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Abstract 

Systems engineering tasks generate large 
volumes of data and information that must be 
available over the lifecycle of the system.  
This paper outlines an information model 
designed to support existing systems 
engineering methods and practices as well 
newly developed techniques.  Specific 
methods and models used for the capture, 
encoding and persistence of systems 
engineering information and design artefacts 
were given special attention during the 
evaluation, analysis and model design phases.  
A generic systems engineering meta-model 
was then developed and used as a basis for the 
systems engineering information model that 
was developed and is presented in this work  

Introduction 

Systems Engineering is a structured 
technical design and management discipline. 
This professional discipline is used to control 
the design, development, production and 
operation of large-scale complex systems 
produced by large distributed teams and 
organizations.   The systems engineering 
discipline has matured from an operational 
birth in the governmental procurement process 
during World War II based on systems 
acquisitions, operational analysis and value 

engineering, to a multifaceted commercial 
discipline that can be used to address any type 
of complex system development.(Hughes 
1998) 

The fundamental tenets of an ordered, 
structured, scientific problem solving process 
prove the foundation of systems engineering 
principles and practices.  An organization’s 
ability to encode, communicate and organize 
information has continued to increase from the 
1940s up through today.  The analytical, 
computational and organizational tools that 
are used to manage systems engineering 
information have also grown more and more 
powerful over this ensuing time period. 

Prior to the mid 1980s, most systems 
engineering techniques were based on the 
production of written (textual) problem and 
solution statements as well as analytical 
(graphical and computational) techniques used 
to explore the problem at hand. The great 
proliferation of computing power and 
information exchange capability in the last 15 
to 20 years has facilitated the translation of the 
textual and graphical techniques to computer-
based tool sets. However, many of these 
systems engineering artefacts are still based 
on static, non-executable, document centric 
information types.  Executable models, real-
time communication and collaboration 
systems enable the work of distributed teams 
and produce a large volume of video, graphic 
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and computer executable information types. 
This paper outlines an information model 
designed to effectively manage the integration 
of static and dynamic systems engineering 
information types. 

Systems Engineering Process Models 

The Electronic Industries Association 
(EIA) 632 and The Institute of Electrical and 
Electronic Engineers (IEEE) 1220 standards 
detail two different models of standard 
systems engineering processes.  In addition to 
EIA 632 and IEEE 1220, EIA published a 
companion standard, EIA 731 that outlines the 
activities an organization must perform to 
evaluate its capability to accomplish effective 
systems engineering tasks and process steps. 
(Lake 1998) 

Starting in the 1980s, significant efforts 
have been made to transfer system 
engineering processes and practices to 
computer-based systems.  The International 
Council On Systems Engineering (INCOSE) 
was established in the early 1990s to provide a 
forum for the further development and 
publication of systems engineering practices 
and processes.  The INCOSE Tools Database 
Working Group (TDWG) has mapped the 
typical systems engineering tools to the areas 
of the standard systems engineering process 
where they are typically used.(INCOSE 2003)  
Figure 1 shows a typical three-tier computing 
system and a typical distribution of operations 
computing components across the three tiers. 

The generic, adaptive systems engineering 
model presented in this paper is designed to be 
deployed at the database tier.  When this 
model is developed and deployed on standards 
compliant, open source, freely available 
software packages and systems, the 
organization obtains a robust, adaptable, long 
term information management asset.  These 
types of information management assets will 
reduce the probability that the systems and 
information formats will become obsolete and 
unsupportable in the long term. 

 
 
 
 
 

 

 

 

 

 

 

Figure 1. Three-Tier Computing Systems. 

 
A core set of high level systems 

engineering practices and processes were 
developed by Oliver. (Oliver 1997)  This 
“Model Based Systems Engineering” 
approach is abstracted into a six layer model.  
These six layers are: the systems engineering 
process layer, the information representation 
layer, the tool layer, the changes layer, the 
staffing layer, and the external visibility and 
review layer.  The systems engineering 
process layer contains a core set of seven 
process steps that map directly to the general 
scientific problem solving process.  This core 
systems engineering process flow model is 
shown in Figure 2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Core Process Flow Model. 
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A series of seven system views were used 

by Oliver as the basis to produce a set of 
information models that represent the systems 
engineering process.  These information 
models are: system behaviour, system input 
and output, system structure and behaviour, 
system requirements, effectiveness measure 
creation, build and test plan and sell as text 
requirements, behaviour and content.  

A review of the systems engineering 
literature indicates that representing a system 
in a series of views is a widely used and 
accepted technique.  Mar developed the four 
view definition of any system. (Mar 1992) 
The function, requirement, architecture and 
text (FRAT) approach states that all systems 
are represented by four views, the function 
view, the requirement view, the architecture 
view and the test view.  Maier discusses the 
importance of systems views in the systems 
architecting process. (Maier 1998) Maier 
suggests that the conceptual mismatch 
between hardware systems and software 
systems can be addressed using five system 
views.  These five views are the logical view, 
process view, physical view, development 
view and scenario view.   These views are 
used to organize the systems requirements and 
facilitate a structured bottom-up development 
process.  Other systems engineering authors 
have reported using systems views as an 
organizing principle but these system views 
are all quite different in content and 
organizing principles. 

Systems Engineering Requirements 
Models 

Systems engineering has two basic 
foundations: a systems engineering process 
and requirements management activities.  Just 
as there are many different “standard” systems 
engineering processes, there are many 
different interpretations for specific 
requirements management activities.  Grady 

discussed the connection between poorly 
written and understood systems engineering 
standards and the confusion associated with 
the sequence of requirements analysis and 
functional analysis. (Grady 1995) The key 
area of confusion, according to Grady, is the 
relationship between the current level of 
system definition activity and the higher-level 
system need or function that produced the 
lower-level system requirements activity.  
This fundamental semantic relationship 
between the specified need and the specified 
solution, as it appears in the program lifecycle, 
has been documented by the following 
authors: Forsberg and Mooz (1991), Mar and 
Morais (2002), and Simpson and Simpson 
(2001). 

Most requirements management practices 
are based on managing a collection of text 
documents and sets of linkages between and 
among the documents in this collection.  The 
arrangement, content, and relationships 
between the documents in the collection are 
program and project specific, with many of 
the documents carrying a contractual 
connection.  In individual systems engineering 
projects, the “natural systems development” 
order and information flow varies across the 
aspects of system design, development and 
production.  These variations create activity 
and requirement gaps that must be evaluated 
and addressed by the systems engineering 
staff.  Systems engineering requirements 
models have been used to organize the various 
aspects of the systems engineering phases, 
tasks and activities.  It is clear that both 
textual and executable types of data and 
models are required to effectively address the 
numerous types and forms of requirements 
information encountered in a system 
development program. 

Requirements traceability has been 
mandated by government process standards 
and is specified for use by many government 
system acquisition programs.  Even though the 
practice of requirements traceability was 
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mandated, no common model or specific set 
of practices were specified to guide the 
implementation of traceability practices.  The 
Naval Postgraduate School conducted a series 
of studies on traceability practices. A primary 
outcome of these studies was a set of 
conceptual information models that address 
the basic areas found in systems requirements 
development. (Ramesh 1993) Four conceptual 
models were developed during this work.  
These four models are: requirements 
management model (Figure 3), design 
allocation model (Figure 4), 
design/implementation decision making model 
(Figure 5) and compliance verification model 
(Figure 6). 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3. Requirements Management 

Model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Design Allocation Model. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Design/Implementation Decision 
Making Model. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Compliance Verification Model. 
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system models.  The subject of the models is 
“the system under development.” A standard 
approach to the modelling of the system 
production process and deployment 
environment is not provided.  A clear 
distinction needs to be made between the 
product system and the system that produces 
and maintains the product system. 

Generic Information Model 
Development 

Any generic systems engineering 
information model must be able to support a 
wide range of applications.  In essence, the 
generic information model must be based on 
fundamental systems engineering processes 
and patterns that are widely recognized and 
reduce domain complexity for the human 
users.  At the same time, the generic model 
must provide a powerful, extensible construct 
upon which the design of large, distributed 
systems can be effectively based.  The 
primary design goal is the reduction of system 
complexity, both in system production and 
system use.  Therefore, the generic model 
must be based on the natural information flow 
found in the systems engineering domain.  
From the engineering standpoint, the model 
must address the activity of problem solving.  
At the same time, from the systems aspect, the 
model must address basic system concepts.  
The most important systems concepts that 
must be addressed are system components, 
system boundaries and the system universe of 
environment.  The most important engineering 
concepts that must be supported by the generic 
model are problem solving and structured 
system solution development. 

The generic information model, named 
CCFRAT, presented here was developed from 
the FRAT system model by encapsulating the 
four FRAT views in a system concept view 
and system context view.  The system concept 
and context view are added to the model to 
provide a mechanism where system designers 

can detail specific global aspects of the current 
system design and how these aspects map to 
other systems in the environment.  The 
context view is used to detail relationships that 
are important between and among the current 
system and other systems existing in the 
environment.  The concept view provides a 
mechanism to detail controlling concepts that 
directly relate to the current system design and 
design abstraction process.  Figure 7 shows 
the view relationships. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Generic System Views. 
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fr_link table, fa_link table, and the at_link 
table. 

The primary database entity relationship 
(ER) structures are presented next. The system 
database model table is shown in Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. System Logical ER Model. 
 
The system table contains a row for each 

system in the model.  The minimum number 
of system table entries is three, one for the 
environmental system, one for the process 
system and one for the product system.  In any 
real system development activity the data 
table would contain tens if not hundreds of 
entries. 

The context table contains a row for each 
system context view in the system model.  The 
context view is focused on the outward 
looking view from the system of interest, and 
details the important connections and 
interactions in the system environment.  Since 
systems can reside inside other systems, there 
are three general types of connections that can 
be made by starting at the context boundary 
and traveling outward.  The first type of 
connection is a “context to context” 
connection.  The second type of connection is 
a “context to concept” connection that goes 
between two systems.  The third connection 
type is a “context to concept” connection 
which is made on the same system.  The 
context database model table is shown in 
Figure 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Context Logical ER Model. 
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requirement, architecture and test views.  The 
concept database model table is shown in 
Figure 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Concept Logical ER Model. 
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determined and modelled in a manner 
described in the associated concept view.  The 
function database table model is shown in 
Figure 11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Function Logical ER Model. 
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problem statement.  The requirement database 
model table is shown in Figure 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Requirement Logical ER Model. 
The architecture table contains one row for 

each candidate architecture solution 
considered for inclusion into the system 
solution.  The architecture is the system 

solution that answers the “function and 
requirement” problem statement. The 
architecture database model table is shown in 
Figure 13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Architecture Logical ER Model. 
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database model table is shown in Figure 14.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 14. Test Logical ER Model. 
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development process.  Decisions and decision 
types range from the recording of expert 
judgement about a subject, to fully developed 
trade studies involving many people and 
experts. 

Each type of classifier used in the system 
model is recorded in the type table.  These 
classifiers or types are used for grouping 
aspects of the system concepts in convenient 
workable units.  Every document or document 
fragment developed during the system 
development activity will be recorded in a row 
of the document table. 

The model table provides a mechanism to 
track all executable models associated with 
the system acquisition task.  The model table 
contains one row for each executable model 
used in the process.  Each row in the database 
model table contains an entry for the database 
models, scripts, functions, and processes used 
in the systems development process. 

The preceding twelve database tables are 
used as the core basis of the systems 
engineering information model presented in 
this paper.  The primary system concepts and 
data entities are represented directly by using 
one or more of these tables.  A set of link 
record tables are presented next to facilitate 
the “many-to-many” relationships found in the 
generic model.  The link record table is used 
to break a many-to-many relationship into two 
“one-to-many” relationships between two 
entities or tables.  The link record is the third 
table used in this connection type. 

The function, requirement, architecture 
and test tables have many-to-many 
relationships.  These many-to-many 
relationships are: function table to 
requirements table, function table to 
architecture table and architecture to test table.  
The following link record tables are used to 
create the required one-to-many relationships: 
fr_link table, fa_link table and the at_link 
table. 

This database model provides a systems 
engineering information model that may be 

used as a common foundation for the 
construction of a set of standard systems 
engineering databases.  A standard generic 
database model provides needed semantic 
continuity and application.  Many systems 
engineering and management tasks have their 
own specialized computed based tools and 
models that are already deployed and used in 
the organization.  The information model 
presented here provides for the inclusion of 
these other data sources by either linking them 
as a specific system support model or 
including them as a complete system. 

The systems engineering information 
model presented in this paper places a strong 
emphasis on modelling and tracking of the 
incremental, sequential development of 
customer requirements and needs.  The 
complete system development lifecycle is 
modelled in a manner that enhances technical 
communication by establishing a core set of 
system concepts and models that can be used 
for any type of system development.  Generic 
systems development patterns and associated 
information model patterns are used to 
communicate complex sets of technical data. 

Conclusions 

Distributed systems engineering tools are 
readily available in most large systems 
development efforts to support the efforts of 
the distributed engineering teams on the 
program.  This paper presents a generic, 
adaptable core systems engineering 
information model that can be used as the 
common data storage mechanism in 
distributed systems engineering tool sets.  This 
model is designed to reduce complexity by 
selecting a core group of concepts that can be 
applied recursively at every level of system 
decomposition or system abstraction. 

The establishment of this generic model 
and application pattern provides the 
foundation for complexity and cost reduction 
in any system development program. 
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