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ABSTRACT 

Several linear and nonlinear algorithms for solving 

the discrete Tchebycheff problem are compared in this 

study. The Lawson algorithm is compared with two more 

well-known methods of linear Tchebycheff approximation. 

ii 

A new acceleration scheme for the Lawson algorithm is 

introduced and its performance is tested with an already 

existing acceleration technique. The new version is found 

to be better than the previous one but not as effective as 

the traditional Exchange method. 

A nonlinear version of Lawson's algorithm is proposed 

for the solution of problems having approximating functions 

which are varisolvent. Some linear theorems of Lawson are 

extended to the nonlinear case. A modification of Osborne 

and Watson's nonlinear method is introduced and tested on 

five problems. This new technique improves the efficiency 

remarkably, particularly for larger problems. 
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I. INTRODUCTION 

A. The Minimax Problem 

The main purpose of this study is to investigate vari-

ous algorithms for the solution of the minimax problem on a 

discrete set of points. The investigation will be centered 

around the following topics: speed of convergence, the 

accuracy of results, the number of computations required, 

revision and improvement of some of the existing algorithms, 

and development of new algorithms. The minimax problem, or 

more formally, the Tchebycheff approximation problem on a 

finite point set X in [0,1] is stated as: given f(x) defined 

on X, determine L(A*,x) ,A*EP, such that 

max I L (A* , x) - f ( x) l2_ma x I L (A, x) - f ( x) I 
XEX XEX 

for all AEP, where P is the parameter space. In the case of 
n 

linear approximation, L(A*,x)= L a~¢. (x). 
i=O l l 

B. A Brief History 

Tchebycheff approximation makes use of the so-called 

uniform norm which was first proposed by Laplace in 1799. 

The first systematic study of uniform approximation is 

attributed to P. L. Tchebycheff and the resulting theory 

bears his name. His work was carried out in the second half 

of the nineteenth century and picked up by others in the 

early 1900's. Most of the basic results were established 

by 1915. These early investigations were primarily 
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theoretical in natur e and it wasn't until Remes' algorithms 

appeared in the 1930's that any workable tools were avail­

able. Tchebycheff approximation (hereafter called T­

approximation) lagged behind least-squares approximation 

because it did not have such a simple characteristic 

property, computationally speaking. However, the character­

istic property in T-approximation is still very important 

because it is the one thing which allows us to identify a 

solution. We'll see later in this study how the character­

ization theorems for T-approximation are put to good use 

in developing several algorithms. 

It is only since the advent of high-speed computers 

after World War II that the uniform norm came into popular 

usage. Stiefel is perhaps the most important mathematician 

to be mentioned in connection with modern linear T­

approximation. His exchange method turns out to be the most 

powerful algorithm for discrete linear T-approximation. 

Stiefel was one of the first to recognize the equivalence 

of linear programming and the exchange method. Although 

many authors have re-posed the problem using the linear pro­

gramming technique, the exchange method has proved to be 

the more powerful one because it is computationally more 

efficient. In 1961 Lawson showed that T-approximation could 

actually be done in terms of weighted least-squares approxi­

mation. Since least-squares approximation has a desirable 

characteristic property in the linear case this result was 

very significant theoretically. 
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C. Review of the Literature 

1. Introduction 

This review is prefaced by a restatement and an 

alternate formulation of the linear problem. Let f(x) be a 

function given in a finite interval on the x-axis. We wish 

to approximate f(x) (which will be called the target 

function) by an expression 

in such a way that the maximum of the absolute value of the 

error function e(x)=L(A,x)-f(x) is as small as possible. 

The a 0 ,a1 , ... ,an are the unknowns of the problem and the 

¢ 0 ,¢1 , ... ,¢n will be known as the base functions. We assume 

that only tabulated values f.=f(x.) of the target function 
1 1 

are known at distinct abscissas, 

x <x < ... <x . 
1 2 m 

Historically this discrete minimax problem was posed 

in the following way. Find a solution to the inconsistent 

system of linear equations 

n 
nj= L ajkxk+c.=O, j=l,2, ... ,m,m>n, 

k=O J 

in such a way that the solution {xk} minimizes 

~=Max I n j I , j = 1 , 2 , . . . , m . 
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2. Early Beginnings 

The earliest discussion of the minimax problem for 

systems of linear equations is apparently due to de la 

Vallee Poussin [1]. Polya's algorithm [2], which involved 

the approximation of continuous functions by polynomials, 

could easily be adapted to the discrete problem. Although 

this algorithm had a recent rebirth due to Goldstein, Levine 

and Herreshoff [3], it turns out to be inefficient compared 

with newer methods. There was a definite lag in develop­

ment until the work of Remes [4] and the appearance of his 

two algorithms. 

Remes' name is so important because it was he who 

constructed the first really useful algorithm for T­

approximation. The details of his algorithm may be found 

in Meinardus [5]. Suffice it to say that we'll be primarily 

interested in what is referred to in the literature as the 

first algorithm of Remes or the simplified method of Remes . 

More recently it has been referred to as the single exchange 

method or the "one-for-one" exchange method. This method 

is the basis for Stiefel's exchange algorithm and will be 

fully described in a later section in Chapter II. The 

general method of Remes, or more properly his second algo­

rithm, involves simultaneous exchanges and has no direct 

bearing on this work. 

3. Some Post-Computer Developments 

It was not until after the development of the 
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high-speed digital computer that Tchebycheff approximation 

came into its own and that methods were implemented which 

were truly useful for computation. The following quote, 

taken from the preface to Meinardus' book [5], the first 

German edition, attests to this fact. "It has only been in 

the past few years that those parts of approximation theory 

which can be applied to numerical problems have been 

strongly developed." 

Two methods will now be mentioned briefly, not neces-

sarily because of their usefulness, but rather because of 

their historic interest. Zuhovickii [6] was interested in 

solving the Tchebycheff problem as it applies to an incon-

sistent system of linear equations. He attacked the prob-

lem basically from a geometric point of view. Let the 

residuals be denoted by 

and F(x)=maxiRi(x) I be the deviation of the system, where () 
l<i<m 

denotes the inner product. The Tchebycheff problem is that 

of obtaining a point x in E which minimizes F. Here x is 
n 

termed the minimax solution. Let ~=F(x). This equation 

may be thought of as defining a polyhedral surface in E 
1

, n+ 

and the vector x is the "abscissa" of its lowest point. 

Zuhovickii's algorithm obtains x by proceeding from vertex 

to vertex on this surface. For details of this method see 

Cheney and Goldstein [ 7] • For the discrete T-approximation 

problem this algorithm does not appear to be competitive. 
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However, it is a forerunner of the linear programming method 

of solution and hence is essentially the exchange algorithm 

as we'll see shortly. 

Cheney and Goldstein [8] published a rather complicated 

algorithm for solving the T-problem but again it does not 

appear to be competitive. The significant thing about their 

paper is that they appear to be among the first to recognize 

that the Tchebycheff problem is equivalent to a linear pro­

gramming problem. Stiefel [9] also has shown that many 

of the algorithms for solving this Tchebycheff problem are 

closely related to the method of linear programming. 

According to him, "The exchange method is completely equiva­

lent to the well-known simplex algorithm of G. B. Dantzig." 

However, the exchange method appears to be more economical 

than the simplex method. 

Barrodale and You~g [10] have popularized the use of 

linear programming in handling the Tchebycheff problem by 

utilizing a modified simplex algorithm. Their procedure 

will be described in depth in Chapter II. In his Ph.D. 

dissertation, C. L. Lawson [11] developed a method for 

solving the discrete Tchebycheff problem which had not 

appeared previously in the literature. Although at the 

time it was developed it had not been compared with the 

exchange or linear programming methods, it did provide a 

workable tool for T-approximation of vector-valued functions 

and functions of a complex variable, where none existed 

before. 



7 

4. The Nonlinear Problem 

The type of T-approximation that has been treated up to 

now has been primarily of the linear variety. Nonlinear T­

approximation is of relatively recent vintage. It has be­

come popular only after the success that has been attained 

in the linear area through the application of high-speed 

computers. This success stimulated a rebirth of interest in 

both the theoretical and practica l aspects of nonlinear T­

approximation. Although several algorithms have been pro­

posed for solving the nonlinear problem, each has its short­

comings. One major objective of this study was to try to 

push forward the state of the art and improve the applica­

bility of a well-known algorithm. 

Most of the literature on nonlinear T-approximation 

treats rational approximation. Hastings [12] and several 

of his associates at The Rand Corporation were early 

practitioners of the art of rational approximation. Loeb 

[13] and Maehly [14] are also given much of the credit for 

early investigations in this area. The methods for handling 

the nonlinear problem generally fall into two categories: 

(1) those that use a characteristic property of rational 

T-approximation and (2) those that use a linear pro­

gramming approach on a sequence of linear problems. The 

algorithms of Remes and Maehly are typical of methods which 

utilize a characteristic theory. Osborne and Watson's 

method [15] and also the Differential Correction Algorithms 

of Cheney and Loeb as discussed by Lee and Roberts [16] are 
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techniques which employ a linear programming formulation. 

The following conclusions were garnered from a paper by Lee 

and Roberts [16]. Remes' algorithm is usually the most 

rapid method to converge. The Differential Correction Algo­

rithm III is rated slightly superior to Osborne and Watson's 

method. However, the Osborne-Watson technique has the 

advantage that its applicability need not be restricted to 

the rational problem. 

D. Objectives of This Study 

The primary objective of this study was to develop a 

new algorithm for nonlinear T-approximation. This new 

algorithm would be a nonlinear version of Lawson's algo­

rithm. Another objective was to improve on an existing 

algorithm of Osborne and Watson. A detailed study was 

undertaken to compare the efficiency and effectiveness of 

these algorithms. 

A secondary objective was to investigate the current 

state of the art in linear T-approximation. An accelera­

tion scheme was devised which attempted to speed up the 

Lawson algorithm and hopefully do better than the accelera­

tion method published by Rice and Usow [17]. A detailed 

study was made in an effort to determine the best linear 

method with respect to speed, accuracy and efficiency. 

In Chapter II there appear the necessary definitions, 

theorems and background information needed in the later 

chapters. Details of various algorithms are also contained 



in Chapter II. Chapter III is comprised of the basic 

algorithms and theoretical results obtained in this study. 

The details of numerical experimentation are the subject 

matter of Chapter IV. 

It should be noted here that when solving a nonlinear 

problem we will be assuming existence when convenient and 

that answers we obtain may not be unique. 

9 
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II. ALGORITHMS FOR DISCRETE TCHEBYCHEFF APPROXIMATION 

In this chapter, background material will be intra-

duced and some basic methods of discrete Tchebycheff 

approximation will be described. We will start with a few 

basic definitions, theorems and notation. 

A. Preliminaries 

The following results are stated here for convenience 

as reference material for this chapter and later chapters. 

Most of the material involving the exchange method is taken 

from Stiefel [18]. The rest of the basic theory is from 

Rice's two volumes, [19] and [20]. 

Definition 2.1. The set {¢i(x)} is said to form a 

Tchebycheff set in [0,1] if the difference 

has at most n-1 zeros in [0,1] for A1~A2 . 

Notation 2.1. L
00 

will represent Tchebycheff and L2 will 

stand for least-squares. 

Notation 2.2. Xm={x1 ,x2 , ... ,xm} is the discrete set of 

points on which approximation takes place. 

Definition 2.2. A reference is a set {x0 } of (n+2) dis­

tinct abscissas from the set X . m 



Definition 2.3. The functions ¢ 0 ,¢1 , ... ,¢n are called 

base functions. 

11 

We'll assume we wish to approximate f(x) on ~by an 

expression: 

(2.1) 

The values ¢(x
0

) of any function ¢(x) are related by a 

linear equation: 

Admitting the existence and uniqueness of interpolation we 

have A0~o, a=l,2, ... ,n+2. 

Definition 2.4. Let¢ be any function of class (2.1) and 

let e
0

=¢(x
0
)-f(x0 ) be the errors at x 0 , the points of 

reference. ¢(x) is called a reference function with res-

pect to the reference {x
0

} i£ sgn e
0

=sgn Aa or if 

sgn e
0

=-sgn A
0

, where sgn denotes the signum function. 

Definition 2.5. The levelled reference function with res-

pect to a given reference {x } is that function character­a 
ized by the property that the errors e

0 
have the same 

absolute value. 

Definition 2.6. The common absolute value lei of the 

approximation errors e
0 

is called the reference-deviation 

corresponding to the given reference. 



12 

Theorem 2.1. (Exchange Theorem, [18]) Let a reference {x0 } 

and a corresponding reference function ~(x) be given. 

Furthermore let xi be any abscissa not coinciding with a 

reference point. Then there is an abscissa xp out of {x
0

} 

such that ~(x) is again a reference function with respect 

to the reference built by the remaining points x ~x of {x } a P a 

Theorem 2. 2. [19] Let L(A*,x) be the best T-approximation 

to f(x) on Xm where A*=(a
1

*,a2 *, ... ,an*). Then there is a 

subset of (n+l) points of X such that L(A*,x) is the best 
m 

approximation to f(x) on this subset. Furthermore, this 

subset is one which maximizes the deviation of the best T-

approximation to f(x) among all subsets of (n+l) points. 

Theorem 2.3. (Characterization, [19]) L(A*,x) is the best 

T-approximation to f(x) on Xm if and only if there exists 

an alternating set for f(x)-L(A*,x) consisting of (n+l) 

points. 

Theorem 2.4. [21] Let {~i(x)} beaT-set and let L(A,x) 

be defined in the usual way. Then, given f(x) defined on X 
m 

and l<q<p2oo, we have the following sets identical: 

{AIL(A,x) is a best weighted Lp approximation to 

f (x) on ~}, 

{AIL(A,x) is a best weighted Lq approximation to 

f(x) on Xm}. 

The above results were concerned mainly with linear T-

approximation. The next several concepts are more directly 



involved with nonlinear approximation. First of all we 

have the basic statement that the interpolation problem is 

uniquely solvable. 

Definition 2.7. The approximation function F(A,x) is said 

to be solvent (of degree n) if, given a set {xi} of n dis­

tinct points in [0,1] and a set {y.} of arbitrary numbers, 
1 

there is an AsP (P is the parameter space) such that 

The next definition we need is an abstraction of the 

13 

original definition of a Tchebycheff-set, which was needed 

in the linear case. 

Definition 2.8. An approximating function F(A,x) is said 

to have Property Z- of degree n in [0,1] if A1 ,A2sP, 

A1~A2~F(A1 ,x)-F(A2 ,x) has at most (n-1) zeros in [0,1]. 

These two ideas can be molded together to yield the 

concept of a unisolvent function. 

Definition 2.9. The approximating function F(A,x) is said 

to be a unisolvent function if (1) it is solvent of degree 

n, and (2) has Property Z of degree n. 

Most of the "interesting" nonlinear approximating func-

tions are not unisolvent and, in fact, require that the 

above definitions be modified to produce local properties. 

We need the following restricted idea of solvency. 
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Definition 2.10. F(A,x) is locally solvent of degree m at 

A*sP if given a set {x. IO<x <x < ... <x <1} and s>O, then 
J - 1 2 m-

there exists a o(A*,s,x , ... ,x )>0 such that 
1 m 

IY.-F(A*,x) l<o~ there exists a solution AsP to the system: 
J j 

F(A,xj)=yj, j=l,2, ... ,m, 

with 

IIF(A,x)-F(A*,x) ll <s. 

Definition 2.11. A varisolvent function F(A,x) is a 

function which has Property Z of degree m at A* and is 

locally solvent of degree m at A*. The degree of F at A* 

is the common degree of Property Z and local solvence and 

is denoted by m(A*). 

The following theorem, which comes directly from 

Rice [20] is a basic result needed in Chapter III. 

Theorem 2.5. Let F be varisolvent of degree m(A*) at A*sP. 

Then F(A*,x) is a best approximation to f(x) on X iff 

f(x)-F(A*,x) alternates at least m(A*) times on X. 

This theorem implies that the set XA corresponding to 

a best approximation F(A*,x) consists of at least m(A*)+l 

points. This leads us immediately to the fact that the set 

w (referred to in the Lawson algorithm) has at least m(A*)+l 

points. Since the Lawson algorithm must be used on a 

finite subset of X we must keep in mind the fact that we may 

be faced with nonexistence of a solution. However, we have 
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a "subset theorem" which is similar to the one for the 

linear case. 

Theorem 2.6. [20] Let F(A,x) be a varisolvent function, 

and let F(A*,x) be the best approximation to f(x) on X. 

Then there is a subset x0 of m(A*)+l points of X such that 

F(A*,x) is the best approximation to f(x) on x
0

. Further­

more x
0 

is a subset which maximizes the deviation of the 

best approximation to f(x) on all subsets of m(A*)+l points. 

In order to find the best approximation to f(x) on 

a given subset x
0 

of m*(A)+l points, it is sufficient to 

solve the system of nonlinear equations: 

F(A*,x.)-f{x.)=(-l)jd, j=l,2, ... ,m(A*)+l. 
J J 

This is usually a difficult system to solve and, in fact, 

there may not be any "a priori" knowledge concerning the 

degree m(A*) of the best approximation. The method of Remes 

presupposes that the degree m(A*) is known before the 

problem is solved. We are interested in investigating 

procedures which do not require such "a priori" information. 

It will be shown in the next chapter that the Lawson algo-

rithm may be extended to handle nonlinear approximation. 

Before the discussion of several algorithms in depth, we 

will state and prove a linear theorem which is a model for 

a nonlinear one. The nonlinear one, which is very impor-

tant in the theory, will be proved in Chapter III. 
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Theorem 2.7. [22] Given f(x) is a discrete function de-

fined on the point set X ={x. li=l,2, ... ,m} (the x. distinct) m 1 1 

and a weight function w(x) defined on xm. If q* is the 
n 

l east-squares approximation to f(x) out of Tn, where Tn 

is a T-set, then 

m 

I [f(x.)-q~(xi)]t(xi)w(x.)=O for every t~T . 
i=l 1 1 n 

Proof: Assume there exists a tsT such that 
n 

m 
I [ f ( xi ) -q * ( x . ) ] t ( x . ) w ( x . ) =a> 0 • . 1 n 1 1 1 

1= 

Then m 
h= I t(x.) 2w(x.)>O. 

i=l 1 1 

This is true because at least (n+l) of the weights must 

be nonvanishing; which follows because the error curve f-q* 

must alternate at least n times. Since t~T (which is a 
n 

T-set) t can vanish at most n times in X . Hence there 
m 

must exist at least one term in h which does not vanish. 

Let 

Then 

A=a ~ 0. 
h 

m 2 
I [ f ( X . ) -q * (X . ) -At (X . ) ] w ( X . ) = 

i=l 1 n 1 1 1 

m 2 2 I [f (x.) -q* (x.)] w (x.) -2Aa+A h= 
· 1 1 n 1 1 1= 

m 2 2 I [ f (X . ) -q * (X . ) ] w ( X . ) -A h • . 1 1 n 1 1 1= 



However A
2h>O implies 

and then q* is not the least-squares approximation to f. 
n 

But this is a contradiction. 
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B. Some Well-known Algorithms for Tchebycheff Approximation 

1. The Exchange Method of Stiefel 

In this section we will give a general description of 

the exchange iterative routine after Stiefel [18] and then 

describe a routine for the discrete T-problem using poly-

nomials as the base functions. 

A reference {x
0

} is selected and the corresponding 

levelled reference function ¢(x) is constructed. Its 

errors e. have the property 
~ 

M=max I e . I >·I e I , i = 1 , 2 , . . . , m 
~ -

where lei is the reference deviation of¢. Hence either 

M> lel or M=lel. In the latter case we stop the iteration 

because ¢ is already a function of best fit. However, if 

M> lel a point x. is selected where the error assumes its 
~ 

maximum value M. Using Theorem 2.1, a new reference is 

selected including the point xi and having the property 

that ¢ is again a reference function. Among the errors 

e *of¢ at the new reference points, (n+l) are equal to lei a 
in absolute value and one is equal to M. Now construct 

the levelled reference function ¢*(x) with respect to the 
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new reference {x0 *}. Let le*l be its reference deviation. 

Now !e*!>!e!. A new reference is constructed and we repeat 

the process. 

After a finite number of steps the procedure must 

come to an end because there is only a finite number of 

references in the whole set of abscissas and because the 

same reference can never occur twice during the routine. 

This is true because the reference deviation is always 

raised monotonically. Now we'll describe how this pro-

cedure applies if polynomial approximation is used. 

The minimax polynomial approximation p*(x) of degree 
n 

n to a function f(x) defined b~ a table of values has 

associated with it an error E*(x)=p*(x)-f(x) which has at 
n n 

least (n+2) extremes with an alternation of sign from one 

to the next. This follows from Theorem 2.2. Recall that 

a polynomial of degree n has (n+l) parameters associated 

with it. Now assume f(x) is defined for the set of m 

points {x.}, i=l,2, ... ,m. Corresponding to any subset of 
1 

(n+2) points X· <x. <x· < •.. <x. a polynomial p (x) and 
11 12 13 1n+2 n 

a number E can be found such that 

k 
(2.2) Pn(xi )-f(xi )=(-1) E, k=l,2, ... ,n+2. 

k k 

It has been shown by de la Vallee Poussin [1] that 

the minimax approximation p*(x) to f(x) on X is that ob-n m 

tained by using the subset of (n+2) points which provides 

the largest ,possible absolute value for the solution E 

of the system (2.2). This actually amounts to the 
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above defined Theorem 2.2. We could, of course, just com-

pute the best approximation to f(x) on all subsets of 

{xi} of (n+2) points and select the one with the largest 

deviation. Such a scheme is impractical even with large 

computing machines because generally m>>n. Thus we use 

the exchange method which allows us to proceed to the 

largest deviation in just a few steps. 

We proceed as follows for the case of polynomial T-

approximation. Choose a subset of (n+2) points {x. } 
1k 

from the m points {x.} and solve the system (2.2). Assume 
1 

for the present that the points are equally spaced through­

out the finite interval [x1 ,xm]. After solving (2.2) the 

residuals r.=p (x.)-f{x.) are evaluated for i=l,2, ... ,m. 
1 n 1 1 

If no residual is greater than lEI, the problem is finished. 

Otherwise at least one more cycle of the calculation is 

required. To start the next cycle the set {xi } is chosen 
k 

so as to correspond to the (n+2) largest residuals, con-

sistent with the requirement of alternation in sign. 

In general,this will imply that if a local extreme of 

the residuals, r., is found at a point x. which is not a 
1 1 

member of the set {x. } used to solve (2.2), the point X· 
1k 1 

is then made to replace the nearest x. which provided a 
1k 

residual of the same sign as ri. In the event that there 

is an extreme of the residuals to the right of x. , of 
1 n+2 

opposite sign to 

in the set {x. } 
1k 

point is greater 

r. , the corresponding point is included 
1 n+2 

and x. deleted if the residual at the 
11 

in magnitude than lr. I; otherwise the 
11 
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point is not used. A comparable procedure is used if an 

extreme is located to the left of X· • The first cycle is 
11 

completed by formation of new residuals ri and selection of 

the {xi} corresponding to their extremes, to be used as the 

set {x. } to begin cycle two. Again, the minimax solution 
lk 

will be found after a finite number of cycles. 

The exchange routine has been programmed in FORTRAN 

and tested using a variety of problems. It has been found, 

as one would expect, that the speed of convergence is 

directly related to the "goodness" of starting values. The 

algorithm performs well if the starting values are equally 

spaced over the given interval. There will be some gain if 

the starting values are the "Tchebycheff abscissas". 

Several authors have suggested, and it has been verified in 

the course of this study, that a propitious set of starting 

abscissas are those corresponding to the peaks of the error 

curve of the least-squares solution. Therefore, it is 

recommended that the least-squares problem be solved first; 

then the peaks of the L2 error curve be located; and finally 

the x-values which correspond to these peaks be used as 

starting values for the exchange method. This choice of 

starting values will usually give convergence in one or two 

iterations. Actual numerical experience is tabulated in 

Chapter IV. 

2. The Linear Programming Method of Barrodale and Young 

we noted in Chapter I that the discrete T-problem 
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qan be attacked from the vantage point of linear program-

ming. In this section we'll describe a special method due 

to Barrodale and Young [10] which utilizes a modified sim-

plex algorithm. According to them, their algorithm, due 

to the structure of the tableaux, requires a minimum of 

storage space. They were trying to improve on Stiefel's 

approach which doubled the number of constraints and re-

quired "tedious transformations" to reduce the constraints 

to the original number. A basic feature of their method 

is the use of a simple transformation which guarantees that 

the unknown variables in the simplex method remain non-

negative. 

In the formulation of the linear programming model 

we'll assume we have a polynomial approximating function of 
n . 

the form p (x)= L a.x~. In addition to the n+l coeffi-
n . 0 ~ 

~= 

cients of p (x) we'll introduce a new variable, p, as 
n 

follows: 

The condition 

can be stated 

max If (x) -pn (x) I =p 
xsX 

m 

n . 
-p <f(x.)- L a.x~ < p, j=l,2, ... ,m. 

- J i=O ~ J-

The linear programming problem is: 

minimize p 



subject to the 2m linear constraints 

n . 
p+ L a.x:>f(x.), j=l, ... ,m 

i=O 1 J- J 

n . 
p- L a.x:>-f(x.), j=l, ... ,m. 

i=O 1 J- J 

Barrodale and Young's method proceeds as follows 

using the above notation. Set an+l=max(O,-m~n aj) and 

a.=a.+a 
1 

for O<j<n. Then,for l_<i<m, define 
J J n+ - -

e.=e(x.)=p (x.)-f(x.) 
1. 1. n 1. 1. 

n n 
= L a.¢.(x.)-a 1 L ¢.(x.)-f(x.) 

j=O J J 1 n+ j=O J 1 1 

=ao¢o .+al¢1 .+ ... +a¢ .+a +1¢ +1 .-f. ,1. ,1. n n,1. n n ,1. 1. 

i n 
where¢. (x)=x, ¢n+l (xi)=-.I ¢].(xi) for l~i<m, and we've 

1. J=O 
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used the notational conveniences¢ .. =¢.(x.) and f.=f(x.). 
],1. J 1. 1. 1. 

Finally, putting ei=ui-vi where ui~O and vi~O,we have m 

constraints in the nonnegative variables, 

f.=a 0¢ 0 .+a1¢ 1 .+ ... +a +l¢ +l .-u.+v. for l<i<m. 1. ,1. ,1. n n ,1. 1. 1. __ 

The Loo approximation problem is to find {a.} such that 
J 

max le· I is minimized. 
1 

. 1. <l.<m 
obtain the constraints 

( 2. 3) 

For any AsEn we put p=max !e. land 
1 

. 1. <l.<m 
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This yields the linear programming problem of mini-

mizing p subject to (2.3). In actual practice, the dual 

problem is solved because it reduces the number of con-

straints from 2m to n+3. This is a drastic reduction in 

most problems we'll solve since m is usually much greater 

than n. In the dual problem,we find nonnegative values of 
m 

s; and ti for l<i<m which maximize I f. (s;-ti) subject to 
..... . 1 ~ ..... 

~= 

the (n+3) constraints: 

and 

m 
I ¢ · · ( s . -t. ) < 0 for 0 :5_j <n + 1 . 1 ],J. ]_ ]_-

~= 

m 
I ( s . +t . > < 1 . 

. 1 ]_ ~ -
~= 

The constraints can be expressed as equalities using the 

variables a. and p, the original variables of (2.3), as 
J 

the slack variables. 

This method has been programmed using the ordinary 

simplex and also the revised simplex method. The numerical 

experience will be discussed in Chapter IV. The linear 

programming method has a definite advantage for certain 

types of problems. In particular, it would be highly 

suitable for problems which have added linear constraints. 

However, this method is generally not as accurate nor as 

quick to converge as the exchange method. The accuracy 

problem can be circumvented by using orthogonal polynomials 

if the base set is the set of polynomials. If the method 

takes many iterations one can get into numerical difficulty 
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due to the inevitable rounding errors. This problem can 

be alleviated by going to double precision but only at in-

creased expense. 

3. The Lawson Algorithm 

The Lawson algorithm consists of solving the discrete 

L00 problem by means of weighted L2 approximations. Lawson's 

original algorithm as published in his thesis [11] computed 

best Tchebycheff approximations as the limit of a special 

sequence of best weighted Lp approximations with p fixed. 

The interesting case is for p=2. The possibility that such 

an algorithm might exist follows from the work of Motzkin 

and Walsh [21] which resulted in Theorem 2.4. From 

Theorem 2.4 we see that it is indeed possible to compute a 

best T-approximation by computing a certain weighted least-

squares approximation. This is desirable because the 

second computation involves solving a problem which has a 

more desirable characteristic property and hence a more 

stable solution. To be specific, the least-squares problem 

does not depend on an iterative scheme and hence results 

will not vary given a reliable least-squares routine. 

Lawson's algorithm computes the desired weight function. 

In the Lawson algorithm,we define a sequence of weight 
m 

functions wk(x.)=w~ with L w~=l and corresponding approxi-
~ 4 • 1 

~= 

mations L(Ak,x) as follows. Select wi1 )>0 arbitrarily. 

Then iterate on the following two statements. 



(1) L(~~x) is the best L
2 

approximation to 

(2) 

f(x) on X with the weights 
m 

k+l w. = 
J_ 

w~lf(xi)-L(Aklxi) I 
m k 

. L w i If (xi) -L (Ak 1 x. ) I 
l=l l 

k w .• 
J_ 

Return to statement (1) . 

Obviouslylwe have defined an infinite iterative pro­

cedure and we must have some way of terminating the algo-

rithm after a finite number of steps. We are guaranteed 

by the following theorem that the algorithm is convergent. 

Theorem 2.8. [17] The sequence L(Ak 1 x) converges to 

L(A01 x) which is the best L
00 

approximation to f(x) on a 

k The sequence {a }I 

k [ m k . 2.] 1 I 2 a = I w. [ f ( x. ) -L (AJc ,.x.) J . 1 J_ J_ J_ 
J.= 

is monotonically increasing {strictly so unless conver-

gence takes place in a finite number of steps) 1 and 

k 
lim a =max lf{x)-L{Aix) l=a*. 
k+oo XE:X

2 
k 

Thus a natural stopping criterion is to key on a 

as we proceed from one step to another. There is the 

possibility that we might converge on a proper subset of 

Xm but if that happens Lawson has developed the following 

restart theorem which comes to our rescue. 

Theorem 2.9. [17] If x
2 

is a proper subset of Xm' then 

the algorithm may be restarted with 
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-1 . k 
wi={l-A)l1m wi+Au(x), O~A < l, 

k-+oo 

where u(x)=O for x~z and u(z}=l, where zsXro-X2 and 

lf(x)-L(A0 ,z) l>a*. For A sufficiently small, a1 >a*, and 

after a finite number of restarts, we obtain the best L
00 

approximation to f(x) on ~· 

In actual practice it is very rare that one must 

restart. Even though, in theory, the algorithm can inter-

palate at a critical point because of the inevitable 

rounding errors this will seldom occur. 

Although theoretically pleasing (and also practically 

pleasing from the simplicity of imple-mentation), the algo-

rithm suffers from the handicap of very slow convergence. 

Rice and Usow [17] have attempted to accelerate the con-
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vergence by extending Lawson's original algorithm. We will 

briefly describe the acceleration scheme which they found 

useful. 

(1) 

(2) 

Do 2 steps of the Lawson algorithm. 

Set w~=O if 
1 

ak 
A = 

k maxlf(x)-L(Ak,x) I 
X 

(3) Go back to step 1. 

k In the algorithm one is interested in making w (x) 

tend to zero as rapidly as possible except at the extremal 

points of the error curve of the best Loo approximation. 



It is precisely to this task that the acceleration is 

addressing itself. According to Rice and Usow [17], 

For a typical problem involving n=4 
parameters and m=50 points, the accel­
eration scheme reduced the number of 
iterations from over 250 to · less than 
15 using values of £where 1<£<4. 
This is for convergence to 7-srgnificant 
digits. 

Although we found similar results holding true for prob-

lems involving relatively small values of n and m 
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(n <6 and m<51), we discovered that this acceleration scheme 

failed quite often once the number of points was increased 

significantly (m~lOO). The reason for this can be traced 

to the fact that step (2) of the acceleration scheme only 

holds true in the limit as k7oo and may not hold true early 

in the algorithm. Perhaps ·(2) should read 

4. Non-Lawson Nonlinear Approximation 

There have been numerous papers written and methods 

proposed for solving the nonlinear problem via Remes-type 

algorithms. Thus, it will not be our concern to investigate 

such procedures here. Rather,we are interested in methods 

which handle a more general-type problem than the rational 

one, which is the principle one handled by the Remes algo-

rithms. Such a method is the linear programming technique 

of Osborne and Watson [15]. 

The nonlinear L00 problem in the discrete case can be 

formulated in a manner analogous to the linear programming 



formulation of the linear L problem. The solution is 
00 

obtained by minimizing h subject to the constraints: 

( 2. 6) I f i-F i ( a) 1 <h 1 i = 1 1 2 1 • • • 1 m • 

This problem is solved iteratively as follows: 

(1) Calculate oaj to minimize hj subject 

to the constraints: 

( 2. 7) 
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This is a discrete Loo problem which can be solved by linear 

programming. Denote the minimum value of hj byhj. 

(2) Calculate yj to minimize the maximum value of 

Let this minimum value be denoted by hj+l. 

(3) Set aj+l=aj+yjoaj. 

To get convergence we must assume the existence of 

at least one bounded minimum for each problem and that F 

is continuous as a function of x. In addition we need 

these assumptions: 

(a) F. (a+oa)=F. (a)+VF1·oa+O(IIoall
2

) 1 
l l 

i=l,2, ... 1 m where VF. is the row vector with 
l 

oF· . l . components ___ 1 J=l 1 2 1 ••• 1 n. 
oa. 

Jl 1 1' . . f h This permits at least a oca 1near1zat1on o t e non-

linear problem. 

(b) The rank of matrix M1 M=VF, is n. 



This means the linearized problem can be solved via linear 

programming. 

(c) The system of equations fi-Fi(a)=O, i=l,2, ... ,m 

is inconsistent. 

Although Lee and Roberts [16] give this method a 

fairly good rating in their study, we are concerned with 

the method in a more general setting than they were. 

Experience in running this procedure indicated that the 

algorithm was often marking time and was perhaps much 

slower than it needed to be. Thus the procedure was modi­

fied and improvements were made which will be discussed in 

the next chapter. 
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III. REVISED AND NEW ALGORITHMS 

The main purpose of this chapter is to describe two 

modified algorithms and some new methods for L
00

-approxima­

tion. In the case of the Lawson algorithm extended to 

handle the nonlinear problem, theoretical work will also 

be provided. 

A. Some Modified and Improved Algorithms 

1. The Lawson "Peaks" Acceleration 

The Lawson algorithm needs to be accelerated in some 

manner if it is going to be competitive with the more 

popular procedures. Although Rice and Usow [17] put for­

ward an acceleration scheme which was described in 
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Chapter II, section B, their technique appeared to have 

some shortcomings. After much experimentation, a new algo­

rithm which uses the Lawson algorithm as its base was 

developed. This new procedure was alluded to by Lawson in 

his thesis when he noticed some peculiarities in his 

numerical experimentation. This new algorithm capitalizes 

on the fact that Lawson's algorithm tends to "move" the 

peaks of the residual curve to the "reference set" or so­

called "critical" set of points rather quickly. Once this 

"critical" point set is realized the problem is essentially 

solved since these are the points which should receive all 

the weight. Hence, you zero out the weights at non­

critical points and the algorithm will converge immediately. 



Using this new acceleration p r ocedure, it became possible 

to reach convergence to six significant digits in only 

seven iterations where before the same problem took as 

many as 40 iterations for the same accuracy. Numerical 

results will be given in Chapter IV. 

The following is a brief algorithmic description 

of the "peaks" acceleration method. 

Algorithm 3.1 

(1) Solve the weighted least-squares problem using 

Lawson's algorithm t times (£>3). 

(2) Locate the "peaks" of the error curve. 

(3) Do another Lawson iteration. 

(4) Locate the "peaks" of the "new" error curve. 

(5) Compare the "new peaks" with the "old peaks". 

(a) If they are equal go on to step (6). 

(b) If they are not equal go back to step (3). 

(6) Zero out the weights at the non-critical points 

and continue with Lawson's algorithm. 
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Although this new algorithm appears to work well on a 

large class of problems, there do exist problems which give 

it difficulty. Suitable modifications can be made to this 

algorithm which enable it to handle these problems also. 

However, those modifications force the algorithm to do so 

many calculations and so much comparing that it is no longer 

competitive. It was decided that perhaps the weighted 

least-squares ideas of Lawson could be used in another 



context to develop a new algorithm. This algorithm will 

now be discussed. 

2. L00 Approximation Via Unconstrained Least-Squares 

The following is a description of how the discrete 

L00 problem was tackled by the method of unconstrained 

least-squares. A constrained least-squares problem is 

usually written: 

minimize: f (x) 

subject to: g.(x)>O, i=l,2, ... ,m. 
1. -

The unconstrained form of this is: 

1 m 2 
Minimize: V(x,rk)=f(x)+--- L {min[O,gi(x) ]} 

rk i=l 

For the problem under consideration: 

n 2 
f (a)= I , (y i -fi) where y is typically in the form 

i=l 

gi(a)~O takes the form: 
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Thus our problem takes the form: 

Min: 
1 m 2 2 2 

V(a,rk)=f(a)+- .L min[O,a -(yk-fk) ] 
rk 1=l 

or 

Min: 

For one constraint the problem is: 

Min: 

Let's assume k
1

=2; constraint number one is the place 

where the maximum error occurs in the least-square error 

curve. 

Min: 

or 

Then the problem is 

Min: 
2 

a 
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r . 
k 

This is a typical least-squares problem where all the 

weights are one except at the second point which has a 

1 weight of (1+---) . 
rk 

should select rk. 

The real problem is deciding how we 

We can choose the first rk (call it r~l)) 

experimentally. This will simply give the weight at the 

first "critical" point a disproportionate amount of the 

total. 

We now check to see if: 

2 2 
a -(yk-fk) ~0 for k=k

1 
(first critical point). 



If the answer is yes, the first stage is complete and we 

transfer immediately to the next paragraph below. If the 

answer is no, r~l) must be made smaller and we re-solve 

the weighted least-squares problem. 
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Next find another peak, excluding the first peak from 

consideration. We now have two constraints for our uncon-

strained least-squares problem. The problem now is 

Min: 

( 2. 4) 

+ min 
2 2 {0, [a -(yk -fk ) ]}] 

2 2 

each 

The problem at (2.4) may now be written in the form: 

V=y1(y1-f1)
2
+[1+ ~~1)+£1] (y2-f2)

2 

( 2. 5) 
2 2 

+yl(y3-f3) + ... +yl(yn-fn) 

-RBT 

where B= [ min{O, [a2 - (yk -fk ) 
2

1}, min {0, [</- (yk -fk ) 
2

1} ] 
1 1 2 2 

The big problem is how to select the vector entries in 

[ 
1 1 ] If the first constraint is in bounds 

R= ---;(2) ' --;<2) 
k1 k2 



there's nothing to select; otherwise simply increase the 

weight experimentally. To have the second constraint be 

in bounds, 1 was selected experimentally. If it did 
{2) 

rk 
not do the jo~, we increased the weight at the second con-

straint further. If the first and second constraints are 

within bounds (i.e. the peaks are not out of range) then 

determine the third constraint in a similar manner. 

The whole idea behind the method is to compute the 

weighted least-squares error curve and then check to see 

where it reaches its maximum value. At this point we 

should weight the curve down, forcing it to increase at 
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other values. The procedure is based on a push-down, pop-up 

situation which we will know will occur because of the 

nature of the alternating error curve. It follows from the 

work of Motzkin and Walsh, to which we have made reference 

before, that L00 approximation is simply a weighted L2 

approximation. Hence, we are proposing an alternate method 

for finding the weights, or more importantly, the "critical" 

points. Numerical results will be given in Chapter IV. 

3. Nonlinear L
00 

Approximation (Lawson) 

Since the Lawson method is rather straightforward to 

program, depending on only an adequate least-squares solver 

as its base, it was decided to try and apply this procedure 

to the nonlinear problem. This is a rather natural exten­

sion and one suggested by Rice [20]. To quote from Rice, 



There are two directions for extending this 
algorithm which suggest themselves. The 
first is to approximation by varisolvent and 
other nonlinear approximating functions. This 
direction is of lesser interest because it is 
not clear at this time that it is easier to 
compute nonlinear L2-approximations than it is 
to compute nonlinear Tchebycheff approximations. 
The other direction of extension is toward the 
computation of other Lp approximations for p<oo. 
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This second direction of extension will not concern us here. 

Although it may not have been true when Rice was writing 

his text, it certainly appears to be true today that the 

nonlinear L2 problem is easier to solve than the nonlinear 

L00 problem, provided a solution exists. Thus,it is natural 

to seek out an adequate nonlinear L2 solver and build the 

nonlinear Lawson procedure around it. It was decided to 

use the Marquardt algorithm as the L2 solver. This pro­

cedure was first developed by Levenberg [23] and later 

expanded on by Marquardt [24]. 

There is an inherent difficulty in attempting to solve 

the L00 problem in this manner. We will constantly be 

iterating within an iteration and therefore cannot hope for 

speedy results. However, we are interested in getting 

results where results have never been achieved before. 

Thus,the time of solution need only be a secondary con-

sideration. We are more concerned with the problem of con-

vergence. Results garnered from the theory, which appears 

later in this chapter, indicate that we do have a conver-

gent algorithm for varisolvent functions. It may happen 

that we have an algorithm which works for other types of 

nonlinear functions as well. 
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The basic nonlinear algorithm, which follows from the 

linear model, will be stated here for the sake of com-

pleteness. 

Algorithm 3.2 Let L(A,x) be a varisolvent approximating 

function having degree m*(A). We wish to approximate 

f (xi ) = f i , i = 1 , 2 , •.• , m on a set · Xm = {xi I i = 1 , 2 , . • • , m} . 

Define a sequence of weight functions wk(x) on Xm and a 

corresponding sequence {L(Ak,x)} of best nonlinear L2 -

approximations to f(x) with weights wk(x). Select w~ 1 ) > 0 
1. 

arbitrarily. Then iterate on the following two state-

ments. 

(1) 

(2) 

L(~,x) is the best nonlinear L2 -approximation 

k to f(x) on~ with weights wi. 

w~ I f (xi ) - L ( Ak , xi ) I 
k+l w. = 
1. iri k 

L w. I f (X. ) -L (Ak I X. ) I 
. 1 1. 1. 1. 
1.= 

In addition to generating a sequence of weight func-

tions as we iterate, we can also generate the following 

sequence 

k 
(J = 

The significance of this sequence is that it converges to 

a*, the minimax error (in the limit). In section B we will 

prove a sequence of lemmas and theorems which give this 

algorithm its real power. 



4. An Extension of Osborne and Watson's Algorithm 

Since the method of linear programming as applied 

to the nonlinear T-problem by Osborne and Watson [15] 

seemed to converge quite slowly for many problems, it was 

decided to modify their method as follows. As we move 
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from one outer iteration to the next we may change the A­

matrix, actually VF, by a very small amount. But we are 

forced to re-solve the problem from the very beginning if 

we proceed as detailed by Osborne and Watson. Essentially, 

they do not make use of any previous information that was 

computed. Rather than going back and re-solving from an 

initial basis we · decided to retain the last basis and 

restart using this basis as our new basis. 

On several examples this technique seemed to work. 

However, if the initial guess was "bad" it turned out that 

restarting in this manner could lead to infeasibility. It 

was at this stage that the author was reminded of a result 

in Hadley [25] which was particularly appropriate for this 

occurrence. The procedure that was recommended was to use 

the dual simplex algorithm. This method should not be con­

fused with the dual formulation of the primal problem. It 

is this dual formulation which was so useful in solving the 

linear L
00 

problem. 

The dual simplex algorithm allows one to solve a 

linear programming problem by starting with an infeasible 

solution. However, it is necessary to be superoptimal or 



have zJ.-c.>O,~ . , when we start this algorithm. After we 
]- J 

restart this may not be the case. If z.-c.<O, for some j, 
J J 

we proceed on with the ordinary simplex until it has con-
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verged. This insures that z.-c.>O~., since this condition 
J ]- J 

is required for convergence. Now we may still have in­

feasibilities. Here's where we check for these and pass in-

to the dual simplex if necessary. 

This dual s .implex algorithm forces one to determine 

the vector to leave the basis first and then to choose a 

vector to enter. This is the reverse of what is done in 

the simplex method. The dual simplex method is applied 

directly to the primal problem. With the addition of the 

code for this procedure the modified algorithm was able to 

"restart" using the last basis and to "recover" if the 

resulting solution went infeasible. The installation of 

this routine into the old routine of Osborne and Watson can 

only make their algorithm more competitive. The use of 

this procedure was found to be extremely worthwhile as in-

dicated by the numerical work in Chapter IV. 

It's possible that we may run into numerical troubles 

when we restart with a solution which is infeasible but not 

superoptimal and return to the ordinary simplex. Since we 

have implemented the usual rule for determining a vector to 

enter the basis, we are forcing the negative zj-cj's out as 

fast as possible. However, we may decrease the objective 

function at any iteration by applying the usual rule for 

finding a vector to leave the basis. Thus there 



is the possibility that we might repeat an old basis and 

run into cycling problems. This will probably not happen 

due to the inevitable rounding errors. We will now in-

dicate how the usual rule for determining a vector to 
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leave the basis can be modified to alleviate this problem. 

The usual rule, implementing Hadley's [25] notation 

is: compute 

the vector in column r of the basis is removed and replaced 

This rule naturally assumes feasibility or xs.>O,~i. 
1-

If we have at least one yik>O and the corresponding xB.~O 
1 

we can apply this rule. However, if not then we should use 

the following rule: compute 

where the xB· . we check are non-positive. This second rule 
1 

guarantees that the objective function does not decrease. 

In actual test-case runs it was found that cycling did not 

occur when the usual rule was applied and that the modified 

rule only increased the number of iterations. 

we will now make a few statements about starting 

values for any nonlinear L00 method. As a result of working 

with Lawson's nonlinear method it is conjectured that non-

linear L
00

-approximation is just weighted nonlinear L2-

approximation. Since an "initial guess" is needed to get 
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the various Loo methods started it is conjectured that the 

best way to get a "good" initial guess is to first solve 

the L2 problem (which is generally much easier to solve) 

and then to use the L2 solution as a first guess at an L00 

solution. The natural question which arises is "What 

happens if no solution exists for the L2 problem?" It 

appears reasonable to conjecture that if we cannot solve 

this problem then the corresponding L00 problem cannot be 

solved either. Thus a logical route to follow on the way 

to the solution of the L
00 

problem is to proceed via the L2 

solution. We must watch for pitfalls, however, since a 

given L2 algorithm may be very sensitive to certain types 

of problems and it may fail even when a solution exists. 

B. Lawson Nonlinear - The Theory 

Most of the theory treated in this section corresponds 

to similar results already proved by Lawson for the linear 

case. When a proof for the nonlinear case follows immedi­

ately from the linear one it will not be given here. The 

following theorem parallels one given in Chapter II and is 

crucial for the proof of Lemma 3.2. 

Theorem 3.1. Given f(x) is a discrete function defined on 

the point set ~={xiji=l,2, ... ,m} (the xi distinct) and a 

weight function defined on the set ~· Assume that L(A,x), 

the set of approximating functions, is varisolvent. If q* 

is the least-squares approximation to f out of L(A,x), 



42 

then 
m 
l: If ( x. ) -q * ( x. ) ] L ( x. ) w (x. ) =0 

. 1 1 1 1 1 1= 

for every L£L(A,x). 

Proof: First, recall that if L(A,x) is varisolvent then 

there will be at least d*(A)+l nonvanishing weights where 

d* (A) is the degree of the approximating function. Now 

assume there exists an 
1\ 
L£L (A,x) such that 

m 1\ l: [f(x; )-q*(x.) ]L(x. )w(x. )=a>O. 
. 1 ..I- 1 1 1 
1= 

Then 
m 1\ 2 

h= I L(x.) w(x;)>O. 
. 1 1 ..1.. 1= 

This is true be.cause of the varisolvent property of L(A,x). 

The varisolvence of i implies_ that 1 has at most d*(A) 

zeros on ~' where d*(A) is the degree of varisolvency. 

However, from above, the weights cannot vanish at d*(A)+l 

points. Thus all the terms in the sum at h cannot be zero 

and in fact one must be greater than zero. 

Let 
a 

A = n :~ o. 

Then 
m 1\ 2 L [f(x.)-q*(x·)-AL(x·)] w(x·)= 

. 1 1 1 1 1 
1= 

m 2 2 
L [f(x.)-q*(xi)] -2Aa+A h = 

. 1 1 1= 

m 2 2 I [ f (X . ) -q * (X . ) ] -A h • 
. 1 1 1 1= 
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However A2h positive implies 

A 
I I f- ( q * + AL} I I .< I I f-g * I I . 

2- 2 

But this is a contradiction. 

Next we wish to prove a sequence of lemmas and 

theorems which give the nonlinear Lawson algorithm its real 

power. 

Lemma 3.1 
1 k 

If a >0, then a >0, for all k. 

Proof: same as in the linear case. 

In several of the following lemmas we will . use the inner 

product notation: 

m 
. L w (xi} f (xi} g (xi} . 
1=1 

k 
We will also let Wk={xilwi>O}. All summations are over 

the set ~ unless otherwise indicated. 

Lemma 3. 2 
k+l k \J k+l k k+l k 

If wi =wi,v i ' then a =a ; otherwise a >a • 

Proof: The first assertion is clear; therefore we assume 

wk+l(x}r!wk(x}. 

k+l k+l 
Since L wi ei L(Ak+l'x}=O, (this follows from Theorem 3.1} 

we have 



or 

or 

(3.1) 

Consider 

k+l 

=~i' e~+l\k+l 
(J lw. 

1 

k+l L f.e~+lw~+l 
(J = 1 1 1 

g. 
J 

[ L (e~+l) 2w~+l ] 1/2 

k+l e. 

and recall that it is a property of least-squares approxi-

mation that: 

(1) 

(2) 

( 3) 

k+l g j_ L (~+l ,x) in the L 2 norm with weights w 

\ k+l g maximizes L f.g.w
1
. over all g satisfying 

1 1 

( 1) and ( 2) • 

\ k k Since L L(A ,x.)e.w.=O we have -1< 1 1 1 

Wk. +l __ 0 , £ k+l>o or w. • 
1 1 

Now 
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Let 

6. = . g. 
J 

k k k+l [' k k 2 k+l ] 1/2 k+l ( e . w . /w . ) I L ( e . w. ) /w. for w. > 0 
J J J l l l l 

0, otherwise. 

~. satisfies (1) and (2) above. 
J 

1\ 
Thus replacing g by g in 

(3.1) does not increase the left hand side. 

Hence we have 

( 3. 2) ------------------ = 

k k 
'f.e·W· L l l l 

k k Iw .I e. I 
l l 

The equality in (3.2) follows by writing the denominator 

as: 

k 2 k 2 I I e · I <w · > l l 

k k 
w.le·l 

l l 

[ 
k k k k ] 1/2 k k 

= <'le.lw.)(Lie·lw.) ='w.le·l · L l l l l L l l 

1/2 
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\ kl kl . . . h . h Now compare L wi ei (whlch lS the denomlnator on t e rlg t 

hand side of (3.2)) with (Lw~(e~> 2 ] ~12 . It's certainly 

true that: 

[ 
k k ]2 k 2 k 

f:leil (wi) 2. f:<ei) wi . 

But this implies Lle~lw~~[L <e~) 2w~) 112 . 



It follows that 1 

Using this fact in (3.2) we get the result 

Lemma 3.3 Let L(A*,x) be the best Loo approximation -to 

f (x) on X. Then 

crk~~* · = :maxlf(x)-L(A*,x) I· 
XE:X 

Proof: This follows as in the linear case. 

Lemmas 3.4 through 3.6 are leading up to a very 

important result, Theorem 3.2. It is this convergence 

theorem which gives the new Lawson algorithm its real 

power. All summations are still over the whole set X . 
m 

Let L(A ,x) and wu(x) be subsequences which converge to 
u 

the limits L(A' ,x) and w' (x) respectively, where L(A' ,x) 

is a weighted L2 approximation. Let 

W'={xlw' (x)>O}. 
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Lemma 3.4 L(A' ,x) is the best T-approximation to f(x) on 

W'. 

Proof: We'll first show that L(A' ,x) is aT-approximation. 

W' is not empty since L wk(x)=l and cr*=lim au= 

< u u'\1/2 
lim e · ,e · ~u ~0. 
u-+oo 

u-+oo 



Since L(A' ,x) is a weighted L2 approximation it must 

alternate at least (n+l) times, where n is the degree 

of varisolvency. Therefore (n+l) of the eu must not 

vanish. But if these errors are to make their contribu-

tion to the least-squares error then the corresponding 

weights must not vanish. Hence W' must contain at least 

(n+l) points. 

Now wu+l and au are continuous functions of wu. Let 

us start the algorithm for this new sequence with 

w(l) (x. )=w'. 
J. 

·Now eithar w( 2 ) (x.)=w(l) (x.) or a2 >a*. We know that 
J. J. 

lim wk(x)=w(l)=w'; also lim ak=a* and ak+l(w(k)) is a 
k~oo k~oo 

continuous function of w~k). Hence a 2 Cw(l))=a*, for 
J. 

otherwise ak does not converge to a*. Thus a 2=a*=(a(l)). 

So le(l) (x) l=lf(x)-L(A',x) I is constant on W'. Therefore 

L(A',x) is aT-approximation. But is it a best approxi-

mation? Assume there exists a better T-approximation, 

call it L(A",x). Then 

I f(x) -L(A" ,x) I< I f(x) -L(A' ,x) I, x s W'. 

But this contradicts the fact that L(A',x) is a best 

weighted L2 approximation to f(x) on W'. 

Lemma 3. 5 . k+l k lJ.m{w. (x) -w. (x) }=0. 
k 

l 1. 
~00 
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Proof: Assume the contrary. Then there is a subsequence 

denoted by {~~+l_~~} which converges to a nonzero limit £. 
1. 1. 



Let {w~} be a subsequence of {~~} which converges to 

w(O) (x). We know that if the algorithm is started with 

w~ 1 >=w~O) then o 2=o 0 and w~ 2 )=w~O). 
1 1 1 l. 

i+l 
Therefore lim w. = lim 

.Q,-+oo .Q,-+oo l. 

w~o)le~o>l 
1 1 

= 
Iw ~ 0) e ~ 0) 

1 1 

.t .tl w.le. 
1 1 

Iw~ I e~ I 
1 1 

= 
( 0) 

w. 
l. 

= 

This implies that lim {~71 -w~}=O. 
£-+oo l. 1 

.Q, 
lim w. 
.Q,-roo l. 

Therefore for any convergent subsequence of C~ we have 
l. 

{ (\J~+l_<J~)} converges to zero, which then must be true for 
1 1 

the whole sequence. 

contradiction. 

So lim (w~+l_w~)=O; but this is a 
l. 1 

k Let W be the limit points of w (x) . It is obvious that W 

is non-empty, closed and bounded. Also by Lemma 3.5 we 

know that it is connected. 
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Lemma 3.6 Every w(x)sW gives the same L
2 

approximation to 

f (x) • 

Proof: We can decompose the set W into equivalence classes 

by saying two weight functions are equivalent if they give 

rise to the same approximation. If L(A,x) is a best L
2 

approximation to f(x) with weights w(x), then it is the 

unique best L approximation to f(x) on W'. This follows 
00 

from Lemma 3.4. However, the set X is finite so there is 

at most a finite number of equivalence classes, each of 
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which is compact and distinct. But the connectedness of 

W implies there is at most one equivalence class. There-

fore every wsW yields the same L2-approximation. 

Combining these results we finally have the following 

theorem. 

Theorem 3.2. The sequence L(Ak,x) converges to L(A0 ,x) 

which is a best T-appro.ximation to f(.x) on x1 . 

Proof: We really only need to show that · {L (~ ,x)} 

converges. This sequence is obviously bounded and hence 

contains convergent subsequences. If there exist two sub-

sequences with different limits, consider the corres-

pending weight functions. These sequences have convergent 

subsequences which lead to the same approximation by the 

previous lemma. Hence there are not two different limits 

but only one which we have called L(A' ,x) in Lemma 3.4. 

Identifying L(A' ,x) with L(A0 ,x) in this theorem gives us 

our desired result. 

There is the distinct possibility that we might con-

verge on a subset x1 of X. If this happens we have not 

solved our original problem but need to restart our algo-

rithm and try again. The following theorem does allow us 

to restart. 

Theorem 3.3. If x1 is a proper subset of X, then the algo­

rithm may be restarted with 

w ~ = ( 1-A) w ( 0 
) (X) +Au (X) ' 0 2_A < 1 ' 

l. 



where u(x)=O for x~z and u(z)=l, for z~x-x1 and 

L(A0 ,z)-f(z)>a*. For A sufficiently small, we have 

1 
a >a* 

and after a finite number of restarts we obtain the best 

L
00 

approximation L(A*,x) to f(x) on X. 

Proof: Denote by L(AA,x) the best L2 approximation to 

f(x) on X (also on x
1
u{z}) with weights w~. 

Set e~=(f(xi)-L(AA,xi)) and denote the corresponding a 

value by 

Now [a(A) J 2 =Aje~(z) 12
+(1-A) I 

~ X 
1 

For A sufficiently small, say 0<A~A 0 <1, we have that 

L(AA,x) and L(A
0

,x) are arbitrarily close, and hence 

jeA(z) l>cr*. Furthermore, we have 

I w~O) le~I2>I w~O) le~O) 12 
x ~ ~ -x ~ ~ 

1 1 

since L (A
0

, x) . \ w.(O) le.(O) 12 ( min~mizes L among all L ~,x). 
X ~ ~ 

1 

After manipulating 

2 (0) (0) A 2 
[a(A)] > (1-A) I w. !e. I+Aie. (z) I 

- X ~ ~ ~ 

1 
2 2 

> (1-A) (a*) +A (a*) 

2 
= (a*) 
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Thus a(A)>a*. For any choice of A in the range (O,A ] 
0 

1 1 
we have a =a(A) and hence a >a*. 

Thus the second start of Lawson's algorithm yields 

another approximation, a corresponding ai, and w
1 

where 

ai>a*. Since X is finite, there are only a · finite number 

of restarts possible and we'll converge eventually to 
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IV. COMPUTATIONAL EXPERIENCE 

A. Linear Algorithms 

In this section we'll report the results of numerical 

experience with the various linear algorithms which were 

previously discussed. We will always be trying to find 

the best Tchebycheff approximation to a set of discrete 

data. 

1. The Problems to be Solved 

(a) Find the best approximating function of the form 

F=a
0

+a
1

x to the function defined by the following table. 

0 1 2 3 4 5 
f(x) 1.520 1.025 0.475 0.010 -0.475 -1.005 

This problem is taken from Barrodale and Young [10]. 

(b) Find the best approximating function of the form 
3 i 

F= L a.x to IX by sixteen points equally spaced in the 
i=O l 

interval [0,3]. 

(c) Find the best approximating function of the form 
5 i 

F= L a.x to the function y=tan x by 51 equally spaced 
i=O l 

points in the interval [O,TI/4]. 

(d) Find the best approximating function of the form 
4 i 5 

F= L a.x to x on 129 equally spaced points in [-1,1]. 
. 0 l 1 = 

This problem is taken from Lawson's thesis [11]. 
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(e) Find the best approximating function of the form 
5 i 

F= L a.x to the function defined at 101 points in the 
i=O ~ 

interval [-n,n] in the following way. The basic function 

used to generate y. values was y.=sin x.; however, if a 
~ ~ ~ 

value of y. was created such that jy. j>0.70, then y. was 
~ ~ - ~ 

set equal to 0.70. This function will subsequently be 

referred to as the "clipped sine" problem for obvious 

reasons. This non-smooth function was purposely designed 
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as a function that might give the Lawson algorithm and other 

algorithms a real test. 

(f) Find the best approximating function of the form 
2 

F= L a.xi to 3/X by 31 equally spaced points in the inter­
i=O ~ 

val [0,3]. This problem was selected because it was one 

which gave the acceleration scheme of Rice and Usow some 

troubles. 

2. Numerical Results 

All of the algorithms were run on an IBM 360/50 using 

single precision arithmetic. Specific routines that were 

used in various algorithms are discussed in Appendix A. 

The details of how the operation counts were computed are 

given in Appendix B. The following notation is used 

to denote the errors for the various methods: 

EL: the Lawson error 

EX: the Exchange error 

ELP: the Linear-programming error 



ELA: the Lawson error (as algorithm was accelerated by 

Rice and Usow) 

ELM: the Lawson error (.as algorithm was accelerated by 

the author) 

The various error entries are reported to six significant 

digits. 

The following abbreviations are used for the algo­

rithms: 

LAWS: for the ordinary unaccelerated Lawson algorithm 

EXCH: for the Exchange algorithm 

LP: for the linear programming method 

LAWRU: for the Lawson algorithm as accelerated by Rice 

and Usow 
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LAWM: for the Lawson algorithm as accelerated by the author 

The errors are only reported at the so-called 

"critical points" since it is the errors at these points 

which characterize the solution. The relative position of 

the critical points will also be given. For example, in 

problem (a) there are six data pairs and the critical 

points occur at the second, third and fifth points. Hence, 

2, 3, and 5 will be listed as critical points. 

The weights for the various Lawson algorithms are 

also reported only at critical points. A notation for the 

weights is used which corresponds to the notation used for 

errors. For example, WL represents a weight for the 

Lawson algorithm. CP is a shortcut for critical point. 



Problem 

Method Error 

LAWS 0.0249813 

EXCH 0.0250000 

LP 0.0249999 

LAWRU 0.0250004 

LAWM 0.0250000 

Problem 

LAWS 0.0619006 

EXCH 0.0624848 

LP 0. 0624 849 

LAWRU 0.0621998 

LAWM 0. 0624 846 

Table 4.1 

Minimax Errors and Iteration Counts 

(a) 

Iterations 

20 

2 

5 

9 

7 

{d) 

40 

3 

12 

18 

8 

Error 

0.0744499 

0.0745029 

0.0745028 

0.0745029 

0.0745029 

0.672281 

0.678718 

0.678709 

0. 6 786 70 

0.671473 

(b) 

Iterations 

{e) 

39 

4 

8 

12 

7 

40 

4 

9 

30 

7 

Error 

0.460E-4 

0.461E-4 

0.461E-4 

0.454E-4 

0.461E-4 

0.238005 

0. 2 380 34 

0.238035 

0.238027 

0.238034 

(c) 

Iterations 

40 

4 

14 

9 

9 

(f) 

39 

3 

7 

9 

7 
lJ1 
lJ1 



Table 4.2 

Errors and Weights 

Problem (a) 

CP EL Ex ELP ELA ELM WL WLA WLM 

2 0.0250609 0.0250002 0.0249998 0.0249996 0.0249996 0.327849 0. 333349 0.333348 

3 -0.0249795 -0.0249998 -0.0249998 -0.0250010 -0.0250005 0.499987 0.499980 0.499978 

5 0.0249390 0.0249991 0.0249998 0.0250000 0.0249991 0.168046 0.166670 0.166674 

Problem (b) 

1 -0.0744536 -0.0745029 -0.0745042 -0.0745029 -0.0745034 0.279791 0.280000 0.279999 

2 0.0744568 0.0745035 0.0745028 0.0745030 0.0745035 0.408730 0.409092 0.409090 

6 -0.0746031 -0.0745010 -0.0745028 -0.0745029 -0.0745020 0.177046 0.179996 0.179998 

13 0.0746689 0.0745039 0.0745028 0.0745029 0.0745029 0.085734 0.090913 0.090913 

16 -0.0744896 -0.0745010 -0.0745023 -0.0745020 -0.0744991 0.039414 0.039999 0.040000 

Ul 

"' 



Table 4.2 (continued) 

Problem (c) 

CP E Ex E ELA ELM w WLA WLM L LP L 

1 0.459E-4 0.461E-4 0.461E-4 0.452E-4 0.461E-4 0.058803 0. 064 390 0.055079 

5 -0.463E-4 -0.460E-4 -0.461E-4 -0.460E-4 -0.458E-4 0.107677 0.078045 0.120701 

15 0.462E-4 0.467E-4 0.461E-4 0.466E-4 0.460E-4 0.074483 0.047162 0.147357 

27 -0.466E-4 -0.455E-4 -0.461E-4 -0.460E-4 -0.463E-4 0.077801 0.052604 0.159976 

40 0.464E-4 0.466E-4 0.461E-4 0.474E-4 0.460E-4 0.110434 0.059756 0.190483 

48 -0.459E-4 -0.449E-4 -0.461E-4 -0.451E-4 -0.463E-4 0.206735 0.200263 0.212061 

51 0.461E-4 0.471E-4 0.461E-4 0.455E-4 0.460E-4 0.110185 0.106599 0.114345 

Problem (d) 

1 -0.0619283 -0.0624857 -0.0624847 -0.0621868 -0.0624828 0.0988396 0.101174 0.101885 

13 0.0626341 0.0624841 0.0624849 0.0625322 0.0624849 0.0660253 0.073743 0.201145 

45 -0.0626195 -0.0624847 -0.0624847 -0.0625898 -0.0624845 0.0422826 0.044292 0.196971 

85 0.0626196 0.0624848 0. 0624 849 0.0625898 0.0624844 0.0422825 0.044292 0.196971 

117 -0.0626340 -0.0624841 -0.0624848 -0.0625322 -0.0624855 0.0660254 0.073744 0.201145 
Ul 

129 0.0619283 0.0624857 0.0624849 0.0626868 0.0624848 0.0988398 0.101176 0.101883 -.....J 



Table 4.2 (continued) 

Problem (e) 

CP EL Ex ELP ELA ELM WL 

l 0.665329 0.678716 0 .• 678709 0.678688 0.671463 0.009023 

13 -Oo669158 -0.678721 -0.678700 -0.678685 -0.671474 0.174559 

38 0.682889 0.678717 0.678709 0.678670 0.686733 0. 2 310 04 

39 -0.675324 -0.678717 -0.678734 -0.678669 -0.671471 0. 31356 3 

63 0.673019 0.678710 0.678709 0.680201 0.671438 0.009948 

90 -0.673857 -0.678721 -0.678716 -0.681405 -0.671554 0.001324 

101 0.666252 0.678715 0.678709 0.678676 0.671388 0.002602 

Problem (f) 

2 0.238019 0.238034 0. 2 380 35 0. 2 380 39 0. 2 380 34 0.039500 

10 -0.238008 -0.238034 -0.238032 -0.238028 -0.238034 0.492968 

11 0.238046 0. 2 380 34 0. 2 380 35 0.238026 0. 2 380 34 0.460004 

31 -0.239172 -0.238030 -0.238061 -0.238943 -0.238035 0.005027 

WLA 

0.003793 

0.013408 

0.474621 

0.480086 

0.011461 

0.001651 

0.002249 

0.039493 

0.493001 

0.460508 

0.004694 

WL~ 

0.015002 

0.466792 

0.000000 

0.026879 

0.014263 

0.000000 

0.001878 

0. 0 39 6 8 3 

0.493196 

0. 4 60 319 

0. 006 80 3 

Ul 
CX) 



Problem 

Method 

LAWS 

EXCH 

LP 

LAWRU 

LAWM 

Problem 

LAWS 

EXCH 

LP 

LAWRU 

LAWM 

(a) 

Adds Mu1ts Compares 

2,140 2,020 

106 88 

560 560 

963 909 

749 707 

(d) 

221,720 234,200 

5,455 5,422 

24,024 24,024 

99,774 105,390 

44 '344 46 '840 

24 

36 

24 

---

774 

---
1 '54 8 

774 

Table 4. 3 

Operation Counts 

(b) 

Adds Mu1ts Compares 

22,230 21,918 

688 677 

2,688 2,6 88 

6 '840 6 '744 

3,990 3,934 

(e) 

232,840 241,120 

6,018 6,006 

16 '84 8 16' 84 8 

174 , 630 180 '840 

40,747 42,196 

128 

128 

64 

---

808 

---

2,020 

404 

(c) 

Adds Mu1ts 

120,840 123,120 

3,318 3,306 

15,008 15,00 8 

2 7 '189 2 7' 70 2 

2 7 '189 2 7' 70 2 

(f) 

26,520 28,626 

670 615 

2,870 2,870 

6,120 6,606 

4,760 5,138 

Compares 

408 

306 

408 

186 

186 

124 
Ul 
\..0 



Table 4.4 

Coefficients 

Problem (a) (b) 

Method ao al ao al a2 a3 

LAWS 1 . 499900 -0. 499959 0.074454 1.643110 -0.786808 0.14 3854 

EXCH 1 .4 99990 -0.499999 0.074503 1.642520 -0.786253 0.14 3732 

LP 1.499990 -0.499999 0.074501 1.642520 -0.7 86253 0.143732 

LAWRU 1 . 500001 -0.500000 0.074503 1.642522 -0.7 86253 0.143732 

LAWM 1 . 500000 -0.499999 0.074503 1.642516 -0.7 86247 0.143730 

c 

Method ao al a2 a3 a4 as 

LAWS -0.000046 1.003820 -0.050708 0.572651 -0.477312 0.492112 

EXCH -0.000046 1.003820 -0.050673 0.572453 -0 . 476946 0.491895 

LP -0.000046 1.003810 -0.050616 0.572270 -0.476610 0.491778 

LAWRU -0.000045 1 . 003800 -0 . 050570 0.572338 -0.477047 0.492055 

LAWM -0.000046 1 . 003810 -0.050576 0.572136 -0.476531 0.491706 ~ 
0 



Table 4.4 (continued) 

Problem (d) 

Method ao a1 a2 a3 a4 

LAWS 0.000000 -0. 31302 3 -0.000000 1.251096 0.000000 

EXCH 0.000000 -0.312485 -0.000000 1.250000 0.000000 

LP 0.000000 -0.312483 0.000000 1.249998 -0.000000 

LAWRU 0.000000 -0.312890 -0.000000 1.250704 0.000000 

LAWM 0.000000 -0.312484 0.000000 1.250000 0.000000 

(e) 

Method ao a1 a2 a3 a a 
4 5 

LAWS -0.228910 -0.0 5 8617 0.432129 0.134740 -0.048269 -0.013052 

EXCH -0.233274 -0.065464 0 . 438184 0.136231 -0.048970 -0.013131 

LP -0.233274 -0.065481 0.438170 0 .1362 35 -0.048968 -0.013131 

LAWRU -0.234518 -0.066737 0.439060 0.136814 -0.049046 -0.013177 

LAWM -0.230778 -0.054127 0.433519 0.133111 -0.048448 -0.012931 

0"\ 
I-' 



Problem 

Method ao 

LAWS -0.123955 

EXCH -0.123994 

LP -0.123994 

LAWRU -0.123985 

LAWM -0.123994 

(f) 

al 

1.027966 

1.028227 

1.028215 

1.028075 

1.028228 

Table 4.4 (continued) 

a2 

-0.142058 

-0.142267 

-0.142261 

-0.142116 

-0.142267 

0"1 
t\) 
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3. The Unconstrained Least-Squares Procedure 

The results for this method cannot be compared directly 

with the other methods. This is simply because the primary 

purpose of this method is to locate the critical points of 

the error curve and, once this had been done, to relay this 

information to the Lawson algorithm. If the Lawson algo­

rithm has this data it can give all the weight to these 

critical points and converge immediately. 

This algorithm was designed with the expressed purpose 

of trying to do better than LAWM on problems which were not 

so smooth and well-behaved. Some measure of success was 

attained as will now be illustrated. 

The LAWM procedure had much difficulty with problem (e), 

the "clipped sine" problem, because the error peaks would 

not settle down. However the unconstrained technique was 

able to find the peaks or critical points of the error 

curve in thirteen iterations. This procedure would seem to 

be better than the Lawson algorithm on some problems; 

however, it certainly cannot compete with the Exchange algo­

rithm. This unconstrained method takes about as long on a 

smooth problem as on a nonsmooth one. For example, it 

located the critical points of the error curve correctly 

for problem (b) but it took 15 iterations. The inherent 

difficulty with the method is that it may, indeed, converge 

to the wrong set of critical points and hence it suffers 

the same fate that plagues both accelerated versions of 

Lawson's algorithm. 
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4. Summary of Numerical Results 

The ordinary Lawson algorithm consistently gave much 

poorer results than the other methods. It can be con­

sidered out of the running on slowness of convergence alone. 

This algorithm simply cannot compete with the others unless 

it is accelerated in some manner. This is obvious if we 

compare it with EXCH on any problem. Forty iterations were 

set as a maximum number of iterations for LAWS. In almost 

every case it failed to converge before reaching this cut­

off point. 

LAWRU is certainly an improvement over LAWS but it can 

also yield unsatisfactory answers. In particular on prob­

lems (c), {d) and (e) it gave minimax errors which were 

not very accurate. This algorithm apparently cannot locate 

non-critical points very accurately. For example, on prob­

lem (c) there were still many non-zero weights at non­

critical points when LAWRU had converged. For all of the 

problems an acceleration parameter of £=3 was used. It 

was discovered, while experimenting with £ on problem (f), 

that an t=2 gave very bad results. In fact, the weight 

vanished at one critical point. This special problem will 

be handled in Appendix C. It was because of results like 

this that another acceleration scheme was attempted. 

The LAWM algorithm generally performed much better 

than LAWRU. In most cases it converged faster and took 

far less arithmetic. It performed well on all problems 

except for problem (e), the "clipped sine" one. LAWM 



"thought" it had converged in seven iterations whereas it 

had selected the wrong set of points for the critical 

point set. On all of the other problems LAWM proved to be 

satisfactory if we only look at numerical results. It 

always took much longer than EXCH to reach convergence. 
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The LP method was programmed using the revised simplex 

algorithm and the base set of polynomials used was the set 

of Tchebycheff polynomials. This method performed com­

petitively on all problems, and indeed, often gave the best 

error results. Although it is not nearly as efficient as 

EXCH, it can yield better answers because of the use of 

orthogonal polynomials. It should be pointed out that 

using the set {l,x, •.. ,xn} as the base set of polynomials 

can lead to disastrous results. 

EXCH was consistently the best method on all types 

of problems. This procedure was not only the fastest but 

also gave good error results. In addition, it is far and 

away the most efficient algorithm from a computational 

point of view. Its nearest competitor, LP, takes anywhere 

from three to five times as much arithmetic to solve the 

same problem. 

B. Nonlinear Algorithms 

The three nonlinear algorithms discussed in Chapter II 

were programmed and the results of the numerical experi­

ments will now be reported. The methods were tried on 

five different types of nonlinear problems. 
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1. The Problems to be Solved 

(a) Find the best approximating function of the form 

F= _a~o __ 
a 1+a2x to the Gamma function using 21 points uniformly 

spaced in the interval [2,3]. This problem is taken from 

Rice [20] . 

(b) Find the best approximating function of the form 
a

1
x 

F=a0e cos (a2x+a 3) to the discrete function defined by 

a table of values. One hundred one values were selected in 

the interval [0,5n/2J and a corresponding set of y values 

were generated. The exact way the y values were obtained 

is contained in Appendix ·D. 

(c) Find the best approximating function of the form 
al 

F=a
0

x to the discrete function defined by the following 

table. 

X 0.10000 0.20000 0.30000 . 0.40000 0.50000 
y 0.00008 0.00150 0.00800 0.02500 0.06200 

0.60000 0.70000 0.80000 0.90000 1.00000 
0.13000 0.24000 0.40000 0.65000 0.73000 

This problem was chosen by the author to illustrate how 

the algorithms might perform using another type of non-

rational approximating function. 

(d) Find the best approximating function of the form 
3 ai, 2x . 

F= L ai 1e s1n(ai 3x+ai 4 ) to the discrete function 
i=l ' ' ' 

defined by a table of values. One hundred twenty one 



values were selected in the interval [0,4n] and a corres-

pending set of y values were generated. The exact way 

that the y values were obtained is contained in 

Appendix D. 

(e) Find the best approximating function of the form 
a

2
x a

4
x 2 

F=a1e +a
3

e to the function y=x +4 using 51 points 

uniformly spaced in the interval [-1,1]. This problem 

was selected because the approximating function is known 

to be a varisolvent one. 

2. Numerical Results 

These algorithms were run using the same hardware and 

precision as were used for the linear procedures with the 

following exception. Parts of the revised simplex were 

done in double precision. Specific routines which were 

used will be discussed in Appendix E. Details of opera-

tion counts will be given in Appendix F. 

The following notation will be used for errors: 

EL: the Lawson error 

ELp: the linear programming error (as the algorithm was 

devised by Osborne and Watson) 

ELPM: the linear programming error (as the algorithm was 

modified by the author) 

The following abbreviations will be used for the 

algorithms: 

LAWNON: for the Lawson nonlinear algorithm 
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LPOW: for the linear programming method of Osborne and 

Watson 

LPMA: for the linear programming method as modified by 

the author 
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Problems 

Method 

LAWN ON 

LPOW 

LPMA 

Problem 

LAWN ON 

LPOW 

LPMA 

Table 4.5 

Nonlinear Minimax Errors and Iteration Counts 

(a) (b) 

Error Iterations Error Iterations Error 

0.007276 31 0.036450 29 0.061586 

0.007457 11 0.037696 120 0.060530 

0.007457 7 0.037696 43 0.060530 

(d) (e) 

0.004743 28 

0.999844E-4 406 0.004914 42 

0.999556E-4 266 0.004914 13 

(c) 

Iterations 

38 

19 

13 

O't 
\.0 



Table 4.6 

Nonlinear Errors 

Problem (a) 

CP EL ELP ELP~-1 CP 

7 -0.006624 -0.007458 -0.007458 1 

17 0.007978 0.007455 0.007456 3 

21 -0.007377 -0.007458 -0.007458 9 

18 

50 

Problem (c) 

6 -0.048075 -0.060530 -0.060530 1 

9 0.069033 0.060530 0. 0605 30 8 

10 -0.059946 -0.060530 -0.060530 26 

44 

51 

E 
L 

-0.006643 

0.004004 

-0.004512 

-0.004224 

-0.038387 

-0.005278 

0.004903 

-0.004579 

0.004901 

-0.005278 

(b) 

E 
LP 

-0.037698 

0.037691 

-0.037697 

0.037696 

-0.037696 

(e.) . 

-0.004914 

0.004915 

-0.004913 

0.004917 

-0.004912 

ELPM 

-0.037698 

0.037693 

-0.037696 

0.037697 

-0.037696 

-0.004914 

0.004915 

-0.004913 

0.004916 

-0.004912 

-.....) 

0 
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Table 4.7 

Operation Counts and Function Evaluations 

Problem (a) (b) 

Method Adds Mults F.E. Adds Mults F.E. 

LAWN ON 91665 111561 21604 · 641452 751261 141645 

LPOW 31410 31410 231 162,720 1621720 714 74 

LPMA 2,890 2,506 252 60' 324 621592 3 '5 35 

Problem (c) (e) 

LAWN ON 31214 41254 .1.,~40 311 814 35 1 82 7 7,140 

LPOW 21736 21736 2 30 311 752 31' 752 11326 

LPMA 21502 31237 230 11' 34 0 131041 11326 

Table 4.8 

Starting Values of Coefficients 

Problem a 0 

(a) 0.69570 1.40785 -0. 35400 

(b) 4.80000 -1.50000 3.40000 1.30000 

(c) 0.60000 5.00000 

(e) 1.00000 0.50000 1.00000 -0.50000 

(d) 3.20000 -0.90000 2.10000 1.70000 3.85000 -2.10000 

a6 a7 a8 a9 ala all 

1.10000 3.30000 1.85000 -1.10000 3.20000 -0.95000 



Table 4.9 

Nonlinear Coefficients 

Problem (a) 

Method ao al a a3 2 

LAWN ON 0.699025 1.409073 -0. 35 3615 

LPOW 0.700942 1.411168 -0.354000 

LPMA 0.700942 1.411168 -0.354000 

(b) 

LAWN ON 5.06954 -2.02469 2.98710 1.56948 

LPOW 5.40648 -2.17781 2.95882 1.56382 

LPMA 5.40649 -2.17782 2.95882 1.56382 

Problem (c) (e) 

Method ao a1 ao al a 
2 a3 

LAWN ON 0.78995 2.91637 2.002291 0.692998 2.002289 -0.692999 

LPOW 0. 79053 2.78548 2.002450 0.692740 2.002464 -0.692736 

LPMA 0.79053 2.78548 2.002460 0.692737 2.002455 -0.692739 
-....) 

r-v 



Problem 

Method ao al 

LPOW 3.084579 -1.007960 

LPMA 2. 999 864 -0.999986 

a6 a7 

LPOW 0.970969 3.021482 

LPMA 0.995009 3.002073 

Table 4.9 (continued) 

(d) 

a2 a3 

2.006388 1.494844 

2.000152 1.498976 

as a9 

1.976996 -1.208012 

1.997907 -1.199813 

a4 

3.985788 

4.034380 

alO 

3.011764 

2.999616 

as 

-2.025707 

-2.005369 

all 

-1.030861 

-0.998126 

'-.] 

w 



3. Summary of Numerical Results 

Before summarizing the performance of the nonlinear 

algorithms a few comments are in order with regard to 

problem (d) and some missing entries in Tables 4.5, 4.6 
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and 4.7. This problem appears to be too unwieldy for LAWNON 

to handle. · The Levenberg-Marquardt algorithm ran into 

numerical difficulties (rank problems) on the third 

iteration and could not recover. Thus numerical results 

could not be reported for LAWNON on problem (d) . Likewise 

LPOW experienced difficulties and did not actually converge 

in 406 iterations but this was the last iteration for which 

numerical results could be reported. It was still not con­

verging in 1000 plus total simplex iterations. Since it 

was impossible to determine where the critical points were 

in problem (d), there are no errors reported at the criti­

cal points. 

Although LAWNON appears to be converging for most of 

the problems, it's obvious that this algorithm is plagued 

by the same difficulties that plagued its counterpart in 

linear approximation. This procedure converges in too slow 

a manner to be competitive. There does not appear to be 

any way to accelerate this algorithm as was done in the 

linear case because we do not know that all the weights 

vanish at non-critical points or even how many critical 

points there are for a problem "a priori". To keep this 

algorithm from taking too much computer time it was always 
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shut down after approximately thirty iterations. Although 

the operation counts for LAWNON look favorable, the corres­

ponding coefficient and error results were not very good 

and would not improve much if we let the algorithm run 

twice as long. 

In general LPOW appears to be a reliable method. 

However, there do exist problems which can give it diffi­

culties. One should . probably use starting values which are 

very "good" if one is to hope for convergence with this 

method. It is recommended that starting values from a non­

linear least-squares solution be passed to this method for 

"good" guesses at the parameters. LPOW gave essentially 

the same error and coefficient results as LPMA but as the 

problem got larger the efficiency of LPMA stood out. 

LPMA seems to be a worthwhile modification of the 

method of Osborne and Watson. On small scale problems it 

is just as good as the original and on larger problems it 

seems to be much better than the original. In fact it 

has been demonstrated with problems (b), (d) and (e) that 

it can cut the work in more than half. This modification 

was accomplished using a relatively small amount of code 

which is more than offset by the speed gained in solving 

a problem. Indeed, one is able to solve a problem like 

(d) which could not even be handled by the original algo­

rithm. 



V. CONCLUSIONS 

One purpose of this study was to compare the Lawson 

algorithm with the more popular methods of linear L 
00 

approximation on a discrete set. In this light,the Lawson 

algorithm was accelerated by the author and another 

accelerated version was also tested. The resounding con­

clusion is that the Exchange method is the method of 

choice. The only real competition was given by the linear 

programming technique. It should be mentioned that the 

original Lawson algorithm does have one major advantage 

over all of the other methods and that is in the ease of 

programming it. However, this advantage is more than 

offset by its slowness in converging. 

This paper shows that it is possible, through an 

acceleration procedure, to make the Lawson algorithm some­

what competitive but it is not as reliable as the EXCH 

or LP methods. Any accelerated version of Lawson will 

probably run into some kind of difficulty sooner or later. 

For example, LAWRU had difficulties with some rather 
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simple problems and LAWM ran into troubles on a non-smooth 

problem. Although the author's acceleration can fail, 

there are modifications which could be made to the method 

which would circumvent this failure. It's doubtful whether 

such modifications would be worthwhile since EXCH would 

still be unbeatable. In a similar vein, the unconstrained 

least-squares technique is just too sensitive with respect 
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to certain parameters to be of value in a general setting. 

A significant contribution has been made by showing 

that the Lawson algorithm does generalize to the nonlinear 

case for certain types of approximating functions. Namely, 

the LAWNON algorithm has been established for varisolvent 

functions but it may hold true for other types of approxi­

mating functions as well. For example, problem (b) is not 

known to be of varisolvent type and yet the algorithm 

appears to be converging. On the other hand, problem (d) 

is not known to be varisolvent either and the method has 

failed. Although the numerical results for LAWNON might 

not be as good as we would hope for, it appears that con­

vergence is taking place for varisolvent types of approxi­

mating functions. 

Many of the popular nonlinear Loo algorithms are of the 

Remes-type and hence also limit one to varisolvent type 

functions. A more general approach like that of Osborne 

and Watson allows one more freedom in the choice of approxi­

mating functions. Their method is not dependent on any 

alternating error property or other "a priori" information. 

Perhaps the most significant contribution made in this 

study was the modification of Osborne and Watson's method. 

Using the author's modification, which is detailed at the 

end of Chapter III, it appears as if the bigger the non­

linear problem to be solved, the bigger should be the net 

gain in using the new procedure. 



It appears that other modifications of Osborne and 

Watson's method would be desirable also. In particular, 
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a more elaborate search procedure would be appropriate. 

When there are many parameters involved in a problem, such 

as in nonlinear problem (d) , the current use of y as a 

scalar does not yield the best results. Perhaps a para­

meter vector could be selected for y, although then one 

could get hung up for a long time in the search. The 

question of "How good must your starting values be to 

. guarantee convergence?" is also an appropriate subject for 

further study. 
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APPENDIX A 

Routines Used for Linear Algorithms 

1. Exchange Method 

The Gaussian elimination method was used to solve the 

system of equations. To determine starting values the 

least-squares problem was solved first using Bauer's method 

which is mentioned in (3) below. 

2. Linear Programming Method 

The revised simplex procedure was used to solve the 

linear program. Tchebycheff polynomials were the ortho­

gonal polynomials used. The program APMM in the IBM 

Scientific Subroutine Package was used as the basic program. 

3. The Lawson Algorithms 

All three of the Lawson procedures have at their heart 

the solution of a weighted least-squares problem. In 

order to solve this problem as accurately as possible 

Bauer's "Ortholin 2" procedure was used. The details of 

this algorithm may be found in [26]. 
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APPENDIX B 

Operation Counts for Linear Algorithms 

1. Exchange Method 

Assume there are M data pairs and N is the degree of 

the approximating polynomial. Using Gaussian elimination 

to solve a system of (N+2) linear equations in (N+2) 

unknowns requires the following work: 

(a) Number of additions: 

(N+2)
3 

(N+2) 2 

3 + 2 

(b) Number of multiplications: 

(N+2) (N+3) 
2 

(N+2) 2 
+ 3 + 

5(N+2) 
6 

(N+2) 2 

2 
5(N+2) 

6 

This much effort is needed for each iteration. In addition 

there are 2M comparisons at each pass in order to locate 

the current "critical points". There is also the following 

effort needed to get the starting values via "Ortholin 2": 

(M+lS) (N+l)+( 2M+S) (N) (N+l) additions, 
2 

(4M+4) (N+l)+( 2M+ 3) (N) (N+l) multiplications and 2M compari-
2 

sons. 

2. LP Algorithm 

We'll assume that there are N data .pairs and M para-

meters and the revised simplex procedure was used. The 
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amount of work needed for each revised simplex iteration, 

according to Wagner [27], is: 

3m2+mn multiplications and 3m2+mn additions, where n is 

the number of unknowns and m is the number of equations. 

For our problem n=2N+M+2 and m=M+2. 

3. The Ordinary Lawson Algorithm 

In the Lawson algorithm proper there are 2N additions 

and SN multiplications where N is the number of data pairs. 

M will represent the number of parameters. Most of the 

computational effort is expended in the call to "Ortholin 2" 

which requires (4N+l5) (M)+( 2N+S) (M) (M-l) additions and 
2 

(2N+3) (M) (M-1) 
(4N+4) (M)+ 

2 
multiplications. Totaling these 

results the following number of operations are needed per 

iteration: 

( 4N+l5) (M) + ( 2N+S) (~) (M-l) +2N additions, 

(2N+3) (M) (M+l) 
(4N+4) (M)+ +2N multiplications. 

2 

4. The LAWRU Algorithm 

All the computations needed for the ordinary Lawson 

method are needed here. In addition every third iteration 

there are 2N compares. The "third" here is based on the 

fact that the acceleration parameter is set equal to three. 

5. The LAWM Algorithm 

Everything needed in the ordinary Lawson algorithm 



is needed here also. Additionally, from the third itera­

tion on there are 2N compares. However, for the last 

three iterations there are no compares. 
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APPENDIX C 

LAWRU on Problem (f) 
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This example illustrates how the acceleration of 

Lawson's algorithm due to Rice and Usow may fail, depending 

on the choice of the acceleration parameter. In Chapter IV 

an acceleration parameter of £=3 was used and the method 

converged. Here an acceleration parameter of £=2 is used. 

The results are given below, with the correct results in 

parentheses. 

Coefficients: 

Minimax error= 0.2059688 (0.238035) 

a
0
=0.0212516 (-.123994) 

a
1

=0.076780 (1.128215) 

a
2
=0.6960068 (-.142261) 

Weights at critical points: 

CP Wei hts 

2 

10 

11 

31 

0.000569 

0.412358 

0.481380 

0.000000 

(.039683) 

(.493196) 

(.460319) 

(.006803) 

The method failed because the weight at "critical 

point" 31 was accidentally set to zero. 
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APPENDIX D 

Generation of Data for Nonlinear Problems 

1. For Problem (b) 

The data was essentially generated from the function: 

-2x f(x)=5e cos(3x+n/2) 

with the following perturbations. If x was greater than 

3.925 then 0.001 times x was added to f. If x was less 

than or equal to 3.925 then 0.01 times x was subtracted 

from f. 

2. For Problem (d) 

The data was essentially generated from the function: 

-x -2x f(x)=3e sin(2x+l.5)+4e · sin(x+3.0) 

-1 2x +2e · sin(3x-l.O) 

with the following perturbations. If x was greater than 

6.28 then 0.0001 was added to f. If x was less than or 

equal to 6.28 then 0.0001 was subtracted from f. 



APPENDIX E 

Routines Used for Nonlinear Algorithms 

1. Lawson Nonlinear Algorithm 

The heart of this method is the Levenberg-Marquardt 

algorithm which is used to solve the nonlinear L2-problem. 

2. The LP Method of Osborne and Watson 

90 

This method relies on the solution of a linear program. 

Hence the core of this method is the revised simplex pro­

cedure for solving the linear L
00 

problem. This method also 

uses a search procedure to locate the proper gamma multi­

plier. 

3. The Modified LP Method 

This method requires the same routines as the method 

of Osborne and Watson with one addition. Depending on the 

outcome of the restart procedure the dual simplex may be 

called into use. 



APPENDIX F 

Operation Counts for Nonlinear Algorithms 

For all the methods we'll assume there are N data 

pairs and M parameters. 

1. LPOW Method 

91 

(a) Each LP iteration takes as much work as one revised 

simplex iteration. Recall, from Appendix B, that for each 

iteration there are 3m2+mn multiplications and 3m2+mn 

additions, where n is the number of unknowns and m is the 

number of equations. For our problem n=2N+M+2 and m=M+2. 

(b) Each outer iteration takes a certain number of function 

evaluations (F.E.). There are N F.E. in the main program 

plus N times the number of passes through the search routine 

FIND for this outer iteration. Each outer iteration makes 

a call to DELF (to evaluate the partials) . Such an evalua­

tion will be equated with an F.E. There are M times N such 

evaluations per call to DELF. 

2. LPMA Method 

There is about the same amount of work done here as in 

LPOW with the following exceptions. 

(a) Let MM=M+3. 

Each time we restart with the old basis we need to do: 
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(MM) !2(MM+l) 2+3(MM+l)+l] multiplications 

and 
(MM!(MM+l) 2+(MM+l)] additions. 

(b) If no infeasible solutions exist after the simplex 

has converged we continue on as usual. If there are in-

feasible solutions we enter the dual simplex, which takes 

the same amount of work as a usual simplex iteration. 

3. LAWNON Method 

(a) In the main program there are 2N additions and SN 

multiplications needed for each outer iteration. 

(b) In subprogram MARQ (the Levenberg-Marquardt algorithm) 

and related subprograms the following amount of work is 

required per step: 

M3 8M 
~ + (N+S) (M2 ) + ~ + (M+2) (N) multiplications; 

M~ + (N+ ;) (M2) + ~M + (M) (N) additions; 

(M+l) (N) F.E. (this includes derivative evaluations). 
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