
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Engineering Management and Systems 
Engineering Faculty Research & Creative Works 

Engineering Management and Systems 
Engineering 

01 Jan 2003 

An Enhanced Least-squares Approach for Reinforcement An Enhanced Least-squares Approach for Reinforcement 

Learning Learning 

Hailin Li 

Cihan H. Dagli 
Missouri University of Science and Technology, dagli@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork 

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
H. Li and C. H. Dagli, "An Enhanced Least-squares Approach for Reinforcement Learning," Proceedings of 
the International Joint Conference on Neural Networks, 2003, Institute of Electrical and Electronics 
Engineers (IEEE), Jan 2003. 
The definitive version is available at https://doi.org/10.1109/IJCNN.2003.1224032 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by 
an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use 
including reproduction for redistribution requires the permission of the copyright holder. For more information, 
please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IJCNN.2003.1224032
mailto:scholarsmine@mst.edu


An Enhanced Least-Squares Approach for Reinforcement Learning 

Hailin'Li and Cihan H. Dagli 

Department of Engineering Management 
Smart Engineering Systems Laboratory 

229 Engineering Management 
University of Missouri-Rolla 

Rolla MO 65409-0370 
(h18p5, dagli}@umr.edu 

Abstract-This paper presents an enhanced Least-Squares 
approach for solving reinforcement learning control problems. 
Model-free Least-Squares policy iteration (LSPI) method bas 
been successfully used for this learning domain. Although LSPI 
is a promising algorithm that uses linear approximator 
architecture to achieve policy optimization in the spirit of Q- 
learning, it faces challenging issues in terms of the selection of 
basis functions and training samples. Inspired by orthogonal 
Least-Squares regression (OLSR) method for selecting the 
centers of RBF neural network, we propose a new hybrid 
learning method. The suggested approach combines LSPI 
algorithm with OLSR strategy and uses simulation as a tool to 
guide the "feature processing" procedure. The results on the 
learning control of Cart-Pole system illustrate the effectiveness 
of the presented scheme. 

I. INTRODUCTION 

Reinforcement learning (RL) methods focus on the rational 
decision-making process under uncertain environments. The 
goal of RL is to analyze how decisions ought to be made in 
the light of clear objectives so that agent can generate a series 
of actions to influence the evolution of a stochastic dynamic 
system. The salient ability of RL to handle model-free 
situation makes RL more flexible than traditional dynamic 
programming. Ample research already has been done in this 
area. Among them the major development includes the 
temporal-difference learning algorithm proposed by Sutton 
[ I ]  and Q-learning introduced in the thesis of Watkins [Z]. 

As Kaelbling, Littman, and Moore [3] clearly illustrated, 
the intractability of solutions to sequential decision problems 
caused by the very large state-action space and the 
overwhelming requirement for computation presents a 
challenging array of difficulties in the reinforcement learning 
area. Such difficulties stimulate the development of 
approximation methods. Most of RL algorithms tit into the 
value function approximation category. Instead of 
approximating policies directly, the objective here is to select 
a parameterization of value function and then try to compute 
parameters that can produce an accurate approximation to the 
optimal value function. At present, linear function 
approximators are popular options as the value function 
approximation architecture mainly due to their transparent 
structure. 

Unlike the Neuro-dynamic programming methods that 
require long time off-line simulation and training, S.Bradtke 

i. 

and A.Barto [4] introduced the linear Least-Squares 
algorithms for temporal difference leaming (LSTD) and 
showed that LSTD can converge faster than conventional 
temporal difference learning methods in terms of the 
prediction ability. Unfortunately Koller and Parr [5] pointed 
out that LSTD could not be used directly as part of a policy 
iteration algorithm in many cases. In order to extend the 
linear Least-Squares idea to control problem, Lagoudakis and 
Parr [6] developed the model-free Least-Squares Q-leaming 
(LSQ) and Least-Squares Policy Iteration (LSPI) algorithm. 
These algorithms produced good results on a variety of 
learning domains. The impressive aspects of LSPI include the 
effective sample data reusing, no approximate policy function 
needed and fast policy search speed if the "good" sample data 
set is selected. Similar to any linear approximator 
architecture, LSPI also faces the challenge of choosing basis 
functions. In essence, the feature extraction process needs lot 
of prior intuition about the problem. Furthermore, LSPI 
algorithm is very sensitive with the distribution of training 
samples. It produces the key disadvantage for applications. 

Today, Radial Basis Function Neural Network (RBF NN) 
is used commonly as linear parameterization architecture, 
which is characterized by weighted combinations of basis 
functions. W h e n ,  C.F.Cowan, and P.M.Grant [7] provided a 
systematic leaming approach based on the orthogonal Least- 
Squares regression (OLSR) method to solve center selection 
problem so that the newly added center maximizes the 
amount of  energy of the desired network output. This OLSR 
training strategy is a very efficient way for producing size- 
controllable RBF NN. 

Motivated by the LSPI and OLSR training algorithm for 
RBF NN, a new enhanced Least-Squares learning method is 
proposed in this paper. Our effort is to produce the effective 
way to overcome the problem that LSPl algorithms [6] face, 
that is, selection of feature functions and sample data. In such 
a hybrid-leaming scheme, a typical linear approximator using 
Gaussian function for all features is used as approximation 
architecture and the LSQ algorithm is used in order to 
approximate Q value functions. The number of features and 
the center of features are selected using OLSR training 
strategy based upon the training set generated by simulation. 
The proposed hybrid learning approach is applied to the 
classical Cart-Pole system and the simulation results are 
presented to show the effectiveness of the method. 
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11. MOPS AND LEAST-SQUARES APPROXlMATION FOR Q- 
LEARNING 

Our attention in this paper is restricted to discrete-time 
dynamic system that the system evolution at time I ,  action 
takes on a state X, can be shown as 

x,+' = f ( x , , a , , W v ) ,  (1) 

where w, is a disturbance and a,is a control decision 

generated by policy p .  Each disturbance 1Y, is 
independently sampled from some fixed distributions. 
In most reinforcement learning systems, its underlying 
control problem is modeled as a Markov Decision Process 
(MDP). The MDP can be denoted by a quadruple 
(S, A , P , R )  where: S is the state set, A is the action set, P 
is the state transition probability and R denotes the reward 
function g(x, ,a,) .  The policy p is a mapping 

p : S  + Pr(A), where Pr(A) is a probability distribution in 

the action space. Let {xu, xI, xz, ...} be a Markov chain. For 

each policy p ,  the value funclion J' is defined by 

... 

'R= C s . , P ( x  ,a ..,*,)g(x ,a &*I) 

... 

Et,., p(xl.l,a,",,xz*I 1.( xI.l,ai",,xr*J, 

where a ~ [ 0 , 1 )  is a discount factor and state sequence is 

generated according to x, = x and the system evolution. 

is used to represent the optimal value function. In Q- 
learning, Q value function is given by 

J' 

P (.,a) = E [  g(x.a) + aJ* ( f ( x . 0 .  w))]  . (3) 
Q value function is introduced to reduce computation 

requirement and the optimal actions can be obtained 
according lo the following equation: 
a2 =argmaxQ'(x, ,a) .  (4) 

oe" 

Q value functions can be stored in tables of size ISIIAI, but 
it is not always the practical case for most real world 
applications. The intractability of state-action spaces calls for 
value function approximation. The LSQ algorithm [6] uses 
the parameterization of the linear form: 

(8) 

where 4i , . . . , h  are "basis functions" generated through 

where @ is (ISIIAlx K )  matrix and K IS11 AI.  

If the model of MDP (Pp,W)is available 

(7) 

where i ( O ) = O  and i ( O ) = O .  
LSQ can learn state-action value functions of fixed policy 

effectively using the potentially controlled sample set so it is 
natural for [6] to extend the algorithm to policy iteration 
procedure, which is called Least-Squares Policy Iteration 
(LSPI) algorithm. Based upon the Q value function computed 
by LSQ, the next step optimal policy can be found simply 
using: 

I 

human intuition and trial-error process. Such functions , d  
extract the features of  stale-action space. p'*'(X) argmaxQ (.,a) =agmaw4(+,a)'J4'" . (1 1) 

W = ( 4 1 )  ,..., w ( K ) )  is a vector of scalar weights. The greedy policy is represented by the parameter CY"' 
and can be determined on demand for any given slate. 
Clearly, the policy improvement procedure of LSPI can be 

For a fixed policy p , 

Q" = @CY' , (6) 

2906 



achieved without model knowledge and explicit 
representation for policy. 

111. SIMULATION AND ORTHOGONAL LEAST-SQUARES 
REGRESSION 

Although it is reasonable to extend LSQ to control 
problems directly [SI, failures are likely to happen for many 
applications mainly due to the significant bias for value 
approximation in the early steps. LSPI integrates the policy 
iteration idea and LSQ to solve learning control problems and 
produces more robust solution. The main reason for such 
result is that LSQ can use controllable sample set to 
approximate fixed policy. But the question still remains for 
the selection of basis functions for LSQ and "good" sample 
data sets. 

The training samples of LSQ are. collected from 
controllable "random episodes" starting from the very 
beginning. It is the source of approximation bias. The better 
sample data are, the faster approximation will converge to 
true value. Simulation is a powerful data generation tool for 
traditional neural network training, especially for the situation 
that system is hard to model but easy to simulate. Simulation 
can also tend to implicitly indicate the features of the system 
in terms of the state visiting frequency. This characteristic 
may help us to understand the potential useful system 
trajectories. 

Orthogonal Least-Squares algorithm introduced by [7] for 
training an Rt3F network is a systematic leaming approach 
for solving center selection problem so that the newly added 
center always maximizes the amount of energy of the desired 
network output. For the linear function approximators that 
have a single output, the network mapping can be viewed as a 
regression model of the form: 

Y ( l )  h(XI,W) 4X195>%) "' J 4 X I 3 C K 0 K )  Y 
~ ( a * w )  h(a.C2.4 "' h i a 4 n . s )  Y + e, [..i;=[ Y ( M )  h ( x , , q , q )  ... Jl(XMiC2ruJ ... ... ... h(XM,CX,bK) ... ]Ill WK I;], 

Or, in matrix format: Y = H W + E . 
The actual output of this RBF N N  is given by 

; ,=HW=[h , ,  h,, ... h K ] W .  (12) 
The centers of RBF NN are chosen from the input data set, 

which include M candidates. We summarize the algorithm 
[7] that performs the systematic selection of K < M centers 
so that the size of RBF can be reduced significantly and the 
center of each basis function can be chosen by the order of 
their importance. 

S t ep l .  j = l , F o r l i i < M ,  

b;" = b, , 

[errl; b!)rb;) , y I y  . 
( b;'lr Y 

25 

Search 

[err]: = max ([ err I' I , I  5- i 5- M }  

Select 
bl = h, , center c, = c , ~  . 

Step 2. j 2 2 ,  For l < i < M ,  i # i , , i # i  i # i  ,.,, 
brh, 

PI bib,  
a' =- , I_<p_<j , - l  

Let 

Search 

[em]; = max{[errl', , I  < i  _< ~ , i  t i , , i +  i *,..., i t i,., 

Select 
b .  =bo ,center c, = c . r 

I ,  'i 

Step 3. Repeat step 2. The algorithm is stopped at step N 

when I - E[ err]p _< p , where 0 5- p 5 1 is tolerance value 

defined by user: 

N 

p=, 

IV. AN ENHANCED LEAST-SQUARES APPROACH IN 
EMFORCEMENT LEARNING FOR CONTROL 

Motivated by the simplicity of model-free LSPI algorithm 
and the effectiveness of OLSR method for selecting the 
centers of RBF NN among input data sets, a new hybrid- 
learning scheme for RL is proposed. The pre-learning process 
is added before Least-Squares policy iteration to set up 
parameters of LSPI. Such "feature processing" using OLSR 
provides a systematic way to select centers of basis functions 
for parameterization of linear form. It also guides the 
selection of sample data for LSPI. 

As mentioned before, simulation is a powerful tool not 
only in the neural network communities but also for "on-line" 
reinforcement leaming methods. Unlike the situation of those 
neural network applications, there is no readily available 
training set of input-output pairs that can he used to configure 
the feature of system in the RL context. For proposed 
enhanced learning method, simulation and classical one-step 
Q-learning [2] running for limited steps are used for "feature 
processing" to roughly evaluate the state-action value 
functions under given policies. Although it will create 
analytical difficulties, this is probably the only way to extract 
the system characteristics under model-free circumstance. 

Fig. 1 illustrates the operation. of the enhanced Least- 
Squares method. We also provide the brief description for the 
complete algorithm. 
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I Simulation and FeaNrc Proccssing I 
I Using Orlhogonal Least-Squares I 

I Action I -  I 
I 
I 
L 

~ ~ ~~~~ 

ltcration (LSPI) 1 
Algorithm I I 

I 

- - -7- - - - 
Automatically setting up 

Fig. I .  Architcchlrc of an cnhanccd Lcast-Squarcs Approach 

Assuming that the problem can be formulated as kind of 
finite MDP. The simulation for model-free system starts from 
a random state following the greedy policy produced by 
preliminary Q-learning and generates a series of observable 

time sequence sample set r:{(x ~ , ~ ~ , ~ , x ~ * l ) I i = 1 , 2 , . . . , ~ } ,  

where x, E S , and a, E A . The total action types of a E A 
are N .  

Step 1. lnitialize the table representation for complete Q 

Step 6. Let WO = 0 ,  W" =WO and W' =W' (Initial 
policy). 

Do 
Get sample data from r (Addremovelmaintain 
samples) 
p = p ' ,  that is, W' = W" 
p' = L.SQ(r ,k , ( ,W") ,  Compute W i  

While ( p  f p ' ) .  
The new insight of the above enhanced Least-Squares 

approach for RL is the "feature processing" procedure in 
which simulation is used as a tool to produce the collection of 
samples for LSQ and orthogonal Least-Squares center 
selection algorithm is used to generate the basis functions for 
LSQ algorithm and guide the selection for "good" samples. 
The effectiveness of the proposed method will be illustrated 
in the classical Cart-Pole problem. 

V. RESULTS IN THE CART-POLE SYSTEM 

.n i l rp  <*t nl, i = n  The classic cart and pole dynamic system is used to assess 
[ - lq ' - l4 - " '  the proposed enhanced L-S approach. The objective of the 

problem is to exert a sequence of forces upon the cart's center 
of so that the pole is balanced for as long as possible 

.ll"- -"., ~ 

Step 2 .  While the stop criterion is not satisfied (this step 
will be terminated far before the classic Q-leaming algorithm 
converge to true value) and the cart does not hit the end of the track.-For-the RL 

controller, the dynamics of this system is assumed to be a. Calculate the approximate state-action values ' 

Q(x E T,a E r) using one-step Q-leaming 
algorithm. 
Simulation will follow the greedy policy. At 
present, the strong exploration ability is 
preferred so the noise 7, is likely to take 
comparatively big value. 

Step 3. Generate N input-output training data set 

( ( X ,  tf Y,)ld = 1,2 ,... N }  from simulation set r for center 

b. 

selection, where X ,  = {(x E r,ad e r ) ]  and Y, = Q ( X , )  
Step 4. Using orthogonal Least-Squares regression 

algorithm [7] described in section I11 to select N kinds of 
centers set for LSQs basis functions from N training set. 
Each selected centers set will be used to approximate the 
value functions for corresponding action type. 

Step 5 .  Refine simulation sample set r .  It is reasonable 
to remove obviously useless samples base upon rough Q- 
values at step 2 so that the bias will likely be decreased. 

Now we set up the parameters for LSPI as 
following: 
k,ld =1,2, ... N :  Number (center) of basis functions 

for state-action(+ N, space. 

4 : Using Gaussian function as LSQ basis 
function. 
: Training sample set for LSQ. r 

unknown. But in our simulation case following dynamics 
described by [9] is used for the system. 

-F,-mo18, sinQ,+pr,sgn 

m< + mp 

(13) 

gsino, +corQ, 

a, = 

and 

(14) 
m,+m, 

X I  = 

In the experiments, the parameters 

x, ,xi ,6,,$, ,me, mp, pc ,pp ,l>c are the horizontal position of 
the cart relative to the track, the horizontal velocity of the 
cart, the angle between the pole and vertical, clockwise being 
positive, the angular velocity of the pole, the mass of the cart 
(].a), mass of the pole (a.]), coefficient of friction of cart on 
track, coefficient of friction of pivot, the distance from center 
of mass of pole to the pivot (0.5), and the force exerted on the 
cart's center of mass at time t ,  respectively. The sample 
frequency for system simulation and applying control force 
are the same (50 Hz). There are 2 possible action types here: 
A = {-10,+10} but the actual force to the system is the noisy 

signal F, = (av  +a, ) ,  where a< E A and noise 'I, follows 
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uniformly distribution. The state at time t is specified by 

variables x,,x,,8,,8, and the continuous state space is 

separated to 163 discrete states. The external reinforcement 
signal (reward) is defined as: 

r,=[ -1, otherwise. 

I ' i  
0, if-0.21 radians<8,<0.21 radians and -2.4m<xt<2.4m 

The results are shown in following two figures. Simulation 
starts from a random state and follows rough policy learned 
from preliminary one-step Q-learning. The selected state- 
action centers for basis functions are plotted in Fig. 2. 
Orthogonal Least-Squares center selection algorithm is 
applied to two input-output training data sets generated by 
simulation. A set of 70 Gaussian functions (35 for each action 
type) over one dimension state space is generated 
automatically without human involvement to approximate the 
state-action value functions. The selection result is also used 
to refine the sample set r for LSQ, which means we are 
likely to remove the data far away from the selected centers. 
Fig. 3 illustrates the performance of controller leamed by 
three different RL methods, that is: classical one-step Q- 
leaming, LSPI and proposed hybrid Least-Squares method. In 
order to show the results clearly, the Y-axis of figure shows 
the log function value for successful balancing time at each 
training episode. After only about 350 training episodes, the 
proposed method returns the policy under which system- 
balancing period already exceeds 5000 seconds (250000 
steps). Obviously such convergence speed is much faster than 
one-step Q-learning and a little hit better than simple LSPI. 
Considering the fact that for simple LSPI there is much 
human-based tweaking work needs to he done, our enhanced 
Least-Squares method for RL is more robust and human- 
independent. 

0 
20 40 60 B3 100 120 140 1M 

state space 

Fig. 2. Sclcctcd Statc-Action Ccntcrs 

Dynamic Period (Episodes) 

Fig. 3. Rcsults by using differcnt Rcinforccment Lcarning mcthods 

VI. CONCLUSIONS 

A novel enhanced Least-Squares leaming method is 
proposed in this paper to solve reinforcement leaming control 
problems. The method combines Least-Squares policy 
iteration algorithm with OLS regression strategy that can 
select system feature centers automatically. Simulation is 
introduced as a tool to generate rough representation for 
feature so that the construction of training sample set for 
model-free Least-Squares Q-learning is guided. The 
simulation experiments on the Cart-Pole system demonstrate 
the effectiveness of the proposed hybrid approach. Other 
applications of this method are now in progress. 
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