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ABSTRACT 

We consider a logistics network where a single warehouse 
distributes a single item to multiple retailers. Retailers in 
the network participate in a Vendor Managed Inventory 
(VMI) program with the warehouse, where the warehouse 
is responsible for tracking and replenishing the inventory at 
various retailer locations. The information update occurs 
every time a vehicle reaches a location and the decision on 
the delivery quantity and the next location to visit is made. 
For a small increase of locations in the network, the state 
space for the solution increases exponentially, making this 
problem NP-hard. Thus, we propose a solution methodol-
ogy where in the size of the state space is reduced at each 
stage. In this work, we use simulation to develop the 
framework for the real-time control and management of 
inventory and routing decisions, given this scenario. 

1  INTRODUCTION 

In an efficient logistic network the primary objective is to 
deliver the right product, in the right quantity, at the right 
time, while keeping the overall cost at a minimum. A typi-
cal logistics network consists of multiple factories, distri-
bution centers, wholesalers, retail outlets, and customers, 
and requires movement of material/ inventory in the net-
work to be efficient and economical by making optimal 
routing and inventory decisions. 

Advances in technology have forced many companies 
to change their business models, and many companies par-
ticipate in VMI initiatives with their suppliers. The tangi-
ble benefits of successful VMI implementation include im-
proved forecasting due to increased visibility across the 
supply chain, reduced inventory levels with higher inven-
tory turns, and reduced costs (Kleywegt, Nori, and Savel-
bergh 2002; Lee and Whang 1998). The retailers also gain 
remarkable efficiencies by reducing errors and stockouts, 
while increasing customer satisfaction. Hence, it becomes 

essential for a supplier to follow an integrated approach for 
making optimal routing and inventory decisions.  

Inventory routing problems (IRP), integrate the man-
agement and control of inventory and vehicle routing in a 
logistics network. The complexity of IRP lies in the fact 
that there could be several alternative routes among the 
various retailer locations in the network and a varying 
quantity of inventory to be allocated at each location. Intui-
tively, it is ideal to satisfy the demand at each location 
when requested, however, real life situations are con-
strained by the vehicle capacity and fluctuating demand 
patterns at other locations. 

We refer the readers to the work of Kleywegt, Nori, 
and Savelbergh (2002) and Kleywegt, Nori, and Savel-
bergh (2004), where the inventory routing problem is for-
mulated as a Markov decision process (MDP). Adelman 
(2003 a) and Adelman (2003 b) also formulate the IRP 
control problem as a MDP, approximating future costs of 
current actions using optimal dual prices from a linear pro-
gramming model. Also, the readers are referred to the 
works of Campbell and Savelsbergh (2004 a), Campbell 
and Savelsbergh (2004 b) and Campbell and Savelsbergh 
(2004 c) for the various approaches taken to formulate and 
solve the IRP.  
 In this paper, we consider a situation where one ware-
house replenishes inventory at multiple retailers using a 
single vehicle. The vehicle is scheduled to visit all the lo-
cations where the inventory level is below the reorder point 
at any time during the visit. The demand pattern at each lo-
cation is stochastic and stationary; hence causing a varia-
tion in the actual and predicted inventory at some or all lo-
cations. During the visit of the vehicle to the planned 
locations there may be an addition of other locations where 
the inventory is below the reorder point. To accommodate 
every new location that enters a route or to cater to the 
fluctuating demands at the locations on the current route 
delivery quantity needs to be varied and/or the vehicle is 
rerouted. After visiting each location the decision on which 
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location to visit next and how much to deliver at the pre-
sent location are taken. Finally, the vehicle returns back to 
the warehouse when the inventory on the vehicle is ex-
hausted or so low that it is not desirable to service any 
more locations on the route.  

We formulate the sequential decision problem as a 
stochastic dynamic program considering the sequential de-
cision making. The solution space for this type of the prob-
lems is extremely large making the problem NP-hard; 
however, we modify the A* algorithm in order to find 
good heuristic solutions. We develop a simulation frame-
work to validate the heuristic performance for the real-time 
management and control of inventory routing decisions.  

The remainder of the paper is organized as follows.  
Section 2 presents problem definition, followed by section 
3, which presents the modified A * algorithm. The numeri-
cal analysis is presented in section 4, results and discus-
sions in section 5, followed by the conclusion in Section 6.  

2 PROBLEM DEFINITION 

In this paper, we focus on the relationship between a single 
warehouse and multiple retailers. The retailers participate 
in a Vendor Managed Inventory program, where the 
wholesaler is responsible for tracking and replenishing the 
inventory in a timely manner. We consider the demand at 
the retailer locations to be stochastic and stationary. 

2.1 Notation  

Prior to describing the model formulation, a list notation 
used throughout the paper is provided below: 
 
Network representation: 
k ∈ K  k=0 represents the warehouse 
  k= 1, 2, 3….K represent the retailer locations 
cij = cost of operating between locations i and j 
dij = distance between locations i and j 
tij  = travel time from locations i to j 
 
Inventory modeling parameters for location k 
ak =  setup cost for each order 
pk = shortage cost per unit 
hk = holding cost of inventory 
wk = unit cost 
Φk

λ(d) = normal distribution of demand during time pe-
riod   λ 

θk = expected demand during lead time 
σk = standard deviation of demand during leadtime 
(R,s,S)k = the periodic review model where R-review in-

terval, s-reorder point, S-order upto quantity 
 
Cost Functions 
F(t) Total cost of operation from the warehouse through 
node t 

G(t) Cost of reaching the node t from the warehouse 
H(t) Cost of reaching the warehouse from node t 
Ft(j) Total cost of operation from the warehouse through 

node t in the modified A* algorithm 
Gt(j) Cost of reaching the node t from the warehouse in the 

modified A* algorithm 
Ht(j) Cost of reaching the warehouse from node t in the 

modified A* algorithm 
 
State notation 
T = node visitation counter 
(t) = index of the tth visited node 
Ik

t = actual inventory at location k upon arrival at the tth  
node 

Ĩkt = predicted inventory at location k upon arrival at the 
tth  node 

Qt = inventory on vehicle upon arrival at the tth  node 
 
Decision variables 
Dk

t = inventory delivered to location k while at the tth  
node 

 
xij

t = binary variable associated with selection of the 
route 

 

  
⎩
⎨
⎧ =+=

otherwise 1, 
 j 1)(t and i  (t) if 0,  

2.2 Problem Description 

In this problem, we consider a single product distributed 
from a single distribution center to k wholesaler locations.  
Locations are indexed k = 0, 1, 2,…, K, where k = 0 repre-
sents the distribution facility.  Inventory on a single distri-
bution vehicle, while at any location t, is expressed as Qt 
and changes as the vehicle delivers to various locations ac-
cording to:  

 
 t

t
tt DQQ )(

1 −=+ , (1) 
 
where D(t)

t represents the inventory delivered at the loca-
tion while at node t and (t) is the index of the interval be-
tween each decision epoch.  Upon reaching zero inventory, 
or a level where it might not be desirable to service any 
other additional locations, the vehicle returns to the distri-
bution center prior to starting a new tour; any unvisited lo-
cations are unsatisfied and may incur penalties. The inven-
tory routing processing is described in Figure 2.1. 

We choose a periodic review model, (R,s,S)k to deter-
mine inventory control parameters for each location as it is 
consistent with the stochastic nature associated with the in-
ventory routing problem. A power approximation, pro-
posed by Ehrhardt (1979) and Ehrhardt and Mosier (1984) 
is used to determine optimal values of the reorder point, sk, 
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the order up to level, Sk as shown in equation (2) and (3). 
Each time the vehicle reaches a location the inventory at all 
the locations is reviewed, hence the review of inventory 
occurs each time a location is visited. The reorder point is 
set as a threshold value to assess the criticality of servicing 
a location.  
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Figure 2.1. Inventory/Routing Processing Flowchart 
(Adapted from Jarugumilli and Grasman (2006)) 

 
The inventory at each location k is reviewed each pe-

riod. If the inventory level falls below sk an order is placed 
at the distribution center in order to replenish the inventory 
to Sk. Within this framework, there are two decision ep-
ochs: 

 
1. generation of initial feasible (optimal) delivery quanti-

ties and routing, and  

2. determination of  feasible delivery quantity at location 
k while at the tth node D(t)

t and the decision on the next 
node to be visited while at the tth node {x(t)j

t}based on 
updated information. 
 

The first decision may be made using existing vehicle and 
inventory routing literature. The second decision deals with 
real-time control and is presented in Section 3. 

The cost of operations in the entire network is the sum 
of inventory holding and shortage costs and transportation 
costs. Generally the holding costs are defined as the cost of 
holding the inventory until it is consumed. The shortage 
costs are defined as the losses that the wholesaler incurs 
due to shortage of an item and are generally higher than the 
holding costs. The transportation costs are defined as the 
costs incurred to travel between two or more locations; this 
is directly proportional to the distance between the loca-
tions. 
 We formulate the problem as a stochastic dynamic 
program. This approach is adopted considering the sequen-
tial decision making. The present state of the system de-
termines the allowable actions and the possible states to 
which the system can transition. The present formulation 
involves the following components. 
 The current state of the system at any instant is defined 
as: the current and the predicted inventory at all the loca-
tions in the network, the current location of the vehicle in 
the network and the amount of inventory on the vehicle. 
Depending on the current state the decisions are made and 
the system transitions into the future state. The action 
space for any given state is the set of all decisions that can 
be taken without violating the vehicle and retailer capacity 
constraints and the routing constraints. The constraint that 
the retailer capacity is not violated is expressed as  Ik

t + 
D(t)

t <Sk. The constraints for the vehicle capacity can be 
expressed as Qt ≥ Qt+1 , where t = 1,2,3…T.  

The objective is to minimize the system wide costs 
considering the various states without violating the capac-
ity and routing constraints. We set up the problem as a re-
cursive function, where the total cost is the sum of costs 
incurred at each state transition; thus: 
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Equation (4), adopted from Jarugumilli and Grasman 
(2006), provides the inventory control policy cost compo-
nent of the dynamic program, including inventory carrying 
cost and shortage cost associated with the delivery quan-
tity. The policy cost is calculated using equation (5). 

01 =+tQ  k’=0 
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Generate partitioned set of locations 

Generate initial feasible delivery quantity and routing 

Set t=t+1 
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3 A * ALGORITHM 

In this section, we describe the solution methodology for 
the stochastic dynamic program. In the first phase we de-
termine the initial inventory control parameters using an 
(R,s,S)k model as discussed earlier in Section 2. The sec-
ond phase involves the use of A* algorithm to dynamically 
determine the deliver quantities and routing each location.  
 In this section, we describe the A* for the stochastic 
dynamic program, described in Equation 4. Solving this 
class of problem is complex because of the large number of 
solution states to which the system can transit into. The 
complexity of the problem is reduced to the linear form 
and a variant of the A* algorithm is proposed to dynami-
cally determine the deliver quantities and routing.  
 The A* algorithm is a graph search algorithm that 
finds a path from a given initial node to a given goal node. 
The algorithm calculates the cost of travel from an initial 
node to the final node as the sum the cost of reaching the 
intermediate node from the initial node and the estimated 
cost of reaching the final node from the intermediate node. 
Hence, the cost, F(t), is expressed as: 
 
 F(t)= G(t) + H(t) (6) 

 
Where G(t) the cost of traveling from the initial node to the 
intermediate node t, H(t) is the estimated cost of traveling 
from the node t to the final node. 
 From the Equation 6, it is evident that the algorithm can 
be effectively used for sequential decision making problems 
like the dynamic program presented in the Equation 4. G(t) 
calculates the cost of travel to the present location t, and H(t) 
calculates the cost of travel for the forward recursion, i.e., 
from the present location t to the final destination.  
 The problem formulation in Equation (4), considers 
minimizing the total cost in the network, which is comprised 
of the travel cost and inventory cost in the network. The cost 
components G(j) and H(j) in the original form used for the 
A* algorithm consider only the transportation cost. In order 
to account for the inventory cost we slightly modify G(t) and 
H(t). Now, Gt(j) is defined as the sum of the cost of traveling 
from the initial node to the present node t and the cost of in-
ventory for all the locations covered on route from the initial 
node to the present node t. Similarly, the modified Ht(j) is 
the sum of the estimated cost of travel from the present node 
t to the final node and the estimated cost of inventory for all 
locations to be covered on route to the final node (which in 
our case is the warehouse).  
 At any given point in time Gt(j) can be determined as 
the sum of the costs incurred to reach the current location, 
but Ht(j) is sum of the cost of servicing the remaining loca-
tions on the partitioned set, which is subject to change in 
the future based on the elements of the partitioned set. We 
calculate the costs Ft(j) of getting to both the locations 
based on Equations 7 and 8. 

 
 Gt(j)=  
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 Initially, all the locations are in the closed list. While the 
vehicle is at a location t, the updated inventory information 
from all the locations in the network is obtained and the par-
titioned set is updated with all locations where the inventory 
Ik< sk. All locations in the partitioned set are added to the 
open list. Ft(j) is then calculated for all the locations and the 
one with the minimum Ft(j)  is visited. On reaching the loca-
tion, the inventory is again updated. If the sum of require-
ments at all the locations is less than the truck capacity, then 
the pre-allocated inventory is delivered at the current loca-
tion. If the sum of inventory requirements at the locations is 
greater than the inventory on the truck, adjustments may be 
made to the inventory allocation and the routing decisions. 
There are several ways of allocating the inventory and visit-
ing future locations in the network, causing an increase in 
the number of states to which the system can transition. To 
reduce the size of state space, we put a restriction on the ad-
justment that can be made to the inventory allocation (Jaru-
gumilli and Grasman 2005) at a particular location. At each 
location, there is a possibility of adjusting the delivery quan-
tities to three levels: 

 
1. Deliver the originally allocated delivery quantity,  
2. Deliver the difference of the original delivery 

quantity and the sum of requirements in the future 
nodes, and, 

3. Deliver the updated delivery quantity. 
 
The inventory to be delivered at a location is determined 
by calculating the total cost Ft(j).  We calculate Gt(j)  con-
sidering the above mentioned three levels of inventory for 
the current location. Next we calculate the cost of servicing 
the future locations Ht(j), based on the various levels of in-
ventory on the truck resulting from the amount delivered at 
the current location and the possible route change. The pri-
ority is given to the locations where the cost of servicing is 
the highest if not serviced, i.e. to locations with a low Ft(j). 
After delivering the inventory at the current location, the 
current location is added to the closed list and decision on 
the location to be visited next is taken based on Ft(j). 
 Intuitively, if a location is not serviced at the right 
time, this will result in a higher value of Ht(j), resulting in a 
higher value of Ft(j), forcing the vehicle to visit the particu-
lar location to keep the costs low. Hence, the minimum 
cost Ft(j) is chosen and the corresponding inventory level 
to be delivered at the current location and the next location 
to be visited is chosen. At every location that is visited 
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these calculations are made until the inventory on the truck 
reduces to a level where visiting a location is no longer de-
sirable or all the elements in the partitioned set are visited. 
The algorithm is tabulated in Table 3.1.  

 
Table 3.1: Modified A* Algorithm 

1 Add the starting node (warehouse) to the open list 
2 Repeat the following: 
2 a. Look for the lowest value Ft(j) cost node on the 

open list 
2 b. Switch it to the closed list 
2 c. For each of the locations to be visited  
 - check if the inventory levels are greater than   s 

or if it is  on the closed list, ignore it. otherwise, 
do the following:  

 - if it isn’t on the open list, add it to the open list. 
Make the  current node the parent of this new 
node. Record Ft(j), Gt(j), and Ht(j) costs associ-
ated with the node.  

 - if it is on the open list already, check to see if 
this path to   that node is better, using Gt(j) as a 
measure. A lower value of Gt(j) means that the 
present path is better and the amount of inven-
tory delivered is optimal. If so, change the par-
ent node to the current node and recalculate the 
values of Gt(j) and Ft(j) values of the node. If 
the open list is maintained by sorted Ft(j) 
scores, the list is restored to account for the 
change. 

2 d. Stop when: 
 - add the target node to the closed list, in which 

case the   path and the delivery quantity has 
been determined, or 

 - fail to find the target node, and the open list in 
empty. In this case, there is no path and no op-
timal delivery volume. 

3 Save the path and the delivery quantities, working 
backwards from the target node, go form each 
node to its parent node until the initial node is 
reached.  

4 NUMERICAL ANALYSIS 

In this section, we describe the design of experiments used 
for validation of the model. We present the numerical 
analysis to test a series of hypotheses related to the effect 
of factor levels on the cost of operations in the network. 

4.1 Objectives of the numerical analysis 

The main objectives of the numerical analysis are to study 
the following: 

 
1. Perform statistical analysis of the cost savings in 

the network,  

2. Analyze the effect of the demand distribution, and 
inventory control costs on the overall cost of op-
erations, and, 

3. Discuss the scalability of the heuristic to handle 
problems of larger size.  

4.2   Design of Experiments 

For the experimental design, three important design factors 
were identified: the demand pattern, the ratio of the shortage 
cost to the holding cost, and the transportation cost. The de-
mand at each of the retailer locations is a common source of 
randomness in the system, and based on the demand, the in-
ventory control parameters (sk, Sk) for each of the locations 
are calculated. The inventory levels at each location act as a 
trigger for adjusting the delivery quantities and the routes in 
order to minimize the total inventory and transportation 
costs. Also, the shortage costs and the transportation cost 
have a significant effect on the cost savings. The three fac-
tors and respective levels are tabulated in Table 4.1. 

 
Table 4.1. Experimental Design 

Levels Factor Name Notation 

1 2 3 4 

Demand 

Normal 

θk / σk 5 10 15  1 

Uniform a/b .5 .33 .25  

2 Shortage cost vs.  

Holding cost 

pk / hk 5 10 15 20 

3 Transportation 

Cost 

Γ 5 10 15 20 

 

The full-factorial design for these factors and levels re-
quires a 6 x 4 x 4, i.e. a 96 trial experiment. Each trial con-
sists of ten replications; of 450 simulated periods.  

4.2.1 Data Input 

The simulation model uses the following input data: 
 
1. Demand distribution at each retailer location. 
2. Inventory control parameters for each retailer lo-

cation based on the periodic review model. 
3. Inventory holding and shortage cost at each loca-

tion. 
4. Capacity of the delivery vehicle. 
5. Cost of traveling from one location to the other. 
6. Inventory levels at each of the retailer locations. 
 

 The demand at each of the retailer locations is the 
common source of randomness in the system. In this 
model, the demand is considered to be stationary and sto-
chastic, following a normal distribution. Based on the de-
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mand, the inventory control parameters for each of the lo-
cations are calculated. Inventory levels at each of the loca-
tions vary with the demand each period, making it a ran-
dom function. The inventory levels at each location acts as 
a trigger based on which the delivery quantities and the 
routes are adjusted, so that the total inventory and transpor-
tation costs are minimum.  

4.2.2 Model Verification and Validation 

The initial verification of the model included the following 
steps adopted from Law and Kelton (2003): 

 
1. the model was programmed and debugged in steps 
2. to test each program path the debugger was used 

extensively. 
3. model output results were checked for reason-

ableness 
4. model summary statistics for the values generated 

from the input probability distributions were 
compared to that with a network with fixed route 
and delivery quantity. 

 
The process of validation of this scenario is a difficult proc-
ess. We have compared our assumptions and constraints 
with the existing literature for logical correctness and accu-
racy. Different data sets for the same randomness were 
tested for homogeneity and merged only if appropriate. We 
tested all the probability distribution for the correctness. 

4.3 Output Analysis 

In this section, we present the output of the numerical 
analysis mentioned in the previous section. We will present 
and test hypotheses dealing with the impact of individual 
design factors on the experiments and the interactions 
among various factors, based on the results the results of 
the 96 trials. The mean percentage, savings, is the response 
variable, is the mean value of the percentage savings for 10 
replications of the same trial. The 96 trials were conducted 
for three values of θ in case of the normal distribution and 
three values of a in case of the uniform distribution.   

4.3.1 Main Effects  

In this subsection, we test the hypotheses to check the sig-
nificance of the levels of the individual factors. The hy-
potheses testing are done for the factors: demand, shortage 
cost and the transportation cost. Figure 4.1-4.2 show the 
main effect plots at different values of mean and a for the 
normal and uniform distribution respectively. 
 
Hypothesis 1: 
H0: Levels of factor for ‘Demand’ does not change the 
mean percentage saving.  

Ha: Levels of factor for ‘Demand’ changes the mean per-
centage saving.  
H0:  μ1= μ2 = μ3;  
Ha: μ1≠ μ2; μ2≠ μ3; Test for the alternate hypotheses was car-
ried out separately. 
 
The results of the paired t-test conducted for the three lev-
els of demand for normal and uniform distribution. The p-
values for all the factors < 0.05, H0 is rejected and Ha is ac-
cepted. 
 
Hypothesis 2: 
H0: Levels of factor ‘Shortage Costs’ does not change the 
mean percentage saving.  
Ha: Levels of factor ‘Shortage Costs’ changes the mean 
percentage saving.  
H0:  μ1= μ2 = μ3=μ4;  
Ha: μ1≠ μ2;  

          μ2≠ μ3;   
         μ3≠ μ4;  Test for the alternate hypotheses was carried out 
separately. 
 
The results of the paired t-test conducted for factors short-
age cost for normal and uniform distribution. The p-values 
for all the factors < 0.05, H0 is rejected and Ha is accepted. 
 
Hypothesis 3: 
H0: Levels of factor ‘Transportation Costs’ does not 
change the mean percentage saving.  
Ha: Levels of factor ‘Transportation Costs’ changes the 
mean percentage saving.   
H0: μ1= μ2 = μ3= μ4;  
Ha: μ1≠ μ2;  

         μ2≠ μ3;   
         μ3≠ μ4;  Test for the alternate hypotheses was carried 
out separately. 
 
The results of the paired t-test conducted for transportation 
cost for normal and uniform distribution. The p-values for 
all the factors < 0.05, H0 is rejected and Ha is accepted. 

4.3.2 Two Factor Interaction   

In this subsection, we test the hypotheses to check the sig-
nificance of the levels of the interaction between two fac-
tors. The hypotheses testing are done for the interaction be-
tween the factors: demand, shortage cost and the 
transportation cost. Figures 4.3 - 4.4 show the interaction 
plots between the factors.  
 
Hypothesis 4: 
H0: Change in the levels of factors Demand and Shortage 
cost does not alter the mean percentage saving.  
Ha: Change in the levels of factors Demand and Shortage 
cost alters the mean percentage saving.  
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The results of the two-way ANOVA test conducted for fac-
tors demand (for normal and uniform distribution) and 
shortage cost. The p values for all the factors > 0.05, H0 is 
not rejected for the normal demand. The p values for all the 
factors < 0.05, H0 is rejected and Ha is accepted for uni-
form demand. 

 
Hypothesis 5: 
H0: Change in the levels of factors Demand and transporta-
tion cost does not alter the mean percentage saving.  
Ha: Change in the levels of factors Demand and transporta-
tion cost alters the mean percentage saving.  

 
The two-way ANOVA test conducted for factors Demand 
and Transportation Cost. The p values for all the factors > 
0.05, H0 is not rejected.  

 
Hypothesis 6: 
H0: Change in the levels of factors shortage cost and trans-
portation cost does not alter the mean percentage saving.  
Ha: Change in the levels of factors shortage cost and trans-
portation cost alters the mean percentage saving.  

 
The two-way ANOVA test conducted for factors shortage 
cost and transportation cost. The p values for all the factors 
> 0.05, H0 is not rejected.  

5 DISCUSSION OF RESULTS 

The analysis performed on the data sets with normal and 
uniform distributions can be summarized as: 

 
1. The shortage cost is a significant factor in the sys-

tem, and the locations with higher shortage costs 
must be on the priority of service. 

2. The demand is a significant factor in the system, 
variability increases, the mean percentage saving 
reduces.  

3. The transportation cost is a significant factor in 
the system.  

4. For change in the levels of factors of demand and 
the shortage costs, there is a change in the mean 
percentage savings only for cases where the vari-
ances are high. In this study, the data set for nor-
mal demand does not reflect this fact mainly due 
to the lesser variation in the demand pattern. This 
concept is well reflected in the uniform distribu-
tion data set. 

5. In this study, there is no interaction observed be-
tween the transportation cost and the demand.  

6. Again, there was interaction observed between the 
transportation cost and the shortage cost. 

 
The results show that there can be some substantial sav-

ings achieved by the implementation of the connective 

technology in the logistics network, which will enable the 
real-time information exchange between the vehicle and 
the various locations in the network. The use of connective 
technology, will aid in the real-time decision making on 
dynamically determining the delivery quantities and rerout-
ing of the vehicle. 
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Figure 4.1 Main Effect Plots for Normal Demand,  
Mean=10 
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Figure 4.2 Main Effect Plots for Uniform Demand,   a =10 
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Figure 4.3 Interaction Plots for Normal Demand, Mean=10 
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Figure 4.4 Interaction Plots for Uniform Demand, a =10 

6 CONCLUSION 

In this paper, a methodology for dynamic control of a in-
ventory and routing decisions in a logistics network is pre-
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sented. Using a vendor managed inventory approach; we 
compare the cost of operations in networks enabled by the 
connective technologies with networks not implementing 
such technology.  The problem has been set up as a sto-
chastic dynamic program. A* algorithm is used to solve 
this problem and to bring out the cost benefit associated 
with the dynamic control of inventory and routing deci-
sions. We have presented an extensive numerical analysis 
to test the efficiency of the methodology.  
 This model should be considered along with the set up 
cost associated with ordering each time an order is placed. 
The model may be extended to more complex systems, 
such as systems with multiple vehicles or multiple distribu-
tion centers. In these situations, the inventory routing prob-
lem may require partitioning algorithms, in order to deal 
with nature of the vehicle routing problem.  Other exten-
sions include current advances in VRP and IRP, such as 
anticipatory route selection probabilistic routing, or deliv-
ery windows. Setting of dynamic threshold values for each 
of the locations will help in more optimized operations in 
the logistics network. This model can be extended to in-
clude use of multiple vehicles in the network, the distribu-
tion of multiple products and considering the distribution 
of perishable inventory.  
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