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ABSTRACT

Several linear and nonlinear algorithms for solving
the discrete Tchebycheff problem are compared in this
study. The Lawson algorithm is compared with two more
well-known methods of linear Tchebycheff approximation.

A new acceleration scheme for the Lawson algorithm is
introduced and its performance is tested with an already
existing acceleration technique. The new version is found
to be better than the previous one but not as effective as
the traditional Exchange method.

A nonlinear version of Lawson's algorithm is proposed
for the solution of problems having approximating functions
which are varisolvent. Some linear theorems of Lawson are
extended to the nonlinear case. A modification of Osborne
and Watson's nonlinear method is introduced and tested on
five problems. This new technique improves the efficiency

remarkably, particularly for larger problems.



iis

ACKNOWLEDGEMENTS

The author wishes to express his deepest appreciation
and thanks to Professor A. K. Rigler who was willing to
"adopt" the author and guide him through the writing of
this dissertation.

Thanks are also due to Professor Ralph Lee and his
computer center staff who were always ready to help the
author in his use of the computer facility at Rolla. A
similar note of gratitude is expressed to the computer
center staff at Western Illinois University.

Financial support from the National Science Foundation
was received by the author during the 1971-72 school year
through an N.S.F. Graduate Traineeship. The Department of
Mathematics also helped out by granting assistantships
during the 1969-70 and 1970-71 academic years.

The author wishes to thank Mrs. Linda Simpson, whose
accuracy, speed and good judgment were so crucial in the
preparation of this final copy. A special note of thanks
to my wife, Janie, and the five little ones for their under-

standing and patience through these years of study.



iv

TABLE OF CONTENTS

Page

ABSTRACT . v eeeneeeoeenns N T T T PRI, & |
b 0 00 A M. 3 5
LIST OF TABLES. .ceceveeesns T —— ek WEEEBRE RS D
I. INTRODUCTION...... e = e CEFABSPEES Y MEH & R |
B« The Minimax Problel.:ssssssansssssnavas T T, |

B. A Brief HistoOrVisssssssssssssnnss a1 S pp—— |

C. Review of the Literature........cceceveeeeeee..3

1. IntroduCtion....ceeececececeeccecceceses o e o3

2. Early BeginningS.cccscesassassansssoscnsa 4

3. Some Post-Computer DevelopmentS..........4

4. The Nonlinear Problem...... SRR MBHT SR N PN 7

D. Objectives of This Study..ceeeeeenaans PPN -

II. ALGORITHMS FOR DISCRETE TCHEBYCHEFF APPROXIMATION..10
A. PreliminarieS.......... (R BEBAREEN RS w REPRPR 5

B. ©Some Well-Known Algorithms for Tchebycheff

Approximationccsssssssassnsssssasesns NIPRIPRPp R A
1. The Exchange Method of Stiefel.......... 17
2. The Linear Programming Method of

Barrodale and YOuUng..ecosesss semavES L. « 20
3. The Lawson Algorithm...... P |

4. Non-Lawson Nonlinear Approximation...... 27



Table of Contents (continued) Page
IIT. REVISED AND NEW ALGORITHMS . ¢ v et eeeecocccacscaceceses 30
A. Some Modified and Improved Algorithms........ 30

1l. The Lawson "Peaks" Acceleration.........30

2. Le Approximation Via Unconstrained
Least-Squares..... SR eSS e P

3. Nonlinear L, Approximation (Lawson).....35

4. An Extension of Osborne and Watson's

RlgorithMsssssnsssnssssnnsssansvwnsn seme s OB

B. Lawson Nonlinear - The Theory.......... R — %)

IV. COMPUTATIONAL EXPERIENCE. .. .c.cccccececes SEE e ® « 592
A. Idnear BlgoritlME, .vussssnsssnsssnssnawus & wyn .52

1. The Problems to be Solved..... iswmesnus D

2. Numerical Results.......... P .

3. The Unconstrained Least-Squares
ProcedUre. . .coeeeeececascacsscaccscacacaes 63

4. Summary of Numerical ResultS............64

B. Nonlinear Algorithms........c... . « 65

1. The Problems to be Solved.......... «vww »BO

2, HNumerical ResSultS.ssssvessvessssnnsnnve 567

3. Summary of Numerical ResultS........... .74

V. CONCLUSIONS:.:sevsosenssssss ERETHE A BB E S O S EeS ee .76
BIBLIOGRBPHY < o5 055556 5w se @ s oo nms s oo s oomsenosssesssss ol

VITA: s eossossnssssomnssasssnnsssssssess e L L onwe . 82



Table of Contents (continued)

APPENDICES

A.

vi

Page
Routines Used for Linear Algorithms..... vsass 84
Operation Counts for Linear Algorithms.......85
LAWRU oftf Problem () scvevsnvssssrsssvanasnosnsns 88
Generation of Data for Nonlinear Problems.... 89
Routines Used for Nonlinear Algorithms.......90
Operation Counts for Nonlinear Algorithms....91



vii

LIST OF TABLES

Page
Minimax Errors and Iteration CountS........... DR L.
Errors and WeightS....cieeeeeeeescoecocccnannss I
Operation COUNtS....ceceeeeeans CERRE RS EE o 5
Coafflolends, cosnsnssnanisnenaissnsrnoses PR -
Nonlinear Minimax Errors and Iteration Counts..... «+ 09
Nonlinear BrroXScesnssssssrsnensonssss PP
Operation Counts and Function Evaluations.......... % Puk
Starting Values of CoefficientS........co... I p—— . 1
Honlinesr CoerficientS . iernvassssssassamdhnswassnts 72



I. INTRODUCTION
A. The Minimax Problem

The main purpose of this study is to investigate vari-

ous algorithms for the solution of the minimax problem on a
discrete set of points. The investigation will be centered
around the following topics: speed of convergence, the
accuracy of results, the number of computations required,
revision and improvement of some of the existing algorithms,
and developmen£ of new algorithms. The minimax problem, or
more formally, the Tchebycheff approximation problem on a
finite point set X in [0,1] is stated as: given f(x) defined
on X, determine L(A*,x),A*cP, such that

max |L (A%, x) -f (x) | <max|L(A,x)-£(x) |

xeX xeX
for all AeP, where P is the parameter space. In the case of

n
linear approximation, L(A*,x)= ) a;¢i(x).
i=0

B. A Brief History

Tchebycheff approximation makes use of the so-called
uniform norm which was first proposed by Laplace in 1799.
The first systematic study of uniform approximation is
attributed to P. L. Tchebycheff and the resulting theory
bears his name. His work was carried out in the second half
of the nineteenth century and picked up by others in the
early 1900's. Most of the basic results were established

by 1915. These early investigations were primarily



theoretical in nature and it wasn't until Remes' algorithms
appeared in the 1930's that any workable tools were avail-
able. Tchebycheff approximation (hereafter called T-
approximation) lagged behind least-squares approximation
because it did not have such a simple characteristic
property, computationally speaking. However, the character-
istic property in T-approximation is still very important
because it is the one thing which allows us to identify a
solution. We'll see later in this study how the character-
ization theorems for T-approximation are put to good use

in developing several algorithms.

It is only since the advent of high-speed computers
after World War II that the uniform norm came into popular
usage. Stiefel is perhaps the most important mathematician
to be mentioned in connection with modern linear T-
approximation. His exchange method turns out to be the most
powerful algorithm for discrete linear T-approximation.
Stiefel was one of the first to recognize the equivalence
of linear programming and the exchange method. Although
many authors have re-posed the problem using the linear pro-
gramming technique, the exchange method has proved to be
the more powerful one because it is computationally more
efficient. 1In 1961 Lawson showed that T-approximation could
actually be done in terms of weighted least-squares approxi-
mation. Since least-squares approximation has a desirable
characteristic property in the linear case this result was

very significant theoretically.



C. Review of the Literature
1. Introduction

This review is prefaced by a restatement and an
alternate formulation of the linear problem. Let f(x) be a
function given in a finite interval on the x-axis. We wish
to approximate f(x) (which will be called the target

function) by an expression

L(A,x)=ao¢0(x)+al¢l(x)+...+an¢n(x)

in such a way that the maximum of the absolute value of the
error function e(x)=L(A,x)-f(x) is as small as possible.

The agrdys...,a, are the unknowns of the problem and the

n
By:@1r+.-,8, will be known as the base functions. We assume
that only tabulated values fi=f(xi) of the target function

are known at distinct abscissas,
X . SX.Swie s <X s
1

2 m

Historically this discrete minimax problem was posed
in the following way. Find a solution to the inconsistent

system of linear equations
z ajkx +CJ =0, j=1,2,...,m,m>n,
in such a way that the solution {x; } minimizes

€=Max|nj|,j=l,2,...,m.



2. Early Beginnings

The earliest discussion of the minimax problem for
systems of linear equations is apparently due to de la
Vallée Poussin [1]. Polya's algorithm [2], which involved
the approximation of continuous functions by polynomials,
could easily be adapted to the discrete problem. Although
this algorithm had a recent rebirth due to Goldstein, Levine
and Herreshoff [3], it turns out to be inefficient compared
with newer methods. There was a definite lag in develop-
ment until the work of Remes [4] and the appearance of his
two algorithms.

Remes' name is so important because it was he who
constructed the first really useful algorithm for T-
approximation. The details of his algorithm may be found
in Meinardus [5]. Suffice it to say that we'll be primarily
interested in what is referred to in the literature as the
first algorithm of Remes or the simplified method of Remes.
More recently it has been referred to as the single exchange
method or the "one-for-one" exchange method. This method
is the basis for Stiefel's exchange algorithm and will be
fully described in a later section in Chapter II. The
general method of Remes, or more properly his second algo-
rithm, involves simultaneous exchanges and has no direct

bearing on this work.
3. Some Post-Computer Developments

It was not until after the development of the



high-speed digital computer that Tchebycheff approximation
came into its own and that methods were implemented which
were truly useful for computation. The following quote,
taken from the preface to Meinardus' book [5], the first
German edition, attests to this fact. "It has only been in
the past few years that those parts of approximation theory
which can be applied to numerical problems have been
strongly developed."

Two methods will now be mentioned briefly, not neces-
sarily because of their usefulness, but rather because of
their historic interest. Zuhovickii [6] was interested in
solving the Tchebycheff problem as it applies to an incon-
sistent system of linear equations. He attacked the prob-
lem basically from a geometric point of view. Let the
residuals be denoted by

R (x)=(a’,%)-b;, 1<izm,

and F(x)=max|Ri(x)| be the deviation of the system, where <‘>

1<i<m
denotes the inner product. The Tchebycheff problem is that
of obtaining a point x in E which minimizes F. Here X is
termed the minimax solution. Let £=F(x). This equation
may be thought of as defining a polyhedral surface in En+l’
and the vector x is the "abscissa" of its lowest point.
Zuhovickii's algorithm obtains X by proceeding from vertex
to vertex on this surface. For details of this method see
Cheney and Goldstein [7]. For the discrete T-approximation

problem this algorithm does not appear to be competitive.



However, it is a forerunner of the linear programming method
of solution and hence is essentially the exchange algorithm
as we'll see shortly.

Cheney and Goldstein [8] published a rather complicated
algorithm for solving the T-problem but again it does not
appear to be competitive. The significant thing about their
paper is that they appear to be among the first to recognize
that the Tchebycheff problem is equivalent to a linear pro-
gramming problem. Stiefel [9] also has shown that many
of the algorithms for solving this Tchebycheff problem are
closely related to the method of linear programming.
According to him, "The exchange method is completely equiva-
lent to the well-known simplex algorithm of G. B. Dantzig."
However, the exchange method appears to be more economical
than the simplex method.

Barrodale and Young [10] have popularized the use of
linear programming in handling the Tchebycheff problem by
utilizing a modified simplex algorithm. Their procedure
will be described in depth in Chapter II. 1In his Ph.D.
dissertation, C. L. Lawson [l11l] developed a method for
solving the discrete Tchebycheff problem which had not
appeared previously in the literature. Although at the
time it was developed it had not been compared with the
exchange or linear programming methods, it did provide a
workable tool for T-approximation of vector-valued functions
and functions of a complex variable, where none existed

before.



4. The Nonlinear Problem

The type of T-approximation that has been treated up to
now has been primarily of the linear variety. Nonlinear T-
approximation is of relatively recent vintage. It has be-
come popular only after the success that has been attained
in the linear area through the application of high-speed
computers. This success stimulated a rebirth of interest in
both the theoretical and practical aspects of nonlinear T-
approximation. Although several algorithms have been pro-
posed for solving the nonlinear problem, each has its short-
comings. One major objective of this study was to try to
push forward the state of the art and improve the applica-
bility of a well-known algorithm.

Most of the literature on nonlinear T-approximation
treats rational approximation. Hastings [12] and several
of his associates at The Rand Corporation were early
practitioners of the art of rational approximation. Loeb
[13] and Maehly [l14] are also given much of the credit for
early investigations in this area. The methods for handling
the nonlinear problem generally fall into two categories:
(1) those that use a characteristic property of rational
T-approximation and (2) those that use a linear pro-
gramming approach on a sequence of linear problems. The
algorithms of Remes and Maehly are typical of methods which
utilize a characteristic theory. Osborne and Watson's
method [15] and also the Differential Correction Algorithms

of Cheney and Loeb as discussed by Lee and Roberts [16] are



techniques which employ a linear programming formulation.
The following conclusions were garnered from a paper by Lee
and Roberts [16]. Remes' algorithm is usually the most
rapid method to converge. The Differential Correction Algo-
rithm IITI is rated slightly superior to Osborne and Watson's
method. However, the Osborne-Watson technique has the
advantage that its applicability need not be restricted to

the rational problem.

D. Objectives of This Study

The primary objective of this study was to develop a
new algorithm for nonlinear T-approximation. This new
algorithm would be a nonlinear version of Lawson's algo-
rithm. Another objective was to improve on an existing
algorithm of Osborne and Watson. A detailed study was
undertaken to compare the efficiency and effectiveness of
these algorithms.

A secondary objective was to investigate the current
state of the art in linear T-approximation. An accelera-
tion scheme was devised which attempted to speed up the
Lawson algorithm and hopefully do better than the accelera-
tion method published by Rice and Usow [17]. A detailed
study was made in an effort to determine the best linear
method with respect to speed, accuracy and efficiency.

In Chapter II there appear the necessary definitions,
theorems and background information needed in the later

chapters. Details of various algorithms are also contained



in Chapter II. Chapter III is comprised of the basic
algorithms and theoretical results obtained in this study.
The details of numerical experimentation are the subject
matter of Chapter IV.

It should be noted here that when solving a nonlinear
problem we will be assuming existence when convenient and

that answers we obtain may not be unique.
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IT. ALGORITHMS FOR DISCRETE TCHEBYCHEFF APPROXIMATION

In this chapter, background material will be intro-
duced and some basic methods of discrete Tchebycheff
approximation will be described. We will start with a few

basic definitions, theorems and notation.
A. Preliminaries

The following results are stated here for convenience
as reference material for this chapter and later chapters.
Most of the material involving the exchange method is taken
from Stiefel [18]. The rest of the basic theory is from

Rice's two volumes, [19] and [20].

Definition 2.1. The set {¢i(x)} is said to form a

Tchebycheff set in [0,1] if the difference

L (Al ,X) -L (A2 Ix)
has at most n-1 zeros in [0,1] for Al#Az.

Notation 2.1. L_ will represent Tchebycheff and L2 will

stand for least-squares.

Notation 2.2. X ={xl,x

,..+,X_} is the discrete set of
m m

2
points on which approximation takes place.

Definition 2.2. A reference is a set {Xo} of (n+2) dis-

tinct abscissas from the set Xm.
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Definition 2.3. The functions ¢0,¢l,...,¢n are called

base functions.

We'll assume we wish to approximate f(x) on X, by an

expression:

(2.1) ¢(x)=a0¢0(x)+al¢l(x)+...+an¢n(x).

The values ¢(xo) of any function @(x) are related by a

linear equation:

>\1¢(xl) +}\2¢(X2) 2 .+)\n+2¢ (xn+2)=0 .

Admitting the existence and uniqueness of interpolation we

have XO#O, o=1,2,...,n+2.

Definition 2.4. Let @ be any function of class (2.1) and

let e0=¢(xo)-f(xc) be the errors at x the points of

0,

reference. @(x) is called a reference function with res-

pect to the reference {Xo} if sgn e,=sgn AO or if

sgn e =-sgn Ao’ where sgn denotes the signum function.

Definition 2.5. The levelled reference function with res-

pect to a given reference {xg} is that function character-
ized by the property that the errors ey have the same

absolute value.

Definition 2.6. The common absolute value |e| of the

approximation errors e  is called the reference-deviation

corresponding to the given reference.
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Theorem 2.1. (Exchange Theorem, [18]) Let a reference {Xc}
and a corresponding reference function @(x) be given.
Furthermore let x. be any abscissa not coinciding with a

3.

reference point. Then there is an abscissa X, out of {xc}
such that @(x) is again a reference function with respect
to the reference built by the remaining points xo#xp of {xo}

and X5 .

Theorem 2.2. [19] Let L(A*,x) be the best T-approximation

to f(x) on Xm where A*=(a_*,a.*,...,a_*). Then there is a

1 2 n
subset of (n+l) points of Xm such that L (A*,x) is the best
approximation to f(x) on this subset. Furthermore, this

subset is one which maximizes the deviation of the best T-

approximation to f(x) among all subsets of (n+l) points.

Theorem 2.3. (Characterization, [19]) L(A*,x) is the best

T-approximation to f(x) on X if and only if there exists
an alternating set for f(x)-L(A*,x) consisting of (n+l)

points.

Theorem 2.4. [21] Let {¢i(x)} be a T-set and let L(A,x)
be defined in the usual way. Then, given f(x) defined on Xm
and 1l<g<p<», we have the following sets identical:

{a|L(A,x) is a best weighted Lp approximation to

£(x) on X},

{A|L(A,x) is a best weighted L, approximation to

q
f(x) on Xm}.
The above results were concerned mainly with linear T-

approximation. The next several concepts are more directly
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involved with nonlinear approximation. First of all we
have the basic statement that the interpolation problem is

uniquely solvable.

Definition 2.7. The approximation function F(A,x) is said

to be solvent (of degree n) if, given a set {xi} of n dis-
tinct points in [0,1] and a set {yi} of arbitrary numbers,

there is an AeP (P is the parameter space) such that
F(A,xi)=yi, i=1l,2,...,n.

The next definition we need is an abstraction of the
original definition of a Tchebycheff-set, which was needed

in the linear case.

Definition 2.8. An approximating function F(A,x) is said

to have Property Zz of degree n in [0,1] if Al,AzeP,

Al#AZ:F(Al,x)—F(AZ,x) has at most (n-1) zeros in [0,1].

These two ideas can be molded together to yield the

concept of a unisolvent function.

Definition 2.9. The approximating function F(A,x) is said

to be a unisolvent function if (1) it is solvent of degree

n, and (2) has Property Z of degree n.

Most of the "interesting" nonlinear approximating func-
tions are not unisolvent and, in fact, require that the
above definitions be modified to produce local properties.

We need the following restricted idea of solvency.
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Definition 2.10. F(A,x) is locally solvent of degree m at

A*cP if given a set {ijOixl<x <...<x <1} and €>0, then

2
there exists a d(A*,e,xl,...,x )>0 such that
m

[yj—F(A*,x_)|<6ﬁ there exists a solution AeP to the system:
J
F(A,x.)=y., 3=1,2,...,m,
J J
with
| |F(A,x)-F(A*,x)||<e.

Definition 2.11. A varisolvent function F(A,x) is a

function which has Property Z of degree m at A* and is
locally solvent of degree m at A*., The degree of F at A*
is the common degree of Property Z and local solvence and

is denoted by m(A¥*).

The following theorem, which comes directly from

Rice [20] is a basic result needed in Chapter III.

Theorem 2.5. Let F be varisolvent of degree m(A*) at A*eP.

Then F(A*,x) is a best approximation to f(x) on X iff

f(x)-F(A*,x) alternates at least m(A*) times on X.

This theorem implies that the set XA corresponding to
a best approximation F(A%*,x) consists of at least m(A¥*)+1
points. This leads us immediately to the fact that the set
W (referred to in the Lawson algorithm) has at least m(A¥*)+1
points. Since the Lawson algorithm must be used on a
finite subset of X we must keep in mind the fact that we may

be faced with nonexistence of a solution. However, we have
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a "subset theorem" which is similar to the one for the

linear case.

Theorem 2.6. [20] Let F(A,x) be a varisolvent function,

and let F(A*,x) be the best approximation to f(x) on X.

Then there is a subset X, of m(A*)+l points of X such that

0
F(A*,x) is the best approximation to f(x) on XO' Further-
more X. is a subset which maximizes the deviation of the

0
best approximation to f(x) on all subsets of m(A*)+1l points.

In order to find the best approximation to f(x) on

a given subset X, of m*(A)+1l points, it is sufficient to

0
solve the system of nonlinear equations:

F(A*,xj)—f(xj)=(-1)3d, §=1,2,...,m(A%)+1.

This is usually a difficult system to solve and, in fact,
there may not be any "a priori" knowledge concerning the
degree m(A*) of the best approximation. The method of Remes
presupposes that the degree m(A*) is known before the
problem is solved. We are interested in investigating
procedures which do not require such "a priori" information.
It will be shown in the next chapter that the Lawson algo-
rithm may be extended to handle nonlinear approximation.
Before the discussion of several algorithms in depth, we
will state and prove a linear theorem which is a model for
a nonlinear one. The nonlinear one, which is very impor-

tant in the theory, will be proved in Chapter III.
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Theorem 2.7. [22] Given f(x) is a discrete function de-

fined on the point set Xm={xi|i=l,2,...,m} (the X, distinct)
and a weight function w(x) defined on X If qg is the
least—squarés approximation to f(x) out of Tn’ where Tn

is a T-set, then

m
izl[f(xi)-qg(xi)]t(xi)w(xi)=0 for every teT .

Proof: Assume there exists a EéTn such that

m
121 [£(x5) —a* (x,) TE (x;)w (x;)=a>0.

Then m 5
h= ) E(x,)“w(x,)>0.

i=1  * *
This is true because at least (n+l) of the weights must
be nonvanishing; which follows because the error curve f-g*
must alternate at least n times. Since EéTn (which is a
T-set) t can vanish at most n times in‘xm. Hence there

must exist at least one term in h which does not wvanish.
Let A=

m — 2
Then 2 [f(xi)—q;(xi)-lt(xi)] W(xi) =

i=1

m . . 5 9
izl[ (%) =q} (x,) 1" w(x,) -2ha+)"h=

T 2 2
L TE(xg)=ax(x,) 17w (x,) -2“h.

i=1
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However A2h>0 implies
|1£=(ax+AE) | | <] [£-a*] ],

and then qé is not the least-squares approximation to f.

But this is a contradiction.

B. Some Well-known Algorithms for Tchebycheff Approximation

1. The Exchange Method of Stiefel

In this section we will give a general description of
the exchange iterative routine after Stiefel [18] and then
describe a routine for the discrete T-problem using poly-
nomials as the base functions.

A reference {xc} is selected and the corresponding
levelled reference function @(x) is constructed. Its

errors e; have the property
M=max|e;|>|e|,i=1,2,...,m

where |e| is the reference deviation of @. Hence either

M>|e| or M=|e|. 1In the latter case we stop the iteration
because @ is already a function of best fit. However, if
M>|e| a point X, is selected where the error assumes its
maximum value M. Using Theorem 2.1, a new reference is

selected including the point X; and having the property

that @# is again a reference function. Among the errors

e * of @ at the new reference points, (n+l) are equal to |e]

g

in absolute value and one is equal to M. Now construct

the levelled reference function @*(x) with respect to the
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new reference {x,*}. Let |e*| be its reference deviation.

Now |e*|>|e|. A new reference is constructed and we repeat

the process.

After a finite number of steps the procedure must
come to an end because there is only a finite number of
references in the whole set of abscissas and because the
same reference can never occur twice during the routine.
This is true because the reference deviation is always
raised monotonically. Now we'll describe how this pro-
cedure applies if polynomial approximation is used.

The minimax polynomial approximation pg(x) of degree
n to a function f(x) defined by a table of values has
associated with it an error E;(x)=p;(x)—f(x) which has at
least (n+2) extremes with an alternation of sign from one
to the next. This follows from Theorem 2.2. Recall that
a polynomial of degree n has (n+l) parameters associated
with it. Now assume f(x) is defined for the set of m
points {xi}, i=1,2,...,m. Corresponding to any subset of
(n+2) points xil<x- o os <X a polynomial pn(x) and

<x. <
1 13 1n+2
a number E can be found such that

k
(2.2) pn(xik)—f(xik)=(-l) E, k=1,2,...,n+2.

It has been shown by de la Vallee Poussin [l] that
the minimax approximation p;(x) to f(x) on Xm is that ob-
tained by using the subset of (n+2) points which provides
the largest possible absolute value for the solution E

of the system (2.2). This actually amounts to the
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above defined Theorem 2.2. We could, of course, just com-
pute the best approximation to f(x) on all subsets of
{xi} of (n+2) points and select the one with the largest
deviation. Such a scheme is impractical even with large
computing machines because generally m>>n. Thus we use
the exchange method which allows us to proceed to the
largest deviation in just a few steps.

We proceed as follows for the case of polynomial T-
approximation. Choose a subset of (n+2) points {xik}
from the m points {xi} and solve the system (2.2). Assume
for the present that the points are equally spaced through-
out the finite interval [xl,xm]. After solving (2.2) the
residuals ri=pn(xi)-f(xi) are evaluated for i=1,2,...,m.
If no residual is greater than |E|, the problem is finished.
Otherwise at least one more cycle of the calculation is
required. To start the next cycle the set {xik} is chosen
so as to correspond to the (n+2) largest residuals, con-
sistent with the requirement of alternation in sign.

In general, this will imply that if a local extreme of
the residuals, L is found at a point X, which is not a
member of the set {xik} used to solve (2.2), the point x;
is then made to replace the nearest xik which provided a
residual of the same sign as r;. In the event that there
is an extreme of the residuals to the right of Xy , of

n+2

opposite sign to r; , the corresponding point is included
n+2

in the set {xi } and X; deleted if the residual at the
k 1

point is greater in magnitude than [rill; otherwise the
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point is not used. A comparable procedure is used if an
extreme is located to the left of xil. The first cycle is
completed by formation of new residuals rs and selection of
the {xi} corresponding to their extremes, to be used as the
set {xik} to begin cycle two. Again, the minimax solution
will be found after a finite number of cycles.

The exchange routine has been programmed in FORTRAN
and tested using a variety of problems. It has been found,
as one would expect, that the speed of convergence is
directly related to the "goodness" of starting values. The
algorithm performs well if the starting values are equally
spaced over the given interval. There will be some gain if
the starting values are the "Tchebycheff abscissas".
Several authors have suggested, and it has been verified in
the course of this study, that a propitious set of starting
abscissas are those corresponding to the peaks of the error
curve of the least-squares solution. Therefore, it is
recommended that the least-squares problem be solved first;
then the peaks of the L, error curve be located; and finally
the x-values which correspond to these peaks be used as
starting values for the exchange method. This choice of
starting values will usually give convergence in one or two

iterations. Actual numerical experience is tabulated in

Chapter 1IV.

2. The Linear Programming Method of Barrodale and Young

We noted in Chapter I that the discrete T-problem
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can be attacked from the vantage point of linear program-
ming. In this section we'll describe a special method due
to Barrodale and Young [10] which utilizes a modified sim-
plex algorithm. According to them, their algorithm, due
to the structure of the tableaux, requires a minimum of
storage space. They were trying to improve on Stiefel's
approach which doubled the number of constraints and re-
quired "tedious transformations" to reduce the constraints
to the original number. A basic feature of their method
is the use of a simple transformation which guarantees that
the unknown variables in the simplex method remain non-
negative.

In the formulation of the linear programming model
we'll assume we have a polynomial approximating function of
the form pn(x)=i§0aixi. In addition to the n+l coeffi-
cients of pn(x) we'll introduce a new variable, p, as

follows:
The condition

max[f(x)-pn(x)|=p
xeXm

can be stated

n .
-p<f(x.)- Z a.x%<p, 3=1,2 ;¢4 M
- J j=0 * I

0

The linear programming problem is:

minimize p
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subject to the 2m linear constraints

L i
+ XL >f(x, =L, 400,
Y izoalxj__ ( J)r J ’ m
T i
o- } a.x:>-f(x.), j=1,...,m.
i=0 1 37 ]

Barrodale and Young's method proceeds as follows
using the above notation. Set an+l=max(0,-min a.) and

=a, + <j<n. €31 i
oy a:j %1 for 0<j<n. Then, for 1<i<m, define

e;=e (x;)=p, (x;)-f(x])

o n
=j£0aj¢j(xi)—an+l jzo¢j(xi)-f(xi)

i n
where ¢i(x)=x , ¢ (x )==- ) ¢J(x ) for 1<i<m, and we've
j =0
used the notational conveniences @. .=@.(x.) and fi=f(xi).

Finally, putting e;=u;-v; where u;>0 and v;20,we have m

constraints in the nonnegative variables,

f.=a +a

1 Ogo,i '+"'+an+l¢n+1 i u +V for l<1<m_

l¢l,1

The L, approximation problem is to find {a.} such that

max |e;| is minimized. For any AcE  we put p=max |e;|and
1<i<m 1<i<m
obtain the constraints

GoBo, 1110y, it t0n P4, i HP2E;

(2.3) 1<i<m

-0 @ . -a. P .-...- +02-f. .

o0,i 11,1 0‘n+l’¢n+l,i
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This yields the linear programming problem of mini-
mizing p subject to (2.3). In actual practice, the dual
problem is solved because it reduces the number of con-
straints from 2m to n+3. This is a drastic reduction in
most problems we'll solve since m is usually much greater
than n. In the dual problem,we find nonnegative values of

m

s. and t; for 1<i<m which maximize }

i " fi(si—ti) subject to

1
the (n+3) constraints:

m
.Zlgj,i(si—ti)ip for 0<j<n+l

and

m

1 (s;+t )<l

i=1

The constraints can be expressed as equalities using the
variables aj and p, the original variables of (2.3), as
the slack variables.

This method has been programmed using the ordinary
simplex and also the revised simplex method. The numerical
experience will be discussed in Chapter IV. The linear
programming method has a definite advantage for certain
types of problems. In particular, it would be highly
suitable for problems which have added linear constraints.
However, this method is generally not as accurate nor as
quick to converge as the exchange method. The accuracy
problem can be circumvented by using orthogonal polynomials
if the base set is the set of polynomials. If the method

takes many iterations one can get into numerical difficulty
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due to the inevitable rounding errors. This problem can
be alleviated by going to double precision but only at in-

creased expense.
3. The Lawson Algorithm

The Lawson algorithm consists of solving the discrete
L, problem by means of weighted L2 approximations. Lawson's
original algorithm as published in his thesis [11] computed
best Tchebycheff approximations as the limit of a special

sequence of best weighted L approximations with p fixed.

P
The interesting case is for p=2. The possibility that such
an algorithm might exist follows from the work of Motzkin
and Walsh [21] which resulted in Theorem 2.4. From
Theorem 2.4 we see that it is indeed possible to compute a
best T-approximation by computing a certain weighted least-
squares approximation. This is desirable because the
second computation involves solving a problem which has a
more desirable characteristic property and hence a more
stable solution. To be specific, the least-squares problem
does not depend on an iterative scheme and hence results
will not vary given a reliable least-squares routine.
Lawson's algorithm computes the desired weight function.

In the Lawson algorithm,we define a sequence of weight
functions wk(xi)=w§ with .?lw§=l and corresponding approxi-

o (1)

mations L(Ak,x) as follows. Select Wy >0 arbitrarily.

Then iterate on the following two statements.
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(1) L(Ak,x) is the best L2 approximation to

k

f(x) on X with the weights Wy

k
kep WilE(x) L, x;) |

(2) wooT= .

k
Wi I f(xl) "L(Aeri) l

Il ~—3

i=1

Return to statement (1).

Obviously,we have defined an infinite iterative pro-
cedure and we must have some way of terminating the algo-
rithm after a finite number of steps. We are guaranteed

by the following theorem that the algorithm is convergent.

Theorem 2.8. [17] The sequence L(Ak,x) converges to

L(Ao,x) which is the best L_ approximation to f(x) on a

k
set X, C X_. The sequence {o },

m
= [ T w1 Geg) -1 (g ) 1]
i=1

is monotonically increasing (strictly so unless conver-
gence takes place in a finite number of steps), and

lim ok=max | £(x)-L(A,x) |=0*.
koo xeX

2
Thus a natural stopping criterion is to key on ¢
as we proceed from one step to another. There is the
possibility that we might converge on a proper subset of

Xm but if that happens Lawson has developed the following

restart theorem which comes to our rescue.

Theorem 2.9. [17] 1If X2 is a proper subset of Xm’ then

the algorithm may be restarted with
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ﬁ%=(l—k)lim w?+ku(x), 0<A<1,
k>
where u(x)=0 for x#z and u(z)=1, where zexm—X2 and
|f(x)—L(AO,z)l>G*. For A sufficiently small, 51>0*, and
after a finite number of restarts, we obtain the best L_
approximation to f(x) on Xn-

In actual practice it is very rare that one must
restart. Even though, in theory, the algorithm can inter-
polate at a critical point because of the inevitable
rounding errors this will seldom occur.

Although theoretically pleasing (and also practically
pleasing from the simplicity of implementation), the algo-
rithm suffers from the handicap of very slow convergence.
Rice and Usow [17] have attempted to accelerate the con-
vergence by extending Lawson's original algorithm. We will
briefly describe the acceleration scheme which they found
useful.

(1) Do % steps of the Lawson algorithm.

(2) Set w§=o if

|f(xi)—L(Ak,xi)|ikkok where

Ok

N [T LA R
X

(3) Go back to step 1.
In the algorithm one is interested in making wk(x)
tend to zero as rapidly as possible except at the extremal

points of the error curve of the best L, approximation.
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It is precisely to this task that the acceleration is
addressing itself. According to Rice and Usow [17],

For a typical problem involving n=4

parameters and m=50 points, the accel-

eration scheme reduced the number of

iterations from over 250 to less than

15 using values of % where 1<#<4.

This is for convergence to 7 significant

digits.
Although we found similar results holding true for prob-
lems involving relatively small values of n and m
(n<6 and m<51), we discovered that this acceleration scheme
failed quite often once the number of points was increased
significantly (m=100). The reason for this can be traced
to the fact that step (2) of the acceleration scheme only

holds true in the limit as k+« and may not hold true early

in the algorithm. Perhaps (2) should read

k
| £(x;) -L (2 ,x;) | <<h 0™

4. Non-Lawson Nonlinear Approximation

There have been numerous papers written and methods
proposed for solving the nonlinear problem via Remes-type
algorithms. Thus, it will not be our concern to investigate
such procedures here. Rather,we are interested in methods
which handle a more general-type problem than the rational
one, which is the principle one handled by the Remes algo-
rithms. Such a method is the linear programming technique
of Osborne and Watson [15].

The nonlinear L, problem in the discrete case can be

formulated in a manner analogous to the linear programming
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formulation of the linear L_ problem. The solution is

obtained by minimizing h subject to the constraints:
(2.6) Ifi-Fi(a)|<h, 11,2050 60 &

This problem is solved iteratively as follows:
(1) Calculate §al to minimize h7 subject

to the constraints:
(2.7) |£,-F; (a) - §F, (ad) ,6aT)|<hI, i=1,2,...,m .

This is a discrete L, problem which can be solved by linear
programming. Denote the minimum value of h- by‘%J.

(2) Calculate Yj to minimize the maximum value of

|fi—F(aj+Yj6aj)|, i=1,2,...,m .

Let this minimum value be denoted by Il

(3) Set aj+l=aj+yj6aj.

To get convergence we must assume the existence of
at least one bounded minimum for each problem and that F
is continuous as a function of x. In addition we need
these assumptions:

(a) Fi(a+5a)=Fi(a)+VFi6a+0(||6a|!2)r

i=1,2,...,m where VFi is the row vector with
i

. SF _
components _ -~ , j=1,2,...,n .
Sa.

This permits at least ajlocal linearization of the non-

linear problem.

(b) The rank of matrix M, M=VF, is n.
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This means the linearized problem can be solved via linear
programming.

(c) The system of equations fi—Fi(a)=0, i=1,2,...,m

is inconsistent.

Although Lee and Roberts [16] give this method a
fairly good rating in their study, we are concerned with
the method in a more general setting than they were.
Experience in running this procedure indicated that the
algorithm was often marking time and was perhaps much
slower than it needed to be. Thus the procedure was modi-
fied and improvements were made which will be discussed in

the next chapter.



30

III. REVISED AND NEW ALGORITHMS

The main purpose of this chapter is to describe two
modified algorithms and some new methods for L_-approxima-
tion. In the case of the Lawson algorithm extended to
handle the nonlinear problem, theoretical work will also

be provided.
A. Some Modified and Improved Algorithms
1. The Lawson "Peaks" Acceleration

The Lawson algorithm needs to be accelerated in some
manner if it is going to be competitive with the more
popular procedures. Although Rice and Usow [17] put for-
ward an acceleration scheme which was described in
Chapter II, section B, their technique appeared to have
some shortcomings. After much experimentation, a new algo-
rithm which uses the Lawson algorithm as its base was
developed. This new procedure was alluded to by Lawson in
his thesis when he noticed some peculiarities in his
numerical experimentation. This new algorithm capitalizes
on the fact that Lawson's algorithm tends to "move" the
peaks of the residual curve to the "reference set" or so-
called "critical" set of points rather quickly. Once this
"critical" point set is realized the problem is essentially
solved since these are the points which should receive all
the weight. Hence, you zero out the weights at non-

critical points and the algorithm will converge immediately.
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Using this new acceleration procedure, it became possible
to reach convergence to six significant digits in only
seven iterations where before the same problem took as
many as 40 iterations for the same accuracy. Numerical
results will be given in Chapter IV.

The following is a brief algorithmic description

of the "peaks" acceleration method.

Algorithm 3.1

(1) Solve the weighted least-squares problem using
Lawson's algorithm £ times (2>3).

(2) Locate the "peaks" of the error curve.

(3) Do another Lawson iteration.

(4) Locate the "peaks" of the "new" error curve.

(5) Compare the "new peaks" with the "old peaks".
(a) If they are equal go on to step (6).
(b) If they are not equal go back to step (3).

(6) Zero out the weights at the non-critical points

and continue with Lawson's algorithm.

Although this new algorithm appears to work well on a
large class of problems, there do exist problems which give
it difficulty. Suitable modifications can be made to this
algorithm which enable it to handle these problems also.
However, those modifications force the algorithm to do so
many calculations and so much comparing that it is no longer
competitive. It was decided that perhaps the weighted

least-squares ideas of Lawson could be used in another



context to develop a new algorithm. This algorithm will

now be discussed.
2. L, Approximation Via Unconstrained Least-Squares

The following is a description of how the discrete
L, problem was tackled by the method of unconstrained
least-squares. A constrained least-squares problem is

usually written:
minimize: f(x)
subject to: gi(x)iO, i=1,2,...,m.
The unconstrained form of this is:

1 2
Minimize: V(x,r)=f(x)+— Y} {min[0,g; (x)1} .
Tk i=1 *

For the problem under consideration:

n
f(a)= 2 (yi-fi)2 where y is typically in the form

i=1

_ 2
y—a0+alx+a2x Toas @

g; () >0 takes the form:

32
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Thus our problem takes the form:

) 1 L 2 2.2
Min: V(a,r,)=f(a)+—— ) min[0,a"=(y, -£ )“]
k r, - k "k
k i=1
or
m
. 2
Min: V(a,rk)=f(a)-—l— ) min[0,a -(y, =f )2]-
Y, i— k 'k
k i=1
For one constraint the problem is:
‘o _ 2 2 1 2_ _ 2
Min: V(a,rk)—(yl—fl) +...+(yn fn) —_E;[a (ykl fkl) 1

Let's assume kl=2; constraint number one is the place

where the maximum error occurs in the least-square error

curve. Then the problem is

Min: v=(yl—fl)2+(y2—f2)2+% (y2—f2)2+--.+(yn-fn)2‘ ﬁ
k k
or
: 2 1 2 2 az
Min: V=(y;-f;) +(1+—]_;]—<-) (Yo=f,) "+ oty -£) 7~ -
This is a typical least-squares problem where all the
weights are one except at the second point which has a
weight of (l+—%—). The real problem is deciding how we
should select rt. We can choose the first Ty (call it rél))

experimentally. This will simply give the weight at the
first "critical" point a disproportionate amount of the
total.

We naow check to see if:

qz—(yk-fk)zio for k=k. (first critical point).

1
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If the answer is yes, the first stage is complete and we
transfer immediately to the next paragraph below. If the
answer is no, rél) must be made smaller and we re-solve
the weighted least-squares problem.

Next find another peak, excluding the first peak from

consideration. We now have two constraints for our uncon-

strained least-squares problem. The problem now is
g 2 2
Min: V=(y1-fl) +...+(yn—fn)

1 . 2 2
= 0, [a“- -f
(2.4) r}22)[m1n{ [ (ykl kl) 1}

; 2 2
+ {0, [0“=(yy £ )71}1 .
min a k2 k2

Now we desire to have different r(2) values for each

k
_ 1 1 -
constraint. That 1s —;(2)=[—£(2) ! (ZJ - R
k 23 Tk,

The problem at (2.4) may now be written in the form:
- £ 24 | 14— +e. | (y,-£.)
v=yy (y17%; | 2R
k

2 2
(2.5) +Yl(y3-f3) +...+yl(yn—fn)

T
-RB

2 . 2 2
where B= [ min{O, [ocz—(ykl"fkl) ]}r mln{O, [a —(Ykz—sz) ]}

The big problem is how to select the vector entries in

. : If the first constraint is in bounds

R= ——— L]

2y * 2
ré ré )
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there's nothing to select; otherwise simply increase the
weight experimentally. To have the second constraint be

in bounds, 1 was selected experimentally. If it did
(2)
r

not do the jgg, we increased the weight at the second con-
straint further. if the first and second constraints are
within bounds (i.e. the peaks are not out of range) then
determine the third constraint in a similar manner.

The whole idea behind the method is to compute the
weighted least-squares error curve and then check to see
where it reaches its maximum value. At this point we
should weight the curve down, forcing it to increase at
other values. The procedure is based on a push-down, pop-up
situation which we will know will occur because of the
nature of the alternating error curve. It follows from the
work of Motzkin and Walsh, to which we have made reference
before, that L, approximation is simply a weighted L,
approximation. Hence, we are proposing an alternate method
for finding the weights, or more importantly, the "critical"

points. Numerical results will be given in Chapter IV.
3. Nonlinear L, Approximation (Lawson)

Since the Lawson method is rather straightforward to
program, depending on only an adequate least-squares solver
as its base, it was decided to try and apply this procedure
to the nonlinear problem. This is a rather natural exten-

sion and one suggested by Rice [20]. To quote from Rice,
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There are two directions for extending this

algorithm which suggest themselves. The

first is to approximation by varisolvent and

other nonlinear approximating functions. This

direction is of lesser interest because it is

not clear at this time that it is easier to

compute nonlinear Lp-approximations than it is

to compute nonlinear Tchebycheff approximations.

The other direction of extension is toward the

computation of other Lp approximations for p<w.
This second direction of extension will not concern us here.
Although it may not have been true when Rice was writing
his text, it certainly appears to be true today that the
nonlinear L, problem is easier to solve than the nonlinear
L, problem, provided a solution exists. Thus,it is natural
to seek out an adequate nonlinear L, solver and build the
nonlinear Lawson procedure around it. It was decided to
use the Marquardt algorithm as the L, solver. This pro-
cedure was first developed by Levenberg [23] and later
expanded on by Marquardt [24].

There is an inherent difficulty in attempting to solve
the L, problem in this manner. We will constantly be
iterating within an iteration and therefore cannot hope for
speedy results. However, we are interested in getting
results where results have never been achieved before.
Thus, the time of solution need only be a secondary con-
sideration. We are more concerned with the problem of con-
vergence. Results garnered from the theory, which appears
later in this chapter, indicate that we do have a conver-
gent algorithm for varisolvent functions. It may happen

that we have an algorithm which works for other types of

nonlinear functions as well.
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The basic nonlinear algorithm, which follows from the

linear model, will be stated here for the sake of com-

pleteness.

Algorithm 3.2 Let L(A,x) be a varisolvent approximating

function having degree m*(A). We wish to approximate
f(x;)=£f;, i=1,2,...,m on a set'Xm={xi|i=l,2,...,m}.
Define a sequence of weight functions wk(x) on X and a
corresponding sequence {L(Ak,x)} of best nonlinear L,-
approximations to f(x) with weights wk(x). Select wél)>0
arbitrarily. Then iterate on the following two state-

ments.

(1) L(Ak,x) is the best nonlinear L2—approximation

to £(x) on X with weights WE.
k
w.o | E(x.)-L(A, ,X:
(2) wk*L = 8| EbelniBeatdl
i

L
izlwi[f(xi)—L(Ak,xi)l

In addition to generating a sequence of weight func-
tions as we iterate, we can also generate the following

sequence

m 3
oF= | T wil£(xg)-L(ay,x)1°
i=1

The significance of this sequence is that it converges to

o*, the minimax error (in the limit). In section B we will

prove a sequence of lemmas and theorems which give this

algorithm its real power.
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4. An Extension of Osborne and Watson's Algorithm

Since the method of linear programming as applied
to the nonlinear T-problem by Osborne and Watson [15]
seemed to converge quite slowly for many problems, it was
decided to modify their method as follows. ‘As we move
from one outer iteration to the next we may change the A-
matrix, actually VF, by a very small amount. But we are
forced to re-solve the problem from the very beginning if
we proceed as detailed by Osborne and Watson. Essentially,
they do not make use of any previous information that was
computed. Rather than going back and re-solving from an
initial basis we decided to retain the last basis and
restart using this basis as our new basis.

On several examples this technique seemed to work.
However, if the initial guess was "bad" it turned out that
restarting in this manner could lead to infeasibility. It
was at this stage that the author was reminded of a result
in Hadley [25] which was particularly appropriate for this
occurrence. The procedure that was recommended was to use
the dual simplex algorithm. This method should not be con-
fused with the dual formulation of the primal problem. It
is this dual formulation which was so useful in solving the
linear L, problem.

The dual simplex algorithm allows one to solve a
linear programming problem by starting with an infeasible

solution. However, it is necessary to be superoptimal or
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have zj-cj>0,b3, when we start this algorithm. After we

restart this may not be the case. If zj—cj<0, for some j,
we proceed on with the ordinary simplex until it has con-
verged. This insures that zj—cjiohlj, since this condition
is required for convergence. Now we may still have in-
feasibilities. Here's where we check for these and pass in-
to the dual simplex if necessary.

This dual simplex algorithm forces one to determine
the vector to leave the basis first and then to choose a
vector to enter. This is the reverse of what is done in
the simplex method. The dual simplex method is applied
directly to the primal problem. With the addition of the
code for this procedure the modified algorithm was able to
"restart" using the last basis and to "recover" if the
resulting solution went infeasible. The installation of
this routine into the old routine of Osborne and Watson can
only make their algorithm more competitive. The use of
this procedure was found to be extremely worthwhile as in-
dicated by the numerical work in Chapter IV.

It's possible that we may run into numerical troubles
when we restart with a solution which is infeasible but not
superoptimal and return to the ordinary simplex. Since we
have implemented the usual rule for determining a vector to
enter the basis, we are forcing the negative zj—cj's out as
fast as possible. However, we may decrease the objective

function at any iteration by applying the usual rule for

finding a vector to leave the basis. Thus there
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is the possibility that we might repeat an old basis and
run into cycling problems. This will probably not happen
due to the inevitable rounding errors. We will now in-
dicate how the usual rule for determining a vector to
leave the basis can be modified to alleviate this problem.
The usual rule, implementing Hadley's [25] notation

is: compute

—— = LI — Yi1,.>0 :
Yrk i | yix Uik

the vector in column r of the basis is removed and replaced

by a This rule naturally assumes feasibility or xB.>O)VE.
i

K *

If we have at least one yik>0 and the corresponding x, >0

B.
i
we can apply this rule. However, if not then we should use

the following rule: compute

*By *Bj
— = max| — , Yik<0| ;
Yrk i vix TR

where the Xp, we check are non-positive. This second rule
i

guarantees that the objective function does not decrease.
In actual test-case runs it was found that cycling did not
occur when the usual rule was applied and that the modified
rule only increased the number of iterations.

We will now make a few statements about starting
values for any nonlinear L method. As a result of working
with Lawson's nonlinear method it is conjectured that non-
linear L, -approximation is just weighted nonlinear Ly-

approximation. Since an "initial guess" is needed to get
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the various L, methods started it is conjectured that the
best way to get a "good" initial guess is to first solve
the L, problem (which is generally much easier to solve)
and then to use the L, solution as a first guess at an L,
solution. The natural question which arises is "What
happens if no solution exists for the L, problem?" It
appears reasonable to conjecture that if we cannot solve
this problem then the corresponding L, problem cannot be
solved either. Thus a logical route to follow on the way
to the solution of the L, problem is to proceed via the L,
solution. We must watch for pitfalls, however, since a
given L, algorithm may be very sensitive to certain types

of problems and it may fail even when a solution exists.
B. Lawson Nonlinear - The Theory

Most of the theory treated in this section corresponds
to similar results already proved by Lawson for the linear
case. When a proof for the nonlinear case follows immedi-
ately from the linear one it will not be given here. The
following theorem parallels one given in Chapter II and is

crucial for the proof of Lemma 3.2.

Theorem 3.1. Given f(x) is a discrete function defined on

the point set X ={x;|i=1,2,...,m} (the x; distinct) and a
weight function defined on the set X . Assume that L(A,x),
the set of approximating functions, is varisolvent. If g*

is the least-squares approximation to f out of L(A,x),
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then

m B
-_Cy % .

izllf(xi) q (xi)]L(xi)w(xi)—O

for every LeL(A,x).

Proof: First, recall that if L(A,x) is varisolvent then
there will be at least d*(A)+1 nonvanishing weights where
d*(A) is the degree of the approximating function. Now

AN
assume there exists an LeL(A,x) such that

l[f(xi)-q*(xi)]/ﬁ(xi)w(xi)=a>0.

o~—3

i
Then

h= § T(x;)2w(x;)>0.

l~—>8

i=
This is true because of the varisolvent property of L(A,x).
The varisolvence of i implies that'i has at most d*(A)
zeros on X ., Where d*(A) is the degree of varisolvency.
However, from above, the weights cannot vanish at d*(a)+1
points. Thus all the terms in the sum at h cannot be zero

and in fact one must be greater than zero.

Let >\=§;£o.

A
l[f(xi)—q*(xi)-xL<xi>]2w(xi>

Then

Il ~8

i

[£(x;) -a* (x;) 12-22a+2%h

1

e

i

m 2 .2
iél[f<xi"q*‘xi>] -A"h.
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2

However \A“h positive implies

| | £ *AA f-g*
- + - .
(g L)||2<l| g |12

But this is a contradiction.
Next we wish to prove a sequence of lemmas and
theorems which give the nonlinear Lawson algorithm its real

power.

Lemma 3.1 If ol>0, then 0k>0, for all k.

Proof: same as in the linear case.

In several of the following lemmas we will use the inner
product notation:
m
(fr >W = Z w(xi)f(xi)g(xi)'
1=1
We will also let Wk={xi|w?>0}. All summations are over
the set X unless otherwise indicated.

k+1l k
W . =

- k+l k
i p

) +
)Vl, then o =g~ ; otherwise ok l>ok.

Lemma 3.2 If

Proof: The first assertion is clear; therefore we assume

wk+l(x)#wk(x).

k+1 k+1

Since ) W, e{ "L(a,,,x)=0, (this follows from Theorem 3.1)

we have
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k+1 2
KL 2 2] Wy () LBy o0 ]

(o )
k+1 k+1
=] wi T ley TIE(xg) LA .x;)]
k+l k+l k+1 k+l
e+l Lwy ey E(x;)-] W L (g g #X)
ok k+1
(e}
k+1
e.
i T
k+1
g wi
or
k+1 Z £, k+lwk+1
(3.1) 3
k+1,2 k+111/2
[Z(e. ) Ty ]
Consider e§+l

J [z(et+l)2w¥+l]l/2

and recall that it is a property of least-squares approxi-

mation that:

(1) <§,€>wk+1=1-
(2) gJ.L(Ak+l,x) in the L2 norm with weights wk+l.

(3) g maximizes ) f, 193 wk+1 over all g satisfying
(1) and (2).
Since z L(Ak,xi)e?w§=0 we have
ek
) LBy, x;) ;+i w?+l=0, for w?+l>0.
i

Now

k_ k_k
0=} L(Ak,xi)e- =] L(B,x; )el i= 1 LAy ,x e w,.
W W
k k+1
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k+1 k k 2 k+l] 1/2 k+1
(ejwj/w:J )/[Z(eiwi) /wi for w. >0

0, otherwise.

A
Sj satisfies (1) and (2) above. Thus replacing g by g in
(3.1) does not increase the left hand side.

Hence we have

k k k k
A LT TN
(3.2) o > -
, k k, 2 k+l]l/2 k, k
[Z(eiwi) /wi ZWiIeil

The equality in (3.2) follows by writing the denominator

as::
| ] 1/2
k2, k.2
k e. (W)
[Z(ek 2/Wt+l]l/2 | Lleyl kl
w?leil
k, k
L 1V ley] i
k. k k, k.11/2 k, k
= [m1ef v e Wh ] 2=k e

k, k
Now compare } w;|e; |

hand side of (3.2)) with [zw (e

(which is the denominator on the right
]L/Z

It's certainly

true that:

k.2 k

k k.12
[Tlefl @] < Teep wy

k - k. 2k
But this implies Z|e§|wi5[z(ei) wi]l/2
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It follows that 1 > 1
k, k - k.2 k.1/2
ek vy 3 (%) 2y

Using this fact in (3.2) we get the result

k k k k
ck+l S ZfleiWi N ZfieiWi _ O-k.
k| k| = k.2 kK,1/2
Iwiley| TIl(e)“wil

Lemma 3.3 Let L(A¥*,x) be the best Lo approximation to
f(x) on X. Then
ok§£*=:max|f(x)—L(A*,x)|.
xeX
Proof: This follows as in the linear case.

Lemmas 3.4 through 3.6 are leading up to a very
important result, Theorem 3.2. It is this convergence
theorem which gives the new Lawson algorithm its real
power. All summations are still over the whole set Xm.
Let L(Au,x) and w"(x) be subsequences which converge to
the limits L(A',x) and w'(x) respectively, where L(A',x)

is a weighted L, approximation. Let
W'={x|w'(x)>0}.

Lemma 3.4 L(A',x) is the best T-approximation to f(x) on
W'.

Proof: We'll first show that L(A',x) is a T-approximation.

W' is not empty since ) wE (x)=1 and o*=lim oY=

lim <eu,euklu #0 .
u->oo
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Since L(A',x) is a weighted L., approximation it must

2
alternate at least (n+l) times, where n is the degree

L must not

of varisolvency. Therefore (n+l) of the e
vanish. But if these errors are to make their contribu-
tion to the least-squares error then the corresponding
weights must not vanish. Hence W' must contain at least
(n+l) points.

u

utl and oY are continuous functions of w9. Let

Now w

us start the algorithm for this new éequence with

w(l)(xi)=w'.

2

Now either w(z)(xi)=w(l)(xi) or oc“>0*, We know that

lim wk(x)=w(l)=w'; also lim 0k=c* and ok+l(w(k))is a
k> k> 2 (1)
continuous function of w{k). Hence o° (w )=o0%*, for

otherwise ck does not converge to o*. Thus 02=0*=(0(l)).
So |e(l)(x)|=|f(x)—L(A',x)| is constant on W'. Therefore
L(A',x) is a T-approximation. But is it a best approxi-
mation? Assume there exists a better T-approximation,

call it L(A",x). Then
| £(x)-L(A",x) |<|f(x)-L(A'",x) |, xew'.

But this contradicts the fact that L(A',x) is a best

weighted L, approximation to f(x) on W'.

Lemma 3.5 1im{w3+l(x)-w?(x)}=o.

ko0
Proof: Assume the contrary. Then there is a subsequence

denoted by {QE+1—QE} which converges to a nonzero limit %.
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A
Let {wi} be a subsequence of {WE} which converges to

w(o)(x). We know that if the algorithm is started with
wgl)=w§0) then 02=00 and w$2)=wfo).
1 1 1 i
wQ|e2|
Therefore lim w§+l = 1im 1+ 1
sl = Twtle?
i i
(0) (0)
Wy 1% (0) 8
: gt L
ZWFO)eFO)
1 i

This implies that iim {w%+l—w%}=0.
- 00 1 i
A
Therefore for any convergent subsequence of w? we have

{(Qi+1-ag)}converges to zero, which then must be true for

k+1l__k

the whole sequence. So lim (w, wi)=0; but this is a

k>
contradiction.
Let W be the limit points of wk(x). It is obvious that W

is non-empty, closed and bounded. Also by Lemma 3.5 we

know that it is connected.

Lemma 3.6 Every w(x)eW gives the same L., approximation to

2
f(x).

Proof: We can decompose the set W into equivalence classes
by saying two weight functions are equivalent if they give
rise to the same approximation. If L(A,x) is a best L2
approximation to f(x) with weights w(x), then it is the

unique best L_ approximation to f(x) on W'. This follows

from Lemma 3.4. However, the set X is finite so there 1is

at most a finite number of equivalence classes, each of
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which is compact and distinct. But the connectedness of
W implies there is at most one equivalence class. There-
fore every weW yields the same L2-approximation.

Combining these results we finally have the following

theorem.

Theorem 3.2. The sequence L(Ak,x) converges to L(Ao,x)

which is a best T-approximation to f(x) on X; -

Proof: We really only need to show that {L(Ak,x)}
converges. This sequence is obviously bounded and hence
contains convergent subsequences. If there exist two sub-
sequences with different limits, consider the corres-
ponding weight functions. These sequences have convergent
subsequences which lead to the same approximation by the
previous lemma. Hence there are not two different limits
but only one which we have called L(A',x) in Lemma 3.4.
Identifying L(A',x) with L(Ao,x) in this theorem gives us
our desired result.

There is the distinct possibility that we might con-
verge on a subset Xl of X. If this happens we have not
solved our original problem but need to restart our algo-

rithm and try again. The following theorem does allow us

to restart.

Theorem 3.3. If X, is a proper subset of X, then the algo-

rithm may be restarted with

(0)

wi=(1-0w'% o +iux, 0<r<,



where u(x)=0 for x#z and u(z)=1, for ng—Xl and

L(Ao,z)—f(z)>o*. For )\ sufficiently small, we have
cl>o*

and after a finite number of restarts we obtain the best

L, approximation L(A*,x) to f(x) on X.

Proof: Denote by L(AA,x) the best L, approximation to
f(x) on X (also on XfJ{z}) with weights wé.

Set e§=(f(xi)—L(AA,xi)) and denote the corresponding o

value by
2 A, A2
[O'()\)] =z Wileil
0), A2
Now [o(A)]2=A|ei(z)|2+(l—A)z i le. |
X
1

For ) sufficiently small, say 0<A5A0<1, we have that

L(Ak,x) and L(Ao,x) are arbitrarily close, and hence

[ek(z)|>0*. Furthermore, we have

i Iei| Z% W
1 1

i e 0 0
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