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Feature frequency in concept learning:
What is counted?

RONALD T. KELLOGG
University ofMissouri, Rolla, Missouri 65401

Frequency theories of concept learning assume that people count how often features occur
among instances of a concept, but different versions make various assumptions about what
features they count. According to the basic feature model, only basic features are counted,
whereas according to the configural model, basic features and configural features (all combina
tions of basic features) are counted. Two experiments assessed the predictions of both versions
of frequency theory. Subjects viewed schematic human faces, which included both positive
and negative instances of the concept to be learned, and then provided typicality ratings,
classification responses, and frequency estimates of configural features, basic features, and
whole exemplars. Because both models assume that basic features are counted, they make the
same predictions in many situations. Here, the basic feature estimation and whole exemplar
tests were designed such that both models make the same predictions, whereas the typicality
rating, classification, and configural feature estimation tests were designed to distinguish
between the models. The pattern of results clearly supported the basic feature version of
frequency theory.

Many theorists have proposed feature frequency
models of concept learning. These models assume that
people compile the frequency with which the values or
features of a stimulus dimension occur among instances
of a concept. In support of frequency models, there is
evidence that subjects can correctly estimate the relative
frequencies of features (Kellogg, 1980a) and that they
use this information in hypothesizing the relevant
features of a concept by sampling features that occur
with high relative frequency (Kellogg, 1980b). In addi
tion, each instance of the concept can be described in
terms of an overall frequency score, which is calculated
by summing the frequencies of its constituent features.
This frequency score seems to provide the basis for
classifying stimuli (Bourne, Ekstrand, Lovallo, Kellogg,
Hiew, & Yaroush, 1976; Hayes-Roth & Hayes-Roth,
1977) and for forming the prototype of a category, as
indexed by typicality ratings (Chumbley, Sala,&Bourne,
1978; Kellogg, Bourne, & Ekstrand, 1978; Rosch &
Mervis, 1975), prototype preferences (Goldman &
Homa, 1977), frequency estimates of whole exemplars
(Kellogg, 1980a), and recognition confidence ratings
(Hayes-Roth & Hayes-Roth, 1977; Neumann, 1974,
1977; Reitman & Bower, 1973).

Granted, some evidence supports prototype-distance
models, the major alternative to frequency models
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(Franks & Bransford, 1971; Reed, 1972). But, except
for a study by Lasky and Kallio (1978), studies that have
directly compared the two types have concluded that
frequency models best account for the data (Chumbley
et aI., 1978; Goldman & Homa, 1977; Hayes-Roth &
Hayes-Roth, 1977; Neumann, 1977).

The strong empirical support for frequency models
should not blind us to a still unsolved problem with
them, however. To date, it is uncertain what to count.
Unless we know what features people count, frequency
models are of limited value. Concerning this funda
mental issue, there are two versions of frequency theory
to consider: basic feature and configural feature models.

According to the basic model, people count the so
called basic features of a stimulus (Chumbley et al.,
1978; Goldman & Homa, 1977; Kellogg et al., 1978).
For instance, the basic features of a face might include
the values exhibited by the face on the nose, eyes, and
hair dimensions. According to a configural model
(Hayes-Roth & Hayes-Roth, 1977; Reitman & Bower,
1973), the units of frequency analysis include the basic
features plus all combinations of these features. In our
example, these combinational or configural features
include all possible combinations of values on the
nose-eyes, nose-hair, eyes-hair, and nose-eyes-hair dimen
sional combinations. In short, the basic feature model
asserts that the stimulus dimensions are independent,
whereas the configural model claims that the dimensions
interact. 1

Whether or not stimulus dimensions are independent
is an issue that cuts across several areas of research,
ranging from sentence recall in humans (Anderson,
1976), for example, to classical conditioning in rabbits
(Saavedra, 1975). In these areas the results have been
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mixed, with some experimental situations producing
results in accordance with basic models and others
yielding support for configural models. In concept
learning, previous research has also failed to provide a
consistent answer to the question of dimensional inde
pendence.

For instance, Hayes-Roth and Hayes-Roth (1977)
employed linguistic descriptions of fictitious people as
stimuli in a concept learning task. After learning to
classify a series of training stimuli, subjects wererequired
to recognize old and new exemplars. The observed
pattern of recognition confidence ratings was best
accounted for by configural models (Hayes-Roth &
Hayes-Roth, 1977, Property Set Models Rl and R2).
It should be noted, however, that some basic models
(R21 and R22) fit the data nearly as well. Reitman and
Bower(1973), using letter stringsasstimuli, alsoreported
recognition confidence ratings that were consistent with
a configural model, but since they did not evaluate a
basic model, the implications of their data are uncertain.

In clear support of a basic model, Chumbley et al.
(1978), who also used linguistic stimuli, noted that most
subjects treated stimulus dimensions independently in
concept formation, as assessed by typicality ratings.
Also, Neumann (1974) reported that in many, but not
all, situations a basic model can account for recognition
confidence ratings. In his study, a stimulus consisted of
four geometric designs, arranged in the corners of a
square. When the two designs on top were separated
from the designs on the bottom by a horizontal line on
both training and test stimuli, subjects were sensitive to
configural features. But even then, subjects counted only
horizontal combinations of features, not vertical or
diagonal combinations. And when the horizontal line
was omitted, from either the training or the test stimuli,
subjects ignored configural features altogether.

Although the evidence, on balance, seems to favor a
basic feature version of frequency theory in concept
learning, existing data do not decisively rule out con
figural models. Neumann's (1974) observations suggest
that the particular nature of the stimuli may influence
whether configural features are counted. Thus, if special
stimuli are selected to enhance the use of configural
features, then clear evidence in support of a configural
model should be obtained. Human faces seem to be such
a special type of stimuli, judging from evidence that
configural features are important in the perception and
recognition of faces (Anderson & Paulson, 1978; Carey
& Diamond, 1977; Rock, 1974; Smith & Nielson,
1970). Here, two experiments were conducted using
facial stimuli, in an effort to provide clear support for a
configural model. If the results still favor the basic
feature model, then the appropriateness of a configural
model of concept learning, at least, must be seriously
questioned.

As noted by Hayes-Roth and Hayes-Roth (1977),
different models of concept learning often make identi
cal predictions in the standard paradigms reported in the
literature. This is particularly true of basic and configural

models, since both types assume that people at least
compile the frequency of basic features. Here, five
measures of concept learning were employed; the two
models make different predictions for three of these, but
all frequency models make the same predictions for the
other two.

For all predictions, the basic logic was the same. A
particular frequency distribution was established during
the study trials for the basic and configural features of
certain critical facial dimensions. Subjects examined
faces that the experimenter labeled as positive or nega
tive instances of the concept to be learned. Then, on the
trials of five different types of tests, half of the stimuli
contained a feature that occurred with high frequency
among positive instances during study trials and half
contained a low-frequency feature. The two types of
test items were identical with respect to all other fea
tures.

On typicality, classification, and configural feature
estimation of frequency tests, a configural feature
distinguished the high- and low-frequency items. Thus,
the configural model predicts that subjects should give
higher typicality ratings, more correct classification
responses, and higher configural feature estimates
to high-frequency items than they give to low-frequency
items. The basic model, in contrast, predicts that sub
jects should respond the same to high-and low-frequency
items on these tests, because it assumes that configural
features are not counted.

On basic feature and whole exemplar estimation of
frequency tests, a basic feature distinguished the high
and low-frequency items. Because any frequency model
presumes that basic features are counted, both the
basic and configural models predict that subjects should
give higher estimates to high-frequency items than they
do to low-frequency items on both of these tests.

EXPERIMENT 1

Method
Stimuli. IDENTIKIT' faces were used as stimuli. Three

basic features (a, b, and c), which, based on pilot data, were
easy to tell apart, were employed on each of six dimensions,
lips (L), eyebrows (B), mustache (M), nose (N), eyes (E), and
hair (H). The facial perimeter and the ears were identical for all
stimuli.

There were 20 different positive and 20 different negative
instances of theconcept. The Ldimension defined theboundary
of the category: Half of the positive instances exhibited La and
half Lb, whereas all negative instances exhibited Lc. The B
dimension was irrelevant in that the three features occurred
about equally often among both positive and negative instances.

The M, N, E, and H dimensions were the critical dimensions
that were used to differentiate between the basic feature and
configural models. The frequency distributions of the critical
basic and configural features for positive instances are shown in
Table 1.

First, note that the frequencies of the basic features Ma
and Na occurred more often than did those of Mb and Nb
among the positive instances presented during the study phase.
This manipulation set the stage for the basic feature estimation
and whole face estimation tests. Second, the configural features
EaHa and EbHb each occurred among 50% of the positive
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Table I
Frequency Distributions of the Critical Basicand Configural

Features for Positive Instances in Experiment I

Dimension

Feature M N E H MN EH

Basic Features
a 60 60 50 50
b 20 20 50 50
c 20 20 0 0

Configural Features*
aa 30 50
bb 0 50
ab 15 0
ba 15 0

Note-Frequencies are expressed as the percent of study
instances that exhibited each feature. "All other configural
features occurred infrequently and about equally often, given
the constraints imposed by the above frequency distributions.
These are not shown here; of course, the total for the MN
configural features, including those not shown, equaled 100%.

study instances, and EaHb and EbHa never occurred, setting the
stage for the typicality and classification tests. Finally, the
configural features MaNa occurred among 30% of the positive
study instances, whereas MaNb occurred among 15%, setting
the stage for the configural feature estimation test.

The basic and configural features shown in Table 1 occurred
about equally often among negative instances. All other config
ural features occurred infrequently and about equally often
among both positive and negative instances (for simplicity, these
are not shown in Table 1). The predictions of the frequency
models, then, were relevant only to responses given to positive
test items, and these predictions were determined solely by the
frequency distributions shown in Table 1.

None of the faces shown during the study phase was pre
sented during the test phase. Some of these new test items were
presented more than once across the five types of tests, in order
to meet the constraints of the design.

Design. The typicality rating test included 12 positive
instances. Half were high-frequency test items, with three
exhibiting EaHa and three exhibiting EbHb. Half were low
frequency items, with three exhibiting EaHb and three exhibit
ing EbHa. Except for these critical dimensions, each high
frequency item had an exact duplicate among the low-frequency
test items with regard to the other features. This insured a valid
comparison between the ratings given to high- and low-frequency
items. Two random presentation orders were employed, and half
of the subjects were assigned to each order.

The classification test included eight positive and eight
negative instances. Half of the positive instances were high
frequency items, with four exhibiting EaHa and four exhibiting
EbHb. The others were low-frequency items, with four exhibit
ing EaHb and four exhibiting EbHa. Again, except for these
critical dimensions, each high-frequency item was identical to a

particular low-frequency item. Frequency of test items was a
pseudovariable for the negative instances, with an equal number
randomly assigned to the high- and low-frequency levels. Two
random presentation orders were employed, and half of the
subjects were assigned to each order.

The configural feature estimation test included two positive
instances: a high-frequency item (MaNa) and a low-frequency
item (MaNb). The other features of these items were identical.
Half of the subjects received the high-frequency item first, and
half received the low-frequency item first,

The basic feature estimation test included two positive
instances: a high-frequency item (Maand Na) and a low-frequency
item (Mb and Nb). The other features of these items were
identical. Half of the subjects received the high-frequency item
first and estimated the frequency of Ma; then these subjects
received the low-frequency item and estimated the frequency of
Nb. The other subjects received the low-frequency item first and
estimated the frequency of Mb; then these subjects received the
high-frequency item and estimated the frequency of Na,

The whole exemplar estimation test involved only a single
item: either a high-frequency item (LaBaMaNaEaHa) or a low
frequency item (LbBbMbNbEbHb). The other features of these
items were identical. Half of the subjects received the high
frequency item and half, the low-frequency item.

The logic of the experimental design is illustrated in Table 2.
Consider first the tests that distinguish between basic and
configural models, beginning with the typicality test. During the
study phase, the configural feature EaHa, for example, occurred
more often than EaHb among positive instances. Also, it must be
noted that the frequency of the basic features Ea, Eb, Ha, and
Hb were equal among the positive study instances. On the typi
cality test, subjects were presented test items that were identical
in all respects, except for the configural features on these critical
dimensions. If subjects count all configural features, then they
should give higher typicality ratings to high-frequency test
items, exhibiting EaHa, than they give to low-frequency test
items, exhibiting EaHb. The basic model, on the other hand,
predicts that subjects should give equivalent ratings to both
types of positive instances, given that the study frequency of
the basic features Ha and Hb were equal.

The same logic applies to the classification test. According
to the configural model, subjects should make fewer errors in
classifying high-frequency relative to low-frequency test items.
But according to the basic model, the same number of errors
should be made in classifying both types of positive instances.

The logic behind the configural feature estimation test was
similar; however, different dimensions were involved. The
configural feature MaNa occurred more often than MaNb among
the positive study instances. On the frequency estimation test,
subjects were shown either the high-frequency test item (MaNa)
or the low-frequency test item (MaNb) and were asked to esti
mate how often that particular combination of M and N features
occurred among positive instances. According to the configural
model, subjects should estimate that MaNa occurred more often
than MaNb. In contrast, if subjects count only basic features,
then they should have no accurate knowledge of the frequency
of these configural features.

Both models assume that subjects count basic features. The

Table 2
Logic of the Experimental Design

Frequency of Test Item Prediction of Model

Type of Test High Low Configural Basic

Typicality and Classification EaHa EaHb High> Low High =Low
Configura! Feature Estimation MaNa MaNb High> Low High =Low
Basic Feature Estimation Ma Mb High > Low High> Low
Whole Exemplar Estimation Ma Mb High> Low High> Low

Note-Other basic and configural features were exhibited by high- and low-frequency test items (see the Design section of Experi
ment 1). For the sake of clarity, only the features listed above are used to describe the predictions.
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basic feature Ma, for example, occurred more often than Mb
among the study positive instances. SUbjects were shown either
the high-frequency test item (Ma) or the low-frequency test
item (Mb) and were asked to estimate the frequency of that
particular M feature. Any frequency model predicts that the
Ma feature should receive higher estimates than the Mb feature.

On the whole exemplar estimation test, subjects were asked
to estimate how often a particular face occurred among posi
tive instances. The high-frequency test item exhibited features
that had occurred more often among positive study instances
(e.g., Ma) than the features exhibited by the low-frequency test
item (e.g., Mb). It should be noted that the frequencies of the
other features of these test items were equivalent. SUbjectswere
expected to estimate that the high-frequency item occurred
more often than the low-frequency item, a prediction that is
common to both property set and basic feature models.

Procedure. The instructions named the facial dimensions
that varied and asked subjects to attend to every dimension.
Subjects were told that they would be shown both positive
and negative instances of a concept. They were asked to learn
what defined the concept, that is, how positive and negative
instances differed. Subjects were told nothing about the test
phase until after the study phase was completed.

The study phase consisted of two presentations of the
negative instances, followed by two presentations of the positive
instances. Thus, a series of 40 negative instances was presented,
followed by a series of 40 positive instances; the experimenter
identified the type of instance before each presentation series
began. Each face was projected onto a white wall for 5 sec, using
a Kodak slide projector and a Hunter timer.

Next, the test phase began. It consisted of the typicality
rating, basic feature estimation, configural feature estimation,
whole face estimation, and classification tests, in that order for
all subjects.

On the typicality test, subjects rated faces according to how
well they fit their concept of positive instances, by circling a
number on a 5-point scale (l ="not very well"; 5 ="very well").
On the basic feature estimation test, subjects were first told to
"look at the nose dimension," for example, and then were
shown a face exhibiting the basic feature to be estimated.
SUbjects were informed that they had been shown 40 positive
instances during the study phase and 12 more on the typicality
test. Their task was to estimate how often they had seen that
particular feature among all positive instances shown to them,
writing a number between 0 and 52. Similarly, on the con
figural feature test, subjects were first told to "look at the
mustache and nose dimensions" and then were shown a face
exhibiting the configural feature to be estimated. They wrote a
number (0-52) reflecting how often they had seen that particular
combination of features. On the whole face estimation test,
subjects estimated how often (0-52) they had seen that partic
ular face. Finally, on the classification test, subjects were asked
to classify each test item as a positive or negative instance by
circling a "P" or an "N."

On the first four tests, subjects provided their responses
while the test item was projected for 10 sec. But on the classifi
cation test, each test item was projected for 3 sec and then
removed during a 3~ec response interval.

Subjects. Twenty introductory psychology students partici
pated as part of a course requirement. Subjects were tested in
small groups (n =1-5) and were randomly assigned in equal
numbers to the two test order conditions, which differed with
respect to the order in which items were presented on each test.

Results and Discussion
Data on all tests were collapsed across the test order

variable. The .05 level of statistical significance was
employed.

High-frequency (mean = 3.33) and low-frequency
(mean = 3.22) items received nearly identical typicality
ratings, as predicted by the basic feature model. An
analysis of variance (ANOVA) confirmed that the
frequency variable had no influence on typicality rat
ings (F < 1.0).

Overall, subjects correctly classified a mean of
96.25% of the test items, indicating that they learned
the difference between positive and negative instances.
For positive items, subjects correctly classified high
frequency (mean = 97.5%) and low-frequency (mean =
96.25%) items about equally well; however, for negative
items, they correctly classified fewer high-frequency
items (mean = 92.5%) than low-frequency items (mean =
98.75%). The pattern for negative items was unexpected,
because frequency was a pseudovariable for these items.
For positive instances, though, high-frequency items
were predicted by the basic feature model to be clas
sified just as often as low-frequency items. Because
performance was so close to the ceiling, however, this
evidence is weak. A 2 by 2 ANOVA indicated that
the main effects of frequency and instance type were
nonsignificant (Fs ==: 1.0) and that the interaction was
only marginally significant [F(1,19) = 4.17, MSe=
67.43].

The configural feature estimates for the high-frequency
item (mean = 17.35) were slightly greater than those for
the low-frequency item (mean = 15.98). The configural
feature exhibited by the high-frequency item actually
occurred 16 times, and the one exhibited by the low
frequency item actually occurred 8 times. The small
difference in the mean estimates was in the direction
predicted by the configural model; however, the esti
mates were highly variable, and an ANOVA indicated
that the difference was statistically negligible (F < 1.0).
Thus, the configural features estimates, like the typi
cality and classification data, were best accounted for
by the basic model.

The basic feature estimates for the high-frequency
item (mean = 24.0) were significantly greater than those
for the low-frequency item (mean = 16.65) [F(l ,19) =
10.59, MSe = 51.03]. The actual frequencies of the basic
features exhibited by the high- and low-frequency items
were 31 and 11, respectively. Thus, subjects under
estimated the high-frequency feature and overestimated
the low-frequency feature, but they nonetheless showed
that they knew which feature had occurred most often.
Such a pattern of results, characterized by relative but
not absolute accuracy, is commonly obtained when
subjects estimate the frequency with which a word has
occurred among a series of unrelated words in a memory
task (Begg, 1974) and in feature estimates following
concept learning (Kellogg, 1980a). The basic feature
estimates, then, confirmed the predictions of both the
configural and the basic models.

The whole exemplar estimates for the high-frequency
item (mean = 21.6) were much greater than those for
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the low-frequency item (mean = 1.0), as predicted by
any frequency model. The difference in means was
significant [F(1,18) = 21.72, MSe = 97.69]. Both test
items actually occurred only once (during the typicality
test). Thus, the high-frequency item was strikingly
overestimated, whereas the low-frequency item was
accurately estimated.

Such a pattern of frequency estimates diverges from
the usual pattern of overestimated low-frequency events
and underestimated high-frequency events. But the
marked overestimation of the high-frequency item,
which frequency models predict to be the prototype of
the positive instances of the concept, has been observed
before (Kellogg, 1980a). When subjects judge the fre
quency with which a face has occurred among a series
of related faces in a concept learning task, their esti
mates are related to the typicality of the face. Fre
quency estimates of whole exemplars reveal that people
believe they have seen the prototype of a category many
times more often than they actually have, just as recog
nition confidence ratings show that people are convinced
they recognize the prototype when in fact it is a new
item (Franks & Bransford, 1971; Neumann, 1974;
Reitman & Bower, 1973).

In summary, the results of Experiment I support the
basic model. The only confirmed predictions of the
configural model were those that follow from any fre
quency model.

EXPERIMENT 2

This experiment was designed to replicate and extend
the findings of Experiment 1. Although the typicality
and classification results of Experiment 1 failed to
support the configural model, the configural feature
estimates were in the predicted direction. One might
argue that the difference in the actual frequencies of the
configura! features MaNa and MaNb was simply not
great enough. After all, in Experiment I, this difference
was less than half of the difference in the actual fre
quencies of the basic features Ma and Mb, for example.
Consequently, the spread between high- and low
frequency test items may have been large enough to
yield a significant frequency effect on the basic feature
estimation test but not on the configural feature estima
tion test. Before concluding that subjects counted only
basic features, it is important that the spread for the
configural feature test be at least as great as the spread
for the basic feature test.

Method
The materials, subject pool, procedure, test items, and test

order manipulations were the same as in Experiment I for both
the replication and extension conditions. In the extension
condition, the configural feature MaNa occurred among 60%
of the positive study instances, whereas MaNb never occurred.
This was achieved by perfectly correlating the features of the M
and N dimensions: MaNa, MbNb, and McNc were the only

combinations that appeared. Among typicality test items,MaNb
occurred twice, however. Thus, the frequency spread between
these features, across the 52 positive instances that had been
seen prior to the beginning of the estimation tests, was 60% vs.
4%. The frequency distributions of the basic features (see
Table 1) andof all other configural features were about the same
as in Experiment 1. A total of 40 subjects were assigned to the
conditions in equal numbers.

Results and Discussion
In the replication condition, the high-frequency

(mean = 3.53) and low-frequency (mean = 3.44) items
received about the same typicality ratings. Similarly,
in the extension condition, the high-frequency items
(mean =3.36) and low-frequency items (mean =3.4)
received roughly equal ratings. A 2 by 2 ANOVA showed
that all four means were statistically equivalent: The
frequency, condition, and Frequency by Condition
effects were nonsignificant (Fs ~ 1.0). Thus, the typi
cality ratings once again supported the basic model.

The overall mean percent of correct classifications
was 94.69%, a high level of performance that was similar
to the outcome of Experiment 1. For the replication
condition, the mean percents of correct classification
responses were 93.75%, 95.0%, 96.25%, and 97.5% for
the positive high-frequency, positive low-frequency,
negative high-frequency, and negative low-frequency test
items, respectively; these figures for the extension
condition were 92.5%, 91.25%, 95.0%, and 96.25%.

Neither in the replication condition nor in the exten
sion condition was there any evidence, though, of the
Frequency by Instance Type interaction predicted by
the configural model. In fact, averaged across the two
conditions, low-frequency positive items (mean =
93.13%) were classified just as well as high-frequency
positive items (mean = 93.13%), as predicted by the
basic feature model. Again, these results must be inter
preted cautiously due to the possibility of a ceiling
effect. Low-frequency negative items (mean =96.88%)
were classified only slightly better than high-frequency
negative items (mean = 95.63%). Although this unex
pected difference was in the same direction as in Experi
ment 1, its magnitude was much smaller. Overall, more
negative items (mean =96.25%) than positive items
(mean = 93.13%) were correctly classified. A 2 by 2
ANOVA revealed a significant main effect of instance
type [F(1 ,38) = 5.46, MSe = 71.54]. But the Frequency
by Instance Type interaction and all other sources of
variance were nonsignificant (Fs ~ 1.0).

In the replication condition, the configural feature
estimates for the high-frequency item (mean = 16.0)
were slightly greater than those for the low-frequency
items (mean = 15.6). The configural features exhibited
by the high- and low-frequency items in this condition
actually occurred 16 and 8 times, respectively. In the
extension condition, on the other hand, the configural
features exhibited by the high- and low-frequency items
actually occurred 31 and 2 times, respectively. Yet, in
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the extension condition, the estimates were about equal
to those of the replication condition: High-frequency
and low-frequency mean estimates were 17.35 and
15.98, respectively. A 2 by 2 ANOVA revealed that the
four means were statistically equivalent; none of the
sources of variance was significant.

The spread of the mean estimates, then, bore no
relation to the spread of the actual frequencies. If con
figural features were counted, one would expect that,
certainly, in the extension condition, the high-frequency
item would have received higher estimates than the low
frequency item. The configural features estimates,
therefore, failed to confirm a key prediction of the
configural model. These results, like the typicality and
classification data, supported the basic model.

In the replication condition, the basic feature esti
mates for the high-frequency item (mean = 22.9) were
greater than those for the low-frequency item (mean =
19.35). Similarly, in the extension condition, the high
frequency item (mean =22.55) received greater esti
mates than the low-frequency item (mean = 16.2). Thus,
averaged across both conditions, subjects estimated that
the basic feature exhibited by the high-frequency item
(mean =22.73) occurred more often than the basic
feature exhibited by the low-frequency item (mean =
17.78). As in Experiment 1, they underestimated the
actual frequency of the high-frequency feature, which
occurred 31 times, and overestimated the low-frequency
feature, which occurred 11 times. Yet, as predicted by
any frequency model, subjects knew the relative fre
quencies of these features. A 2 by 2 ANOVA revealed a
significant main effect of frequency [F(1 ,38) = 6.77,
MSe = 72.39] ; the other sources of variance were non
significant (Fs < 1.0).

In the replication condition, the whole exemplar
estimates given to the high-frequency item (mean =
11.9) were greater than those given to the low-frequency
item (mean = 1.8). The extension condition provided the
same pattern of results, with the high-frequency item
(mean = 16.6) receiving greater estimates than the low
frequency item (mean = .9). Both items actually occurred
only once. Thus, as in Experiment 1, subjects in general
markedly overestimated the frequency of the high
frequency item (mean = 14.25), the prototype of the
concept. In contrast, they accurately estimated the
frequency of the low-frequency item (mean = 1.35).
A 2 by 2 ANOVA yielded a significant main effect of
frequency [F(1 ,36) = 23.95, MSe = 69.49], which is
predicted by any frequency model. The main effect of
condition and the Frequency by Condition interaction
were nonsignificant (Fs =:: 1.0).

One might argue that the large difference in whole
exemplar estimates was in part due to the difference in
study frequency of the MaNa vs. MbNb configural
features. Because the high-frequency test item exhibited
the a features on all dimensions, whereas the low
frequency item exhibited the b features, such an argu
ment could be made.

This possibility is not well supported by the data,
however. If the argument were correct, then one would
expect that subjects in the extension condition, who
received study faces exhibiting MaNa 60% of the time,
would give greater estimates to the high-frequency item
than would subjects in the replication condition, who
saw MaNa in only 30% of the study faces. Although
there was a trend in this direction, the Frequency by
Condition interaction failed even to approach signifi
cance. Moreover, the overall average of the estimates
given by subjects in Experiment 1 combined with those
in the replication condition (mean =16.75) was
essentially identical to the estimates given by subjects
in the extension condition (mean = 16.6) to the high
frequency item. Finally, if the configural features played
a part in the frequency effect obtained on the whole
exemplar test, then one would expect the typicality,
classification, and configural feature estimation tests to
have provided evidence supporting the configural model.
Because they did not, it seems unlikely that configural
features played any role in the present research.

To summarize, the results of Experiment 2 corrobo
rated those of Experiment 1. The replication condition
matched the observations of Experiment 1. Moreover,
the extension condition demonstrated that the failure
to obtain a significant frequency effect on the configural
feature estimation test was not because of the relatively
small frequency spread between the high- and low
frequency items. Rather, the null result seemed to be a
consequence of subjects not counting these configural
features, regardless of the size of the frequency spread.

GENERAL DISCUSSION

In answer to the question of what stimulus features
are counted in concept learning, the present experiments
provide a consistent response: basic but not configural
features. Typicality rating, classification, and config
ural feature estimation data indicated that people do
not count how often configural features occur among
instances of a concept. On these tests, high- and low
frequency items received identical mean scores, as pre
dicted by the basic feature but not the configural model
(see Table 2). By contrast, high-frequency items received
greater mean scores than did low-frequency items on the
basic feature estimation and whole exemplar estimation
tests. Both versions of frequency theory predict these
effects, since both assume that basic features are counted.
Such a pattern of frequency effects across the five
measures of concept learning implies that only basic
features are counted.

Because schematic human faces were used as stimuli
in the present experiments, the failure to support the
assumption that people count configural features is
particularly damaging to configural models of concept
learning. Configural effects obtained in several experi
ments with facial stimuli suggest that configural features
are important in the perception of faces (Anderson &
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Paulson, 1978; Carey & Diamond, 1977; Rock, 1974;
Smith & Nielson, 1970). Thus, the use of faces should
have biased the results in favor of the configura! model.
Although configural features of faces may be important
in some experimental situations, they had no measurable
impact in the concept learning task investigated here.

It might be premature to infer that the basic feature
version of frequency theory is always applicable. There
may be a mix of stimulus materials, instructions, and
task requirements that would yield support for the
configural model. For instance, if the concept to be
learned were defined by a rule involving two or more
dimensions, such as an inclusive disjunction, rather than
by the single-dimension rule employed here, one might
succeed in forcing subjects to count configural features.
In this regard, however, it should be noted that Neumann
(1974) used a complex bidimensional rule and yet
failed to find that subjects consistently heeded con
figural features.

Thus, unambiguous support for the configural version
of frequency theory is obviously hard to obtain. Previous
results tend to favor the basic feature model, and the
present findings add weight to this conclusion.

In one sense, such a conclusion bolsters the founda
tion of frequency theory in general. The frequency
approach to concept learning has been criticized on the
grounds that it demands the use of highly complex
encoding processes (Medin & Schaffer, 1978). Although
the configural model is vulnerable to this criticism,
because it presumes that people encode basic features
and all possible configural features, the basic feature
model is not. If people count only the basic features of
most types of stimuli, then arguments against frequency
theory based on the complexity of its encoding processes
lose force.

REFERENCES

ANDERSON, J. R. Language, memory, and thought. Hillsdale,
N.J: Erlbaum, 1976.

ANDERSON, J. R., & PAULSON. R. Interference in memory for
pictorial information. Cognitive Psychology, 1978, 10. 178-202.

BEGG. I. Estimation of word frequency in continuous and discrete
tasks. Journal ofExperimental Psychology, 1974,102. 1046-1052.

BOURNE. L. E .• JR.• EKSTRAND, B. R.• LOVALLO. W. R.•
KELLOGG, R. T .• HIEW. C. C.• & YAROUSH. R. A. Frequency
analysis of attribute identification. Journal of Experimental
Psychology: General, 1976,105,294-312.

CAREY, S., & DIAMOND. R. From piecemeal to configurational
representation of faces. Science, 1977,195,312-314.

CHUMBLEY, J. I., SALA, L. S.. & BOURNE, L. E., JR. Bases of
acceptability ratings in quasinaturalistic concept tasks. Memory
& Cognition, 1978,6,217-226.

FRANKS, J. J., & BRANSFORD, J. D. Abstraction of visual pat.
terns. Journal of Experimental Psychology, 1971, 90, 65-74.

GARNER. W. R. The processing of information and structure.
Potomac, Md: Erlbaum, 1974.

GARNER. W. R. Interaction of stimulus dimensions in concept and
choice processes. Cognitive Psychology, 1976,8,98-123.

GOLDMAN. D.• & HOMA. D. Integrative and metric properties of
abstracted information as a function of category discriminabil
ity, instance variability, and experience. Journal of Experi
mental Psychology: Human Learning and Memory, 1977. 3,
375-385.

HAYES-ROTH, B. o & HAYES-ROTH, F. Concept learning and the
recognition and classification of exemplars. Journal of Verbal
Learning and VerbalBehavior, 1977, 16, 321-328.

KELLOGG, R. T. Simple feature frequency versus feature validity
models of prototype formation. Perceptual and Motor Skills,
1980,51,295-306. (a)

KELLOGG. R. T. Feature frequency and hypothesis testing in the
acquisition of rule-governed concepts. Memory & Cognition,
1980,8,297-303. (b)

KELLOGG. R. T.• BOURNE, L. E., JR., & EKSTRAND, B. R.
Feature frequency and the acquisition of natural concepts.
American Journal ofPsychology, 1978,91,211-222.

LASKY, R. E., & KALLIO, K. D. Transformational rules in concept
learning. Memory & Cognition, 1978,6,491-495.

MEDIN. D. L.• & SCHAFFER. M. M. Context theory of classifica
tion learning. Psychological Review, 1978,85,207-238.

NEUMANN. P. G. An attribute frequency model for the abstraction
of prototypes. Memory & Cognition, 1974,2,241-248.

NEUMANN. P. G. Visual prototype formation with discontinuous
representation of dimensions of variability. Memory & Cogni
tion, 1977,5,187-197.

REED, S. K. Pattern recognition and categorization. Cognitive
Psychology, 1972,3,382-407.

REITMAN, J. S.• & BOWER. G. H. Storage and later recognition
of exemplars of concepts. Cognitive Psychology, 1973, 4,
194-207.

ROCK, I. The perception of disoriented faces. Scientific American,
1974,230,78-86.

ROSCH, E., & MERVIS, C. B. Family resemblances: Studies in the
internal structure of categories. Cognitive Psychology, 1975,
7,573-605.

SAAVEDRA, M. A. Pavlovian compound conditioning in the rabbit.
Learning and Motivation, 1975,6,314-326.

SMITH, E. E., & NIELSON, G. D. Representations and retrieval
processes in short-term memory: Recognition and recall of
faces. Journal of Experimental Psychology, 1970, 85, 397-405.

NOTES

1. This discussion assumes that the stimulus dimensions are
separable, not integral, in the sense defined by Garner (1974,
1976). If integral dimensions were employed, then it would be
difficult to conceive of the values of the dimensions as basic
features. 1 assume that the basic features of a stimulus should
permit one to selectively attend to the values of each dimen
sion. If not, the basic features might be best equated with the
dimensionally inseparable points defined within the euclidean
space of the integral dimensions. Combinations of these points,
then, would serve as the configural features.

2. The facial features were selected from a collection pro
duced by the IDENTIKIT Company (1230 East Warner Avenue,
Santa Ana, California 92705).
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