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A Comparison of FAM and CMAC for Nonlinear Control 

Arit Thpmaumo and Cihan H. Dagli 

Department of Engineering Management 
University of Missouri-Rolla 

Rolla, MO. 65401 

In the past, various neural network-bed controllers are proposed to master the nonlinear control problems 
with different level of success. The recent trend is to incorporate fuzzy logic to this process. This article compares 
a neural network-based controller, both local and global networks, with Fuzzy associative memories (FAM) on a 
M)nliDBpT problem. CMAC and FAM are chosen as representatives of local generalization networks. CMAC 
controller is tmbd off-line, therefore, it can response to the incoming input immediately. CMAC can intrapolate 
its memory md give a reosonoble control signal even the input bas not been trained on. Backpropagation is picked 
=a*- 've of global genedization networks. All three systems are studied on a simple simulated control 
problem. This p " r y  te88Luch will be adapted later to control the laser cutting machine. A performance 
measure that depends on the transient response and the steady state response of the controlled system is used. The 
d t s  indicate that CMAC and FAM are comparable. 

Introduction 

During the last year neural network-based controllers are proposed in literature for modelling nonlinearities 
inherent on control problems. Various architectures are proposed. Learning algorithms adapted in these architectures 
depend l d  d global information captured from the control data. Recent trend is to incorporate fuzzy logic to 
the proteas. The quest for robust controller design is still continuing. 

Most of the applications in the manufacturing process are nonlinear. However, many previous research 
show that tbe clpssical control concept cannot be used effectively to control nonlinear processes. Nonlinear mapping 
capabilities of aewpl networks are used extensively to solve control problems. 

Previous reaearch on control examined the use of fuzzy set theory and local networks. However, there are 
some niches to be peaetrated. Some mearchers [ L. Gordon Kraft and David P. Campagna, 1990 1, [Lichtenwalner, 
F. Peter (1993)l had shown the comparison between the neural network controller and the traditional adaptive 
control system. The former indicates that the neural network performs best when the plant is nonlinear, even it takes 
quite a long time to learn the process. The latter shows that for the fiber placement composite manufacturing 
process, the neurocontroller behave like a PI controller when the network receive an input which it has not 
e x p e r i d  before. However, after learning from experience, the performance greatly improves and exceeds that 
of conven t id  methods. Miller, W. T. et a1 (1990) reviews the comparison between CMAC and Backpropagation 
and shows that CMAC can learn a large variety of nonlinear function in a fewer iteration with a little or no learning 
interference due to recent learning in remote parts of the inputs space. These advantages of CMAC are due to the 
l d  geoetrrlizntion at the expense of large memory. Another research [Lin, C. S. and Hyongsuk Kim (1991)l 
confirms that learned information is distributively stored in adaptive critic learning control and no memory capability 
is wasted on useless states. The adaptive critic method is a humanlike self-learning scheme that learns performance 
evaluation PB well as control actions based on experience. In adaptive critic method, the user specifies a utility 
function to be controlled and an acceptable range of system response. An additional neural network, called a critic 
network, bns been adopted to evaluate the progress that the system is making. The output signal of the critic network 
indicatet3 whether the system status is getting better or worse. Therefore, the action network which outputs the 
actions to the process is adapted to maximize the utility function of the critic network. Christopher G. Atkeson et 
al (1990) shows the benefit of using table-based controller to control robots. Because more work is needed in the 
fuu;y-based controller a m ,  this paper presents the direct comparison between CMAC neural network [Albus, J. 
S. (1979)l and FAM [Kosko, B. (1992)l. These two methods are of interest because of their powerful architectures. 
Both of them are l d  generalizer and behave as associative memory. Therefore, they can learn and response to 
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the process pre#y fpst. Some differencer, between these two ue (1) FAM stom rules in its memory pad proceeees 
the incoming inputs in @le1 on real time basis, but CMAC precalculates its look-up table off-line, EO it can 
response to the incoming input immediately. (2) The system input-output characteristics of CMAC ue continuous 
but those of FAh4 ue discrete. This teeeotch tries to point out the effects of these differences. The objective of the 
controllex is to minimim the error of the desired variable between the target and the actual and to reduce the rise 
time to the minimum value. In addition, The Bac4"gation neural wtwork, the well-known repretentative of the 
global network, is allro included to compare the ability of the local aud globel network on the process which the 
inputpattemsarenotinthesomedirection. 

In the next section, the two differeat controllers cue explained briefly. More details of these methods can 
befoundia there ferencea .Eachof themethodsue~  on the same control process under the same 
conditions. The result of each am discussed in the sections tbat follow. 

that all things are of degree. It red& black and white 
logic to the "atr 'a of gray relationships. The fuzzy power 
set F(2X), which contains all fuzzy subsets of X, corresponds to 
the unit square when X = {xl, xz). Figure 1 displays the fuzzy 
power se4 F(2x) in 2 dimensional unit hypercube. From Figure 
1, the fuzzy subset A corresponds to the fit vector (1/4,3/4), 
therrehre, A has membership degrees mA(xI) = 1/3 and mA(xJ 

fuzzinesrs. 
= 314. The midpoint M of the unit cube has the maximum 

Proper fuzzy sets are the ones that violate the law of 
noncuntradictioa and excluded middle. Fuzzy set theory holds 

n w i l  I*) - IU 
M n 

mu = $Jy,)[S,(x,) -m J +nv = y,(S,-m J -S,(S, -m,J +nu 

where y, is the output signal of the J" neuron. when the j" 
neuron wins, yj = 1 and it equals to 0 when the j" neuron 
loses. SI is the coqetitive signal, which is between zero and 
one. n+ is the synaptic weights of the connection matrix M. 
The ij' synapse is excitatory if q > 0, inhibitory if qj < 0. 

continues to win, SI rapidly approaches 
unity, and learning ceases. The rapid burst of learning as S, 
rpprosches unity help prevemt the ja neuron wining too 
frequently. If this happeas, it prematurely encodes a new 
synaptic pattern in J at the expease of the current m, patkm. 
In differential coaqmtitive learning, the win signal 4 rapidly 
stops changing once the j" neuron has secured its competitive 
victory. Diffsreolti.l competitive learning punishes losing with 
a sign cbange ( wbea yj(s) = 0 ). Them SI rapidly falls to zero, 
and learning again c". Before SI rerches zero, the 
competitive learning law reduces to the anticompetitive law 

If the j' 

I 
FigW 2 

d,, = -S'Sl-m J +nu 

Note that the input d the output of the FAM system are the fuzzy sets and the output of the FAM, R, 
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. equals a weighted sum of the individual vectors R;: 

The CMAC algorithm maps any input it receives into 
a set of points in a large conceptual memory in such a way that 
two inputs that are close in input space will have their points 
overlap in the memory as shown in Figure 3, with more overlap 
for closer inputs. If two inputs are far apart in the input space, 
there will be no overlap in their sets in the memory, and also 
no generalization. With a built-in local generalization, input 
vectors that are close in the input space will give outputs that 
are close, even the input has not been trained on, as long as 
there has been training in that region of the state-space. 

The metbod which was used in this article to improve 
the value in memory is through first-order laming law : 

m 

A- 1 
R = C W & ’  

MavlwQ 
yIy)(IyIcI# 
Q I Y D I I A l m  

c3(1) 

Because the output of the FAM is also a fuzzy set, therefore, the fuzzy centroid defuzzification scheme is 
introduced to produce a single numerical output. 

Cerebellar Model Articulation Controller 

where m(k) is the preseat value of the memory location, m(k+ 1) is the updated value, U&) is the desired output 
of the controller at time k ,and is the learning rate which is between zero and one. If the memory contents m(k) 
is larger than U@), then m(k) is corrected by subtracting a number proportional to the error. 

The control signal generated by the network is found by summing the values in the system associated with 
the current inputs. This signal is then fed to the process to maintain the actual output at the target. 

Properties of CMAC and FAM 

This section illustrates the similarities and differences between CMAC and FAM. 
Both CMAC and FAM are local generalizer. The input vectors that are close in the input space will 

provide the close outputs. 
Both of them use a look-up table method. Hence, they can be used appropriately to control the process 

because of their fast response. 
CMAC and FAM have the property that large network can be used and trained in reasonable time. This 

is because there is a srmll number of calculations per output. 
The input-output characteristics of CMAC are continuous but those of FAM are discrete. Therefore, 

CMAC uses more memory than FAM. 
CMAC has to be trained off-line before being used to control the process but FAM calculates the outputs 

on-line, hence, it uses more time to response. Since there is only a small number of calculations per output, the 
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differewe betwear CMAC and FAh4 's processing time is very small. 

0 1 4 ~  

0,s ....... __.........I ....... 

6.13 .. .................................................... 
"126 ................. ................... 

g 0.12 ......... _c 

O,l,C..  ........................... . 

0.1 1 ................................................................................ 

",,X,. ....................................................... ........................... 

1 12 ZJ 34 6 67 -TO UY 100 111 la lS3 144 
0.1- 

Tlnw (*IT*) 

b 

Both control system algorithms were applied to the 
~ p m t  process which is the bioreoctor containing water, 
nutrients, and biological cdls as shown in Figure 4. This 
proMem b u  bera mgptad in Akwd Ncnvonk for Control 
by Ademon, C b k a  W. et al(l991). The state of this 
procees is chullcteriztd by the number of cells and the 
amount of nutrients. The volume in the tank is maintained 
at a m " t  level by removing tank conteat at a rate equal 
to the incoming rate. This flow rate is the variable by 
which the biomctor is coatrolled. The objective is to 
achieve snd maintain a desired a l l  amount, c,*(t),by 
altering the flow rate throughout a learning trial. In this 
ruticle. c,*(t) was seUed at 0.1205. The initial conditions 

Inflow rate 

,- Amount of Cella 

.- Amount of Nutrients 

I 
_/-- 

Figure4 Thebioreactor 

Inflow rate 

,- Amount of Cella 

.- Amount of Nutrients 

Outflow rate 

I" 
Ggure4 Thebioreactor 

c,(O) is t6e'rPndom variable on the interval [0.10,0.14] and q(0) is the random variable on the interval [0.8,1.0]. 
The system cw8tT(uII ' ts are 0 5 cl,+ L 1 and 0 5 r L 2. And the p'ocess equations of motion are : 

c,[z+l] = Cl[Z] +o.o0s(-c,[~r[z] +(1 -c2 [z ] )c~@y where cl(t) : Amount of cells 
+(t) : Amount of Nutrients 
r : Flow rate 

1.02 ) c2[z+l] = c2[4 +o.ooy-c2[~r[z]+(1 -C*[4)e'[MM 
1.02 -c2[z] 

The rem& of the CMAC neural network system is shown 
in Figum 5. This CMAC controller was trained 15 iterations 
before being used b control the process. The system rise time 

The ~ ~ ~ ~ I X U U W  of the FAM method is plotted in Figure 
6. Tbe steady state performance was a little bit worse than 
CMAC but the rise time was very s d l .  With these 
chprrcterieticS of tbe response, it indicates that FAM works as 
well as CMAC control system. The steady state response of FAM 
fluctuates because FAM's system inputatput characteristics are 
discrete but those of tbe CMAC am continuous. There are the 
bwndories betweea each rules of FAM, hence, changing the rule 
from one to the other is not as smooth as CMAC. However, in 
the large p", which has many input, FAM is more favorable 
bscpuee PAM needs much smaller memory spaces than CMAC. 

WUI quite luge but tbe system offset was very small. 

Finally, Backpropagation "&, &e global generalization neural network, is shown in Figure 7. The 
figure confirm that the global generplization neural network cannot be used to control the pfocess, which the 
pat ten^ of the inputado not go in the same direction. 

TBC CMAC .ad FAM based control system has been developed and implemented for this bioreator 
problem. T h e  two meteods have been chosen because of their fast learning characteristic and their l m l  
gum&" backpund. Both of tbem give the favorable responses on this nonlinear P'M'RSS. They did track the 
tuget very well. CMAC gave slightly better steady state response than FAM. However, DCL will be applied to 
improve the sterdy strrte response of the FAM in the future research. Finally, the research shows that this type of 
p~oceoo io not a good application for global generalization network. 

. .  

in 
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Figure 7 
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