The linear system model consists of two 
state equations :

x(t+l) = Ax(t) + Bu(t)
...(1)

The variables in the state vector are:

y (t) = Cx (t) + Du (t)
where u, x, and y are vectors containing 
the system parameters, and A, B, C, and D 
are matrices used in deriving these para
meters. The controlling parameter is 
time,t, which for this particular model is discrete.
As in any system formulation, this system 
has inputs (u) and outputs (y). The third 
vector (x) gives the state of the system 
at the given time. The elements of each of 
these vectors are variables defining the 
specific input, output, and state factors 
being considered. The units of x, y, and u must be identical to make them conform
able for addition. The dimension of each 
vector depends on how many factors the 
user considers important, and is independ
ent of the size of the other two vectors.
The A, B, C, and D matrices describe the 
relationships between the variables accord
ing to their positions in the state 
equations, (1). Consequently, they take on 
the dimensions required by that position.
If u, y, and x have lengths n, p, and q 
respectively, then A is qxq, B is n*q,
C is qxp, and D is n*p.
Before the model is used, a certain amount 
of information is necessary. The values 
in the initial x vector must be known, and 
the values, for all the time periods, of u 
must be known. From that information the 
equations can be used to recursively solve 
for the values of y and for the rest of the 
values of x.
Thus we see that the linear system meets 
our criteria of simplicity and ease of com
puting. The computing time will depend on 
the complexity of the problem, which deter
mines the sizes of the vectors and matrices. 
For the other criteria we must look at how 
the parameters are defined with respect to 
the context of the user's problem.

3. THE ENERGY SYSTEM
Selection of the factors which the variables 
will represent is admittedly a very sub
jective process. This is not a liability, 
however; it indicates the model's useful
ness as a powerful, yet flexible, 
exploratory tool.

These were chosen for a number of reasons. 
"Energy independence" is a phrase that is 
often mentioned; our first two variables 
provide (and use) information about it. 
This paper is about availability and use 
of household energy, information contained 
in the third state variable. By including 
the fourth state variable, we ignore none 
of the production or consumption infor
mation, even at this broad level.
As inputs to the system we want to include 
factors which might enter during any time 
interval, but which are not necessarily 
dependent on the quantities in the state 
variables. We chose three such factors:

as a way of classifying state-independent 
inputs to the system. Because of the 
model's format, this information must be 
in the units of quantity of energy. This 
quantity is not to be interpreted as the 
amount of energy required to reach the 
change; it is the permanent (or long term) 
change in the state of the system, x(t+l) , 
caused by the change (state equation #1), 
and it is the amount of energy saved, 
y(t), in that time period by the change (state equation #2).
The amount of energy available (the state 
of the system) at each stage, or time 
period, of the model depends on the amount 
available previously, and on the state- 
independent inputs. Outputs from the 
system, on the other hand, can be thought of as quantities of energy that are not to 
be returned to the system at a later time. 
This does not suggest that consumed energy 
should be treated as output; that is al
ready accounted for in the state variables 
x^ and X4. Moreover, because of the struc 
ture of the model, the output vector will 
contain information extracted from other 
factors, but not influenced by them 
(directly) in past or future time periods. 
Therefore, we have only one restriction 
on choosing the factors to be represented 
as outputs: they must depend on the inputs 
and on the system's state, at the present 
time, to fit the model.
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The two outputs we chose were:

y= *1 

y 2
energy saved within the home ~|

... (4)
energy saved in transportationj

where the words 'saved' can be interpret
ed as 'not used.' These reflect our 
interest in energy used at the household 
level and in its conservation.
These are very subjective choices for the 
variables in our system, molded by our 
research interests. The choices also de
pend on the availability of data.

4. DERIVATION OF THE INPUT MATRICES
At least as important as the selection of 
the variables is the definition of the 
matrices. These are central to the model, 
because they set down the relationships 
between the variables. The only way 
to explicitly define the relationships 
(that is, with mathematical expressions 
and quantities) is through extensive 
research.
Each matrix, A, B, C, or D, expresses the 
magnitude and relative weight of elements 
in the vectors on the left hand sides of 
the state equations, (1), as a function 
of the right hand side vector it is mul
tiplied by. Thus, matrix B defines the 
contribution to the value of x(t+l) of 
u(t). The dimensions of B are defined by 
the dimensions of the x and u vectors, 
and the variables affected by a partic
ular element in B can be found according 
to the row and column of that element.
The form of the A matrix can be partially 
determined by studying the variables that 
have been chosen. This is the only matrix 
for which this holds, because it is the 
only matrix which defines the relation
ship between vectors of the same type 
(i.e., both state vectors, x).
The variables represented in the state 
vector suggest certain relationships 
among themselves. Keeping in mind that 
time is discrete in this model, there are 
certain assumptions and definitions which 
must be presented.
The first assumption is that information 
is "remembered" for only one time period. 
Also, the relationship from one time 
period to the next is assumed to be linear. Thus
xi(t+l)= aiXi(t), i= 1, ...,4. ...(5)

The demand in time period t+1 is defined 
as the total amount of energy consumed:

Dt= x3(t+1) +x4 (t+1)
=a3x3(t)+ a4x4 (t) .,.(6)

The supply on hand at the beginning of 
time t+1 is defined as the difference 
between the amount produced and the amount 
consumed in the previous time period:

...(7)
St+1 = xi(t> +x2 (t) _x3(t) -x4 (t).

This does not include the St term, which 
it should, so for the present study we 
assume that that stock on hand at the be
ginning of (t) is included in the internal production, x̂  ̂ (t) .
Since the variables x 1 and x2 , and x3 and 
x4 form two complementary pairs, both 
equations in each pair will have approx
imately the same form.
We will define production((x,(t+1)+ 
x2 (t+1)) as the total demand minus the 
supply on hand. Thus, internal production will be:

...(8)x1 (t+l) - Dt+1 - St+1 -x2(t+l), 
while imported production will be:

...(9)x2 (t+l) = Dt+1 - St+1 - xx (t+l)
But, we need x(t+l) as a function of x(t) 
to fit the form in equation (1). Substit
uting from equations (5), (6), and (7) in
to (8) we get:
x.(t+1)= a3x3 (t) + a4x4 (t)

- x^(t) +x2 (t) - x3 (t) -x4 (t)- a2x2 (t)
= -Xittf - (l+a2)x,(t) + (1+a^) x-, (t) 

+(I+a4)x4 (t)
...(10)

In the same steps, equation (9) becomes:
x2 (t+1)=-(l+a2)x (t)-x2 (t) + (l+a3)x3(t)

+ <1+ a4)x4(t) ...(11)
Total consumption((x3(t+1) + x4 (t+1))will 
be defined as the total available for con
sumption: the supply on hand plus the 
amount produced in the current time period 
As above, we will distinguish household 
consumption and other consumption as fol
lows :

x3 (t+1) 

x4(t+1)

St+1 + x4(t+1)

St+ 
x3

fl + (t+11)

...(12)x^ (t+1)+x2(t+1)-

...(13)x1 (t+l)+X2(t+l)-
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Again we need x(t+l) as a function of x(t) 
and so will substitute (5), (6), and (7) into (12) to get:



X3 (t+1) = x1(t) + x2 (t) — x3(t) -X4 (t) 
+a^x^(t) +a2x2 (t) -a^x^(t)

= (a +1) x-ĵ (t) + (a2+l) x2 (t) - x3 (t) - 
(a4+l)x4 (t) ...(14)

and, similarly, into (13) to get: 
x4(t+l) = (a^+l) X]_ (t) + (a2+l) x2 (t)-

(a3+l)x3(t)-x4 (t) ...(15)
The four equations (10), (11), (14), and
(15) can be represented in matrix form as:

...(16)
The right side of this represents the 
first part of the first state equation,
(1); the matrix is our A matrix. Each 
element in this 4 x 4  matrix relates the 
factors on the left side of the equation 
with those in the vector on the right.
More specifically, the row determines the 
variable from x(t+l), while the column 
determines which variable from x(t).
Each element has two terms essentially; 
one is a positive or negative one (1), 
and the other is a . . Following the 
derivation of the matrix, the ones arise 
from the presence of a supply term, and 
the otj_'s are found where a demand term 
or a term involving another state variable 
has been included.

5. Z-TRANSFORM ANALYSIS
We now have a model which is flexible and 
straight-forward to program and use. 
However, in its present form it would be 
necessary to perform a matrix multipli
cation n times in order to arrive at the 
state of the system at time n. Using z- 
transform analysis the user changes the 
form of the state equations to another 
which is easier to manipulate mathematic
ally, requiring only simple mathematical 
operations (5., p. 60). Briefly, the z- 
transform is defined by:
Z(x(n)) = x(z) = Zx (n) z “n ...(17)n=0 '

Z(x(n+1))=z(x(z) -x (0)). ...(18)
Therefore, by applying (17) and (18) to 
the state equations (1), the transformed 
system of equations is:
z(x(z) - x(0)) =A x (z) +B u(z)
y (z) = C *(z) +D Q(z) ... (19)

Now we can solve the first of these for x 
(z) and then substitute that into the first 
term on the right side of the second 
equation, to get the system in its most 
general transformed form:

Studying these equations (20), we note 
that everything on the right sides are 
information that we have before using the 
model. Since this is simply a theoretical 
formulation, we will not go to any depth 
with an example, however, we can describe 
the anticipated process.
The right sides in equations (20) will be 
solved as functions of z. It must be real' 
ized that z never takes on an actual num
erical value; it is simply a variable 
letting the user know that he is working 
with a transformed system of equations 
(5., p. 61). Given the form of the solved 
function, it is possible to transform it 
back to a form which is a function of t. 
With this the user will be able to deter
mine the contents of the x vector given 
whatever value of t he chooses.
What this all tells us is that the nature 
of the, z-transform depends on the values 
inserted in the matrices A,B,C,D, in the 
input vector u, and in the initial state 
vector x (0). We will not know what these 
values will be until we begin researching 
them, but when we do arrive at some to 
work with we will have the methodology 
for analyzing them ready.
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