
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Engineering Management and Systems
Engineering Faculty Research & Creative Works

Engineering Management and Systems
Engineering

01 Jan 2005

A Generic, Adaptive Systems Engineering Information Model I A Generic, Adaptive Systems Engineering Information Model I

Ann K. Miller
Missouri University of Science and Technology

Joseph J. Simpson

Scott Erwin Grasman
Missouri University of Science and Technology

Cihan H. Dagli
Missouri University of Science and Technology, dagli@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork

 Part of the Systems Engineering Commons

Recommended Citation Recommended Citation
A. K. Miller et al., "A Generic, Adaptive Systems Engineering Information Model I," Conference on Systems
Engineering Research, Institute of Electrical and Electronics Engineers (IEEE), Jan 2005.

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by
an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use
including reproduction for redistribution requires the permission of the copyright holder. For more information,
please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

 Department of Systems Engineering and Engineering Management, Stevens Institute of Technology

© 2005 Stevens Institute of Technology, ISBN 0-615-12843-2
PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

A Generic, Adaptive Systems Engineering Information
Model

Joseph J. Simpson
Boeing Company
6400 32nd NW # 9
Seattle WA, 98107

jjs-sbw@eskimo.com

Dr. Scott Grasman
UM – Rolla

219 Engineering
Management and

Systems Engineering
Department,

Rolla MO 65409
grasmans@umr.edu

Dr. Ann Miller
UM – Rolla

Department of
Electrical and

Computer
Engineering,

Rolla MO 65409
annmiller@ieee.org

Dr. Cihan Dagli
UM – Rolla

229 Engineering
Management and

Systems Engineering
Department,

Rolla MO 65409
dagli@umr.edu

Abstract

Systems engineering tasks generate large
volumes of data and information that must be
available over the lifecycle of the system.
This paper outlines an information model
designed to support existing systems
engineering methods and practices as well
newly developed techniques. Specific
methods and models used for the capture,
encoding and persistence of systems
engineering information and design artefacts
were given special attention during the
evaluation, analysis and model design phases.
A generic systems engineering meta-model
was then developed and used as a basis for the
systems engineering information model that
was developed and is presented in this work

Introduction

Systems Engineering is a structured
technical design and management discipline.
This professional discipline is used to control
the design, development, production and
operation of large-scale complex systems
produced by large distributed teams and
organizations. The systems engineering
discipline has matured from an operational
birth in the governmental procurement process
during World War II based on systems
acquisitions, operational analysis and value

engineering, to a multifaceted commercial
discipline that can be used to address any type
of complex system development.(Hughes
1998)

The fundamental tenets of an ordered,
structured, scientific problem solving process
prove the foundation of systems engineering
principles and practices. An organization’s
ability to encode, communicate and organize
information has continued to increase from the
1940s up through today. The analytical,
computational and organizational tools that
are used to manage systems engineering
information have also grown more and more
powerful over this ensuing time period.

Prior to the mid 1980s, most systems
engineering techniques were based on the
production of written (textual) problem and
solution statements as well as analytical
(graphical and computational) techniques used
to explore the problem at hand. The great
proliferation of computing power and
information exchange capability in the last 15
to 20 years has facilitated the translation of the
textual and graphical techniques to computer-
based tool sets. However, many of these
systems engineering artefacts are still based
on static, non-executable, document centric
information types. Executable models, real-
time communication and collaboration
systems enable the work of distributed teams
and produce a large volume of video, graphic

364

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

and computer executable information types.
This paper outlines an information model
designed to effectively manage the integration
of static and dynamic systems engineering
information types.

Systems Engineering Process Models

The Electronic Industries Association
(EIA) 632 and The Institute of Electrical and
Electronic Engineers (IEEE) 1220 standards
detail two different models of standard
systems engineering processes. In addition to
EIA 632 and IEEE 1220, EIA published a
companion standard, EIA 731 that outlines the
activities an organization must perform to
evaluate its capability to accomplish effective
systems engineering tasks and process steps.
(Lake 1998)

Starting in the 1980s, significant efforts
have been made to transfer system
engineering processes and practices to
computer-based systems. The International
Council On Systems Engineering (INCOSE)
was established in the early 1990s to provide a
forum for the further development and
publication of systems engineering practices
and processes. The INCOSE Tools Database
Working Group (TDWG) has mapped the
typical systems engineering tools to the areas
of the standard systems engineering process
where they are typically used.(INCOSE 2003)
Figure 1 shows a typical three-tier computing
system and a typical distribution of operations
computing components across the three tiers.

The generic, adaptive systems engineering
model presented in this paper is designed to be
deployed at the database tier. When this
model is developed and deployed on standards
compliant, open source, freely available
software packages and systems, the
organization obtains a robust, adaptable, long
term information management asset. These
types of information management assets will
reduce the probability that the systems and
information formats will become obsolete and
unsupportable in the long term.

Figure 1. Three-Tier Computing Systems.

A core set of high level systems

engineering practices and processes were
developed by Oliver. (Oliver 1997) This
“Model Based Systems Engineering”
approach is abstracted into a six layer model.
These six layers are: the systems engineering
process layer, the information representation
layer, the tool layer, the changes layer, the
staffing layer, and the external visibility and
review layer. The systems engineering
process layer contains a core set of seven
process steps that map directly to the general
scientific problem solving process. This core
systems engineering process flow model is
shown in Figure 2.

Figure 2. Core Process Flow Model.

Client
Application

Executable
Model

Client
Application

Client
Application

Dynamic
HTML Pages

Executable
Model

Client
Application

Executable
Model

Application
Server

Enterprise
Beans

Application
Server

File
Server

Java Server
Pages

Enterprise
Beans

Application
Server

File
Server

Database 1a

Database 1b

Database 2a

Database 2b

Database 3a

Database 3b

Database 4a

Database 4b

Client
Tier

Application
Server

Tier

Database
Tier

System 1 System 2 System 3 System 4

6.0 Iterate to Find Feasible Solution

Assess
Available

Information

1.0
Create

Sequential
Build Plan

7.0
Perform
Trade -off
Analysis

5.0

Define
Measures of

Effectiveness

2.0

Create
What
Model

3.0

Create
How

Model

4.0

AND

365

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

A series of seven system views were used

by Oliver as the basis to produce a set of
information models that represent the systems
engineering process. These information
models are: system behaviour, system input
and output, system structure and behaviour,
system requirements, effectiveness measure
creation, build and test plan and sell as text
requirements, behaviour and content.

A review of the systems engineering
literature indicates that representing a system
in a series of views is a widely used and
accepted technique. Mar developed the four
view definition of any system. (Mar 1992)
The function, requirement, architecture and
text (FRAT) approach states that all systems
are represented by four views, the function
view, the requirement view, the architecture
view and the test view. Maier discusses the
importance of systems views in the systems
architecting process. (Maier 1998) Maier
suggests that the conceptual mismatch
between hardware systems and software
systems can be addressed using five system
views. These five views are the logical view,
process view, physical view, development
view and scenario view. These views are
used to organize the systems requirements and
facilitate a structured bottom-up development
process. Other systems engineering authors
have reported using systems views as an
organizing principle but these system views
are all quite different in content and
organizing principles.

Systems Engineering Requirements
Models

Systems engineering has two basic
foundations: a systems engineering process
and requirements management activities. Just
as there are many different “standard” systems
engineering processes, there are many
different interpretations for specific
requirements management activities. Grady

discussed the connection between poorly
written and understood systems engineering
standards and the confusion associated with
the sequence of requirements analysis and
functional analysis. (Grady 1995) The key
area of confusion, according to Grady, is the
relationship between the current level of
system definition activity and the higher-level
system need or function that produced the
lower-level system requirements activity.
This fundamental semantic relationship
between the specified need and the specified
solution, as it appears in the program lifecycle,
has been documented by the following
authors: Forsberg and Mooz (1991), Mar and
Morais (2002), and Simpson and Simpson
(2001).

Most requirements management practices
are based on managing a collection of text
documents and sets of linkages between and
among the documents in this collection. The
arrangement, content, and relationships
between the documents in the collection are
program and project specific, with many of
the documents carrying a contractual
connection. In individual systems engineering
projects, the “natural systems development”
order and information flow varies across the
aspects of system design, development and
production. These variations create activity
and requirement gaps that must be evaluated
and addressed by the systems engineering
staff. Systems engineering requirements
models have been used to organize the various
aspects of the systems engineering phases,
tasks and activities. It is clear that both
textual and executable types of data and
models are required to effectively address the
numerous types and forms of requirements
information encountered in a system
development program.

Requirements traceability has been
mandated by government process standards
and is specified for use by many government
system acquisition programs. Even though the
practice of requirements traceability was

366

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

mandated, no common model or specific set
of practices were specified to guide the
implementation of traceability practices. The
Naval Postgraduate School conducted a series
of studies on traceability practices. A primary
outcome of these studies was a set of
conceptual information models that address
the basic areas found in systems requirements
development. (Ramesh 1993) Four conceptual
models were developed during this work.
These four models are: requirements
management model (Figure 3), design
allocation model (Figure 4),
design/implementation decision making model
(Figure 5) and compliance verification model
(Figure 6).

Figure 3. Requirements Management

Model.

Figure 4. Design Allocation Model.

Figure 5. Design/Implementation Decision
Making Model.

Figure 6. Compliance Verification Model.

The requirements traceability model is

composed of three of these four models:
requirements management, design/
implementation and allocation as well as
compliance verification. The fourth model,
design/implementation decision making is
used only for the decision process during the
design and allocation phases. All of the
models focus on the types of requirements
links that should be used to implement the
mandated requirements linking activity in an
intelligent and useful manner.

These information models are solely

designed to link text-based system
descriptions and do not address executable

part of

depend
on

elaborates

derived

System
Objectives

Stakeholders

Organizational
Need

Op
Need

Mission
Need

Changes

Constraint

Source

CSF

Alternatives

Issues/
ConflictsModel

Components

Requirements

modify

identify

specify

justify

is a

supports

authorized by

is a

source is

cre
ate

Stakeholders

ret
interpret

supported
byis a based

on
Assumptions

Rationale
supported

by

evaluate

resolve

influences

made
by

supported
by

is a

tracked by

based on

is a

refine

generate

Decisions

depend on

Functions
Stakeholders

Source

Resources

Design/
Implementation

System/
Subsystem/
Components

Standards/
Policies/
Methods

Requirements

part of

External
Systems

drive

is a

constrain

is a

satisfy

perform

responsible
for

depends on

defines used by
allocated to

allocated to

satisfy

see figure 3

CSF

Rationale

Assumptions

Design/

based
on supported by

based on

supported
by

influenced
by

Standard Inspection

Test

ResourcesChanges

Compliance
Verification
Procedures

Requirements

satisfy

comply
with

System/
Subsystem/
Components

Simulation

Prototype

based
on

is a

is a

is a

is a

allocated
to

identify

developed
for

verify

367

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

system models. The subject of the models is
“the system under development.” A standard
approach to the modelling of the system
production process and deployment
environment is not provided. A clear
distinction needs to be made between the
product system and the system that produces
and maintains the product system.

Generic Information Model
Development

Any generic systems engineering
information model must be able to support a
wide range of applications. In essence, the
generic information model must be based on
fundamental systems engineering processes
and patterns that are widely recognized and
reduce domain complexity for the human
users. At the same time, the generic model
must provide a powerful, extensible construct
upon which the design of large, distributed
systems can be effectively based. The
primary design goal is the reduction of system
complexity, both in system production and
system use. Therefore, the generic model
must be based on the natural information flow
found in the systems engineering domain.
From the engineering standpoint, the model
must address the activity of problem solving.
At the same time, from the systems aspect, the
model must address basic system concepts.
The most important systems concepts that
must be addressed are system components,
system boundaries and the system universe of
environment. The most important engineering
concepts that must be supported by the generic
model are problem solving and structured
system solution development.

The generic information model, named
CCFRAT, presented here was developed from
the FRAT system model by encapsulating the
four FRAT views in a system concept view
and system context view. The system concept
and context view are added to the model to
provide a mechanism where system designers

can detail specific global aspects of the current
system design and how these aspects map to
other systems in the environment. The
context view is used to detail relationships that
are important between and among the current
system and other systems existing in the
environment. The concept view provides a
mechanism to detail controlling concepts that
directly relate to the current system design and
design abstraction process. Figure 7 shows
the view relationships.

Figure 7. Generic System Views.

Logical Generic Model Relation
Development

The standard database systems
development cycle was followed to produce a
set of database design models. First a set of
six conceptual data models were developed,
one for each of the CCFRAT views. Next,
data and process analysis was accomplished to
prepare for the development of the logical
database models and the entity database
tables. The generic database will contain the
following main entity tables: system table,
context table, concept table, function table,
requirements table, architecture table, test
table, decision table, type table, document
table, model table, database model table,

2.0

1.0

1.1

1.3

1.2

1.4

A.a

Architecture

A1 A2 A3

Arch. View

Requirement

R1 R2 R3

Reqt. View

Test

T1 T2 T3

Test View

Function

F1 F2 F3

Funct. View

Architecture

A1 A2 A3

Arch. View

Requirement

R1 R2 R3

Reqt. View

Test

T1 T2 T3

Test View

Function

F1 F2 F3

Funct. View

368

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

fr_link table, fa_link table, and the at_link
table.

The primary database entity relationship
(ER) structures are presented next. The system
database model table is shown in Figure 8.

Figure 8. System Logical ER Model.

The system table contains a row for each

system in the model. The minimum number
of system table entries is three, one for the
environmental system, one for the process
system and one for the product system. In any
real system development activity the data
table would contain tens if not hundreds of
entries.

The context table contains a row for each
system context view in the system model. The
context view is focused on the outward
looking view from the system of interest, and
details the important connections and
interactions in the system environment. Since
systems can reside inside other systems, there
are three general types of connections that can
be made by starting at the context boundary
and traveling outward. The first type of
connection is a “context to context”
connection. The second type of connection is
a “context to concept” connection that goes
between two systems. The third connection
type is a “context to concept” connection
which is made on the same system. The
context database model table is shown in
Figure 9

Figure 9. Context Logical ER Model.

The concept model contains one row for

each system concept view represented in the
model. The concept view is focused on an
inward view of the system and details the
concepts associated with entities that make up
the interior system structure. The concept
view can be of two general types: one type
that contains other system context views and
another type that contains only function,
requirement, architecture and test views. The
concept database model table is shown in
Figure 10.

Figure 10. Concept Logical ER Model.

The function table contains one row for

each system function view represented in the
system model. The system functions are

system

type

decision

document

db_model

model

context concept

1

11

1

1

1
1N

N

N

N

1

1

1

1

1

context

type

document concept

model db_model

1

1

1 1

11

N

N 1

1

system

1

1

concept

type

function

requirement

architecture

test

decision document

1 11

1

1

1
11

1

11

N 1

1

context

model db_model

1

1

1

1

N

1

369

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

determined and modelled in a manner
described in the associated concept view. The
function database table model is shown in
Figure 11

Figure 11. Function Logical ER Model.

The requirement table contains one row

for each system requirement view. Each
requirement view is directly connected to one
or more function views to create the basic
problem statement. The requirement database
model table is shown in Figure 12.

Figure 12. Requirement Logical ER Model.
The architecture table contains one row for

each candidate architecture solution
considered for inclusion into the system
solution. The architecture is the system

solution that answers the “function and
requirement” problem statement. The
architecture database model table is shown in
Figure 13

Figure 13. Architecture Logical ER Model.

The test table contains one row for each

test view represented in the model. The test
view focuses on recording the tests and
procedures used to assure that the selected
architecture will perform the required function
as well as the requirement states. The test
database model table is shown in Figure 14.

Figure 14. Test Logical ER Model.

The decision database table contains one

row for each decision made during the system

function

model

db_model

decision

document

fr_link fa_link

1 11

1 1N

N

11

N N

N

type concept

1

1

1

1

requirement

model

db_model

decision

document

concept

1 11

1 1N

N

1

1

N

type fr_link

N

1

1

1

architecture

model

db_model

decision

document

at_link fa_link

1 11

1 1N

N

11

N N

N

type concept

1

1

1

1

test

model

db_model

decision

document

concept

1 11

1 1N

N

1

1

N

type at_link

N

1

1

1

370

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

development process. Decisions and decision
types range from the recording of expert
judgement about a subject, to fully developed
trade studies involving many people and
experts.

Each type of classifier used in the system
model is recorded in the type table. These
classifiers or types are used for grouping
aspects of the system concepts in convenient
workable units. Every document or document
fragment developed during the system
development activity will be recorded in a row
of the document table.

The model table provides a mechanism to
track all executable models associated with
the system acquisition task. The model table
contains one row for each executable model
used in the process. Each row in the database
model table contains an entry for the database
models, scripts, functions, and processes used
in the systems development process.

The preceding twelve database tables are
used as the core basis of the systems
engineering information model presented in
this paper. The primary system concepts and
data entities are represented directly by using
one or more of these tables. A set of link
record tables are presented next to facilitate
the “many-to-many” relationships found in the
generic model. The link record table is used
to break a many-to-many relationship into two
“one-to-many” relationships between two
entities or tables. The link record is the third
table used in this connection type.

The function, requirement, architecture
and test tables have many-to-many
relationships. These many-to-many
relationships are: function table to
requirements table, function table to
architecture table and architecture to test table.
The following link record tables are used to
create the required one-to-many relationships:
fr_link table, fa_link table and the at_link
table.

This database model provides a systems
engineering information model that may be

used as a common foundation for the
construction of a set of standard systems
engineering databases. A standard generic
database model provides needed semantic
continuity and application. Many systems
engineering and management tasks have their
own specialized computed based tools and
models that are already deployed and used in
the organization. The information model
presented here provides for the inclusion of
these other data sources by either linking them
as a specific system support model or
including them as a complete system.

The systems engineering information
model presented in this paper places a strong
emphasis on modelling and tracking of the
incremental, sequential development of
customer requirements and needs. The
complete system development lifecycle is
modelled in a manner that enhances technical
communication by establishing a core set of
system concepts and models that can be used
for any type of system development. Generic
systems development patterns and associated
information model patterns are used to
communicate complex sets of technical data.

Conclusions

Distributed systems engineering tools are
readily available in most large systems
development efforts to support the efforts of
the distributed engineering teams on the
program. This paper presents a generic,
adaptable core systems engineering
information model that can be used as the
common data storage mechanism in
distributed systems engineering tool sets. This
model is designed to reduce complexity by
selecting a core group of concepts that can be
applied recursively at every level of system
decomposition or system abstraction.

The establishment of this generic model
and application pattern provides the
foundation for complexity and cost reduction
in any system development program.

371

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

References

Forsberg, K., Mooze H., The Relationship of
Systems Engineering to the Product Life
Cycle, Proceedings of the First Annual
International Symposium of the National
Council on Systems Engineering, 1991
pp57-68.

Grady, J.O., “The Necessity of Logical
Continuity” Proceedings of the Fifth
Annual International Symposium of the
International Council on Systems
Engineering, CDROM 1995.

Hughes, Thomas, Rescuing Prometheus.
Vintage Books, New York, 1998

INCOSE Tools Database Working Group,
2003, IEEE-1220 Process to SE Tools
Mapping. http://www.incose.org/tool
/ieee1220top.html (10 Aug. 2003)

Lake, J.G., and Sheard, S.A., Systems
Engineering Standards and Models
Compared.
http://www.software.org/pub/externalpape
rs/9804-2.html (10 Jan. 2005)

Maier, M.W., "Reconciling Systems and

Software Architecture" Proceedings of the
Eighth Annual International Symposium of
the International Council on Systems
Engineering, CDROM 1998

Mar, B.W., "Back to Basics" Proceedings of
the Second Annual International
Symposium of the International Council
on Systems Engineering, pp 37-43 1992.

Mar, B.W., and Morais, B.G., "FRAT – A
Basic Framework for Systems
Engineering" Proceedings of the Eleventh
Annual International Symposium of the
International Council on Systems
Engineering, CDROM 2002.

Oliver, D. W., Kelliher, T.P., and Keegan,
J.G., Engineering Complex Systems with
Models and Objects. McGraw-Hill, New
York, 1997

Simpson, J.J, and Simpson, M.J.,"U.S. DoD
Legacy SE & Implications for Future SE

Implementation" Proceedings of the
Eleventh Annual International Symposium
of the International Council on Systems
Engineering, CDROM 2002.

Ramesh, B., .Powers, T, Stubbs, C., and
Edwards, M, "A Study of Current
Practices of Requirements Traceability in
Systems Development.” Monterey: Naval
Postgraduate School, 1993.

Ramesh, B., .Harrington, G,. Rondeau, K., and
Edwards, M, "A Model of Requirements
Traceability to Support Systems
Development.” Monterey: Naval
Postgraduate School, 1993.

Biography

Joseph J. Simpson’s interests are
centered in the area of complex systems
including system description, design, control
and management. Joseph has professional
experience in several domain areas including
environmental restoration, commercial
aerospace and information systems In the
aerospace domain, Joseph has participated in a
number of system development activities
including; satellite based IP network design
and deployment, real-time synchronous
computing network test and evaluation, as
well as future combat systems
communications network design.

Joseph Simpson has a BSCE and MSCE
from the University of Washington, an MSSE
from the University of Missouri-Rolla, is a
member of INCOSE, IEEE, and ACM.

Currently Joseph is enrolled in a system
engineering doctorate program at the
University of Missouri-Rolla.

Dr. Cihan H Dagli is a Professor of
Engineering Management and Systems
Engineering as well as the director of the
System Engineering graduate program at the
University of Missouri-Rolla. He received BS
and MS degrees in Industrial Engineering
from the Middle East Technical University
and a Ph.D. from the School of Manufacturing
and Mechanical Engineering at the University

372

PROCEEDINGS CSER 2005, March 23-25, Hoboken, NJ, USA

of Birmingham, United Kingdom, where from
1976 to 1979 he was a British Council Fellow.
His research interests are in the areas of
Systems Architecting, Systems Engineering,
and Smart Engineering Systems Design
through the use of Artificial Neural Networks,
Fuzzy Logic, and Evolutionary Programming.

He is the founder of the Artificial Neural
Networks in Engineering (ANNIE) conference
being held in St. Louis, Missouri since 1991.
He provided the conduit to the dissemination
of neural networks applications in engineering
and decision making through these
conferences for the last fourteen years. He is
the Area editor for Intelligent Systems of the
International Journal of General Systems,
published by Taylor and Francis, and Informa
Inc.

Dr. Ann Miller is the Cynthia Tang
Missouri Distinguished Professor of Computer
Engineering at the University of Missouri –
Rolla. Previously, she was the Deputy
Assistant Secretary of the Navy for Command,
Control, Communications, Computing,
Intelligence, Electronic Warfare, and Space
for the U. S. Department of the Navy. For a
portion of that time, she had additional
responsibilities as Department of the Navy
Chief Information Officer (CIO). She also
served as Director for Information
Technologies, Department of Defense
Research and Engineering. Prior to that, Dr.
Miller served for over 12 years with Motorola,
Inc. where she held a variety of technical and
managerial positions. She holds one U. S.
patent in satellite communications, has co-
authored three books on the programming
language Pascal, and is the author of more
than five dozen journal articles and
monographs. Dr. Miller chairs the NATO
Information Systems Technology Panel and is
a Senior Member of IEEE. Dr. Miller’s
research areas include reliability and security
of computer-based systems, with an emphasis
on networked large-scale systems.

Dr. Scott Grasman is an Assistant
Professor in the Engineering Management and
Systems Engineering Department at the
University of Missouri – Rolla. Prior to
joining UMR, he was an Adjunct Assistant
Professor at the University of Michigan,
where he received his B.S.E., M.S.E., and
Ph.D. degrees in Industrial and Operations
Engineering. His primary research interests
relate to the application of quantitative models
to manufacturing and service systems,
focusing on the design and development of
supply chain and logistics models, including
business process design, logistics, and
enterprise collaboration. He has received
research funding from, among others, the
National Science Foundation, US Department
of State, and SAP America. He is a member
of American Society for Engineering
Education (ASEE), American Society for
Engineering Management (ASEM), Decision
Sciences Institute (DSI), Institute of Industrial
Engineers (IIE), Institute for Operations
Research and Management Science
(INFORMS), and has served in various roles
with these and other organizations.

373

	A Generic, Adaptive Systems Engineering Information Model I
	Recommended Citation

	A generic, adaptive systems engineering information model I Conference on Systems Engineering Research

