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An Object-Based Evolutionary Algorithm for Solving Rectangular Piece 
Nesting Problems 

Kanchitpol Ratanapan and Cihan H. IDagli 
Smart Engineering Systems Lab. 

Engineering Management Department 
University of Missouri-Rolla 

ABSTRACT 

Nesting problems have heen tackled by researchers using a vast 
number of algorithms in the past. Most of the algorithms, 
however, need to perform on a onc-dimensional space. 
Therefore, the problem must be transformed into a one- 
dimensional space problem similar to the traveling salesman 
problem Consequently, loss of solutions due to the dimensional 
reduction may occur. In this study, an object-based 
evolutionary algorithm for rectangular piece nesting problems 
is proposed. This methodology is created on truly two- 
dimensional space, allowing new mechanisms (i.e., individual 
representation, initialization, etc.) and new object-based genetic 
operators (i.e., hill-climbing, mutation, and recombination 
operators) to perform effectively on tlhe space. Since, no 
dimensional reduction is used: therefore, no solution losses 
during the searching. SimulatiodAnination of the layouts 
shows the continual improvement by ming this method over 
generations. Experimental results are promising. 

1. INTRODUCTION 

The cutting and packing problems represents an important issue in 
business and in research. Thousands of articles related to the 
problems were published since the 1960s. hrlany solution methods 
have been proposed but none of these methods has offered a perfect 
solution to the problems due to their NP-complete nature [ 1],[2]. 
Recent research reports that two million dollars could be saved per 
year for a textile manufacturing if the average improvement in 
efficiency of a layout problem is increas.ed by only 0.1% [2]. 
Comprehensive reviews ofthe problems can be found in [3],[4],[5]. 

Nesting problems present the most difficult issues on two- 
dimensional cutting and packing problem. The problem is known 
by different names for different industries, e.g, the marker problem 
for textile industry, the part-nesting problem for ship-building 
industry, and the floor planning problem in VLSI chip-building 
industry. 

The objective of this research is to develop a methodology that can 
solve the nesting problems directly on the two-dimensional space so 
that all possible solutions could be found. This new methodology is 
called an Object-Based Evolutionary Algorithm (OBEA). It has 
been created based on a convergence cmf three ideas, namely 
evolutionary algorithm, graphical data manipulation, and 
simulationianimation. This new methodology has been tested 
against some rectangular versions of nesting problem. 

2. EVOLUTIONARY ALGORITHMS 

Thirty years ago, three different algorithms based on the evolution 
theory of Charles Darwin-namely Evolutionary Strategies (ES), 

Evolutionary Programming (EP), and Genetic Algorithm (GA)-- 
were independently developed for solving complex problems, e.g., 
machine learning and optimization problems. The idea of the 
principle of natural selection and genetics operations is used in these 
three algorithms. Population, genetic operators, and fitness-based 
selection are the major components of each algorithm, however, the 
way those components are applied differs slightly to each 
algorithms. 

Surprisingly, none of these algorithm were widely accepted until 
about ten yeairs ago. Thousands of articles concerned with 
theoretical, emlpirical, and application, were published. However, 
only two books that brought the three algorithms together have been 
published, the first book by D. B. Fogel [6] and the other by Back 
[7]. In Back's book, a general algorithmic outline of an evolutionary 
algorithm (EA) is given as follows. 

t = O ;  
Initialization P(O) = { ~ J ( o ) ,  ...,Zp(0~} E P' ; 
Evaluation P(0) : (@(al(0)), ..., @(a,(O))) ; 
While (i(P(t) + true) do 

Recombination P(t) = B?(P(t))  ; 
Mutation P'(t) = mQAP(t)) ; 
Evaluation P'(t) : (@(u",(t)), ...,@@*(t))} ; 
Selection P(t+l) = sQs(P'(t) U Q) ; 

1 = t + 1 ;  
Od ; 

This guideline can be simplified as follows. The algorithm starts 
with setting a generation number, t = 0. Then, an initial population, 
P(O), is created by a set of individuals, a, for ,u individuals and 
considered as the zero generation. Each individual in the zero 
generation is evaluated by an evaluation function, a, to find its 
fitness value. After that, the next generation will be created 
iteratively by performing some genetic operations until the 
termination criteria, I ,  are met. This next generation is produced by 
performing a recombination operator, r8,, and a mutation operator, 
mO,, on the current population. The new individuals of new size 
A. will be calculated. Finally, a selection process, So,, will select and 
move some individuals of size ,u to create a new population for the 
next generation where t 

The structure of EA is computationally simple but powerful. Lately, 
one of the most popular problems for evaluation new algorithms- 
the Traveling Salesperson Problem (TSP)--is also tackled using 
these algorithms. Experimental results presented by various authors 
look very promising [8],[9],[10]. In fact, this TSP approach has 
been used for solving the nesting problem for more than twenty 
years. When the Evolutionary Algorithms showed the promising 
results on the 'TSP, many researchers adopted and applied these 
algorithms to tackle the nesting problems as well. Again, most 
results received by using these new TSP methods are also good. 

t + 1. 
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To solve the nesting problem using the TSP method, a two-step 
approach is obtained. The first step is to form a sequence of pieces. 
The characteristic of this piece sequencing problem and the TSPs 
are compatible. A technique that can solve the TSP is also good for 
solving the sequencing problem as well. The second step is to place 
them on a region next to each other and then calculating the packmg 
density based on a given placement policy, e.g., from left to right, 
from bottom to top, or from lower-left to upper-right. 

However, solving the two-dimensional problem by transforming it 
into a TSP which is a one-dimensional problem, and then using an 
EA to find a good sequence might not be appropriate due to the 
dimension reduction of the problem. A reasonable doubt in using 
the idea of the TSP for solving the nesting problem exists. The 
search space ofthe TSP is only onedimensional. It might not cover 
the whole solution of the nesting problem. Unfortunately, no one 
has ever proven this issue. 

For the doubt of the space loss to be eliminated, a two-dimensional 
search space technique needs to be created to guarantee that all 
solutions can be discovered. One possible solution is to use the EA 
directly on the two-dimensional space as the search approach. 
However, the traditional EA can not be used in this matter because 
the solution for the nesting problem is not a set of points on the two- 
dimensional space, rather, it is a set of pieces or object on that space. 
Therefore, a new version of the algorithm that works with objects 
needs to be created. All new representations, mechanisms, and 
genetic operators must be created in such a way that this objected 
version of the EA can be performed. Even more, all possible 
solutions should be found. This new algorithm is called an Object- 
Based Evolutionary Algorithm (OBEA). 

3. OBJECT-BASED EVOLUTIONARY ALGORITHMS 

The outline of the OBEA has only a minor changes from the 
traditional EA. This new EA employs all the main steps of the EA 
from initialization to termination criteria. However, an additional 
operator named hill-climbing is added for helping in movement of 
all pieces. Following is the general outline of OBEA. 

t = O ;  
Initialization P(O) = {a_l(O), ..., Z,,(OJ) E I,, ; 
Evaluation P(0) : f~(u,(O)), ...,~(cirll( 0))) ; 
While (t(P(t) z true) do 

*** Hill-climbing P(t) = he,(P(t)) ; 
Recombination P(t) = &,(P(t)) ; 
Mutation P(t) = me (P(t)) ; 
Evaluation P(t) : ~ ~ ~ w , ( t ) ) , . . . , ~ ~ ~ ~ ( t ) ) )  ; 
Selection P(t+l)  = Ses(p(t) U Q) ; 

t = t+ l  ; 
Od ; 

A. Mechanisms 
All mechanisms--namely, individual representations, fitness 
evaluation function, and termination criteria-are created and 
performed in totally different ways by those traditional EA. 
Following are details of these mechanisms used in the OBEA. 

Individual Representations: A solution of the 
problems, such as nesting problem, needs more than a set of points 
in the two-dimensional space. It requires a set of small regions 
called pieces onto a larger region called plane. Furthermore, those 
pieces should neither be overlapped from each other nor the plane. 
In other words, overlapping and over boarding of the pieces and the 

plane can not be acceptable. Obviously, a solution of the nesting 
problem is too complicated to represent as a set of two-dimensional 
vertices. Each piece needs to be treated as a solid object. Each piece 
must have it own space in the plane. Also, the plane itself must be 
a d i d  object where pieces can be placed on top of the plane. These 
pieces and the plane is formed a solution of the problem or a layout 
of the problem. The plane and the pieces can be any shape and any 
orientation. Figure 1 illustrates an individual representation of the 
OBEA on an infinite two-dimensional plane. 

Figure 1 An individual representation of OBEA 

Initialization Process: Information used in this process 
includes the size of the plane, the size of the pieces, the number of 
pieces that need to be placed on the plane, and etc. The initialization 
process uses that information to create a solid plane as the first step. 
Then, each piece is placed on the plane in random order and 
lmation. It is possible that a piece cannot be placed on the first tried. 
Several attempts may help to find a position for a piece to be place. 
Re-initibtion will be done if a piece cannot be placed after some 
exhausted attempts. Usually, more than one layout will be created 
during initialization. This set of the layouts is called an initial 
population or the zero generation of layouts as shown in figure 2 .  

Figure 2 A solution of an initial population 

Fitness Evaluation Function: The fitness value can be 
calculated directly from the plane depending on the objectives of the 
problem. If the objective of the problem is to minimize the space 
used for rectangular pieces on a rectangular steel sheet, the fitness 
value might be the maximum value of the last piece on the sheet. 
Figure 3 illustrates the maximum value of the last part as the fitness 
value. This fitness evaluation function is performed after the 
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‘ 17 
Figure 3 The maximum value o f  all pieces is the fitness value 

initialidion is done and after any individual has been changed in 
any generation. 

Termination Criteria: Usually, the algorithm is 
terminated by specifying a maximum number of generations. 
However, some additional termination criteria may be added, such 
as a maximum number of generations in which the best value 
remains the same. Other terminatioln criteria can be introduced 
upon requirement or problem objective. 

B. Genetic Operators 
For an algorithm to be called the Evolutionary Algorithm, some 
genetic operators need to be presented. The idea behind the 
operators is to change the location or orientation of the pieces so that 
different layouts are created. Some operators will make a big 
change; and some will make only slight change. Three groups of 
operators can be categorized based on their actions and results after 
they are performed on the layouts. All basic elements of each 
operation are obtained from the two-dimensional transformations of 
graphical data manipulation. These: three groups of operators, 
namely hillclimbing, mutation, and recombination, are described as 
follows. 

Hill-climbmg operators: In two-dimensional space, the 
layout changing can be easily made by moving a piece. If the 
change is performed on a single layouit and its Bitness value has not 
gotten worse, this situation is called hill-climbing. For the Object- 
Rased Evolutionary Algorithm, some genetic operators categorized 
as hill-climbing operators are “translation”, “rotation”, and 
“relocation”. 

a. Translation ouerators. This operator is performed on 
a piece on a plane by moving the piece one unit at a time toward the 
gravitational force. The center of the force can come from a single 
point or multiple points of the two-dimensional plane. When this 
force is applied, it makes all pieces move at the same time. The 
mathematical representation of the force obtained from the graphical 
data manipulation is called a unit translation. The unit translation 
equation can be represented as matrix multiplications shown as 
follows 

where x and y is a position of the lower-left comer of a rectangle, x’ 
and y’ is a new position of the rectangle, and T, and T, ~ -1,O, or 1 
[ 111. For example, if the lower-left corner of the plane is the center 
of the force, all piece will be moved toward that Corner one unit for 
each piece in one generation. T, and T, in this case is equal to -1 ,  
However, some operations will not perform, if next move is created 
the overlapping. After the move operations are performed for a 
number of generations, all pieces will be moved and packed at the 
lower-left corner of the plane. 

b. Rectangular Rotation ooerator. In the rectangular 
version of the nesting problem, each of the four comers can be used 
as a rotation reference point. However, the word “rotation” may not 
be fully appropriate because two steps are always required. The first 
step is to rotate a rectangle using a predetermined rotation reference 
point ninety degrees different from the original in a virtual space. 
The second step is to move the piece back to a position of the 
reference point. For example, the selected pivot point is lower-right 
Corner of a piece. The rotation operator will rotate the piece for 
minus 90 degrees and then move the new lower-right comer back 
to the previous lower-right corner ( S e e  figure 4). 

First step Second step 

I- - 
I _ _  

Move back 

Rotation reference point 

Figure 4 The two step rectangle rotation 

In mathematic terms, this rectangular rotation is a 
composite transformation of a rotation and translation which can be 
written in term of matrix multiplication as follows. 

cos90 sin90 0 

Tx T Y  1 

c. Relocation ooerators. The operators are done on a 
piece on a layout by relocating to a vacant position within the 
maximum value of the last piece. The piece should not be 
overlapped with the other, or over boarded, or over the maximum 
value line as shown in figure 5.  

Mutation: If an operator is performed on a layout and 
the fitness value could possibly get worse, this operator is called a 
mutation. Mutation will create an offspring that look more different 
than the hill-climbing. There are many operators considered 
mutation one. Following are examples of the mutation operators. 

a. Relocation-away owrator. The idea of this operator is 
to relocate a piece to another place out of the maximum value so 

operation performs without any condition, the target position in a 
plane might not be empty because of a dense of pieces. One 

that all pieces will have some room to be reorganized If the 
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Figure 5 Jump a piece to a new position with in maximum value 

possible solution is to jump a piece in the opposite direction of the 
gravitational force where there is a guarantee of vacant space. For 
example, if the force is pulled to the lower-left comer of the plane, 
the piece should be jumped to upper-right corner. Figure 6 
illustrates a jump-away result. 

' I7 

Figure 6 A piece is relocated by jump-away operator. 

b. Point mutation. A relocated piece might create a better 
solution for the plane. However, if some pieces exist in the new 
location, the overlapping technique must be performed so that the 
space is available for relocation. Every piece, which starts from the 
overlapping position through the right-most piece, needs to be 
moved to a position where no overlapping occur. Each piece will be 
moved toward the opposite direction of gravitational force, or 
moved toward the right end of the plane. Figures 7 and 8 depict the 
mutation steps. 

c. Area mutation. Similar to the point mutation, pieces 
that starts from an overlapping position need to be moved. The 
difference is that the whole specific area needs to be indicated. The 
specific area can be any shape or any size. All pieces overlapped 
with the mutation area will be packed together and relocated to a 
new location. The overlapping on the new location is possible. The 
overlapping technique used in point mutation will be performed to 
create a new layout. Figure 9 shows that four pieces are overlapping 
with the selected mutation area. Therefore, the four pieces will be 
packed together and moved to a new location. 

' 17 

Figure 7 A piece is relocated to a new position created an 
overlapping. 

' 24 

Figure 8 Overlapping result 

Selected mutation area 

N ~ W  location otthc mutation Bfca ' 17 

Figure 9 Mutation area and a new location 

Recombination: This operator will be performed on two 
or more layouts by changing information to each other to create. 

a. Point crossover. There are many ways to create point 
crossover. Suppose that two layouts are to crossover. A position on 
the first layout is selected. Then a piece on that position is 
determined. At the same time, another piece on the same position 
on the second plane is also determined. The piece from each layout 
will switch to another layout which create a duplicated piece on each 
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layout. If redundant pieces are not allowed, a replacing technique 
may be used by eliminating the existing piece. If an overlapping 
area exists, the overlapping technique as in point mutation will be 
used to solve the problem. 

b. Area crossover. The crossover combines the idea of 
area mutation and the point crossover to create more possible 
recombinations of layouts. The area also can be any shape. All 
pieces in the crossover area will be switched to another layout. It is 
possible to use more than two layouts to do crossover. All 
redundant pieces will be eliminated, and the overlapping problem 
will be solved. 

4. EXPERIMENTAL RESULTS 

Simulationianimation is done on 2 different sets of pieces. Table 1 
shows the first set of pieces which consists of 3 I pieces with 6 
different pattems. Table 2 shows the second :set of pieces which 
consists of 21 pieces with 4 different pattems. 

5 9 10 

Table The first set of testing pieces. 

Piece no. 

1.2, 3 ,4,5 

- 
6,7,8,9,10,11,12 

13, 14, 15, 16 
17, 18, 19,20 

21,22, 23,24,25,26 
27,28,29, 30, 3 1 - - 

11 Pattem no. I Width (x) I Height (y) I Pieceno. 11 

I / i I I +  
12 

Table 2 The second set of testing pieces. 

5, 10, 14, 18 
1,4, 8,9,21 

2, 3, 13, 17, 19,20 
6, 7, 11, 12, 15, 16 

The first experiment is done using the first set by randomly placing 
all thirty-one pieces onto a stock sheet in order to create an initial 
layout, The initial layout has the packing density only 42.40 % ( 
Figure IO). 

Figure 10 Layout of the zeroth generation of the first set. 

The second generation is then created by performing the hill- 
climbing operators on the layout. This procedure is repeated until 
some termination criteria are met. In this case, it is repeated until the 
1000th generation is reached. Figure 11, 12, and 13 show the 
improvement of the packing density of higher generations. The 
packing density increases from 42.40% in the zeroth generation 
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(Figure IO), to 67.30 YO in the 300th generation (Figure 1 I), to 
80.00% in the 600th generation (Figure 12), and to 91.88 % in the 
900th generation (Figure 13). Although the packing density of the 
final generation (Figure 14) remains the same as that of the 900th 
generation, the location of the pieces of the final generation is 
different from the location of the pieces of the 900th generation. 
This means that the evolution mechanism is still working. 
Therefore, if the preset termination condition is higher than 1000, 
it is possible to get a layout with a higher packing density. 

I 

Figure 11 Layout of the 300th generation of the first set 

I 
(packing density = 67.30 %). 

I 
Figure 12 Layout of the 600th generation of the first set 

(packing density = 80.00 %). 

igure 13. Layout of the 900th generation of the first set 
(packing density = 91.88 YO). 

The second set of pieces is created from a perfect rectangular which 
is cut into smaller pieces. Using the same algorithm, the initial layout 



is created. After running for 1000 generations, the final layout is 
obtained (Figure 16). Surprisingly, the final layout is not the perfect 
layouf even though it contains no space among the pieces. Although 
the layout does not have a 100% packing density, it may still be 
considered to be one of the best solutions because layout has no 
intemal scrape. 

Figure 14Layout ofthe 1000th generation ofthe first set 

I 

Figure 15. Layout of the 1000th generation of the second set. 

Figure 16 and 17 show the packing density of the zeroth to the 
1000th generation of both test examples respectively. 

Generation vs. Packing Density 

..................................................... 

................................................... 

............................................................................. 

............................................................................... 

................................................... 

.................................................................... 
10 
0 1  

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 

No. of generation (x10) 

Figure 16 The packing density over generation of the first set. 

5. CONCLUSION AND FUTURE WORKS 

The idea of a multi-dimensional representation in EA is introduced 
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in this paper. The Object-Based Evolutionary Algorithm proposed 
shows a new way of problem representation. All new mechanisms 
and genetic operators are developed. The advantage of this 
approach is the ability to exploit the whole solution space. 
Population concept and interaction between individuals is added to 
the algorithm to improve overall performance. The experimental 
results on rectangular version look very promising. More 
experiments on different problems such as irregular piece nesting 
problem is interesting to perform. Some restriction may be 
eliminated from idea of general purpose algorithm. New genetic 
operators may be introduced to maximize the algorithm to solve 
more general problem. Parallel implementation of this new 
algorithm may reduce in production times and lead to possible 
money saving. 

Generation vs. Packing Density 

CJI 40 I c 
g 3 0 1  
0 
a 

2 0 { . - -  ... .. - .... ... - ............ 

lo I 

CJI 40 I c 
g 3 0 1  
0 
a 

2 0 { . - -  ... .. - .... ... - ............ 

lo I 
0 I I 

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 

No. of generation (x10) 
I 
Figure 17 The packing density over generation of the second set. 
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