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ABSTRACT 

The blocked orthogonalization algorithm for nonlinear 

regression developed in this work results from a study of 

matching problems having certain identifiable character­

istics with algorithms which exploit those characteristics. 

The new algorithm represents an extension of an earlier 

algorithm by D. S. Grey using a blocked orthogonalization 

technique proposed by R. E. von Holdt. The result is 

a generalization of the Grey and the Gauss-Hartley 

algorithms which maintains the desirable properties of 

these algorithms while avoiding their more serious 

limitations. The new algorithm was found to be quite 

effective for solving problems in which the parameters 

in the model under consideration were "naturally" grouped. 

Numerous criteria for evaluating algorithm performance 

are used to compare results of the new algorithm with those 

of the Davidon-Fletcher-Powell, Levenberg-Marquardt, Gauss­

Hartley, and Grey algorithms. Acceleration of the new 

algorithm using Cornwell's Linear Acceleration Technique is 

also studied. Zangwill's convergence theory establishes 

validity of the new algorithm for the nonquadratic case 

while numerical examples exhibit its robustness. 
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I. INTRODUCTION

In the field of mathematical programming, algorithms 

have been developed to solve the general nonlinear 

unconstrained minimization problem, viz. 

1 

minimize 
-+ 

g (a) ( 1. 1) 

JT m ... , a £ R and g m is a nonlinear,

scalar valued function of the a. 's. 
i 

This paper is concerned with the special subclass 

of nonlinear unconstrained minimization problems called 

nonlinear least squares. Such problems arise when one 

attempts to fit a set of n data points (x. ,y.), where 
l i

i = 1,2, ... ,n with the model

-+ � -+ -+y = r(x;a) + e:

where� is the same as in (1.1), f is nonlinear in the 

' -+ [ ]T • h ai s and e: = e:1, e2, ... , en is t_e error vector.

Fitting a set of data in the least squares sense is 

equivalent to solving the problem 

where 

• • • (
-+

) -+(
-+

)T -+h(t)minimize J a = h a � 

-+h(
-+

a) -+ �( -+ )  = y - r x;a 

( 1. 2) 

( 1. 3) 

(1.4) 

is called the residual. Equation (1.3) is referred to as 

the nonlinear least squares problem or the nonlinear 



regression problem and is accompanied by the fact that 

the number of parameters m is strictly less than the 

number of observation points n (often m<<n). In such 

cases, one is selecting the best solution to an over­

determined system of equations. 

Since the publication of Levenberg's paper on Damped 

Least Squares in 1944 [l], a great deal of effort has been 

devoted to nonlinear regression. Initial work was in the 

direction of developing a universally excellent algorithm 

while the most recent and more realistic attitude has 

been to develop classes of algorithms which work well. 

Chapter II of this work contains descriptions of some of 

these successful algorithms along with descriptions of 

several methods which are applicable to the general 

nonlinear unconstrained minimization problem (1.1). 

Classifying algorithms tends to imply that an 

effort should be made to match problems having special and 

identifiable characteristics with algorithms or even 

classes of algorithms which exploit such characteristics. 

While reviews of current and past literature indicate that 

very little has been done in this regard, it would seem 

2 

that such characteristics must exist for problems arising 

from particular physical situations. For example, the 

popular variable metric algorithms have found no favor with 

optical designers [2]; in fact, the major lens design 



programs in production today use either Damped Least 

Squares, Grey's method [3,4], or Glatzel's method [5-7] 

for solving the nonlinear least squares problem. 

One purpose of this study is to find characteristics 

of a problem which can be identified a priori so that a 

solution technique can be used which takes advantage of 

these characteristics. D. D. Walling [8] proposed an 

identification technique which has been modified by other 

authors. This strategy consists of separating those 

variables in the model that are purely linear from the 

remaining truly nonlinear variables. Various solution 

techniques are then applied to the linear and nonlinear 

sub-problems until convergence is obtained. 

3 

Motivation for approaching the separation of variables 

problem as is reported here resulted from attempts to fit 

spectral absorptivity data from a YAG laser by using a 

linear combination of Lorentz functions 

y = 2- x) 
(1.5) 

Grey's algorithm, abstracted fvom its lens design origin, 

has been used to solve this problem with fairly good 

results [9]. The present extension of this method was 

suggested by Grey's original title, ''Aberration Theo-

ries ... ," where attention is focused upon the residual 

itself and not upon the normal equations. The technique 



4 

used is to consider the variables as being separated into 

"naturally" occurring groups. For example, in equation 

(1.5), each set of variables {a3j_2, a3j-l' a.3j} forms

such a group. The solution technique uses Grey's algorithm 

in conjunction with an idea proposed by van Holdt [10] in 

quite a different context. The resulting technique, 

described in Chapter III of this paper, exploits the fact 

that the parameters occur in groups. 

Chapter III provides detailed descriptions of both 

the blocked algorithm and Grey's algorithm. It is shown 

how van Holdt's blocked orthogonalization process was 

combined with Grey's algorithm to produce the new blocked 

algorithm. Mathematical demonstrations are included 

which show that the new algorithm possesses many of the 

desirable characteristics of Grey's original method while 

maintaining a faster rate of convergence. Accelerating 

the blocked algorithm by using Cornwell's Linear 

Acceleration Technique [11] not only increased the conver­

gence rate but provided a means of guaranteeing convergence 

of the algorithm for the nonlinear problem. 

Chapter IV contains the results of numerical investi­

gations conducted to compare the performance of the new 

blocked algorithm with that of the well-known algorithms 

of Davidon-Fletcher-Powell [12,13], Levenberg-Marquardt

[1,14], Gauss-Hartley [15], and Grey. Grey's algorithm 

and the blocked algorithm were studied both with and 



without Cornwell's modification . Algorithms were applied 

to problems in which the variables were naturally grouped 

and numerous performance indicators were recorded. The 

results verify the theoretical convergence predictions 

of Chapter III. In addition, the new algorithm converged 

more consistently to global minima than did the other 

algorithms tested! Since parameters were related to 

physical aspects of the model under consideration, local 

minima produced by the algorithms were of interest in 

the numerical investigations. In this respect, some 

local minima produced were a cceptable whereas others 

were not. The new algorithm outperformed the others 

in this aspect of these tests! 

Original derivation and testing of the blocked 

orthogonalization algorithm has been reported in an 

article by D. C. St. Clair and A. K. Rigler in Proceedings 

of the Computer Science and Statistics Eighth Annual 

Symposium on the Interface [16]. 

5 



II. REVIEW OF LITERATURE

The literature records a large number of algorithms 

designed to solve the nonlinear least squares problem. 

6 

This chapter serves as a review of the well-established 

algorithms while indicating recently proposed modifications 

of these algorithms. Algorithms cited as general methods 

are applicable to the general problem (1.1) as well as to 

the least squares problem (1.3). Least squares methods 

are applicable to the least squares problem only. 

Several papers appear in the current literature which 

survey the successful algorithms in both the general and 

least squares classes. Recent articles in this regard 

include papers by Powell [17,18], Fletcher [19], and 

Dennis [ 20]. Papers by Broyden [21], Zeleznik [22], and 

Huang [23] have attempted to unify several successful 

algorithms into various generalized forms. 

The common feature of all algorithms reviewed is 

their attempt to move from the point t. in the parameter 
l 

m ➔ mspace R to the point ai+l E R by using the equation

➔ 

The step length t. as well as the direction vector ta. 
l l

are determined by the strategy used to devise the 

(2.1) 

particular method under consideration. Some algorithms 

choose the scalar t. by performing a one-dimensional 
l 

• . ➔ 

search, such as that shown in Appendix A, along the 6a 



direction. Other algorithms, such as the Levenberg-

Marquardt [1,14], select the direction of search as well 

as the step length simultaneously. One area of current 

research favors omitting the step length computation by 

making appropriate choices for 6;., for example see
l 

[ 2 4- 2 6]. 

The general philosophy is to produce a point 
➔ 

< g( Cl,.)... l 

vary in their approach to the problem. 

Again, algorithms 

The algorithm 

of Hooke and Jeeves [27] may actually consider points 

where the objective function increases from time to 

time. Their idea was to allow the search to continue 

along certain "valleys" which may eventually lead to a 

great reduction in the value of the objective function. 

A. General Methods

Many methods for solving the nonlinear unconstrained 

minimization problem (1.1) rely heavily on the quadratic 

approximation of the objective function provided by the 

first three terms of the Taylor series 

7 

( 2 . 2) 

where 

V g. l 
= [� ag 

aa. , �, 
1 2 

. . . ' ( 2 . 3) 



is the gradient vector evaluated at the point 

is the real symmetric Hessian matrix 

➔ 

(Y, .
l 

and G. 
l 

8 

G. 
l 

( 2 . 4)

evaluated at a . . 

The basic idea behind many of the general as well 

as the least squares methods is to use part or all of 

the terms from the truncated Taylor series (2.2) to 
-+ 

obtain the direction vector 6a .. 
l 

Accordingly, the general 

algorithms reviewed in this paper are classified as: 

1. ) direct search methods, 2.) methods using first 

partial derivatives, and 3.) methods using second partial 

derivatives contingent on whether the algorithm in question 

uses no terms, the first two terms, or all three terms 

respectively of (2.2). 

In the case of the quadratic objective function, 

(2.2) is an exact representation of g(;). Algorithms 

recognizing this equality converge in m or fewer steps 
➔ 

when g(a) is quadratic. These algorithms are said to 

possess property Q. While such algorithms have an excellent 

rate of convergence for quadratic problems, fast conver­

gence for the nonquadratic objective cannot be guaranteed 

until a satisfactory neighborhood of the solution point 

;1, is reached. 

Algorithms not possessing property Q converge to the 

solution in an asymptotic manner. Studies by Himmelblau 



[28] indicate these algorithms converge slower than

property Q algorithms; however, they are dependable when 

applied to a wide range of problems. 

1. Direct Search Methods

The algorithm of Rosenbrock [29] as well as that 

of Hooke and Jeeves [27] are members of the class of 

direct search methods. The development of such methods 

has been guided by extensive experience and by thinking 

of the problem as that of following valleys down the 

side of a mountain. Hence, they developed in an intuitive 

sort of way. These methods ignore, for one reason or 

another, the information available from equation (2.2) 
➔ 

and proceed to obtain the direction vector �a. by 
l 

observing values of the function at previous points. 

In turn, these observations are combined with a strategy 

for selecting the search direction at each point�--
1 

A search in the ��- direction follows in order to 
l 

determine the appropriate value of t. and the resulting 
l 

➔ 

ai+1· Methods in this class tend to be slower than

those of the other classes, but are attractive when it 

is not desirable or possible to evaluate pdrtial de­

rivatives. 

In mountain climbing terminology, Rosenbrock's 

method tries to follow valleys to obtain a minimum 

function value by attempting to identify the direction 

9 



of the valley. This direction is then used as a search 

direction. To accomplish this objective, Rosenbrock's 

method searches m mutually orthogonal directions di'

one at a time. Thus, on the first iteration, the 

initial estimate ;0 is changed to ;0 + t1a1
, this in

turn is changed to ;0 + t1d
1 

+ t
2
a

2
, and so on until

m iterations have replaced the initial estimate by 

-+ 
t. d. . 

l l 

After every m iterations, the set of m search directions 

d. is replaced by the set
l 

i: 
i=k 

t.a.
l l

where k = 1, 2, ... ,m. This new set of directions is 

orthogonalized by the familiar Gram-Schmidt ortho­

normalization process and the iterative process is 

repeated. Hence, the method aligns the first search 

direction along the va.lley which has just produced a 

favorable reduction in the value of the objective 

function. A further development of this idea has been 

pursued by Davies, Swann, and Campey [30]. 

Hooke and Jeeves' Pattern Search [2 7] also seeks to 

identify the direction of valleys, but has one additional 

feature not used by Rosenbrock's method. The Hooke and 

10 



Jeeves algorithm realizes that a long straight step 

taken along a valley may produce an increase in function 

value. This causes no problem since it lS easy to 

identify the direction back down to the floor of the 

valley. The Hooke and Jeeves algorithm consists of 

making an "exploratory move" followed by a ''pattern 

11 Suppose the point 
➔ 

result of move. one is at a . as a an

• ➔ exploratory move made from the point a. 1. 
i-

The next move

11 

• ➔ ➔ (➔ ➔ ) is a pattern move made by choosing ai+l = ai 
+ ai - ai-l •

Next, an exploratory move is made from ;i+l by taking small

steps along each of the coordinate directions in an 

attempt to reduce the value of the objective function. 

Call the new point reached ;i+2· If g(;i+2) < 
g(;i)

a pattern move is made from ai+2. Otherwise, one makes

a new exploratory move from a . .

The pattern moves can take large steps along valleys 

while the exploratory moves lead back down to the valley 

floor. The fact that g(;i+l) is permitted to be greater
➔ 

than g(a.) makes the Hooke and Jeeves method particularly
i 

attractive for use in optimizing objective functions 

having long curved valleys. 

Although the above algorithms converge asymptotically, 

there exist a number of direct search algorithms with 

property Q. Lessrnan's recent work [31] includes a 

thorough discussion of both types of nonderivative 

algorithms and the strategies employed in their 

developments. 



2. Methods Using First Partial Derivatives

General methods which use the first partial deriva­

tives of the objective function are required to provide 

or approximate values of the gradient vector, Vg. Some 

methods in this class obtain the direction vector by 

approximating the objective function with two terms of 

the Taylor series expansion, viz. 

12 

➔ ➔ ➔ ➔T ➔ 

g(a. + 6a.) � g(a.) + Vg.6a. ( 2 . 5) i i i i l 

➔ ➔ 

where Vg. and 6a. are as in (2.2) and (2.3). 
l l 

The approxi-
➔ 

mation (2.5) is then solved for �a .. 

known as steepest descent algorithms. 

These methods are 

Other methods in 

this class use gradient information to estimate the 

Hessian matrix G. of (2.2) and (2.4). Such methods are 

called quasi-Newton in contrast to Newton algorithms 

which require the calculation of second derivatives. 

a. Steepest Descent Algorithms

One of the earliest steepest descent algorithms 

was developed in 1847 by Augustin Cauchy [32] for the 

purpose of computing stellar orbits. Referred to as the 

steepest descent algorithm, its main strategy lies in 

choosing 

➔ ➔ 

�a• = -v g •
l l 



13 

since this gives the direction of maximum decrease in 

function value. 

this strategy. 

Powell [17] states the details concerning 

The algorithm moves from the point;. 
i

• ➔ ➔ . 
to the next point ai+l by means of the step 6ai' i.e.

➔ 

a .
i 

➔ 
+ t.6a .. 

l l 
(2.l)bis 

The scalar t., chosen by minimizing the single variable 
l 

• (➔ ➔ ) • 
function g a. + t.6a. , is necessary for nonlinear problemsi i i 

to prevent the algorithm's predicting a point beyond the 

region in which the Taylor series expansion is accurate. 

Cauchy's method is well known for its sensitivity 

to such factors as problem scaling and initial point 

selection. Hence, for objective functions having high 

helical contours, the asymptotic convergence is slow. 

However, it is one of the few optimization methods 

supported by convergence theorems [33]. 

Many methods have been patterned after Cauchy's 

method of steepest descent which attempt to overcome 

the problems of slow convergence. The Supermemory 

Gradient Method of Cragg and Levy [34] attempts to speed 

convergence of Cauchy's algorithm by using information 

from previous moves. This technique selects the point 

ai+l by using the equation

where 

68. 
l



+ 

= -t. V g. + 
i i 

E 
j=l 

+ 

u. td3. .
J J

The scalar k denotes the number of past iterations 

"remembered." The undesirable feature of this algori thrn 

is the need to perform a multi-dimensional search in 

order to determine the scalars t. and u ..i J 
Further attempts to speed convergence have resulted 

14 

in the development of algorithms which search in conjugate 

directions. The following serve to explain the basic 

details of this strategy. 

DEFINITION 2.1 The quadratic function 

➔ +T+ +T + 

g(a) = a + c a +  1/2 a. Qa 

defined on Rm is said to be positive definite provided 

+TQ+ 0 a a. > for all 
+ 

a. 1- o.

DEFINITION 2.2 Given the positive definite quadratic 

function 

Ill + ➔ m defined on R ,  any two vectors p,q € R are said to be

( 2 . 6) 

conjugate with respect to Q provided they are nonzero and 

+TQ
+ 

0p q = ( 2. 7) 

+ } m • +TQ+ h � Any set of vectors {p. c R for which p. p. = 0 w en i � J
l i ]

is said to be mutually conjugate with respect to Q. 



The following two theorems make conjugate direction 

algorithms particularly appealing. The proofs of these 

theorems are well-known in the literature and can be 

found in Appendix B. 

THEOREM 2.1 If {p.} c Rm is a set of vectors which are 
l 

mutually conjugate with respect to matrix Q of equation 
➔ 

(2.6), then {pi} is a linearly independent set.

Theorem 2.1 is not vacuous since the eigenvectors of Q 

form such a set of m mutually conjugate vectors. 

Furthermore, theorems from linear algebra guarantee 

m that any set of m conjugate vectors span R .

15 

THEOREM 2.2 If {p.} c Rm is a set of m mutually conjugate 
l 

vectors with respect to Q, then the positive definite 

quadratic of equation (2.6) can be minimized by 

sequentially minimizing in each of the directions 
➔ 

... , p exactly once.m 

Theorem 2.2 guarantees that an algorithm searching in 

conjugate directions will minimize the positive definite 
➔ 

quadratic g(a) in m or fewer steps. Thus, any algorithm 

which develops and sequentially searches m conjugate 

directions will possess property Q. 

In 1952, Hestenes and Stiefel [35] devised an in­

genious conjugate direction scheme to accelerate the 

convergence of Cauchy's steepest descent method. Their 



idea was to begin searching in the steepest descent 

direction but to select the remaining search directions 

so that they would be conjugate to all previously 

searched directions. To further increase this rate of 

16 

convergence, Fletcher and Reeves [36] suggested restarting 

the method every m + 1 steps with a search in the steep-

est descent direction. Luenberger [37] developed a 

conjugate direction method for minimizing constrained 

functions. In this case, matrix Q is not positive definite. 

b. Quasi-Newton Algorithms

Experience and the literature indicate that the

step direction �;. can better be determined by algorithms 
l 

which use three terms of the Taylor series instead of 

two; however, this implies a knowledge of second partial 

derivatives. Since the task of calculating second 

partial derivatives can be very laborious, a group of 

algorithms has been proposed which takes account of the 

second derivative terms by using only values of the 

first partial derivatives of the objective function. 

Such methods are referred to as quasi-Newton algorithms 

in contrast to Newton algorithms which require explicit 

evaluation of second derivatives. 

Algorithms in this class are also referred to as 

variable metric algorithms. While the class contains 

algorithms with and without one-dimensional searches, 

those utilizing such searches possess property Q. Huang[23] 
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has shown that variable metric as well as conjugate direc­

tion algorithms can be described in a generalized algorithm. 

Huang and Levy [38] present numerical results that show 

under certain conditions some of these algorithms produce 

identical results. 

In his Projection Method, Zoutendijk [39] observed 

that if pis used as the direction of search in moving 

from ;i to ;i+l' then for the quadratic objective function,

equation (2.7) is equivalent to 

Hence, this observation provides a means of obtaining 

second derivative information while using only first 

derivatives. Zoutendijk's algorithm is a conjugate 

directions method; therefore, it possesses property Q. 

Consider again the case where the objective function 
+ g(a) is positive definite quadratic as in equation (2.6). 

For this rather special case, the Taylor series expansion 

becomes 

( 2. 8) 

where 

Since the objective function is 

quadratic, the Hessian matrix Q is a constant. Thus, 
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equation (2.8) is an exact representation of the objective 

function. 
➔ • ➔ 

The step �a0 needed to go from the point a0
• ➔• to the minimum point a H can be computed by differentiating 

equation (2.8) with respect to; and then solving for 

In other words, the step to the minimum point 
➔ .. ,. • 
Cl" is not 

in the direction of the negative gradient as is practiced 

in the steepest descent methods, but in the direction 

of what Wilde and Beightler [40] call a "deflected 

gradient." -1 ➔ 
As Crockett and Chernoff [41] prove, Q Vg

is the gradient relative to the metric Q if the metric 

in Rm is defined as 

2 ➔T ➔ s = p Qp

2 where s represents the distance between the points
➔ 

connected by the vector p. 

Thus, equation (2.1) suggests that to find the point 

;i+l when g(;) is not quadratic, one should compute

➔ ➔ -1 ➔ 
a = a. - t.Q Vg. i+l l l l 

where t. is determined by a one-dimensional search to 
i 

insure g(;i+l) < g(;i). Quasi-Newton methods avoid the

task of computing and inverting Q by using gradient 

-1information from each step to approximate Q 



One of the more successful quasi-Newton algorithms 

was presented by Davidon [12] and described by Fletcher 

and Powell [ 13]. The Davidon-Fletcher-Powell or DFP 

algorithm, as it shall be referred to in the remainder 

of this work, is a conjugate direction algorithm and 

hence, possesses property Q. The algorithm selects a 

sequence of positive definite matrices {H.} such that 
i 

. -1 . 
at the i-th step, H. approximates Q . The algorithm 

i 

then computes 
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-+ -+ -+ "' = "' ·  - t.H.vg. '"i+l �i i i  i ( 2. 9) 

where t. is again determined by a one-dimensional search. 
i 

In choosing the H. in such a way as to improve the rate 
i 

of convergence, Davidon recommended 

H. = H. l + A. + B.i i- l i (2.10) 

where H0 is arbitrary positive definite and Ai, Bi are

chosen to insure 

and 

m 
I A. 

• 1 i i= 

m 
1: B .. 

i=l l 

In this way, the A. generate the true inverse of Q while 
l
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the B
i 

remove the effects of the initial assumption H
0

. 

Actual calculation of the A. and B. at the i-th step 
l l 

depends on the two vectors 

and 

l:J.a. = 

l 
-+ 
a.l

'iJ g ..l 

At the i-th step, A. and B. are computed using 
l l 

B. = l 

A. = 

l 

-+ -+T 
/:J.a. 1/:J.a . 1 l- l-

-+T -+ 
6.a. 1Y· 1 l- l-

-+ -+ T 
( H. 1Y. 1) ( H. 1Y. 1) l- l- l- l-

-+T -+ 
y. l

H
. 1Y. 1 l- l- l-

(2.11) 

(2.12) 

(2.13) 

(2.14) 

In the absence of a better alternative, the DFP algorithm 

selects H
0 

as the identity matrix. This makes the first 

step of the algorithm equivalent to that of Cauchy's 

steepest descent method. As a matter of fact, Myers [42] 

shows that for a quadratic objective function, the direction 

vectors generated by the DFP algorithm and that of Hestenes 

and Stiefel [35] are scalar multiples of each other pro­

vided each takes their initial step in the steepest descent 

direction. Himmelblau [28] refers to the DFP algorithm 

as a rank two algorithm since the correction factor 



A. + B. in equation (2.10) is a matrix of rank two. A
l l 

most interesting and informative description of the DFP 
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algorithm can be found in Wilde and Beightler's Foundations 

of Optimization [40], under the heading "deflected 

gradient method." 

Several interesting extensions to the DFP algorithm 

have been proposed. Stewart [43] has extended the algorithm 

so that the first partial derivatives are approximated by 

finite difference equations. Stewart's algorithm 

automatically chooses the intervals used in the finite 

difference approximations in such a way as to balance 

the truncation and roundoff errors. An Algol program 

of this modified version has been published by Lill [44]. 

McCormick and Pearson [45] recommended a reset 

procedure to be used with variable metric algorithms 

when minimizing nonquadratic functions. After m or 

m + l iterations, the algorithm is reset by selecting 

where B is a positive definite matrix. The identity 

matrix is a natural choice for B. Numerical results 

reported by Huang and Levy [38] tend to support McCormick 

and Pearson's idea. 

Fletcher [25] proposed a rank two algorithm with an 

updating process similar to the DFP. Fletcher's relation 

for updating H. is based on a recursion relation for 
l 

inverting matrices. In place of a one-dimensional 
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search, a cubic interpolation with limited step length is 

used to determine the t. of equation (2.9). 
l 

Both Fletcher 

and Himmelblau [28] have tested the algorithm and report 

it to be about as effective as the DFP algorithm. 

While Fletcher's algorithm reduced the number of iterations 

in a given search direction, there was an increase in the 

number of search directions. The algorithm does not 

possess property Q. 

Bass [24] devised a rank two algorithm with property 

Q which uses no one-dimensional search. Unlike the DFP 

algorithm which is the same at every iteration, Bass' 

algorithm is cyclic, i.e., it repeats every m iterations. 

A class of quasi-Newton methods called rank one 

algorithms stemmed from the DFP algorithm. While the 

DFP algorithm updates H. 
1 

by using a rank two correction 
l-

matrix (see equations (2.10), (2.13), and (2.14)), the 

methods in this class use a similar approximation but 

choose H. in such a way that (H. - H. 
1
) is a symmetric 

l l l-

matrix of rank one. Broyden [46] has shown that there is 

just one way of calculating H. so that (H. - H. 
1

) is a 
l l l-

symmetric matrix of rank one. 

formula 

It is given by the general 

H. = H. l -
l l-

➔ ➔ ➔ ➔ T 
(�a. 

l
+H.

1
Y· 

l
)(�a. 

l
+H.

1
Y· 

1
) 

l- l- l- l- l- l-

➔ ➔ T➔ 

(�a • l + H • 1Y • 1) y • ll- l- l- l-

(2.15) 



➔ ➔ where 6a. 1 and y. 1 are defined in equations (2.11)
l- l-

and (2.12) respectively. 

In order to use (2.15) in an algorithm, one must 

f . ➔ ➔ select a rule or calculating ai+l from ai. The main

requirement is that m applications of equation (2.15) 

should cause H to equal -Q-l whenever the objective m 

function is quadratic. The large number of rules from 

which one may select adds to the attractiveness of this 

class of algorithms. In his recent article, Powell [18] 

presents several rank one algorithms, some of which 

require no one-dimensional linear searches. 

3. Methods Using Second Partial Derivatives

Using all three terms of the Taylor series expansion 
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➔ ➔ ➔ ➔T ➔ ➔T ➔ g(a.+ta.) � g(a.) + Vg.�a. + 1/2 6a.G.ta. (2.2)bis 
l l l l l l l l 

➔ where Vg. and G. are as defined in equations (2.3) and 
l l 

(2.4) respectively, leads to another class of algorithms. 

Since equation (2.2) is exact then g(�) is quadratic, 

all algorithms in this class have property Q. Indeed, in 

the absence of roundoff error, convergence for the 

quadratic function occurs in one step. Evaluation of 

first and second derivatives is required to obtain the 

➔ direction vector 6a .. 
l 

One of the older and better known methods in this 

class is the Newton-Raphson algorithm. This algorithm 
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estimates the position of the ➔--
minimum a by using the 

sufficient condition 

➔ 
ag( a)

= 

-+ 
'ilg. + -+ 

G.tiCJ.. 0 (2.16) 

-+ 
where /ia. 

i 

dCJ. 

a . •

i i i 

-+ 
Solving for CJ.i+l yields

-+ 
= CJ. • 

-l -+ 
- G.-Vg ..

i i 
(2.17) 

For the quadratic objective, G. is constant and equation
l 

(2.16) represents a linear system of equations. When 

(2.2) is not an exact representation of the objective 

function, equation (2.17) must be applied iteratively. 

As Dennis [20] notes, when;. is in a small neighborhood
i 

of a ' convergence is second order, i.e. 

-+ +* 
11 ai+l - a 11

where c is a constant and 

I I ➔ ➔�•: I I 
2

< c a . - a 
i

is the solution. In cases 
-+ 

where g(a) is not quadratic, equation (2.2) may be a poor 

estimate of the objective function in the region of 

interest; hence, the solution of equation (2.17) may 

produce a value of; which causes g(�) to increase. 

To prevent the function value from increasing, 

equation (2.17) is replaced by 

-+ -+ -1 -+ a.+l = a. - t.G.-vg.
l i i l l

where t. is determined by a one-dimensional search in
l 

This modified version 
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of the Newton-Raphson algorithm has both second order 

convergence in a region close to the solution and the 

ability to converge from very poor starting approximations. 

Although successful in practice, little work has been done 

on identifying general convergence conditions for the 

modified Newton-Raphson algorithm. 

Perhaps the most serious disadvantages to these 

methods result from the requirement that both first 

and second derivatives must be computed. In many problems, 

extensive calcualtion or the unavailability of second 

derivatives make such methods unacceptable. This 

problem has motivated the development of the quasi­

Newton methods. 

B. Least Squares Methods

Least squares methods are motivated by attempts to

solve nonlinear problems of the form 

. . . minimize 

➔ + + + 

where h(a) = [h1Ca), h2(a),

defined in equation (1.4). 

(l.3)bis 

. . . ) the residual 

The basic approach to solving the least squares 

problem is to approximate h(�) by using two terms of 

the Taylor series expansion about a known point 
+ . 
a. , Vl Z. 

l 

(2.18) 



where 

+ + 
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H = [� ah 
aa ' 3a'1 2 

. . . , (2.19) 

lS evaluated at 
+

a . . Substituting equation (2.18) into 

equation (1.3) and letting h = h(;.) yields 
l 

(2.20) 

The least squares algorithms to be discussed have been 

classified according to the strategies used in obtaining 
+ 

the direction vector �a. from (2.20). 
l 

Some methods in 

this class recognize that approximation (2.20) is exact 

whenever h(;) is linear in ;, i.e., J(;) is quadratic. 

Such least squares methods possess property Q. 

Since least squares problems are a subset of the 

class of general nonlinear unconstrained minimization 

problems, all general methods can be applied to least 

squares problems. However, with the exception of certain 

pathological cases, experience indicates least squares 

problems are more efficiently solved by algorithms 

specifically designed for that purpose. 

One possible reason for mediocre performance of 

the quasi-Newton algorithms when applied to least squares 

problems has been noted by Dennis [20]. 

the gradient and Hessian of (1.3) yields 

Computation of 



where 

G. 
l 

VJ. 
l 

T ➔ 

= 2H h(a.), 
l 

n 
= (

➔ ) 2 (
➔ ) + 2HTH, 2 L hk a. V hk a. 

k=l l l 

2 + 

a hk(a.) 
= [ l ],

aa.aa 
J s
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Note that vj. and G. correspond to vg. and G. respectively 
l l l l 

in the general Taylor series expansion (2.2). Then, 

computing H not only furnishes vj. but also a part of 
l 

G .. Dennis claims quasi-Newton methods are suspect 
l 

for use in least squares since they attempt to build 

the inverse Hessian from gradient information alone. In 

applying such methods to least squares problems, the term 

HTH is thrown away--the very antithesis of the philosophy 

of these methods! 

1. Gauss Algorithms

Karl Gauss' algorithm [47], first described in 1809, 
➔ comes from the idea that when the solution a* of the 

➔ ➔ � least squares problem has been found, then aJ(a*)/ata = u. 

Thus, differentiating equation (2.20) with respect to 

6�. and setting the results to zero yields 
l
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T -+ 

H Ht. Cl. = 
i 

-1/2 vJ. (2.21) 
i

or 

+ + 

where H and h are evaluated at a, • •  
i

After determining 
+ . + . the step t.a.i' the new parameter estimate a.i+l is made

by computing 

+ + t. a. ..
i 

-+ 

The procedure is then repeated using a.i+l in place of

;. in equations (2.22) and (2.23). 
i 

In practice, the 

(2.22) 

(2.23) 

algorithm may produce a point beyond the region in which 
+ 

J(a.) can adequately be represented by the linearization 

of equation (2.20). 

likely to diverge. 

In such cases, the iterates are 

To avoid convergence to a stationary point that 
+ -+ 

is not a minimum and to insure that J(a.i+l) < J(a.i)'

H. O. Hartley proposed a modification to Gauss' 

algorithm [ 15]. The Gauss-Hartley algorithm performs 

the process of linearization described by equation (2.20), 

then proceeds to solve the system of linear equations 
+ 

( 2. 21) for t.a. .. 
i 

. -+ . Hartley selects the new point a.i+l using

+ 

= a,. 
i 

+ + t.t.a..
i i 

( 2. l)bis 
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where the scalar t. is the solution of the one-dimensional 
l 

search problem 

minimize J(t) = minimize 
➔ ➔ 

J(a. + tlla.) 
l l 

for O < t < 1. Both the Gauss and Gauss-Hartley algorithms 

possess property Q. 

The Levenberg-Marquardt algorithm [1,14] is another 

Gauss algorithm which has been quite successful. 

Marquardt observed that a good choice for the direction 

of search lay between the negative gradient of the 

steepest descent algorithm and the linearization direction 

of Gauss' algorithm. In developing a compromise between 

the two algorithms, Marquardt found it possible to select 

both the direction of search and the step length 

simultaneously. Since the steepest descent process is 

sensitive to scaling factors, Marquardt defined a 

procedure for scaling the system of linear equations 

represented by equation (2.21). 

be represented by 

Let the scaled system 

* .,,,: 

where A and 1 are evaluated at a. . .
l 

Instead of solving 

this equation, Marquardt solves the equation 

-!: 

(A (2.24) 



.,. 
+#� ➔ 

Rescaling 6a. gives the desired 6a .. 
i i 

solution point is given by 

30 

The new 

-+ -+ 
= a. + 6a. (2.23)bis 

i i 

Marquardt observed that by choosing larger and 

larger values for the scalar A., the direction vector 
i 

��': 
6a. rotated from the direction vector of the Gauss 

l 

algorithm to the direction of Cauchy's steepest descent 

vector. Hence, it is always possible to select a 

sufficiently large A· such that 
l 

-+ 
< J(a.). 

l 
(2.25) 

Some form of trial and error is necessary in the 

selection of A· which will satisfy the inequality (2.25) 
l 

while producing rapid convergence of the algorithm to 

the desired least squares result. 

The Levenberg-Marquardt algorithm determines rather 

accurately the maximum neighborhood in which the 

truncated Taylor series gives an adequate representation 

of the nonlinear model. Hence, the algorithm avoids the 

problems of the Gauss algorithm while retaining that 

algorithm's ability to converge rapidly to the minimum 

-+ 
value of a once the vicinity of this point has been 

reached. Further, both the Levenberg-Marquardt and Cauchy 

steepest descent algorithms have the ability to converge 
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from an initial guess �O which may be outside the region

of convergence of other methods; however, the Levenberg­

Marquardt algorithm avoids the slow convergence of Cauchy's 
➔ 

method caused by poor conditioning of the J(a) surface. 

Therefore, the algorithm combines the best features 

of the Gauss and Cauchy algorithms while avoiding their 

most serious limitations. 

Success of the Levenberg-Marquardt algorithm has 

led several authors to try modifications of the basic 

algorithm. Buchele [48] selects the damping factor 

for use in equation (2.24) by using information from the 

matrix of second derivatives while Tabata and Ito [49] 

select each damping factor based on results of the three 

preceding function evaluations. Brown and Dennis [50] 

have proposed a finite difference analog of the Levenberg-

Marquardt algorithm. Meyer [51] has proposed an interesting 

combination of the Levenberg-Marquardt algorithm and the 

Gauss-Hartley algorithm. Meyer reports favorable results 

from his algorithm which at each step first solves the 

Levenberg-Marquardt problem and then does the one­

dimensional search proposed by Hartley before accepting 

the new parameter values. A recent modification by Smith 

and Shanno [52] allows the damping factor of equation (2.24) 

to be negative as well as positive. Smith and Shanno 

also use the steepest descent step as an alternative in 

cases where the problem becomes ill-conditioned. Jones' 



Spiral [53] differs from these modifications in that no 

matrix inversions are required. 

2. Grey's Orthonormal Optimization Program

A conjugate direction algorithm for solving least

squares problems arising from the design of imaging 

optics was developed by D. S. Grey [3,4]. Since its 

inception, Grey's Orthonormal Optimization Program, 

GOOP, has been used in optics. Although this method 

has found little favor in the literature, it is being 

used successfully at several industrial and research 

centers. 

Feder [54] indicates that the individual elements 
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➔ ➔ 

of the residual or aberration vector h(a) of equation (1.4) 

are of particular interest to the optical designer since 

they provide a measure of how sharp and distortion free 

a figure in the object plane of a lens system will appear 

in the image plane. Accordingly, Grey solved the system 

(2.21) in such a way as to focus attention on the aberration 

vector. At each step, he computed the direction vector 

6�. using a transformation of the coordinates generated 
i 

by the Gram-Schmidt orthonormalization process. This 

transformation, used in a stepwise procedure to move 
➔ ➔ 

from ai to the next point ai+l' allows for individual

adjustments of the transformed parameters. 



Grey's original version of the algorithm used finite 

difference approximations to the derivatives since ana­

lytical evaluation of derivatives was unreasonable for 

his problems. For purposes of algorithm comparisons, 

the version of GOOP presented here uses analytic 

derivatives. 

The algorithm was described further by Pegis, Grey, 

Vogl, and Rigler [55] as it related to filter design. 

Lesnick and Rigler [9] used the algorithm in solving 

spectral absorptivity problems. A detailed description 

of GOOP was given by Broste [56] in which he applied 

GOOP to control problems. In addition, he proved GOOP 

was a conjugate direction algorithm with property Q. 

Cornwell [11] modified GOOP and proved that by using his 

modification, convergence of the algorithm was guaranteed 

➔ 

for any J(a). The work reported in this thesis presents 

a further modification of GOOP for use in solving 

regression problems in which the parameters are naturally 

grouped by their appearance in the model being fitted. 

Chapter III contains a detailed description of the 

GOOP algorithm as well as a description of the modi­

fications made for this work. 

3. Separation of Variables Algorithms

The literature records few least squares algorithms 

which exploit the arrangement of the parameters within 
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the model being fitted. Those methods now in existence 

tend to separate the variables in the model into two 

subsets; a set of purely linear variables and a set of 
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purely nonlinear variables. Hence, to use such techniques, 

the model referred to in equation (1.2) must be of the form 

y = � 
i=l 

a..f.(x,6) + E 
i i 

where the a. are the p linear parameters in the model 
i 

(2.26) 

and each f.(x,6) is a function of one or more of the q
l 

nonlinear parameters. 

space, then m = p + q . 

Note that if Rm is the parameter 

Fitting the model in equation 

(2.26) in the least squares sense is equivalent to 

solving the problem 

. . . minimize 
➔ ➔ 

J(a.,B) = (2.27) 

over� i:: RP, 6 i:: Rq where I lzl I is the usual Euclidean 

no rm and A ( S ) = [ f 1 ( x , S ) , f 2 ( x , S ) , . . . , f p ( x , S ) ] . The

solution of equation (2.27) is found by solving the follow-

ing two subproblems. 
➔ 

For a given B, first solve the 

linear least squares problem 

. . . minimize (2.28) 

➔ 

over a. 
• 

➔(➔) Call the solution a. B . With this solution 

to the linear least squares problem, next solve the 

nonlinear problem 

minimize II ➔ ➔ ➔  -+11
2A(B)a(B) - y (2.29) 



over 8 £ Rq. Methods differ by how and when they solve 
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the two subproblems in equations (2.28) and (2.29). Their 

common feature is that they alternate between solving 

the two subproblems until convergence is obtained or 

until the iterations are stopped. 

One of the first algorithms of this type was 

reported by D. D. Walling [8] in 1963. 
+ 

For a given 8,

Walling solves the linear least squares problem (2.28) 

by setting aJL(;)/a� = O and solving the resulting linear

system of p equations in p unknowns 

(2.30) 

+ 
where A(S) is from equation (2.27). Taking the solution

;(8) of equation (2.30), Walling applies the Gauss 

algorithm described earlier to the nonlinear problem 

( 2. 29). He continues alternating between the two 

subproblems until convergence is obtained. He compares 

results from his algorithm with results obtained from 

both the Gauss and Gauss-Hartley algorithms. 

In 1971, Richard Barham [57-58] proposed an algorithm 

similar to that of Walling.* Barham improves the conver­

gence rate of Walling's algorithm by using either the 

Gauss-Hartley or the Levenberg-Marquardt algorithms to 

*It is interesting to note that H� 0. Hartley was at
Iowa State during the course of Walling's work and at
Texas A. & M. when Barham's algorithm was developed.



solve the pure nonlinear problem. Further, whenever 

evaluation of the objective function is required in 

the solution of the nonlinear problem, Barham resolves 

the linear problem before selecting the best correction 

value. Barham reports results from solving Walling's 

problem as well as several other problems from the 

literature. 

More recently, Ruhe and Wedin [59] proposed a series 

of three related algorithms which solve ( 2 . 2 7) by solving 

first the linear and then the nonlinear subproblems. 

➔
For a given estimate 8 of the nonlinear parameters, the 

overdetermined linear least squares problem ( 2 . 2 8) is 

solved using Householder transformations to obtain 
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➔ ➔ ➔ ++

a.(8) = A(B) y ( 2 .31) 

where A(S)
+ 

denotes the pseudoinverse. It is at this 

point that the objective function is evaluated to deter­

mine if convergence has occurred. 

In the absence of convergence, the solution ( 2.31) 

to the linear problem is substituted into the nonlinear 

problem. Equation ( 2 . 2 9) becomes 

minimize JN(B) = ll[A(B)A(B)
+ 

- I]yjj
2 (2.32) 



+ 
where QA

= I - PA and PA = AA .  The three methods

presented by Ruhe and Wedin for solving the nonlinear 

problem make use of the separation of variables property 

➔ 

in that at every step the S parameter values returned 

are in the submanifold 

[i]
-+ -+ ++ m ; a. =  A(S) y} C R  • 

Linearization is again used in a manner similar to that 

used in the derivation of other least squares algorithms. 

Denote the residual for the general least 

squares problem (2.27) by 

37 

➔ ➔ ➔ ➔ ➔ ➔

h(a.,S) = A(S)a. - y (2.33) 

and partition the n x m partial derivative matrix with 

➔ ➔ 

respect to a. and S as 

where 

H-+ ➔ = [AIBJ
a. , 8

. . . , 

is 
➔ 

n x q and A denotes the n x p matrix A(s). 

s2, the residual becomes

as indicated by equations (2.32) and (2.33). 

Now in 

( 2. 34) 

The n x q 



partial derivative matrix of equation (2.34) with respect 
➔ • to f3 lS

where 

H+ = 

(3 

T 

C = A+T(�-+ dp;�'<AY'l 
. . . , 

-+ 
Using the above notations, the incremental vector 6f3.

l 

for the nonlinear problem is obtained by one of the 

following three algorithms 

I . 

II. 

III. 

Then compute 

➔ + -+ 
fl f3 . = B . QA y .

l l . 
l 

where O < t. < l is the steplength parameter obtained by 
- l -

a one-dimensional search. As with Barham's algorithm, 

Ruhe and Wedin indicate that whenever evaluation of 

the objective function is required in the one-dimensional 

search, the linear problem should be resolved. In the 

numerical examples presented, they always choose ti = 1.
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The following should be noted in connection with 

the above algorithms. Algorithm I is the Gauss algorithm 

applied to the restricted problem (2.32) as it was origi­

nally derived in a paper by Golub and Pereyra [60]. 

Algorithm II is the adaptation of the Gauss algorithm 

applied to the general problem (2.27) and modified to 
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take advantage of the structure of (2.32). Algorithm III 

is very similar to Walling's algorithm in that minimi­

zation is first done with respect to the linear parameters 

and then the nonlinear parameters. 

Other approaches to the separation of variables 

problem include work by Krough [61] and Kaufman [62]. 

These modifications of Golub and Peryra's algorithm tend 

to improve the efficiency of that algorithm. Osborne [63] 

used a transformation to remove the linear parameters 

from the model. This method requires solving a nonlinear 

problem having a linear constraint. 



III. BLOCKED ORTHOGONALIZATION

The primary interest in this study is to match 

problems having characteristics which may be identified 

a priori with algorithms which exploit these character-

istics. While the literature records algorithms which 
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separate model parameters into groups of purely linear and 

purely nonlinear parameters, the algorithm reported here 

is applicable to any problem in which there is a "natural" 

parameter grouping. Such groupings are particularly 

appealing in solving least squares problems since 

parameters in these problems are directly related to the 

physical appearance of the data being fit. Further, since 

the groupings can be chosen independently of the linear­

ities and nonlinearities of the model, the new algorithm 

is more general than its predecessors. 

As an example of a model in which the parameters 

are naturally grouped, consider the problem of fitting 

spectral. absorptivity data from a YAG laser by using 

a linear combination of Lorentz functions* 

y = t: 2 j = l a3j-l

+ E:: . (l.S)bis 

*A discussion of the origin of this problem in physical
optics can be found in the text Radiation and Optics by
J. M. Stone [64].



Lesnick and Rigler [9] used Grey's GOOP [3,4] to solve 

this problem. Mireles [65] solved a simpler version of 

the problem using one-dimensional coordinate searches. 

In both cases, parameter estimates were individually 

adjusted. Neither algorithm took advantage of the fact 

that each term in the above sum corresponds to a peak 

in the graph of the data. Moreover, the following esti­

mates of peak appearance are available for the j-th 

peak 

amplitude 

half-width 

peak location 
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Hence for this problem, a nonlinear least squares algorithm 

is desired which will take initial estimates of the 

parameters and adjust them in groups of three (i.e. one 

peak at a time). The fact that each group contains both 

linear and nonlinear parameters makes previous separation 

of parameter techniques of little value in solving this 

type of problem. 

In order to obtain a nonlinear least squares algorithm 

in which model parameters can be adjusted in groups instead 

of separately, a block orthogonalization method proposed 

by R. E. von Holdt [10] in quite a different context was 

combined with the conjugate direction algorithm of D. S. 



Grey [3,4]. While it is reasonable to approach any 

conjugate direction algorithm in a similar manner, the 

choice of Grey's method for modification was encouraged 

by its success with practical problems as well as the 

ease by which the necessary modifications could be made. 

The present extension was suggested by Grey's original 

algorithm where attention was focused upon the residual 

or aberration vector (1.4) and not upon the normal 

equations (2.21). 

This chapter presents a rather detailed description 

of Grey's algorithm followed by a description of the 

proposed blocked orthogonalization algorithm. Since 

many of the mathematical properties of the new algorithm 

are simply generalizations of the properties known for 

Grey's method, discussion of such properties is deferred 

until the last of the chapter where it is shown that 

for the linear case, the set of parameter values produced 

by the new method is a subset of those produced by 

Grey's method. Acceleration of the blocked algorithm 

using Cornwell's Linear Acceleration Technique [11] 

is sufficient to guarantee convergence of the blocked 

algorithm for the nonlinear least squares problem. 

A. Grey's Orthonormal Optimization Program

In Grey's Orthonormal Optimization Program (GOOP), 

the basic approach to solving the least squares problem 
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is 
-+ 

to proceed from a given parameter estimate a0 to a

better estimate; by means of the incremental equation 

+ 
While many strategies for selecting �a have been proposed, 

all are required to produce a value of; which results 

in reduction of the objective function 

(l.3)bis 

+ -+
where h(a) is the residual of equation (1.4). As in 

the methods described in Chapter II, Grey uses linear­

ization to replace h(�) in equation (1.3) by the first 

two terms of its Taylor series expansion about ;0, viz.

�h(1) 
+ -+ 

"" "' h  + Ht.a 

where Hik is the k-th element of the gradient vector

evaluated at the i-th data point (see equation (2.19)) 

Recall that (3.1) is exact when his 

linear. 

Substituting equation (3.1) into equation (1.3) 

( 3. 1) 

and setting aJ/a� = 0 as was done in Gauss' method gives 

the linear least squares problem 

Grey's procedure for solving this problem uses the 

classical Gram-Schmidt orthonormalization process to 
-+ 

generate a coordinate transformation from the t.a-space 

( 3. 2) 
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➔ 

to a ty-space in which the transformed version of equation 

(3.2) has an "easy solution." The 6y obtained is then 

transformed back to obtain the 6; which reduces J. 

More specifically, matrix H in equation (3.2) is 

replaced by the matrix product GB, viz. 

T T + 

B G  GB6a 

where the columns of G are orthonormal and B is the 

upper triangular Gram-Schmidt transformation matrix.* 

By simplifying and identifying B6� as the variable in the 

6y-space, the solution of equation (3.2) in the 6y-space 

is reduced to 

The upper triangular form of the nonsingular matrix B 

is easily inverted to obtain 

+ -1 ➔ 

6a = B 6y. 

➔ 

The orthonormal transformation to the 6y-space 
• -+ 

decouples the effect of the parameters in the 6a-space 

on the quadratic elements of J. This coupling effect 

( 3. 3) 

is particularly strong in the case of an extremely non-

*No relationship is being implied between this G and
the Hessian G of Chapter II.



linear function. In the new space each component of 

➔ 
Ay can be independently adjusted to reduce J without 

affecting adjustments already made to previous elements. 

This independence is guaranteed since the partials of 

➔ • ➔ 
h with respect to each Ay component are the orthonormal 

columns of G. 

Details for computing the elements of G and B by 

the classical Gram-Schmidt orthonormalization process 

are given below. 
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( 3. 4) 

where 

n. = * ti. 

G. = n.111n.11
l l l 

and H. denotes the i-th column of H.
l 

i=2,3, ... ,m 

An important feature of the above transformation 

( 3. 5) 

( 3. 6) 

( 3. 7) 

( 3 . 8) 

is that the solution of equation (3.2) given by equation 

(3.3) can be computed in a stepwise manner allowing use 

of the most current parameter estimates in adjusting 
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-+ 

the 6y components. In other words, the i-th component 

of 6; is given by 

-;±;T=+ 6y. = -l:i.h. ( 3. 9) 
l l 

Computing C., the i-th column of B-l at each step would
l 

allow determination of the appropriate change in the 

➔ . 6a.-space, i.e. 

6-;,. = c.6y .. 
l l l 

Observing that the orthonormalization process builds 

the B matrix one column at each step, B can be constructed 

as the product of m matrices each of the form 

1 Bli
•• 0

B2i

B. B .. 
ll 

l 

0 •• l 

where the elements in the matrix are computed by equation 

(3.7). Note that B. . = I ID. I I . 
ll l 

If B(i) represents that 

part of the matrix B constructed at the i-th step, then 

B(i) = B.B. 1 ... B1l l-

(3.10) 



and 

B = B(m). 

Computing B(i)-l would give the part of B-l 
which

has been constructed at the i-th step. Applying simple 

matrix algebra to equation (3. 1 0) gives 
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B(l.)-1 = -1 -1 -1 = B
1 

... B .. 1
B. 

1- 1
( 3. 11) 

and 

-1
B 

Equation (3.11) is particularly appealing since 

-1
B. =

1 

1 

0 • • 

-B
1

./B ..
1 ll 

-B
2

./B ..
l 11

1/B ..ll 

•• 0

1 

. (3. 1 2) 

If B(i)-l is computed at each step, only the elements

of the i-th column of B and the matrix B(i-1)-l 
are

required. Since future steps do not alter the i-th

column of B(i); 1 it is equal to C., the i-th column of
1 

-1B .



The iteration scheme for GOOP can be summarized 

as follows. 

Initially choose �O and evaluate h(;0) = y - f(x;;0)

At the i-th step compute 

(a) 

(b) 

(c) 

(d) 

(e) 

H. 
l 

G. 
l 

c. 

➔ 

= ah/aa.l i-th column of H.

i-th column of G from the
➔ 

by-space from equations 

(3.4-3.8). 

. -1the i-th column of B 

from equations (3.11, 

3.12). 

the scalar from equation 

(3.9) to minimize h(�) 

in the C. direction. 

update. 

Broste [56] has shown that GOOP is a conjugate 

direction algorithm. Therefore GOOP has property Q 

and m or fewer cycles of the algorithm will minimize 
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an objective that is a pure linear least squares function. 

When h(�) is nonlinear, the algorithm may produce a point 

lying outside the region in. which the linearization 

assumption (3.1) is accurate. In such cases, the point 



chosen by the algorithm may actually increase the value 

of the objective function. 

Broste described several modifications of the above 

iteration scheme when Grey's algorithm is being applied 

to a nonlinear residual. These modifications prevent 

the algorithm from producing points beyond the region 

accurately described by the linearization while main­

taining the fastest possible rate of convergence. 

The first modification is to replace step Ce) in 

the above iterative scheme by 

Broste determined the scalar t. by using a series of 
i 

scaling estimates. The work presented here uses a one-

dimensional search in the C.6y. direction to determine 
i i 

a value of t. 
i 

➔ ➔ 

such that J(a.) < J(a. 1).
i i-

Further, since His not a constant matrix in the 

nonlinear case, H. should be re-evaluated at the i-th 
l 

step using the most recent parameter estimates. In like 
➔ 

manner, the most recent value of the residual at ai-l

should be used in determining �y .. 
l 

Since the residual 

has already been evaluated as a result of the one­

dimensional search, no new computation is needed. 

In the case of the nonlinear residual, GOOP 

becomes an infinite process. Convergence is not guaran-

teed in m steps as it was for the linear problem. For 
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this reason, it is necessary to continue iterating until 

the value of the objective function becomes sufficiently 

small or until no further reduction of the objective 

function is possible. 

Cornwell [11] has shown that it is worthwhile to 

insert a spacer step at the end of every m steps. A 

spacer step is a procedure which given a nonsolution 

point ;. 1 can find an;. such that g(;.) < g(;. 1).i- l i i-

Beginning at ;0 Cornwell applies GOOP to the nonlinear

problem for m steps to obtain the point;. m He then

applies his spacer step LAT, i.e. Linear Acceleration 

Technique, which performs a one-dimensional search in 

h ➔ ➔ • • f. d . -+( l) h h t eam -a
0 

direction to in a point a0 sue t at

J(;6l)) < J(;m). GOOP is then restarted from the point

➔
(l)a0 This is not only a practical acceleration trick 

but a theoretical safeguard since by using Zangwill's 

[66] mathematical framework, Cornwell has been able to

prove that modifying GOOP with LAT will guarantee

convergence of the algorithm in the case of a nonlinear

residual. A flow chart for LAT can be found in

Appendix C.

B. Blocked Orthogonalization

Recognizing as in the YAG example that the para­

meters in least squares problems are often naturally 

grouped, it seems reasonable to seek an algorithm which 
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adjusts parameters in groups instead of adjusting them 

one at a time as is done in GOOP. Further, since each 

group may contain both linear and nonlinear parameters, 

the algorithm should be capable of handling mixed groups 

of parameters. The algorithm proposed in this section 

meets these requirements. It represents a combination 

of Grey's algorithm with a block Gram-Schmidt process 

proposed by R. E. von Holdt [10] in 1962. Von Holdt 
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originally used the blocked Gram-Schmidt process in solving 

discrete analogs of elliptic boundary value problems. 

The new algorithm replaces the Gram-Schmidt process 

of equations (3.4-3.8) from GOOP with the following 

block Gram-Schmidt process of von Holdt. 

Gl 
= 

HlLl

i-1
D. = H. }: GkBkii l k=l

G. = D. L. l = 2 , 3 , .. • , Ji l l

where 

Bki 
T= GkHi 

and the inverse of L. is the non-singular, upper tri­
i 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

angular matrix formed by the Cholesky decomposition of 

T 
D .D . .

l l 
It should be noted that the G. and D. are now nxj 

l l 

column matrices where j represents the number of parameters 



in each block. The matrices Bk. and L. are jxj. 
i i 

A

description of the Cholesky decomposition technique 

can be found in Appendix D while the question of the 

existence of L. is discussed later in this chapter. 
i 

Appendix E verifies that for a constant matrix H, the 

orthonormal matrix produced by the Gram-Schmidt process 

is identical to that produced by the blocked Gram­

Schmidt algorithm! 

Using the blocked Gram-Schmidt process to transform 

the parameter space decouples the effects of these 
➔ 

parameters in the Aa-space on the quadratic elements 

of J, but it decouples them in blocks of j parameters 

each. Thus, j parameters can be adjusted at a time in 
➔ 

the Ay-space without affecting adjustments already made 

to previous blocks. Thus, equation (3.9) becomes 
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(3.17) 

where Ay is a j element column vector. 

Constructing C., the i-th column matrix of B-l at
i 

each step would allow one to determine the appropriate 

change in the A;-space in essentially the same manner 

as was done before, i.e. 

➔ ➔ 

Aa. = C.Ay .. 
i l i

The matrix c. is now an mxj matrix. 
i 

(3.18) 



Taking advantage of the fact that the blocked 

Gram-Schmidt process builds matrix Bin blocks of J

columns at a time, matrix B can be constructed in blocks 

of j vectors each by taking 

B. =
l

I 

0 • • 

-1
L. 

l

• •  0

I 

where the elements of B. are jxj matrices from the 
l 

53 

blocked Gram-Schmidt process. The corresponding inverse is 

-1
B. =

l 

I 

0 • • 

-B
1

. L. 
l l 

-B
2

.L. 
l l 

L. 
l 

• • 0

I 



Again, letting B(i) be that part of the matrix G con­

structed at the i-th step one has, as with GOOP, 
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(3.20) 

Therefore, the i-th column block of B(i)-l will be

-1 
c. , the i-th column block of B .

i 

The iteration scheme for the blocked orthogonal-

-i'zation method appears similar to that for GOOP.

Initially 
➔ 

choose a0 and j.

-+ ➔ 

Evaluate h ( a0) =

At the i-th step compute 

(a) 

(b) 

(c) 

-+ ➔ 

H. = [ah/cla .. ·
+i

· .. ah/aa .. ]i i]-J i] 
i-th column

G. i 

c. i 

block (an nxj matrix) of H. 

i-th column block (an nxj matrix) of G 

using equations (3.13-3.16). 

i-th column block (an mxj matrix) of

-l B computed by equations (3.19, 3.20).

➔ 

(d) tiy.
i

a j element column vector computed by 

equation (3.17). 

(e) 
➔ 

Ct . = -+ ➔ 

a. l + C.tiy.
i- i i

update.

The number of parameters in each block, i.e. J, may be 

determined by the appearance of the parameters in the 

function being f itted. For the YAG problem, j is equal 
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to 3. While the proposed algorithm blocks parameters into 

groups of equal size, the algorithm is easily modified to 

handle blocks of various sizes within the problem. For 

cases in which j=l, the algorithm reduces to Grey's 

original method. When all parameters are placed in the 

same block, the method becomes an implementation of the 

Gauss-Hartley algorithm [15]. 

As with GOOP, the blocked orthogonalization algorithm 

is applied to problems having nonlinear residuals by 

making the following modifications to the above procedure. 

a.) Before updating at step (e), perform a 

one-dimensional search to determine the 

length of the step to be taken in the 
➔ C.6y. direction.

i i 

2.) Use the most recent parameter estimates 

3. ) 

-+ 

available when computing H. and 6y .. 
i l 

If convergence has not been obtained 

after m/j steps (i.e. one pass through 

matrix partials), 
➔ 

the of set 
a. 0 

= a. m/j

and repeat the entire process. Continue 

until J(;) becomes sufficiently small 

until no further reduction of J(;) is 

possible. 

or 

(3.21) 

Every m/j steps, Cornwell's LAT [11] can be applied 

to the blocked orthogonalization method in precisely the 



same way as it is used in Grey's algorithm provided that 

all the variables have not been grouped into one block. 

Such a grouping would turn the new algorithm into an 

implementation of the Gauss-Hartley method. In this 

case, LAT would attempt a one-dimensional search in the 
➔ ➔ . • a1 - a0 direction, the direction which was just searched

in determining �1! As the results of the next chapter

will verify, Cornwell's modification does accelerate 

the blocked orthogonalization method. As with GOOP, 

the LAT modification is sufficient to guarantee 

convergence of the blocked algorithm. 

C. Mathematical Considerations
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Since the blocked orthogonalization method just

presented is a generalization of Grey's method, discussion 

of the mathematical properties of both methods has been 

deferred until this time. This section generalizes some 

of Broste's results concerning Grey's algorithm and 

shows that they are also true for the blocked algorithm. 

It shall be demonstrated that for the linear least 

squares problem, the set of points produced by the new 

method is a subset of the set of points produced by 

Grey's method. Unless stated to the contrary, the 

results obtained for blocked orthogonalization are 

applicable to Grey's original method. 



1. Conjugate Directions

Broste has shown that the directions 6�. = C.6y., 
l l l 

l = 1,2, ... ,m, generated by Grey's method are HTH-

conjugate, i.e. 

-+T T -+ 
6a..H H!ia. . = 0.

l ]
l -/. J

The same results can be shown for the blocked ortho-

gonalization method of j parameters per block. 

that 

Recalling 
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-+ -+ 
Lia.. = C.fiy. (3.18)bis 

l l l 

and taking i � J, one obtains 

since 

= 0 

T = [o,o, ... ,r, ... ,oJ . (3.22) 



Each element of BCk is a jxj matrix. Hence, the direc-

tions produced by the blocked method are HTH-conjugate. 

Taking j = 1 gives Broste's proof for Grey's method. 

2. Redundant Parameters

The blocked orthogonalization process depends 

heavily on the existence of a set of upper triangular 

matrices { L . } , i = 1 , . . . , m. 
l 

computed by first computing 

T D. D. =
l l 

Recall that each L. is 
l 

-1 . . .where L. is the upper triangular matrix produced by
l 

the Cholesky decomposition of D�D. (see Appendix D). 
l l 

The inversion of L: 1 gives the desired L .. 
l l 

-1 While the upper triangular form of L. makes matrix 
l 

inversion easy, it is necessary and instructive to 

question the existence of L .. 
l 

Theorem 3.1 not only 

shows that L. can fail to exist, but that such failure 
l 

may be an indicator of poor model formulation. The 

following definition and lemma are necessary for use in 

Theorem 3 .1. 

DEFINITION 3.1 The function J(�) is said to contain 

redundant parameters if some model parameters are linear 

combinations of others. 
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LEMMA 3.1 If P is a symmetric positive definite matrix, 

then P may be decomposed by Cholesky decomposition into 
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P = U
T

U where U is a nonsingular, upper triangular matrix.

Proof of Lemma 3.1 can be found in the book by F. D. 

Murnaghan [67]. 

THEOREM 3.1 
-1

Let L. be the upper triangular matrix pro­
i 

duced at the i-th step of the blocked orthogonalization 

T 
algorithm by the Cholesky decomposition of D.D., 1.e. 

T 
D.D.

i 1 

Assume L
k 

the inverse of 

Then, L., the inverse of 
i 

1 1 

exists for k = 1,2, ... ,i-1. 

exists if and only if none 

of the parameters in the first i blocks of parameters of 

➔ 

J(a) are redundant. 

PROOF It will first be shown that if L
k

, k = 1,2, ... ,i, 

exist then the parameters in the first i blocks are not 

redundant. At the k-th step, let H(k), G(k), and B(k) 

represent the parts of H, G, and B respectively which 

have been computed by the blocked orthogonalization 

algorithm. In particular, B(i) has the form 

-1
L

l

B(i) = 

0 • • 

B
l2 

-1
L

2 

-1
L.



Since B(i) and L:
1, j = 1, ... ,k are upper triangular 

J 
matrices, the determinant 

IB(i) I = -1- 0 

-1 because each L. , j = 1,2, ... ,i is nonsingular. Now, 

G(i) T G(i) = I by the blocked Gram-Schmidt process so that 

Therefore, the columns of H(i) are linearly independent 
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and by Definition 3.1, none of the parameters in any of the 

first i blocks are redundant. 

While the above argument is reversible, it is 

instructive to prove the remaining part of the theorem 

using the contrapositive. Assume that Lk, k = l, ... ,i-1

exist but that -1 singular. In particular, L. lS suppose
l 

that the p-th diagonal element of - 1 is AsL. zero. 

Appendix D shows, for any given row, the Cholesky de­

composition forms elements to the right of the diagonal 

element by dividing by that diagonal element. Hence, 

if the p-th diagonal element is zero the Cholesky de­

T 
composition fails and D.D. cannot be decomposed in this 

l 1

T manner. Applying Lemma 3.1 guarantees that D.D. is not
l 1

positive definite. Hence ID�D. I = 0 and the columns of
l l 

D. are linearly dependent. 
l 

Since D. is produced by a 
l 

linear combination of elements from H(i), it must be the 
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case that at least one column of H(i) is a linear com-

bination of other columns of H(i)! Therefore, the first 

i blocks contain redundant parameters. 

Q.E.D. 

Theorem 3.1 shows that the blocked algorithm 

possesses the ability to indicate whether or not model 

parameters are redundant. Further, failure of the 

algorithm at the i-th step due to redundancy indicates 

at least one parameter in the i-th block is a linear 

combination of other parameters in the first i blocks. 

The second part of the proof of this theorem indicates 

the computational effects produced by redundant parameters. 

When redundant parameters are detected, the model under 

consideration should be carefully re-evaluated. 

3. Linear Least Squares Objective Function

While concern is primarily with the nonlinear 

least squares problem, some remarks .about the new 

algorithm and the linear least squares problem are 

in order. Hence, the remarks made in this section are 

concerned with the cases in which the blocked ortho­

gonalization algorithm is being applied to the linear 

least squares problem. It shall not only be shown that 

the new algorithm possesses property Q, i.e. the ability 

to converge in m or fewer steps, but the stronger result 



that k steps of the blocked orthogonalization algorithm 

theoretically produce the same result as jk steps of 

Grey's algorithm. 

First, it shall be shown that modifications 1.) and 

2.) from (3.21) are of no theoretical consequence when 

applying the blocked orthogonalization method to linear 

least squares problems. Performing a one-dimensional 

search in the C.6; direction in step (e) of the iteration 
l 

process for the blocked orthogonalization algorithm is 

equivalent to replacing this step by 
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(e) (3.23) 

where t. is the scalar determined by the one-dimensional 
l 

search. Consider the following lemma. 

LEMMA 3.2 If the blocked orthogonalization algorithm is 

applied to the linear least squares function J(�), then 

choosing t. = 1 in equation (3.23) will produce the 
-+ -+ 

maximum decrease in J when moving from a. 1 to a ..
l- l 

PROOF Let 6J. denote the change in J(�) when moving 
l 

-+ -+ -+ -+ -+ 
from the point ai--l to a. by a. = a. + 6a. where

l l l-1 l 

-+ -+ 
6a. = -t.C.6y. from equation (3.23). Then, 

l l l l 

t.J. 
l 

-+ 
= J(a.) 

l 

-+ 
J(a. 1)l-

-+ -+ T-+ -+ 
= h(a.) h(a.) 

l l 

-+T T -+ -+T T-+ -+ 
= 6a. H Ht.a. + 2�a. H h(a. 1).

l l l l-

-+ -+ T-+ -+ 
h(a. 1) h(a. 1)

l- l-

-+ -+ T-+ -+ 
h(a. 

1
) h(a. 

1
) 

l- l-



➔ ➔ 
Since H = GB, 6y. 

l 

Tc+ ➔ + 
= -G.h(a. 1), and H6a. =

l l- l 
t.G.6y.

l l l

substitution yields

6J. 
l 

2 ➔T T ➔ = t.�y.G .. G.�y. 
l l l l l 

➔T T➔ + 
2t.6y.G.h(a. 1)

l l l l-

2 t.ll61-11
2

.
l l 

Setting a6J./at. = 0 gives the desired value of t., 
l l l 

a6J. I at. = 2 t. I I 6Y. 11
2 

- 2 I I 6y. 11
2 = o.l l l l l 

Hence, t. = 1 produces the greatest decrease in J when 
l 

going from�- 1 to
l-

a . .  

l 
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Q.E.D. 

➔ Therefore, when J(a) is a linear least squares objective, 

no improvement in the algorithm is gained by making the 

one-dimensional search at each step. 

Further, using the most recent parameter estimates 

➔available when computing H. and 6y. at each step do not 
l l 

improve the convergence rate of the blocked orthogonali-

zation algorithm. More specifically, when the residual 

h(�) = y - f(x;�) is linear, the matrix H is a constant 

matrix and not a function of the parameters being estimated. 

Hence, using the most recent parameter estimates available 

has no effect on computing H .. 
l 

As can be seen in the 

proof of Lemma 3.3, it is not necessary to use the most 

recent parameter estimates available when evaluating 6y .. 
l 



LEMMA 3.3 When applying the blocked orthogonalization 

algorithm to the linear least squares function J(;), the 

convergence rate of the algorithm is not improved by 

re-evaluating the residual h(;) at each step of the 

procedure. 

PROOF The only use of the residual h(;) in the blocked 

orthogonalization algorithm occurs in the evaluation 
+ T+ -+ 

of 6y. = -G.h(a. 1). Then, it must be shown that the
l l l-

➔ . . 6y. obtained at the i-th step as a result of re­
l 

evaluating the residual at each of the preceding steps 

is the same 6y. obtained if the residual is not re-
l 

evaluated. 

Hence, at the i-th step 

-+ T-+ + 
6y. = -G.h(a. 1)

l l l-
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i-1
T 

➔ I G.Gkt:,yk k=l i 

T where Ek = [0,0, ... ,I, ... ,OJ as in equation (3.22).

Since the Gk are orthogonal

which is the same result obtained were the residual not 

updated at each step. 
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Q.E.D. 

The proofs presented above are generalizations of 

those given by Broste in his work on Grey's algorithm. 

Indeed, taking the number of parameters in each block 

as one, i.e. J = 1, will essentially give Broste's 

proofs. The above lemmas are important since they 

assure that applying the blocked orthogonalization 

algorithm to a linear least squares problem mathematically 

produces the same results, whether or not the modifications 

(3.21) are used. Not only can one consider solving the 

linear least squares problem without the modifications 

for the nonlinear problem, but the lemmas imply that 

the inner iterative process is unnecessary for the 

pure linear problem. The problem could be solved in 

• +, 
➔ B-lGTh

+
(�O). one step by constructing a" = a0 - � 



The following theorem shows that for the linear 

least squares problem, the set of points generated by 

the blocked orthogonalization process is a subset of 

the set of points generated by Grey's method. Since 

Lemmas 3.2 and 3.3 indicate the modifications in (3.21) 

have no effect when either of the algorithms are applied 

to the linear least squares problem, the theorem is 

proven for unmodified algorithms. 

THEOREM 3.2 Let J(;) be a linear least squares problem. 
➔ + 

Starting at the point a0 let {ak}' k = 1,2, ... ,m be the

sequence of points generated in m-steps of Grey's 

algorithm and let {S. }, i = 1, 2, ... ,m/j be the sequence 
l 

of points generated in m/j steps of the blocked ortho-

gonalization algorithm where j parameters have been 

placed in each block. 

for i = 1,2, ... ,m/j. 

Then 

+ ➔
f3 • = Cl •  • 

l l] 

PROOF Let H = GB =  QR where G and Q are the orthonormal 

matrices from the classical and blocked Gram-Schmidt 

methods respectively. B and R are the corresponding 

upper triangular Gram-Schmidt transformation matrices. 

Since H, the matrix of partial derivatives from equation 

(3.2), is constant in the linear least squares problem, 

the results of Appendix E guarantee G = Q and B = R. 
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From the blocked Gram-Schmidt process, let 

Qki, k = 1, 2, ... , j be

i-th column block of Q

k-th vector in S., the
l 

Note that

the k-th vector in Q., the 
l 

and Ski, k = 1, 2, ... , j be

. -1 1-th column block of R .

Qki = 8 Ci-l)j+k 

ski = c(i-l)j+k 

the 

where i = 1,2, ... ,m/j and k = 1,2, ... ,j. G. is the i-th 
l 

column of G and C. is the i-th column of B-l from the
l 

Gram-Schmidt process. 
-+ Let 6a

k 
denote the change in the orthogonal space 

produced by equation (3.17) from the blocked method. 

Let �Yk denote the change in the orthogonal space

produced by the k-th step of Grey's method(equation 

-+ -+ -+ 

(3.9)). Denote h(a
0

) by h. 
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Letting { S k } , k = 1 , 2 , . . . , m / j and (t
i 

} , 1 = 1 , 2 , . . . , m

be the points in the statement of the theorem, proceed 

by induction. 

For k =  1 

S • • • ld �Th� - *Th� -ubstitution yie s �kl - bk -

In other words, the k-th element 

6yk for k = 1,2, ... ,j.

�T� of the vector �1h is



the change generated at the k-th step in the orthogonal 

space of Grey's method. Recalling Skl = Ck gives

= a . .  

Now, assume the theorem holds for i = q, i.e. 
-+ -+ -+ 
Ci. • •  It must be shown that Bq+l = a.(q+l)j. qJ 

-+ -+ 
= sq + s trn 

-+ 
= a. • -qJ 

q q 

* * * �T + �T -+ zT -+ T 
[0 1 ,02 , ... ,0. ][l..:!1 h,�2 h, ... ,�. h] q q Jq q q Jq 

Making the appropriate substitutions in terms of vectors 

from Grey's method and letting r = (q-l)j 

Ci. • qJ 

-+
= a.(q+l)j. 

••• - i:,.y +·c +·r J r J
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Thus, the induction is complete and the theorem is proven. 

Q.E.D. 

For the linear least squares problem Theorem 3.2 

guarantees that, at least theoretically, one pass through 



the matrix of partials using the blocked algorithm 

(m/j steps) produces the same result as one pass through 

the matrix of partials using Grey's method Cm steps). 

4. Convergence Properties

By studying the local convergence properties of the

blocked algorithm applied to the linear problem, one can 

get an idea about the convergence of the algorithm 

when it is being applied to the nonlinear regression 

problem. Broste has shown that for the linear problem, 

Grey's method will converge in at most m steps, i.e. 

property Q. From Theorem 3.2 it is clear that the point 

produced by m steps of Grey's method is identical to that 

produced by the blocked algorithm after m/j steps. 

Hence, the blocked orthogonalization algorithm also 

possesses property Q. 

As Theorem 3.2 predicts, the change in the objective 

function when moving from a given point to the next will 

in general be greater when applying the blocked algorithm 

than when applying Grey's method. Theorem 3.3 tells 

what the change will be for each method as well as 

giving a way of comparing the function changes produced 

by the methods. 

THEOREM 3.3 
+ 

Let J(a) be a linear least squares objective 

function. 
+ 

Then for a given point ai
-l
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➔ 
J(a..) =l (1 -

J(a,. 1)l-

-+ 
J(a. 1)

l-

-+ -+ 
where ty. is the change produced in the ty-space by

l 

the i-th step of the blocked orthogonalization process. 

PROOF Using the results as well as the proof of Lemma 

3.2, it is clear that for the linear least squares 

objective 

Hence 

-+ ➔ 
J(a. 1) - J(a..)

l- l 

-+ 

J(a. 1) 
l-

-+ 

J(a.) = 
l 

(1 -

= -+ 
J(a.. 1)l-

I I ty. I I 
2

l ) (
-+ 

)----- J a.. 1 ➔ l-J( a.. 1) 
l-

-+ T-+ ➔ 
where ty. = -G.h(a.. 1) is the j element vector denoting 

l l l-

the change produced in the 6y-space by the i-th step of 

the blocked orthogonalization process in which there 

are j parameters per block. 
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Q.E.D. 

Letting tyki be the k-th element in the J element
-+ 

vector ty., and noting that
l 



one can see that at any given point;. 1, the larger the
l-

value of I 16y. I 1 2, the greater the reduction of the 
l 

objective function. Further, the proof of Theorem 3.2 
➔ 

shows that the vector 6y. produced by the blocked 
l 

algorithm has as its components, the changes produced 

in the orthogonal space by j applications of Grey's 
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algorithm beginning at the point;. 1.
l-

Thus, the reduction 

of the objective function when moving from the point 
➔ ➔ • 

a.
1 

to a. is a function of J, the number of parameters
l- l 

in each block. Theorem 3.3 then guarantees that the 

reduction produced by one application of the blocked 

method with j > 1 will at least be as good as that 

produced by Grey's method. Indeed, the reduction will 

be greater for the blocked method provided �Yki t 0

for all k = 2,3, ... ,j. 

Although the following corollary is not surprising, 

it is of interest in its own right since it provides 

the value of the objective function in terms of the 

steps made in the orthogonal space. The proof is 

simply an application of Theorem 3.3 to the points 
➔ ➔ ➔ 

aO' al, ••• , ai-1 ° 

COROLLARY 3. 1 
➔ ➔ 

Let J(a) and 6y. be as in Theorem 3.3. 
l 

➔ 
J (a.) 

l 

for i = 1,2, ... ,m/j. 

Then 



As the preceeding discussion implies, the greater 

the value of j, the greater the reduction in the ob-

➔ 

jective function when moving from a. 
1 

to 
l-

a . .  It would 

seem desirable then that one should choose J = m, i.e. 

the Gauss-Hartley implementation, in order to produce 

the maximum stepwise reduction in the objective function. 

In this special case, one application of the blocked 

algorithm is equivalent to m applications of Grey's 

method. Hence, convergence occurs in one step. 

While choosing j = m is definitely the optimal 

choice for j as far as the linear least squares problem 

is concerned, the computational results of the next 

chapter verify that for the nonlinear problem, such a 

choice may require more operations and function 

evaluations to obtain convergence than would be needed 

by choosing J < m. 

Applying the blocked algorithm to nonlinear problems 

raises new questions which can no longer be answered by 

considering local convergence properties alone. Since 

the nonlinear problem causes the algorithm to become 

an infinite process, one is immediately faced with the 

problem of convergence. Broste [56] was able to show 

that Grey's algorithm would converge provided the initial 

parameter estimates were "sufficiently" close to the 
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solution. His proof is also valid for the blocked algorithm. 



In his Ph.D. dissertation, Cornwell [68] was able 

to prove that Grey's method would converge from any point 

in the parameter space provided a spacer step such as 

his Linear Acceleration Technique is included in the 

;': 

algorithm after every m steps. When j "I- m, Cornwell' s 

same proof can be used to guarantee convergence of the 

blocked orthogonalization method provided a spacer step 

is applied at every m/j steps of the process. Appendix F 

contains the mathematical framework used by Cornwell 

in proving convergence of his GOOP-LAT algorithm. 

*In the absence of further restrictive assumptions, all
convergence discussions refer to local minima.
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IV. NUMERICAL INVESTIGATIONS

This chpater reports computational experience 

with the blocked orthogonalization algorithm when it was 

applied to problems whose very form indicate a natural 

grouping of the parameters being estimated. Since 
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Cornwell's Linear Acceleration Technique [11,68] serves as 

both a theoretical safeguard and a practical acceleration 

trick, the blocked orthogonalization algorithm was studied 

with and without this modification. 

The results reported here provide a comparison 

of the blocked orthogonalization algorithm with the 

well-known procedures of Grey, Gauss-Hartley, Levenberg-

Marquardt, and Davidon-Fletcher-Powell. Various measures 

of effectiveness were used to measure algorithm performance. 

The results provide a uniform comparison of the algorithms 

in the sense that all algorithms were run on the same 

machine with code written by the same programmer. Recent 

studies such as that of Himmelblau [28] indicate the 

desirablilty for this type of consistency in comparing 

algorithm performance. 

Attention is given first to a brief description of 

algorithm implementations. Following a discussion of the 

criteria selected for evaluating the algorithms, a 

careful description of each problem is given along with 

the results obtained from the numerical investigations. 



A. Algorithms Implemented

Since various algorithms approach the nonlinear 

regression problem from different points of view, the 

blocked algorithm (BG) was tested against several dif­

ferent types of nonlinear programming methods. To this 

end, the Davidon-Fletcher-Powell (DFP), Levenberg­

Marquardt (LM), Grey (GOOP), and Gauss-Hartley (GH) 

algorithms were chosen. These well-known algorithms 

were described in Chapters II and III. It should be 

noted that all algorithms except DFP are from the class 

of Least Squares Methods. 

The blocked orthogonalization algorithm and Grey's 

method were tested with and without the acceleration 

technique suggested by Cornwell [11,68]. To ascertain 

the degree of accuracy required in the one-dimensional 

search routine used in this acceleration step, the step 

was implemented using Cornwell's original LAT and the 

modified quadratic fit of Aoki [69] which was already 
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in use in the BG and GOOP routines. The BG-LAT and 

GOOP-LAT routines use LAT to implement the acceleration 

step in BG and GOOP respectively while BG-QF and GOOP-QF 

implement the acceleration step using the modified 

quadratic fit. Appendices A and C present the flow charts 

for the quadratic fit and the LAT algorithms respectively. 



In an attempt to provide uniformity of test results 

and reduce the effects of programmer influence, careful 

efforts were made to duplicate as much code as possible 

between the algorithms. Indeed, the codes of the blocked 

algorithms, Grey's algorithms, and the Gauss-Hartley 

algorithm are identical. Appendix G contains a descrip­

tion of the details peculiar to the implementation of 

each of the methods tested. 

All algorithms were run in double precision in 

Fortran H on the IBM 370/165. This provided the 

equivalent of sixteen significant digits of accuracy 

and helped to eliminate round-off and truncation problems 

which plague matrix operations and the Gram-Schmidt 

orthonormalization process. In the event one prefers 

to program the algorithms in single precision, the 

appropriate matrix operation precautions are advised. 
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Since the classic Gram-Schmidt process tends to behave 

poorly on a matrix that is ill-conditioned, it is advisable 

to use a correction procedure as suggested by Mitchell 

and McCraith [70] when programming this orthogonalization 

process in single precision or to use extended precision 

for inner products. 

Analytic derivatives were used in programming 

all algorithms reported. This is contrary to Grey's 

original implementation of GOOP to problems in lens 

design. Since such functions must be evaluated by 



ray tracing, the analytic calculation of derivatives is 

not feasible. For this reason, Grey used differences 

to estimate the partial derivatives. The reader is 

referred to Broste [56] for a discussion of implementing 

GOOP with finite differences. For the purposes of this 

investigation, it was felt that the use of analytic 

derivatives in all algorithms provided a more uniform 

comparison. 

In applying algorithms to the test problems, each 

iterative process was allowed to continue until one of 

the following occurred: 

1.) llh<�.)11 < 10-
10,

i -

2.) No further reduction in the value of the 

objective function was possible. (At this 

point, the algorithm in question had found 

a local minimum.), or 

3.) The number of steps taken had reached 400. 

Each algorithm implementation checked the criteria in 

the order listed. 

B. Comparison Criteria

The selection of criteria for algorithm comparison
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was complicated by the fact that each algorithm approaches 

the nonlinear problem from a different point of view. 

In addition, features of an algorithm which may be of 

importance to one user may be unimportant to another. 



78 

Indeed, desirable algorithm properties may vary from 

problem to problem. For example, if the objective function 

and its partials are difficult to evaluate, a user might 

desire an algorithm which keeps their evaluation to a 

minimum although other criteria such as the number 

of arithmetic operations necessary for convergence may 

be increased. For these reasons, several criteria were 

chosen for use in comparing algorithm performances. 

1. Step Count

A step is said to have been made whenever part 

or all of the vector of parameters has been updated. 

In this context, the DFP, LM, and GH algorithms are 

total step methods since any update of parameters 

involves all parameters in the model. The various BG 

and GOOP algorithms tested are called partial step 

methods since only a part of the model parameters are 

updated at each step. 

Since any updating of parameter estimates requires 

at least one call to the function and partial derivative 

routines, step counts are related to function evaluations 

and partial derivative counts. In the total step methods, 

each step requires a complete re-evaluation of the 

matrix of partial derivatives. This is not true for the 

partial step methods. 



2. Function and Partial Derivative Evaluations
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In cases where the objective function or the partial 

derivatives are difficult or require extensive operations 

to evaluate, a comparison using function and partial 

derivative evaluations may be of prime interest. 

In the recorded data, each function evaluation 

(F.E.) represents one call to the function subprogram 

while each partial derivative evaluation (P.D.E.) 

represents the computation of one element in the nxm 

matrix of partial derivatives. 

actual program counts. 

3. Operations Counts

These numbers represent 

Two types of operations counts were conducted for 

each problem. External operations counts (E.O.C.) 

represent the number of operations done outside the 

evaluation of the function and its partial derivatives 

while those done in evaluating the function and partial 

derivatives are reported as internal operations counts 

(I.O.C.). E.O.C. are representative of the complexity 

of the algorithm while I.O.C. represent function and 

partial derivative complexity. 

While these counts are influenced by the individual 

programmer, such counts are helpful in comparing algorithms 

implemented by the same programmer. In the algorithm 



implementations used here, care was taken to avoid 

needless operations such as can occur in the calculation 

-+ 

of C
i

Ayi 
in the blocked algorithm. Since only the first

ij rows of C. are nonzero, the multiplication was done 
l 

only through these rows. Further, quantities calculated 

in the function evaluation and used again in partial 

derivative evaluations were counted only once. 

Since accurate time measurements were unavailable 

at the installation where these problems were run, total 

operations comparisons provide a rough comparison of the 

times required by various algorithms. 

4. Local Minima
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In practice, the model parameters being estimated may 

be subject to constraints which are implied but not 

explicitly stated in the model formulation. For example, 

some parameters in the YAG problem are estimates of 

peak amplitude. Since such parameters must be non-

negative, any local minima containing negative values 

for the parameters corresponding to peak amplitude were 

not acceptable. Hence, before deciding to accept or reject 

a local minimum, both the function value and the parameter 

values were checked for feasibility. 



C. Test Problems and Results

The numerical results reported in this section 

were obtained from models in which the parameters being 

estimated were naturally grouped. Some of the problems 

cited have their origins in the "real world" while 

others were contrived from linear combinations of well­

known functions. 

Each problem was tested using the algorithm imple-

mentations in Appendix G. In all problems except one, 

tests were performed using different starting values for 

the same problem. 

1. Generated YAG Problems

The problems reported in this section are those of 

the YAG type of Chapter I, equation (1.5). They were 

generated in the sense that parameter values and hence, 

peak locations, shapes, and sizes were chosen first. 

Then, corresponding sets of fifty-one data points were 

generated for each problem. The examples represented 

cases in which the data displayed two, three and four 

peaks respectively. For all cases, the peaks were chosen 

in close proximity to each other as experience has shown 

this type of problem to be more difficult than problems 
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where peaks are widely separated. (The blocked aberration 

vectors are more nearly orthogonal when peaks are widely 

separated.) Recalling the relationship between parameters 
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and the physical appearance of the data peaks, as was 

mentioned in Chapter III, parameters for the BG algorithm 

were grouped into blocks of three, each block corresponding 

to a peak. 

Table I contains the solutions and initial starting 

points used for problems 1-6 while Table II lists the 

results of each algorithm. In problems 4 and 5, non-

negativity restrictions were placed on the parameters 

associated with peak amplitude ( i.e. the first, fourth, 

seventh, and tenth parameters) in all algorithms except 

DFP and LM. (One feature of the present algorithm is the 

ease by which variables may be constrained.) A similar 

approach was used by Lesnick and Rigler [9] in their 

work with this type of problem. 

Table III contains a list of solutions produced 

by algorithms in which execution was terminated at 400 

steps or when a point was reached for which the algorithm 

failed to further reduce the value of the objective 

function. 

An initial evaluation of the results of these tests 

reveal that when convergence occurs, the LM, GH, and BG-LAT 

algorithms converge at an impressive rate. However, recall 

that LM and GH are total step methods. Hence, each step 

taken requires complete re-evaluation of the matrix of 

partial derivatives. BG-LAT requires re-evaluation of only 

three columns of the partial derivative matrix for every 

step taken. 



Table I 

Initial and Solution Values for Generated YAG Problems 

Problem Problem Problem Problem Problem Problem 

Solution #1 #2 Solution #3 #4 Solution #5 #6 

0.50 0.45 0.45 0.50 0.45 0.45 0.50 0.45 0.60 

0.50 0.55 0.55 0.50 0.55 0.55 0.50 0.55 0.40 

2.50 2.50 2.00 2.50 2.00 2.00 2.50 2.00 2.60 

4.00 4.50 4.50 4.00 4.50 1.125 4.00 4.50 3.50 

1.00 0.80 0.80 1.00 0.80 0.40 1.00 0.08 1.20 

3.50 3.50 4.00 3.50 4.00 4.00 3.50 4.50 3.70 

0.25 0. 30 0. 30 0.25 0.20 0.40 

0.50 0.40 0.40 0.50 0.60 0.40 

4.50 5.00 5.00 4.50 4.10 5.00 

3.00 3.10 2.50 

1.00 0.90 1. 50

6.00 6.20 5.50 



Table II 

Experimental Results for Generated YAG Problems 

Problem Method Steps F.E. P.D.E. E.O.C. 

1 DFP 30 75 2 29 50 11450 

LM 4 5 1220 17960 

GH 6 17 1840 40490 

GOOP 107 278 5460 106580 

GOOP-LAT 72 226 3670 72780 

GOOP-QF 57 184 2910 56630 

BG 30 74 4590 89150 

BG-LAT 22 83 3370 65810 

BG-QF 22 86 3370 66090 

I.O.C.

130050 

5200 

14620 

209360 

168710 

137190 

59100 

63920 

66060 

F.V.

6xl0-12

6xlo-12

6xl0-ll

7xl0-ll

5xl0-ll

8xl0-ll

7xl0-ll

6xl0-12

lxlO-lO

co 

+



Table II (Continued) 

Problem Method Steps F.E. P.D.E.

2 DFP 30 74 22640 

LM 10 18 3060 

GH 20 44 6120 

GOOP 79 208 4030 

GOOP-LAT 55 165 2810 

GOOP-QF 81 249 4130 

BG 41 94 6270 

BG-LAT 21 79 3210 

BG-QF 23 90 3520 

E.O.C. I.O.C.

11430 128320 

46280 16900 

134830 39 580 

78530 156450 

54780 121810 

80880 186050 

120740 75670 

61740 60850 

68070 69130 

F.V.

2xl0-ll

8xlo-12

5xl0-ll

6xlo-12

3xl0-ll

6xl0-ll

lxlO-lO

lxlO-ll

6xl0-ll

co 

(J1 



Problem Method Steps 

3 DFP 54 

LM 48 

GH 5 

GOOP 150 

GOOP-LAT 117 

GOOP-QF 126 

BG 39 

BG-LAT 30 

BG-QF 36 

Table II (Continued) 

F.E. 

142 

Local 

Local 

439 

370 

406 

113 

110 

131 

P.D.E.

minimum 

. . 

minimum 

65180 

7650 

5970 

6430 

5970 

4590 

5510 

E.O.C. I.O.C.

42280 362100 

209 360 459300 

165830 383140 

179110 4 2 3910 

157800 123560 

121910 118650 

146600 141360 

F.V.

5xl0-ll

0. 2 8

2.29 

6xl0-ll

6xlo-12

6xlo-12

6xlo-12

6xlo-12

6xl0-12

(X) 

m 



Problem Method 

4 DFP 

LM 

GH 

GOOP 

GOOP-LAT 

GOOP-QF 

BG 

BG-LAT 

BG-QF 

Steps 

400 

32 

19 

213 

144 

153 

54 

36 

36 

Table II (Continued) 

F.E. P.D.E.

Execution terminated 

61 14690 

55 8720 

628 10860 

459 7340 

496 7800 

160 8260 

134 5510 

140 5510 

E.O.C. I.O.C.

320000 81770 

277620 67890 

298380 662290 

204170 482870 

217550 521530 

218630 174700 

146330 144430 

146770 150560 

F.V.

0.18 

6xl0-ll

6xlo-12

6xl0-ll

6xlO-l2

7xl0-ll

6xlo-12

6xl0-12

6xl0-12

co 

-..._J 



Table II (Continued) 

Problem Method Steps F.E. P.D.E.

5 DFP 108 301 184210 

LM 5 Locai minimum 

GH 0 Local minimum 

GOOP 400 Execution terminated 

GOOP-LAT 292 1063 14890 

GOOP-QF 324 1119 16520 

BG 264 856 40390 

BG-LAT 128 516 19580 

BG-QF 198 Local minimum 

E.O.C. I.O.C.

143960 1013170 

533160 1439220 

59 59 40 1516840 

1357050 1215840 

600850 723384 

F.V.

lxlO-ll

. 4 

135.85 

.001 

5xl0-ll

7xl0-ll

3xl0-ll

2xl0-ll

5. 2

(X) 

(X) 



Table II (Continued) 

Problem Method Steps F.E. P.D.E.

6 DFP 144 39 8 243580 

LM 20 35 12240 

GH 30 100 18360 

GOOP 400 Execution terminated 

GOOP-LAT 400 Execution terminated 

GOOP-QF 400 Execution terminated 

BG 148 448 22640 

BG-LAT 84 315 12852 

BG-QF 100 372 15300 

E.O.C. I.O.C.

191820 1339670 

344210 62710 

768860 764980 

7 59 9 30 626032 

432990 436090 

516250 515160 

F.V.

SxlO-ll

lxlO-ll

lxlO-ll

0.21 

0.20 

0.20 

lxlO-ll

2xl0-ll

lxlO-ll

00 

(D 



Solution 

0.50 

0. 5 0

2. 5 0

4.00 

1.00 

3.50 

0.25 

0.50 

4.50 

Table III 

Local Minima Produced in Solving 
Generated YAG Problems 

Problem # 3 Problem #4 

LM GH DFP 

0.53 0.93 -4.12

0. 51 0.52 1.03

2.56 2.61 2. 3 6

5. 7 8 3. 8 3 5.50 

1.17 1.02 0.92 

3.70 3. 7 5 2.51 

-0.53 0.03 3. 7 2

1.50 1. 39 1.03 

5. 9 6 4.25 3. 8 2

90 



91 

Table III (Continued) 

Problem #5 Problem #6 

Solution LM GOOP BG-QF GOOP GOOP-LAT GOOP-QF 

0.50 1.13 0.47 2.19 0.52 0.51 0.51 

0.50 0. 69 0.49 0.79 0.50 0.50 0. 50

2.50 2. 6 7 2. 5 0 2.76 2.54 2.54 2. 5 4

4. 0 0 5. 8 8 0. 2 2 1.79 4.84 4.60 4.60 

1.00 1. 2 3 0.48 0.78 1.10 1.08 1.08 

3.50 3. 8 5 4.50 3. 9 8 3. 6 3 3.61 3.61 

0.25 -4xl0
5 

4.17 0. 2 3 -1.07 -3. 54 -2.75

0.50 -2xl0
7 

1.02 0.77 0.65 0. 74 0.72 

4.50 6xl0
8 

3.50 4. 0 3 5.57 5.57 5. 5 7

3.00 2. 10 3.00 3. 0 4 4.64 7.41 6. 5 8

1. 0 0 0. 8 8 1.00 0.90 0.95 0.90 0. 91

6.00 6.06 6. 0 0 6.20 5.74 5.65 5. 6 7



While it was predicted a priori that GOOP-QF 

and BG�QF would require more function evaluations than 

GOOP-LAT and BG-LAT, it was expected that the former 

routines would require fewer steps for convergence since 

the acceleration step used a more accurate search. The 

experimental results indicate that LAT proved to be a 

better algorithm for acceleration of convergence than 

QF. 

In examination of the local minima stated in 

Table III, recall that the physical significance of 

all model parameters require that they be positive. 

Hence, solutions with negative parameters are totally 

unacceptable. Recall that parameters were restricted 

to be nonnegative in problems four and five for all 

but the DFP and LM algorithms. 

Before reporting the LM results for problem five, 

numerous large and small damping factors were tested 

in an attempt to obtain convergence. In each case, the 

algorithm terminated at a local minimum in which parameter 

values were negative. The results reported used a 

damping factor of 0.01 and represent the local minimum 

having the smallest function value. 

The GOOP results for problem five are interesting 

in that the parameters corresponding to peak locations 

two and three have been switched. Had execution not 

been terminated at 400 steps, it is expected that 
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convergence would have occurred as exhibited by the 

parameter and function values. Note that in selection 

of the initial starting values used in problem five, 

the order of the second and third peaks was switched. 

Indeed, the location of the second peak was chosen as 

4.50 which is the actual location of the third peak 

in the data. This peak switching did not occur in the 

local minimum produced by BG-QF. 

Note that in problem six, the blocked algorithms 

were able to maintain parameter relationships and to 

converge while the GOOP versions produced minima with 

negative parameters. 

2. Spectroscopic Analysis Problem

The spectroscopic analysis problem used thirty­

seven points of actual YAG data obtained from a 

spectroscopic analysis experiment. The data with its 

six peaks is plotted in Figure 1. Not only did this 

data contain considerable noise, but the problem was 

further complicated by the presence of instrument gain 

as the data was plotted from left to right along the 

abscissa. For this reason, a quadratic term was added 

to the model of equation (1.5) resulting in the model 

y = z:: 

j=l 

et. 3. 2J-
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Figure 1.--Graph of Spectroscopic Analysis Data 



95 

The three additional parameters created by the introduction 

of the quadratic term were taken to comprise an additional 

block of parameters when the problem was solved by the 

blocked algorithms. 

In selecting the initial parameter values reported 

in Table IV, careful consideration was given to the 

relationships between parameter values and peak 

amplitude, half-width, and location. All algorithms 

except DFP and LM placed nonnegativity constraints on 

all parameters except those associated with the 

quadratic shift factor. 

This problem differed from the others tested since 

the solution was unknown and the data being fitted 

contained noise. Table V records results of the 

comparison criteria. As Table V indicates, DFP produced 

the smallest function value, but required 190480 partial 

derivative evaluations compared with 4330 for BG. Only 

GOOP-QF exceeded DFP in the total number' of operations 

required. Note that LM and GH, the other two total step 

methods, were completely ineffective. Various damping 

factors were tried in the LM algorithm, but all solutions 

contained negative parameters. 

All three versions of GOOP appear to be successful 

until one examines the GOOP-LAT solution in Table IV. 

Table IV indicates that peaks three and four have been 

switched, a highly questionable result in view of Figure 1. 



Initial 
Values 

6.80 

3. 30

56 93.00 

3. 50

4.20 

5735.00 

1.20 

5.20 

5756.00 

0.20 

3.20 

5773.00 

3.48 

3. 30

5794.00 

2.5xl0 

0.05 

5800.00 

0.0 

3xl0
-4

-1.53

Table IV 

Initial and Computed Solutions for 
Spectroscopic Analysis Problem 

DFP LM 

7. 9 4 7.51 

3.44 3. 36 

5692.69 56 92.60 

4. 6 3 4.46 

4.31 4.29 

5734.70 5734.6 0 

0.47 -1. 24

5.48 -72.50

5755.92 5753.70 

0.09 -0.21

3.34 3.96 

5772.98 5774. 60 

5.83 5.08 

4. 01 3.83 

5793.92 5793.90 

-5
9xl0

-3
-3101.7

0.39 l.5xl0
16 

5800.12 3. 8xlO
lO 

-1. 3xl0
-8

-lxlO 
-8

3.5xl0
-4

2. 99xl0
-4

-1.44 -1.53
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GH 

6.80 

3. 30 

5693.00 

3.50 

4.20 

5735.00 

1.20 

5.200 

5756.00 

0.20 

3.20 

5773.00 

3. 4 8 

3.30 

5794.00 

2.5xl0 
-5

.05 

5800.00 

0.0 

3xl0
-4

-1.53
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Table IV (Continued) 

GOOP GOOP-LAT GOOP-QF 

7.21 7. 21 7.22 

3.31 3. 31 3.31 

5692.64 5692.64 5692.64 

3.74 3. 7 5 3. 7 7

3. 9 7 3.97 3.99 

5734.54 5734.54 5734.54 

2xl0-
4 

0.18 4xl0-
3 

6.11 80. 86 0.10 

5755.57 5782.95 5756.19 

0. 0 2 0.04 4xl0-
5 

1.09 1.31 3. 2 7

5771.91 5772.21 5774.80 

3. 59 3.42 3. 2 2

3.24 3.16 3.15 

5793.79 5793.76 5793.75 

lxl0-
4 

lxl0-
4 

lxl0-
4 

0.05 0.05 0. 0 5

5800.00 5800.00 5800.00 

0. 0 4xlo-
14 

8xl0-
17 

3xl0-
4 

3xl0-
4 

3xl0-
4 

-
1.53 

-
1.53 -1. 5 3
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Table IV (Continued) 

BG BG-LAT BG-QF 

7.21 7.21 7.21 

3.31 3. 31 3.31 

5692.64 5692.64 5692.64 

3. 7 4 3.74 3.74 

3. 9 7 3.97 3.97 

5734.54 5734.54 5734.54 

2xl0-
3 

2xl0-
3 

4xl0-
3 

1.10 1.14 1.21 

5756.67 5756.72 5756.60 

0.01 9xl0-
3 

lxl0-
2 

0.07 0.05 0.17 

5771.98 5771.96 5771.97 

4.02 4.02 4.02 

3. 5 2 3.52 3.52 

5793.96 5793.96 5793.96 

2.5xl0 -
5 

2.5xl0 -
5 

2.5xl0 -
5 

. 0 5 .05 . 0 5 

5800.00 5800.00 5800.00 

0. 0 o.o 0. 0 

3xl0-4
3xl0-

4 
3xl0-

4 

-
1.53 -1.53

-
1.53 



Table V 

Experimental Results for Spectroscopic Analysis Problem 

Method Steps F.E. P.D.E. E.O.C. I .0. C. 

DFP 48 286 190480 194140 1153150 

LM 2 Execution terminated due to overflow 

GH 29 132 3220 1809 30 215560 

GOOP 94 355 3480 206900 570800 

GOOP-LAT 106 432 39 20 245320 693970 

GOOP-QF 2 39 9 79 8840 547506 1572800 

BG 39 165 4330 238900 270063 

BG-LAT 29 130 3220 180610 212380 

BG-QF 29 132 3220 1809 30 215560 

F.V.

0.010 

0.014 

0.0354 

0.0149 

0.0154 

0.0171 

0.0169 

0.0169 

0.0169 

tO 

tO 
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While the results of the blocked algorithms were not 

quite as good as GOOP, Table Vindicates rapid convergence. 

The accelerated versions performed about the same. The 

three blocked algorithms produced the same function 

value but different solutions. 

3. Airplane Problem

The mathematical model under consideration in this 

problem comes from the study of damped vibrations and 

was suggested by a similar model used in the design and 

testing of aircraft. The test function takes the form 

y = 

where r represents both the number of terms in the 

function as well as the number of peaks in the test 

data. In applying the blocked algorithms to this 

problem, four parameters were included in each block. 

No bounds were placed on any of the parameters. Fifty 

data points were generated using the solution values 

shown in Table VI and allowing the independent time 

parameter t to run from zero to five seconds. 

Examination of the test results in Table VI I indicate 

the difficulty of this problem particularly for the DFP and 

GOOP algorithms. Even LAT was ineffective in accelerating 



Table VI 

Initial and Solution Values 
for Airplane Problem 

Solution 
Values 

3.00 

3.00 

2.25 

-1. 0 0

4.50

1.50

1.75

-0.50

GOOP in problem #1. 

Problem 
#1 

3.04 

2. 9 5

2. 2 3

-0. 9 5

4. 5 5

1.45 

1.80 

-0.45

Problem 
#2 

2. 9 0

3.15 

2.10 

-1. 0 5

4.45

1.55

1.65

-0.55

The performances of LM, GH, and 

the blocked algorithms represent substantial savings in 

computer time in view of the exponential, sin, and 

cos evaluations necessary in evaluating the function 

and its partial derivatives. 

4. Normal Problem
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The normal problem represents an attempt to fit data 

using a linear combination of normal functions, viz. 



Table VII 

Experimental Results for Airplane Problem 

Problem Method Steps F.E. P.D.E. E. 0. C.

1 DFP 142 1052 420800 114270 

LM 4 5 1600 30210 

GH 4 13 1600 45600 

GOOP 169 500 8450 210800 

GOOP-LAT 169 560 8450 211940 

GOOP-QF 136 467 6 800 172020 

BG 25 79 5000 122330 

BG-LAT 13 57 2600 63040 

BG-QF 18 80 3600 90070 

I.O. C.

1998800 

4 70 0 

10300 

356350 

398350 

332000 

590 50 

41850 

58700 

F.V.

lxlO-lO

6xlO-l2

2xlo-19

lxlO-ll

7xl0-12

2xl0-ll

3xlo-13

6xlo-12

lxlo-14

f-J 

0 

N 



Table VII (Continued) 

Problem Method Steps F.E. P.D.E.

2 DFP 104 640 256000 

LM 4 5 1600 

GH 4 13 1600 

GOOP 272 835 13600 

GOOP-LAT 184 6 39 9 200 

GOOP-QF 249 843 12450 

BG 25 76 5000 

BG-LAT 15 66 3000 

BG-QF 14 57 2800 

E.O.C. I.O.C.

78490 1157120 

30210 4700 

43900 10300 

340610 594700 

231690 454200 

313150 599450 

119910 569 50 

71490 48450 

68610 42000 

F.V.

lxlO-lO

4xl0-ll

5xlo-14

5xl0-ll

9xl0-ll

7xl0-ll

5xl0-13

2xl0-ll

7xl0-ll

I-' 

0 

w 
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where 

➔ 

q.(x,a.) 
J 

and r corresponds to the number of terms in the function 

as well as the number of peaks in the data. The following 

estimates are available for the j-th data peak 

amplitude: Cl.3j-2

half-width: a3j ✓2ln2

peak location: 

Forty data points were generated over the interval 

-2.5 to 3.0 using the solution values shown in Table VIII.

Algorithms were applied using the initial values 

shown in Table VIII. In application of the blocked 

algorithms, the model parameters were separated into 

groups of three. 

parameters. 

No bounds were placed on any of the 

The results recorded in Table IX indicate LM, GH, 

and BG-LAT are the most effective algorithms in solving 

this problem. In both problems, LAT produced faster 



Table VIII 

Initial and Solution Values 
for Normal Problem 

Solution 
Values 

0.75 

-1.00

0.50

1.25

1.50

1.00

Problem 
#1 

1.00 

-0.75

0.40

1.00

1.00

1.25

Problem 
#2 

0. 40

-1.25

0.75

1.55

2.00

1.40

convergence than QF. All versions of the blocked 
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algorithm outperformed the GOOP versions. In problem #l, 

the minimum function value was produced by LM. BG-LAT 

produced the minimum function value in problem #2. 

5. Exponential Problem

The exponential problem often arises in the physical 

and biological sciences. The model is composed of a 

linear combination of exponential functions, viz. 



Problem Method Steps 

1 DFP 18 

LM 5 

GH 7 

GOOP 88 

GOOP-LAT 41 

GOOP-QF 58 

BG 27 

BG-LAT 11 

BG-QF 21 

Table IX 

Experimental Results for Normal Problem 

F.E. P.D.E. E.O.C. 

38 9120 6670 

6 1200 17830 

18 1680 36 G 30 

199 3520 68830 

120 1640 32290 

182 2320 45880 

60 3240 62150 

40 1320 25020 

84 2520 48900 

I. 0. C.

47350 

4160 

11760 

116080 

69 360 

104960 

36840 

23720 

49 560 

F.V.

5xlo-14

lxlo-
19 

lxlo-15

8xl0-ll

2xlo-12

6xl0-ll

8xl0-ll

2xl0-ll

4xl0-ll

I--' 

0 

m 



Table IX (Continued) 

Problem Method Steps F.E. P.D.E.

2 DFP 18 37 8880 

LM 5 6 1200 

GH 18 37 4320 

GOOP 93 250 3720 

GOOP-LAT 43 127 1720 

GOOP-QF 58 180 2320 

BG 36 75 4320 

BG-LAT 10 35 1200 

BG-QF 12 46 1440 

E.O.C. I.O.C.

6650 46100 

17830 4160 

94400 2501+0 

729 60 144960 

339 50 73360 

45890 103840 

84020 46320 

23460 20800 

28440 27200 

F.V.

lxlo-13

6xlO
-l4

5xl0-ll

6xl0-ll

2xlo-12

3xl0-ll

4xl0-ll

6xlo-17

4xlo-12

I-' 
0 

---J 



Its inclusion here was suggested by Osborne [63] who 

solved this type of problem by separating the variables 

into groups of linear and nonlinear parameters. Forty 

data points were generated over the interval -1.0 to 

5.0 using the solution values shown in Table X. 

Table X 

Initial and Solution Values 
for Exponential Problem 

Solution 
Values 

0.50 

3.20 

1.00 

0.50 

0.70 

-0.50

Problem 
#l 

0. 30

2.50 

l.20

0.60 

0.50 

-0.70

Problem 
#2 

0.60 

3.10 

0.90 

0.40 

l.00

-0.40

Algorithms were applied using the initial values 

shown in Table X. In application of the blocked 

algorithms, two parameters were placed in each block. 

No bounds were placed on any of the parameters. 

The results recorded in Table XI indicate LM, GH, 

and BG-LAT are superior in solving this problem. In 

problem #l, QF provided better acceleration for GOOP 
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Table XI 

Experimental Results for Exponential Problem 

Problem Method Steps F.E. P.D.E. E.O.C. 

1 DFP 45 98 23520 16710 

LM 8 12 19 20 29120 

GH 20 43 4800 107100 

GOOP 206 Local minimum 

GOOP-LAT 10 3 331 4120 82740 

GOOP-QF 91 314 3640 73650 

BG 94 Local minimum 

BG-LAT 31 106 2480 47260 

BG-QF 42 148 3360 65460 

I. 0. C.

102508 

10560 

21320 

147680 

139960 

47880 

66800 

F.V.

2xl0-ll

7xlo-18

6xl0-ll

26.0 

7xl0-ll

7xl0-ll

12.3 

lxlo-12

4xl0-ll

I-' 

0 

tD 



Table XI (Continued) 

Problem Method Steps F.E. P.D.E.

2 DFP 27 59 14160 

LM 4 5 960 

GH 19 40 4560 

GOOP 119 287 4760 

GOOP-LAT 49 148 1960 

GOOP-QF 67 213 2680 

BG 57 116 4560 

BG-LAT 19 63 1520 

BG-QF 25 88 2000 

E.O.C. I.O.C.

9 9 30 61710 

14260 4480 

101740 19 8 80 

94400 128640 

389 60 660 80 

5 37 80 95040 

87320 53320 

28650 28480 

38200 39 720 

F.V.

8xl0-ll

lxl0-12

3xl0-ll

7xl0-ll

7xl0-ll

7xl0-ll

4xl0-ll

4xl0
-ll

3xl□-ll

I--' 

I--' 

0 
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than did LAT. This was reversed in problem #2. All 

accelerated versions of BG outperformed the GOOP versions. 

LM produced the minimum function value and required 

fewer partial derivative evaluations than did any of 

the other algorithms. The local minima produced 

in problem #1 by GOOP and BG are recorded in Table XII. 

Table XII 

Local Minima Produced in Solving 
Exponential Problem 

Solution 
Values 

0. 50

3. 2 0 

1.00 

0. 50

0.70 

-0.50

Algorithm 
GOOP BG 

1.72 1.50 

2.04 2.19 

-0.075 -0.02

0.60 -0.87

0. 3 7 0.47

-0.69 -0.62

6. Trigonometric Series Problem

The model used in this problem is of the form 

y ::: 



where r is again related to the number of terms in the 

model as well as the number of peaks in the data. 
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Fifty data points were generated over the interval -1.5 to 

9.5 using the starting values shown in Table XIII. 

Table XIII 

Initial and Solution Values for 
Trigonometric Series Problem 

Solution 
Values 

2.00 

1.00 

0. 9 0

0.80 

0.50 

1.10 

Problem 
#1 

1.80 

0.90 

1.00 

0.75 

0.60 

1.00 

Problem 
#2 

2.10 

0.90 

0.80 

0.90 

0.60 

1.20 

Algorithms were applied using the initial values 

shown in Table XIII. In application of the blocked 

algorithms, three parameters were placed in each block. 

No bounds were placed on any of the parameters. 

The results recorded in Table XIV indicate LM, GH, 

BG-LAT, and BG-QF are superior in solving this problem. 

While BG-LAT requires more function evaluations than 



Problem Method Steps 

1 DFP 21 

LM 5 

GH 6 

GOOP 109 

GOOP-LAT 50 

GOOP-QF 74 

BG 38 

BG-LAT 9 

BG-QF 10 

Table XIV 

Experimental Results for 
Trigonometric Series Problem 

F.E. P.D.E.

44 13200 

6 1500 

19 1800 

281 5450 

153 2 50 0 

233 3700 

79 5700 

29 1350 

38 1500 

E. 0. C. I.O.C.

7630 61860 

22030 4600 

39 760 12600 

106430 172200 

48520 93500 

72640 142300 

110690 51200 

25320 18300 

29450 23800 

F.V.

8xl0-ll

2xl0-13

3xl0-16

7xl0-ll

4xlo-14

7xl0-ll

6xl0-ll

lxl0-13

5xlo-16

1--' 

1--' 

w 



Table XIV (Continued) 

Problem Method Steps F.E. P.D.E.

2 DFP 24 52 15600 

LM 5 6 1500 

GH 6 18 1800 

GOOP 97 232 4850 

GOOP-LAT 49 141 2450 

GOOP-QF 65 199 3250 

BG 34 73 5100 

BG-LAT 9 32 1350 

BG-QF 10 38 1500 

E.O.C. I.O.C.

89 50 73110 

2 20 30 4600 

39740 12000 

9 4590 142400 

47790 86200 

6 39 60 121600 

99060 47200 

25370 20100 

29 450 23800 

F.V.

6xlo-12

lxl0-16

2xlo-19

7xlo-12

3xlo-19

9xl0-ll

4xl□-ll

7xl□-15 

4xl0-17

f--' 

f--' 

+



either LM or GH, it required fewer partial derivative 

evaluations. All versions of the blocked algorithm 

outperformed the GOOP algorithms. 

D. Summary of Numerical Investigations

Results of the numerical investigations were 

consolidated using a scheme similar to that suggested 

by Lessman [31]. For each problem tested, an algorithm 

was awarded nine points if it finished first, eight 

points if it finished second, etc., in each of the 

categories. Zero points were awarded for failure 

of an algorithm to converge to the prescribed minimum. 

Since answers to the Spectroscopic Analysis Problem 

were not known, it was not included in the computation 

of the results shown in Table XV. Table XVI presents 

a ranking of the algorithms for each of the comparison 

criteria. Table XVI was computed using the data in 

Table XV. 

Examination of the results of Table XVI indicate 

the most favorable results for the number of steps, 

function evaluations, and internal operations counts 

were achieved by LM. Since all of these quantities 

are directly related, it is not surprising that the 

same algorithm was best in all three categories. 
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Table XV 

Comparison of Algorithm Results 

Comparison Criteria 

Steps F.E. D.P.E. E.O.C. I.O.C.

DFP 72 76 42 104 54 

LM 107 107 99 84 105 

GH 97 96 71 52 93 

GOOP 23 18 40 21 19 

GOOP-LAT 50 46 85 55 45 

GOOP-QF 43 42 75 47 36 

BG 67 62 58 46 73 

BG-LAT 105 95 110 97 103 

BG-QF 86 72 91 80 79 

Since the matrix of partials is completely re-evaluated 

at each step, it is not surprising that a total step 

method was more successful in these three categories 

than were the partial step methods. 

In all categories recorded, BG-LAT ranked in the 

upper third of the algorithms tested with BG-QF in 

the upper five ninths. BG-LAT's first place ranking 

in partial derivative evaluations suggests its use­

fulness on problems in which the partial derivatives 

require extensive calculations or are calculated using 
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Table XVI 

Algorithm Rankings 
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Rank Steps F.E. P.D.E. E.O.C. I.O.C.

l LM LM BG-LAT DFP LM 

2 BG-LAT GH LM BG-LAT BG-LAT 

3 GH BG-LAT BG-QF LM GH 

4 BG-QF DFP GOOP-LAT BG-QF BG-QF 

5 DFP BG-QF GOOP-QF GOOP-LAT BG 

6 BG BG GH GH DFP 

7 GOOP-LAT GOOP-LAT BG GOOP-QF GOOP-LAT 

8 GOOP-QF GOOP-QF DFP BG GOOP-QF 

9 GOOP GOOP GOOP GOOP GOOP 

finite differences. Since operations counts are related 

to execution times, BG-LAT's first place ranking in 

total operations counts as seen in Table XV indicate 

that it may require less execution time on many problems 

than would be required by the other algorithms. 

As was predicted by Theorem 3.2, the performances 

of the blocked orthogonalization algorithm were better 

than those of GOOP. While the accelerated versions of 

BG and GOOP performed better than the unaccelerated 

versions, it was surprising to note that in most cases, 

the LAT acceleration step produced better results than 



QF. It was conjectured that the reason for this might 

• . ➔ • ➔ 
be that given a direction vector 6a and a point a, the 

LAT algorithm finds a point at 

The QF algorithm finds a point 

➔ ➔ 

a +  t6a where t > 0.

➔ ➔ 

a +  t6a but will allow 

t < O or t > 0. It appears that while QF may find a 

point of lower function value by allowing t < 0, this 

reversal of direction may serve to hinder convergence. 
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In examination of all test results where LAT outperformed 

QF, there were several steps in QF in which t < 0. 

While Tables XV and XVI rank the successful 

algorithm performances on fourteen of the fifteen 

problems tested, they give no direct indication of 

algorithm failures. Table XVII records the number of 

times each algorithm was terminated due to reaching 

the maximum number of steps or to finding a local 

minimum. The failure of LM in the Spectroscopic 

Analysis Problem has been included in this table. 

As the results in Table XVII indicate, GOOP 

and LM had the largest number of forced terminations 

while BG-LAT had none.* In comparing the local minima 

in Table III, that produced by BG-QF appears to be 

more representative of the desired solution than 

any of the others listed. 

*Several damping factors were tried in LM in attempts to
reduce its failures.
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Table XVII 

Number of Forced Algorithm Terminations 

Algorithm # Terminations 

DFP 1 

LM 3 

GH 2 

GOOP 3 

GOOP-LAT 2 

GOOP-QF 1 

BG 1 

BG-LAT 0 

BG-QF 1 

The Spectroscopic Analysis Problem is of particular 

interest since it was the only problem tested in which 

the solution was unknown and in which the original 

data contained noise. In this case, GOOP slightly 

outperformed the blocked algorithms in reducing function 

value. However, GOOP-LAT converged to a solution in 

which two of the data peaks were switched! All three 

versions of the blocked algorithm produced the same 

function value. 

The numerical investigations described in this 

chapter indicate the competitiveness of the blocked 



orthogonalization algorithms in solving nonlinear re­

gression problems in which the parameters are naturally 

grouped. Indeed, BG-LAT showed a savings over the 
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other algorithms in both partial derivative evaluations 

and total operations. In problems where the parameters 

were related to the physical appearances of the data 

peaks, blocking parameters appeared to preserve parameter 

relationships even when local minima were produced. 



V. CONCLUSIONS

Grey's method [3,4] has been successfully used in 

many applied fields. Further, it is tedious but easy 

to verify that van Holdt's block orthogonalization [10] 
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is effective in solving least squares problems. In 

attempts to find characteristics of nonlinear regression 

problems which can be identified a priori, an algorithm 

was designed which combined Grey's method with van Holdt's 

block orthogonalization. The resulting algorithm was 

shown to be effective in solving nonlinear regression 

problems in which the parameters to be estimated were 

naturally grouped. The new algorithm differs from 

current separation of variables algorithms in that 

each block of parameters may contain linear as well as 

nonlinear parameters. Hence, while the new algorithm 

is distinctly different from the separation of variables 

algorithms, it can be used to solve this type of problem. 

From the theoretical and experimental results 

presented, it is clear that the blocked algorithm 

combines the best features of the GOOP and GH algorithms 

while avoiding their worst features. For cases in which 

the linearization produced by the Taylor series expansion 

is an exact representation of the function in question, 

it was shown that the set of points generated by BG 



was actually a subset of the set generated by GOOP. 

Since the present implementation of GH was accomplished 

by BG with j = m, the set of points produced by GH 

when applied to the linear problem is a subset of 

those produced by BG. It was then shown that for 

the linear problem, the relative rates of convergence 

l22 

are in decreasing order: GH, BG, and GOOP. The theoret-

ical similarity of the blocked algorithm to GOOP gave 

it several desirable properties of that algorithm. As in 

GOOP, the blocked algorithm is capable of detecting and 

avoiding redundant parameters. Further, convergence of the 

new algorithm is guaranteed for the nonlinear problem as 

long as Cornwell's acceleration step [ll,68] is inserted 

each time the matrix of partial derivatives has been 

updated. As with GOOP, BG is a conjugate direction 

algorithm. 

While theoretical predictions were consistent 

with the numerical results, several important features 

appeared in the numerical tests which the theory did 

not predict. The first and perhaps most important 

feature was the blocked algorithm's robustness. Tests 

showed the blocked algorithm more consistent in converging 

to the global minima than was GOOP. Secondly, when 

local minima were produced by the algorithms, those 

produced by the blocked algorithms more nearly maintained 
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the physical relationships between parameter values and 

data appearance. Hence, blocking parameters according to 

their natural grouping appeared to produce a more stable 

and dependable algorithm. Finally, it should be noted 

that the acceleration of GOOP produced by the various 

blocked algorithms did not come at the expense of 

additional operations or function evaluations. As 

indicated in Tables XV and XVI, the blocked versions 

outperformed the GOOP versions in all aspects of the 

tests except one. In all tests, BG-LAT was in the 

upper third of all algorithms tested. 

From the numerical investigations cited, it appears 

that the blocked algorithm is very effective in solving 

linear and nonlinear regression problems in which 

the parameters are naturally grouped. It is particularly 

attractive for use with problems in which one desires 

to minimize the number of partial derivative evaluations. 

The algorithm's stability and dependability make it 

applicable to a wide range of problems. 

Development of the blocked algorithm opens up 

several interesting areas for further research. For 

example, it would seem desirable to incorporate a 

natural blocking scheme into other algorithms such as 

DFP and LM. This idea is particularly appealing for 

conjugate direction algorithms such as the DFP. Further, 



since individual blocks of parameters often contain 

linear and nonlinear parameters, it might be desirable 

to apply a separation of variables technique to 

individual blocks of parameters. 
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In addition to testing the current blocked algorithm 

on more problems containing naturally grouped parameters, 

several variations of the current algorithm warrant 

further study. The algorithm should be modified and 

tested on problems in which the block sizes vary within 

the problem. This would require simple programming 

modifications only. A further modification calls for 

using LAT exclusively for all searches required in the 

accelerated blocked algorithm or to replace the one­

dimensional searches by the two stage approximation 

Broste [56] used in GOOP. The convergence rate might 

be improved by permuting the order in which the blocks 

of parameters are evaluated at each iteration in the 

same way Lesnick and Rigler [9] did in their version 

of GOOP. Cornwell claimed that running GOOP in single 

precision produces results as acceptable as those 

obtained in double precision. This claim should be 

checked out with the new algorithm. Since GOOP was 

originally programmed using finite difference approx­

imations for the partials, a similar approach needs 

to be tried with the blocked algorithm. 



Further theoretical work with the algorithm is 

needed to determine its convergence rate for nonlinear 

problems as well as determining those properties of 
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the natural grouping strategy which lead to the algorithm's 

robustness. 
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APPENDIX A 

Flow Chart of One-Dimensional Quadratic Fit* 

In the flow chart below, the following variables and sub­

programs are used. 

FVAL 

DMINl 

ALPHA 

- Subprogram which determines the value of the

objective function by using the vector in the

argument.

Function subprogram which determines the minimum

of the scalar values in the argument list.

+ 

- Vector of a-values from the algorithm.

DELALP - Direction vector determined by the algorithm.

B, C 

SAVE 

XMIN 

- Multiples of DELALP used for the quadratic fit.

- Maximum value allowable for B. One tenth proved

to be an acceptable value for the problems

tested.

- Multiple of DELALP at which the predicted

minimum function value, FCTXM, is located.

SECDER - Value of the second derivative of the quadratic 

at the predicted minimum point ALPHA + 

XMIN�"DELALP. 

M - Scalar used to limit the size of XMIN, i.e.

XMIN would not be accepted as a step length

*This algorithm is a modification of the one presented
by Aoki [69].



135 

if jXMINI > B �•,M. In the problems tested, ten 

proved to be a satisfactory value for M. 

FCTB - Value of objective function at ALPHA + B �',DELALP.

FCTC - Value of objective function at ALPHA + c�',DELALP.

FCTXM - Value of objective function at the predicted

minimum point, ALPHA + XMIN*DELALP.



B + DMINl(l.O/I IDELALPI I, SAVE)

KEY + 0 

T FCT .LE. FCTB 1--------1 C + -B

FCTC + FVAL(ALPHA+C*DELALP)

SECDER + 
(C-B)*FCT - C*FCTB + B*FCTC 

B1'C1' ( C-B) 

=O SECDER <O 

>O

XMIN + 0.5*B + FCT - FCTB

2�•,B�',SECDER 

T 

\
I XMIN I . GT. M�" B ,__ ___ _ 

FCTXM + FVAL(ALPHA + XMIN*DELALP) 

FCTB FCTC 
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C1°J 
" ( M . E Q • L ) . AND . ( C . E Q • 2 1: B )

T 

DMINl(FCT, FCTB) 1-_F_C_T_....-__ F_C _T_DMINl(FCT, FCTB, FCTC)
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FCTB FCTB FCTC 

40 

l20 I 

KEY .EQ. 1 

F 

KEY+ 1 

B + B/2

T 

ALPHA+ ALPHA+ B*DELALP 

RETURN 

ALPHA+ ALPHA+ C*DELALP 

ALPHA+ ALPHA+ XMIN*DELALP 

RETURN 



APPENDIX B 

Conjugate Direction Theorems 

This appendix is devoted to the proofs of the 

conjugate direction theorems presented in Chapter II. 

The definitions, theorems, and proofs presented here 

are well-known in the literature. 

DEFINITION 2.1 The quadratic function 

+ +T+ +T +g(a.) = a + c a +  1/2 a Qa.

defined on Rm is said to be positive definite provided 

+T + a. Qa. > 0 for all� i- 0.

DEFINITION 2.2 Given the positive definite quadratic 

function 
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( 2. 6) 

(2.6)bis 

m + + m ·ct defined on R ,  any two vectors p,q £ R are sai to be 

conjugate with respect to Q provided they are nonzero and 

+TQ+p q = o. 

+ m +T + 
Any set of vectors {p.} CR for which p.Qp. = 0 when 

l l J 
ii- j is said to be mutually conjugate with respect

to Q. 

( 2. 7) 



THEOREM 2 .1 If {p. } C Rm is a set of vectors which are 
l 

mutually conjugate with respect to matrix Q of equation 
-+ 

(2.6), then {p.} is a linearly independent set. 
l 

PROOF Let {p. } C Rm be a set of k vectors which are 
l 

mutually conjugate with respect to the positive definite 

matrix Q of equation (2.6). 

To show {p. } is a linearly independent set it 
i 

-+ 
will be shown that for any linear combination of { p. } 

l 

such that 

then each of the scalars 

Consider the scalar 
• -+TQ • expression by p. gives

i 

which reduces to 

-+d.p. +l i 

d =t 
d . .

l 

0 for t = l , 2 , . . ._ , k . 

Multiplying the above 

-+T -+ d.p.Qp. + ..• 
l i l 

-+T -+d. p. Qp. = 0.
l i i 

Now Q is positive definite; therefore, 
-+T -+ 
p.Qp.

i i 
'f 0 since 

pit Oby definition. It must be the case that di
= O.

Therefore dt = 0 for t =  1,2, ... ,k and {pi} must be

a linearly independent set. 
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Q.E.D. 



THEOREM 2.2 If {pi} C Rm is a set of m mutually

conjugate vectors with respect to Q, then the positive 

definite quadratic of equation (2.6) can be minimized 

by sequentially minimizing in each of the directions 

PROOF Let {p.} C Rm be a set of m mutually conjugate 
1. 

vectors with respect to matrix Q of equation (2.6). 
➔ 

By Theorem 2.1, {pi} is a linearly independent set

of vectors. m Since this set of vectors also spans R ,

it forms a basis of Rm. 

minimum 

➔ 

of g(a) in equation (2.6), 

one may write 

vectors, i.e. 

as a linear combination of the basis 

Substituting into g(;) 

m 
➔ 

g( 
+ 

g( a. �':) = E d. p.) 
i=l 1. 1. 

-;;T( 
m

= a + E 
i=l 

-;;T( 
m 

= a + E 
i=l 

E 
i=l 

+ 

d. p. )
1. 1.

+ 

d.p.)
1. 1.

+ 

d. p ..
1. 1.

m 
+ ( E

i=l

m 

+ E
i=l

+T m 

d.p.)Q( E1 1 i=l 

2 +T + 

d. ( p. Qp. )
1. 1. 1. 

+ 

d.p.)
1. 1.
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where the simplification in the last expression c omes 

from the Q-conjugacy of {p.}. 
l 

Since each term in the last expression depends only 
➔ 

on one direction p. and one parameter d., m independent 
i i 

minimizations in the directions p1, ... ,pm will determine

d., i = 1,2, ... ,m and will therefore determine 
l 
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Q.E.D. 



APPENDIX C 

Flow Chart of Cornwell's Spacer Step* 

In the flow chart below, the following variables and 

subprogram are used. 

FVAL 

FCT 

FCTF 

ALPHA 

- Subprogram which determines the value of the

objective function by using the vector in the

argument.

- Minimum value of the objective function. 

- Current value of the objective function. 
+ 

- Vector of current a-values. 

ALHOLD - Vector of �-values at the beginning of the 

conjugate direction algorithm. 

DELALP - Direction vector determined by the algorithm. 
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IDIREC - Flag. If IDIREC = O, search is adding multiples 

of DELALP. If IDIREC = 1, search is adding 

increments of DELALP. 

FACT - Amount of DELALP being added to base point ALHOLD.

SAVEI - Holds last successful value of FACT. 

*This flow chart was suggested in Cornwell's dissertation
[68].



I DELALP -<- ALPHA - ALHOLD I
! 

SAVEI� 

IDIREg__� 

4------E--�IDIREC + 11-----, 

30 

Il + 2, 10 

FACT+ Il 

T IDIREC .EQ. 1 .__--FACT+ 1. + 1./Il 

F 

FCTF + FVAL(ALHOLD + FACT*DELALP) 

___ ....__ __ -------...___ 
F T FCTF .LT. FCT1--.-FACT .EQ. 21----� 

T 

FCT +- FCTF 

SAVEI + FACT 

ALPHA+ ALHOLD + SAVEI*DELALP 

RETURN 

F 
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APPENDIX D 

Cholesky Decomposition Algorithm 

Let A be a real, symmetric, positive definite matrix 

of order m. Cholesky decomposition can be used to factor 

A into the product 

where R is a  unique upper triangular matrix whose elements 

are computed by the following relations. 

For i = 2, ... , m 

r .. = (a .. 
l.J. ]. ]. 

= ( ) 1/ 2
all

j = 2, ... ,m. 

i-l 2 )1/2
E rkik=l 

i-1

r .. = (a .. - E rk.rk. )/r ..
iJ iJ k=l i J ii 

J = i+l, ... ,m. 



APPENDIX E 

Comparison of the Classical and Blocked 

Gram-Schmidt Processes 

The results of this appendix verify that the 

classical and blocked Gram-Schmidt algorithms described 

in Chapter III produce identical matrix factorizations 

when applied to a constant matrix H. 

Let A be an nxm matrix which has been blocked 

into m/j column matrices each containing j columns. 

The following notations will be used in this appendix 

in reference to any such matrix A. 

A.i

- the scalar in row i column k of A.

- the i-th column of A.

- the i-th column block of A. This 

nxJ matrix consists of columns

(i-l)j+l - ij of A.

Aik - the jxj matrix consisting of rows

A(i) 

(i-l)j+l - ij and columns (k-l)j+l kj 

of A. Note that ast E Aik provided

s = (i-l)j+u and t = (k-l)j+w where 

1 < u,w � j. 

- the nxi matrix consisting of the first

i columns of A. Note that A =  A(m).
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A(i,k) - the ixk matrix consisting of the first 

i rows and k columns of A. Note that 

A = A(n,m). 

Let H be a constant matrix of n rows and m linearly 

independent columns. The classical Gram-Schmidt process 

factors H into the matrix product H = GB where GT G = I 

and Bis a nonsingular, upper triangular matrix. The 

classical Gram-Schmidt algorithm is applied to each 

column of H as shown. 
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(3.4)bis 

n = 1

G. =
l 

where 

i-1
ti. :E 

l k=l

n.111n.11
l l 

Gkbki (3.S)bis 

l = 2,3, ... ,m 

( 3. 6 )bis 

(3.7)bis 

(3.8)bis 

The following identity is obtained directly from 

equations (3.4-3.8). 

b • •  = I ID-II 
ll l 

(E.l) 



Further, since G and B are formed in a stepwise manner 

and B is upper triangular, at the end of the i-th 

step of the process 

H(i) = G(i)B(i,i). 

The blocked Gram-Schmidt process can also be 

T 
applied to matrix H to produce H = QR where Q Q = I 

and B is a nonsingular, upper triangular matrix. 

Unlike the classical algorithm, the blocked algorithm 

factors j columns of H at each step. 

where 

F. =
l 

Q . = 
l 

T 
F.F. 

J.. i 

i-1
H. E

i k=l 

-1
F.L.

i i 

T 
= L.L. 

i l 

Q
k

R
ki

i 2 , 3 , ... , ml j 

The Cholesky decomposition algorithm described in 

Appendix Dis used to produce the nonsingular, upper 

triangular matrix L .. (See 
i 

Theorem 3.1 for the proof 

that L. J..S nonsingular when the columns of H are
i 

linearly independent.) The matrices Q. ' F. , and H.
i i i
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( E. 2) 

( E. 3) 

(E.4) 

( E. 5) 

(E.6) 

(E.7) 



are nxj while Rki and Li are jxj. From the notation

introduced at the beginning of this appendix, one can 

think of F. and Rk. as being members of matrices F
l l 

and R respectively. Note that R .. = L ..ll l 

l48 

Since H is factored in a stepwise manner in blocks 

of j columns each and R is upper triangular, at the 

i-th step 

H(ij) = Q(ij)R(ij,ij) 

• 

• 

0 • 

for i = 1, 2, ... , m/ j . 

T F.F.
l l

• • 0

• 

• 

TF 1.F ;·
m J m J 

where F. is the nxj column matrix from equation (E.4). 
l 

T Let fks represent the scalar in row k column s of F F.

If k and s are of the forms k = (i-l)j+p and 

s = (i-l)j+t where 1 � p,t � j then fks is an element

( E. 8) 

in F�F. of FTF. To find an expression for fks' considerl l 

the identity 

T F.F.
l l

T = H.H. -
l l 

i-1
E

U=l

T 
R . R .. ( E. 9) 

Ul Ul 
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If rks ER, then rks E Rui provided k = (u-l)j+p and

s = (i-l)j+t for l < p,t < j. Using equation (E.9), 

fks can be expressed as

i-1 J
fks = H�Hs -

u:l w:l 
r(u-l)j+w k r(u-l)j+w s

or 

r
us 

(E.10) 

where k = (i-l)j+p and s= (i-l)j+t for 1 � p,t < J· 

Therefore, equation (E.10) provides a way of expressing 

the elements in the diagonal blocks of FTF in terms of 

elements from Hand R. 

Theorem E.l verifies that the results of factoring 

matrix H using the classical Gram-Schmidt process are 

identical to those produced by factoring H with the 

blocked Gram-Schmidt algorithm. 

THEOR EM E.l Let H be a constant matrix with n rows 

and m columns such that the columns of Hare linearly 

independent. Further, let H be factored by the classical 

Gram-Schmidt process into H = GB and by the blocked Gram­

Schmidt process into H = QR where G and Qare the ortho­

normal matrices produced by each of the respective methods. 

Band R are the corresponding upper Gram-Schmidt trans­

formation matrices. Then G = Q and B = R. 



PROOF Using the notations and results established 

earlier in this appendix, the theorem will be proven 

by inducting on the column blocks of Q and R. Without 

loss of generality, it will be assumed the blocked 

Gram-Schmidt process is applied to blocks of equal 

size, i.e. say j columns per block. 

First, it is necessary to show R
1 = B

1
, i.e. 

Recall that R
11 

= L
1 

where L
1 

comes from the 

• .
f T 

Cholesky decomposition o F
1

F1. The proof will be

established by inducting on the rows of R11
. It will 

first be shown that r
1s 

= b
ls 

for s = 1,2, ... ,j. 

Using the Cholesky decomposition algorithm of 

T 
Appendix D on F1

F1 and noting that i = p = t = 1 in 

equation (E.10) 

= Cf ) 1 /2
= 

11 

Now, assume r
1s 

= b
ls 

for s = 1,2, ... ,t-l<j. It will 

be shown that r1t 
= b

it·
From the Cholesky decom-

position algorithm, the preceeding assumption, and 

equations (3.4, E.10) 

Hence, r
1s = b

ls for s = 1,2, •.• ,j.

1 50 



Now, assume the first k-1 rows of R are equal
11 

to the first k-1 rows of B11 where k-l<j. Induction

will again be applied to show the k-th rows are equal. 

Since B and R are upper triangular, the induction begins 

at rkk. Using Cholesky decomposition, equation (E.10)

with i = 1, p = t = k, the inductive assumption on the 

first k-1 rows of Bll' and equation (E.l)

k-1 2 ) 1/ 2rkk = (fkk
- I ruk u= l 

To complete the induction on the k-th row of R11,

assume rks = bks for s = k, ... ,t-l<j. It will be

shown that rkt = bkt· Using Cholesky decomposition,

equation (E.lO) where i = 1, p = k, and the inductive 

assumptions on the first k-1 rows of R11 and the first

t-l columns of the k-th row

= CH -
k 
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whe�e the last row in the above argument was obtained 

using equations (3.4-3.8). This completes the induction 

showing rks = bks for s = 1,2, ... ,j.

the induction on the rows of R11.

This also completes 

Since the columns of H are linearly independent, 

Theorem 3.1 guarantees that R and hence R11 are non-

singular. Using this fact and equations (E.2, E.8) 

H(j) = G(j)B(j,j) = Q(j)R(j,j) 

or 

G(j) = Q(j) 

since B(j,j) = R(j,j) = R11.

of G and Q are identical. 

Hence, the first J columns 

To complete the induction on the column blocks 

of R, assume B(uj) = R(uj) for u = 1,2, ... ,i-l. 

equations (E.2, E.8) imply that G(uj) = Q(uj) for 

Then 

u = 1,2, ... ,i-1. To show that the i-th column block

of R is identical to the i-th column block of B, i.e. 

Ri = Bi' it will be shown that Rki = Bki for k = l,2,

... ,i-1. Next it will be shown that R .. = B ... 
il il 

The 

upper triangular form of R and B give Rki = Bki = 0

for k = i+l, ... ,j. 



To show Rki = Bki for k= 1,2, ... ,i-1, let rvw

be an element of matrix R. This element will be in 

Rki provided v = (k-l)j+p and w = (i-l)j+t where

1 < p, t < j. Then from equation (E.6) 

r
vw 

= QT H (k-1) j +p w

since by the inductive assumption Q
(k-l)j+p = G(k-l)j+p

for k = 1 , 2 , . . . , i -1 and p = 1 , 2 , . . . , j . Therefore 

Rki = Bki for k= 1,2, ... ,i-1.

Induction will be used on the rows of R .. to show 
ll 

R .. = B ... As equations (E.5-E.7) of the blocked 
ll ll 

Gram-Schmidt process verify, R .. = L. where L. is 
ll l l 

obtained from the Cholesky decomposition of 

FiFi. If fks is an element of FTF then fks is an

element of F�F- provided k = (i-l)j+p and s= (i-l)j+t 
l l 

where 1 � p, t < j. 

To show the first row of R .. 
ll 

lS equal to the first 

row of Bii' i.e. r(i-l)j+l w = b(i-l)j+l w for

w = (i-l)j+l, ... ,ij, induction is performed on w. 

Hence, for w = (i-l)j+l the Cholesky decomposition 

algorithm is used to derive the element in the first 

row and first column of R. . = L. . Equations (E. l, E. 10) 
ll l 

and the fact that rkw = bkw for k = 1, ... ,w-1 are used

to show 
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r = ( f ) 1/ 2
WW WW 

(HTH
w-1

r2 )1/2= E w w 
u=l uw 

(HTH
w-1

b2 )1/ 2= E w w 
u=l uw

= b 
WW 

Next, assume r = b for s = w, ... ,t-l<j wherews ws 

w = (i-l)j+l. It must be shown that rwt = bwt· Using

Cholesky decomposition, equations (3.5-3.7, E.10), and 

the inductive assumption 

rwt = fwt 1rww

(HTH= -

w t 

= GTH = b w t 

w-1
I: 

u=l 

wt· 

r r t)/r
UW U WW 

This completes the induction on the first row of R ... 
ll 

Assume the first k-1 rows of Rii are equal to the

first k-1 rows of Bii' i.e. r(i-l)j+p w = b(i-l)j+p w

for p = 1, 2, ... ,k-l<j, w = (i-l)j+l, ... ,ij. Induction 

will be used to show rvw = b where v = (i-l)j+k and
vw 

w = (i-l)j+l, ... ,ij. Note that r
vw 

= b
vw 

= 0 for

w = (i-l)j+l, ... ,v-1. By Cholesky decomposition, the 
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inductive assumption on the rows of R .. , and equations 
11 

(E.l, E.10)

r = (f 
vv vv 

= b 
vv 

k-1
I 

u=l 

s 
[ 

u=l 

2 ) 1/ 2 r
s+u v 

2 r 
UV

v-1
I 

u=s+l 

v-1

I r 2 )1/2
UV 

u=l 

r 2 ) 1/ 2 

UV 

where s =  (i-l)j. 

To complete the induction on the k-th row of R .. , 
ll 

assume r
vt 

= b
vt 

for v = (i-l)j+k and t = (i-l)j+l, 

... ,w-l<j. It must be shown that r = b 
vw vw 

By 

Cholesky decomposition, the inductive assumptions and 

equations (3.5-3.7, E.10) 

r
vw 

= ( f -
vw 

k-1
I 

u=l 
r r ) /r 

s+u v s+u w vv 

v-1

I 
u=s+l 

r r ) /r 
UV UW VV 
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where s =  (i-l)j. 

k-th row of R ...
ll 

This completes the induction on the 

Hence, R .. = B ... 
ll ll 

Further, this 

completes the induction on R. showing that R. = B .. 
l l l 

Then, from equations (E.2, E.8), Q(ij) = G(ij). 

It has been shown that R
1 

= B
1 

and Q
1 

= G
1

. 

Further, assuming R(uj) = B(uj) for u = 1,2, ... ,i-l, 

it has been shown that Q(uj) = G(uj), R(ij) = B(ij), 

and Q(ij) = B(ij). Hence, by induction, it must be 

the case that R = B and Q = G. 
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Q.E.D. 

The results of Theorem E.l provide the proof to 

the following corollary. 

COROLLARY E.l Let Q be the matrix described in Theorem E.l 

which is produced by the blocked Gram-Schmidt algorithm. 

Then 
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APPENDIX F 

Convergence of Cornwell's GOOP-LAT Algorithm 

The mathematical framework presented in this appendix 

was developed by Zangwill [57] and used by Cornwell [68] 

in proving convergence of the GOOP-LAT algorithm. 

Proofs of Theorems F.l and F.2 may be found in Zangwill's 

work. Cornwell proves Theorems F.3 and F.4. 

DEFINITION F.l By a point-to-set map, it is meant 

h f 
• ➔ 

R
m 

A (
-+ 

) • • R
m 

. t at or any point a E: , a is a set in .. , i.e. 

A :  R
m

➔ R
m

. 

DEFINITION F.2 An algorithm is an iterative process 

consisting of a sequence of point-to-set maps 

Given a point i
1

, a sequence of points 

-+ 
{ak} is generated recursively by

where any point is a possible successor 

➔ 

point a
k+l·

DEFINITION F.3 A solution set is the set of all optimal 

points and a solution point is a point in Q, the solution 

set. 

DEFINITION F.4 A point-to-set map A 

closed at the limit point 
-)­

a, 



if 

for k E: K implies ➔ 

E: A(a. ). 

The map is closed on X C Rm if it is closed at each 

a, E: x. 

THEOREM F.l Let the point-to-set map A :  Rm + Rm

determine 1 "th th t • • t + Rman a gori m a given a poin a.1 E: 

➔ 

generates the sequence {ak}. Let a solution set

n C Rm be given. 

Suppose 

1 1 . + m . Al points a.k are in a compact set X CR .

2. There exists a continuous function g :  Rm
+ R1

such that

a.) if; i n, then for any SE: A(t)

➔ ➔ 

g(S) < g(a.), 

b.) if; E: Q, then either the algorithm

terminates or for any SE: A(t) 

and 

+ ➔ 

g(f3) .:: g(a.), 

3. The map A is closed at; in.
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Then either the algorithm stops at a solution, or the 

limit of any convergent subsequence is a solution. 



DEFINITION F.5 A mixed algorithm is an algorithm that 

has a given basic algorithm map B, which depends only 
+ 

upon a, such that 

In other words, the basic map B is used infinitely 

often. Other maps are employed for the remaining k. 

THEOREM F.2 Let B : Rm + Rm be an algorithmic map for 

nonlinear programming problems such that B satisfies 

conditions 1, 2 ,  and 3 of Theorem F.l. Let a mixed 

algorithm for the problem be defined by the maps 

Rm + Rm such that for some K

k e: K 

while 

for k i K .

Assume that 

then 

1. 

2. 

All �k e: X where X is compact, and

+ If a* e: n , and 
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Then under these hypotheses the mixed algorithm

either stops at a solution or generates a sequence 
-+ {a.k} such that the limit of any convergent subsequence

is a solution point. 

DEFINITION F.6 Let M1 : R 2m -+ Rm represent a one­

dimensional search algorithm where M1 has the form

1 
➔ -+ 

->-1 -::t· M (a.,ba.) = {B g(�) = min
n::J 

-+ ➔ ➔ 
g(a. + Tba.), B -+= Cl.

J is an interval over which the scalar T varies and 
-+ -+ 2m (a.,ba) £ R .

THEOREM F.3 Let the objective function defined on the 

compact set X be continuous and have a unique minimum. 

The algorithmic map A =  M 1D where M1 is the one-
-+ -+ -+ 

dimensional search of Definition F.6 and D(a) = (a,y),
-+ -+ -+ y = ak(m

+l) - ak, is convergent.

M1 is J = [-p,p]. 

The interval for 

THEOREM F.4 Using the assumptions of Theorem F.3, 

Cornwell's GOOP-LAT algorithm, a mixed algorithm using 
1 the algorithmic map A =  M D  as a spacer step, is

convergent. 
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APPT.:NDIX G 

Details of Algorithm Implementations 

Details pertinent to the algorithm implementations 

used in the numerical results recorded in Chapter IV 

are given in this appendix. 

1. Davidon-Fletcher-Powell (DFP)

The Davidon-Fletcher-Powell (DFP) algorithm 

belongs to the broad class of General Methods discussed 

in Chapter II. Although it was the only method tested 

from this class, it has the reputation of being one of 

the more successful algorithms in its class. 

Since the method searches in conjugate directions 

by estimating the inverse Hessian matrix, it required 
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an initial approximation of this matrix along with 

initial parameter estimates. The present implementation. 

used the mxm identity matrix as the initial approx-

imation of the inverse Hessian. As suggested by McCormick 

and Pearson [45], the inverse Hessian approximation was 

reset to the identity after every m steps. 

Fletcher and Powell [13] indicate that the best 

performance of the DFP algorithm is achieved when a 

rather accurate one-dimensional search is used to 

determine the step length in each of the conjugate 

directions chosen. The present implementation used the 

one-dimensional cubic search from their paper. 



2. Levenberg-Marquardt (LM)

The Levenberg-Marquardt (LM) algorithm, as well 

as the remaining methods tested, belongs to the class 

of Least Squares Methods. The LM algorithm varies 

from the other algorithms tested in that step length 

and direction are chosen simultaneously. 

The algorithm required the initialization of the 

damping factor X (see equation 2.24). Larger values of 
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X move the initial search direction towards the direction 

of the negative gradient while smaller values result in 

a search direction nearer the linearization direction 

of equation (2.20). 

initialized as 0.01. 

In this implementation, X was 

3. Blocked Orthogonalization (BG)

In applying the blocked orthogonalization algorithm 

(BG), it was necessary to select the number of parameters 

j which were to be grouped in each block. In the 

experimental results recorded, the number of parameters 

chosen for each block was based on the natural grouping 

of parameters within the model being fitted. While 

the problems tested required groups of equal size, 

application of the algorithm to problems with varying 

block sizes would require only slight programming 

modifications. 



The present implementation of the BG algorithm 

employed the nonlinear model considerations of (3.21). 

Selection of the one-dimensional search algorithm was 

made after monitoring the performances of several 

one-dimensional search techniques on various problems. 

A modified version of the one-dimensional quadratic 

fit of Aoki [69] was chosen for use since it was easy 

to apply and was consistently quick and accurate in 

predicting step lengths. The flowchart for this 

algorithm is presented in Appendix A. 

4. Grey's Algorithm (GOOP)

The version of Grey's method (GOOP) used was 

obtained by taking j = 1 in the blocked algorithm. 

Hence, comparisons between BG and GOOP should be quite 

accurate since essentially the same code was used for 

both algorithms. 

It is of interest to note that some users of GOOP 

employ methods other than the one-dimensional search 

for determining step length. Broste [:66] for example, 

used a two stage correction procedure instead of a 

search. This technique could also be applied to the 

BG algorithm. 
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5. BG and GOOP Accelerations
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The blocked algorithm and Grey's method were tested 

using Cornwell's acceleration technique [11,68]. To 

demonstrate the degree of accuracy required in the one­

dimensional search used in this acceleration, two searches 

were employed. The BG-LAT and GOOP-LAT algorithms 

were implementations of the BG and GOOP algorithms in 

conjunction with the one-dimensional search LAT described 

by Cornwell. Appendix C contains a detailed flow chart 

of this algorithm. The BG-QF and GOOP-QF algorithms 

were implementations of BG and GOOP in which the 

quadratic fit routine was also employed in the acceleration 

ste p. The LAT routine represented a coarser search while 

the quadratic fit was a finer search. 

6. Gauss-Hartley (GH)

Taking j = m in the blocked algorithm gives the 

implementation of the Gauss-Hartley algorithm used here. 

Hence, the BG, GOOP, and GH algorithms used essentially 

the same code. 
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