
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Aug 2008

An Open Framework for Highly Concurrent Real-Time Hardware-An Open Framework for Highly Concurrent Real-Time Hardware-

in-the-Loop Simulation in-the-Loop Simulation

Ryan C. Underwood

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Mariesa Crow
Missouri University of Science and Technology, crow@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
R. C. Underwood et al., "An Open Framework for Highly Concurrent Real-Time Hardware-in-the-Loop
Simulation," Proceedings of the 32nd Annual IEEE International Computer Software and Applications
Conference (2008, Turku), pp. 44-51, Institute of Electrical and Electronics Engineers (IEEE), Aug 2008.
The definitive version is available at https://doi.org/10.1109/COMPSAC.2008.165

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/COMPSAC.2008.165
mailto:scholarsmine@mst.edu

An Open Framework for Highly Concurrent Real-Time Hardware-In-the-Loop
Simulation

Ryan C. Underwood ∗ Bruce M. McMillin ∗ M. L. Crow ∗

{rcuca4@mst.edu, ff@mst.edu} {crow@mst.edu}
Department of Computer Science Electrical and Computer Engineering

Intelligent Systems Center
Missouri University of Science & Technology, Rolla, MO 65409

Abstract
Hardware-in-the-loop (HIL) real-time simulation is be-

coming a significant tool in prototyping complex, highly
available systems. The HIL approach permits testing of
hardware prototypes of components that would be extremely
costly or difficult to test in the deployed environment. In
power system simulation, key issues are the ability to wrap
the systems of equations (such as Partial Differential Equa-
tions) describing the deployed environment into real-time
software models, provide low synchronization overhead be-
tween the hardware and software, and reduce reliance
on proprietary platforms. This paper introduces an open
source HIL simulation framework that can be ported to any
standard Unix-like system on any shared-memory multipro-
cessor computer, requires minimal operating system sched-
uler controls, enables an asynchronous user interface, and
allows for an arbitrary number of secondary control com-
ponents. The framework is implemented in a soft real-time
HIL simulation of a power transmission network with physi-
cal Flexible AC Transmission System (FACTS) devices. Per-
formance results are given that demonstrate a low synchro-
nization overhead of the framework.

1. Introduction

Hardware-in-the-loop (HIL) is a technique in which por-
tions of a given system are simulated and portions are im-
plemented as hardware devices. The implemented hard-
ware is connected via a digital interface to a computer-
simulated system model. HIL is beneficial in testing pro-
totypes of those devices which have complex internal algo-
rithms, those which would cause catastrophe if failed in the

∗This work was supported in part by NSF MRI award CNS-0420869
and CSR award CCF-0614633, and in part by the Missouri S&T Intelligent
Systems Center.

field, and those for which building a laboratory test environ-
ment is difficult or impossible [6].

The model problem considered in this paper consists of
a prototype of the Advanced Electric Power Grid [9] whose
goal is to provide a self-healing power grid. It consists of
an electric power grid augmented with power electronics
controllers under distributed control. The controllers used
in this experiment are Flexible AC Transmission System
(FACTS) devices [4]. A FACTS device is attached to a
single line of an electric power grid and control its power
flow. Working together, under distributed control, multi-
ple FACTS devices can improve the stability of the grid
and mitigate blackouts [5]. To test such a system requires
that failures of the power system be injected (contingencies,
such as line removals) and FACTS device response mea-
sured. Clearly this is infeasible to test on the nation’s power
grid, so a real-time simulation is needed. The FACTS de-
vices then need to respond to the changes in the simulated
power grid. However, simulating a FACTS device in detail
is not feasible. Thus, the simulated power system, coupled
with laboratory-scale FACTS devices [10] form the labora-
tory which uses HIL techniques.

In an HIL, an important goal is that the simulated sys-
tem demonstrate dynamics approximating those of the real
system as closely as possible, with respect to the hardware
under test (HUT). The accuracy of these dynamics depends
both on the mathematical model of the simulation and on
the latency of the simulation’s response to changes in the
state of the rest of the HIL system. Latency in the simula-
tion response can have many sources both internal and ex-
ternal to the simulation program. While the implementation
of the simulation model by itself dominates the computa-
tional time consumed by the simulation, an efficient simu-
lation framework with real-time bounded internal delays is
required to provide a predictable and minimal latency to the
rest of the HIL system.

This paper focuses on an implemented HIL simulation

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI

44

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.165

44

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.165

44

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 3, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

framework. The framework implements a graphical user
interface using Unix-style inter-process communication and
shared memory techniques, as well as vendor-supplied ex-
tensions to the Linux kernel to allow shielding processors
from hardware interrupts. The framework should be eas-
ily adaptable to any Unix-like system which has support
for System V IPC, support for process pinning, a sufficient
number of processor cores, and in which CPUs can be se-
lectively shielded from hardware interrupts.

2. Review of Literature

A characteristic feature of virtually all of the surveyed
HIL simulation systems is that the computer-based simu-
lation component, whether it is programmed to simulate
the hardware under test or the rest of the system, is built
upon a commercial, proprietary simulation platform such as
RTDS [2]. This dependency on a proprietary software plat-
form presents a barrier for independent scientists to repro-
duce the results that have been reported in those papers and
causes the simulation software itself to depend on the com-
mercial platform product continuing to exist and be sup-
ported by its sponsor, limiting the useful life of the other-
wise independent simulation software. Unlike most previ-
ous efforts, this paper describes a simulation framework that
meets the open source definition. As provided for in the
open source definition, it can be employed without restric-
tion in any application because of its open source license
[3].

In the context of power system HIL simulation, sev-
eral methods have been developed for interfacing the simu-
lated (software-based) and hardware-based components of
the HIL system. The simplest method is to couple the
systems using low-voltage Digital-Analog Converter (D/A)
and Analog-Digital Converter (A/D) interfaces [13]. Con-
trol signals are sent to the hardware in digital or analog form
and the analog state of the hardware’s outputs are sampled
back into the simulation. A more complex scheme, and one
that allows for better validation of the HUT when applied
appropriately, is referred to as PHIL (Power-Hardware-In-
the-Loop), or as a “Sim-Stim” (Simulation-Stimulation) in-
terface. A PHIL method implies that real electric power
is being exchanged at the interface boundary between the
simulated system and the HUT, thus simulating as closely
as possible the real environment in which the HUT will ex-
ist [18]. A MIL (Model-In-the-Loop) interface is very simi-
lar to PHIL, but instead of the simulation driving amplifiers
directly to generate the power and sampling from trans-
ducers as in the Sim-Stim interface, in the MIL approach
an external conversion black-box is implemented that con-
verts the A/D and D/A signals on the simulation side to
the real power flow on the device side using voltage-source
or current-source converters [19]. One unique approach to

the real-time HIL interface question is to implement the in-
terface across a USB (Universal Serial Bus) bus using the
isochronous transfer mode of USB, which provides for real-
time bounded transfers across the interface [17]. The in-
terface used in this work most closely resembles the MIL
approach because low-voltage A/D and D/A interfaces are
utilized between the simulation and the HUT.

HIL has been used as a method for determining optimal
control parameters for power system components such as
STATCOM load banks [15]. The HIL technique has also
been proposed as a way to refine the parameters of exist-
ing systems, so there are potential applications for the HIL
simulation technique beyond new system design [15]. In
the context of this work, a STATCOM is a type of FACTS
device.

Previous work was done in creating an open source,
freely redistributable HIL platform called RT-VTB (Real-
Time Virtual Test Bed) [12]. The approach of RT-VTB is to
implement a real-time process in the kernel side of RTAI
that sends a periodic “tick” to the simulation userspace
process, which in turn polls the kernel process using the
RTLinux FIFO mechanism. One tick of the simulation
userspace process updates the real world variables from
A/D sampling, computes the next time step, and outputs any
control signals via D/A.

Generator

Power Sensors (P, Q)

Simulation Computer
Synchronous Motor Drive

Dynamic Load Bank (Statcom)

FACTS{1,2,3}

DSP

Embedded Computer

FACTS Interaction Laboratory Hardware Setup

Resistive/Capacitive

load − Sinks power

AC Power Transmission Line

Controls motor that drives generator

Statcom setting (MW)

AC Power

Motor Shaft

RPM, Field Current
Simulated System State

UPFC

Figure 1: The laboratory setup.

454545

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 3, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

Figure 2: A FACTS device with embedded com-
puter.

3. Experimental Setup - System Hardware/
Software

The overall experimental setup is to test the response of
the Flexible AC Transmission System (FACTS) devices to
changes in power flow on the electric power grid as well as
determine frequency domain interactions with other FACTS
devices. The power grid is simulated in real-time using a
Simulation Computer. The Simulation Computer controls a
physical generator attached to an AC Power Transmission
Line and a Dynamic Load Bank such that the power flow
over this line is governed by the simulation of the power
system. The FACTS consists of several components, in-
cluding power sensors, a DSP, an embedded computer, and
power electronics (Figure 1, Figure 2, [10]. This type of
FACTS device is a Unified Power Flow Controller (UPFC).
The FACTS device is the HUT and resides on the AC
Power Transmission Line. The FACTS devices responds
to changes on the AC Power Transmission Line, which, in
turn, influences the simulation. A/D hardware senses the
changes on the AC Power Transmission Line and the Sim-
ulation Framework injects these readings into the simula-
tion. This interaction forms a real-time computational loop
in the system. The frequency response of the UPFC on the
AC Transmission Line is capped at 300 HZ. This frequency
response governs the sampling requirements of the Simula-
tion Computer, which, in turn, governs the simulation time
step of the computation.

The embedded computer implements a distributed con-
trol (Long-Term Control(LTC)) algorithm that controls the
settings of the FACTS. The embedded computer communi-
cates with the simulation computer via ethernet and receives
operator input from the keyboard. The FACTS is imple-
mented as a pair of compensators that control real and reac-
tive power flow on the transmission line. The experiments
conducted to exercise the Simulation Framework were car-
ried out on a 4-processor Concurrent Computer iHawk rack-
mountable system with attached A/D and D/A hardware.

4. Overview of HIL Simulation Framework

In this work, a framework has been produced that en-
ables soft real-time simulation with no specialized hard-
ware support and no specialized operating system support
for real-time scheduling, meaning it can be run on a Com-
mercial, Off-The-Shelf (COTS) Unix system such as Linux
as long as it complies with the respective standards. The
simulation algorithm itself has no requirement beyond the
fact that it must run fast enough by itself on the given sys-
tem’s CPU and memory architecture to satisfy the real time
constraints of the system. The framework imposes few ad-
ditional constraints on the hardware and operating system
beyond those imposed by the simulation core.

4.1. Requirements

A supervisor process such as an operating system dele-
gates processing time to constituent processes based on al-
gorithms that are not deterministic from the perspective of
the constituent process in the general case. For any type
of real-time computation running under a supervisor pro-
cess, if it is at all possible to meet the real-time constraints,
the most obvious starting point towards meeting those con-
straints is to maximize the proportion of time that the com-
putation process is in “running” or “ready to run” state com-
pared to the time that it is in other states, such as “waiting on
hardware” or “waiting on lock”. Thus, the primary goals of
this framework were to decouple the management of A/D
and D/A hardware from the simulation process itself and
to use inter-process communication techniques that cause
minimal blocking in the simulation process.

4.2. Asynchronous Hardware Manage-
ment

Unix drivers typically include a userspace library that
abstracts the kernel driver interface and which is called di-
rectly by the application wishing to use the hardware in-
stead of the application calling the kernel interface directly.
The API of the library thus insulates the application from
changes in the implementation of the driver, which can be
quite volatile.

The purpose of decoupling the management of A/D and
D/A hardware from the simulation process is to eliminate
the overhead caused by peripheral device I/O. This over-
head comes from calling the userspace library, transition-
ing to kernel mode, and communicating with the peripheral
through its registers. Sometimes the kernel mode transition
can be eliminated if the device supports memory mapped
I/O, but in all cases the sequence of device communication
must be repeated every time analog data is to be captured
or sent. Placing the burden of hardware communication on

464646

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 3, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

the simulation process is unreasonable in two ways. First,
it adds to the baseline latency of a simulation time step due
to the layers of driver code described above, ensuring that
one iteration of the simulation loop can never be completed
in less real time than the hardware I/O requires. It also re-
quires making a difficult decision about the location of the
code performing the analog data updates relative to the code
implementing the system solver loop. If this code is placed
outside the system solver loop, the most recent updates to
the sensor readings are unavailable to the solver until a time
step has passed, and a latency between the solver updating
the system state and the real world outputs reflecting the up-
dated state occurs. However, placing the update code inside
the system solver loop requires more indirection of mem-
ory access, slowing the solver; the complexity of the inner
solver code itself is also increased, potentially causing in-
struction cache misses. Decoupling the A/D and D/A and
having a separate process asynchronously merge the sim-
ulated system state with the real world state avoids these
problems and allows as fine a granularity of A/D and D/A
sweeps as the application requires. For the remainder of this
paper, interface variables refer to the variables that are sam-
pled externally from A/D hardware and then injected back
into the system.

4.3. Interprocess Communication Alter-
natives

Available inter-process communication (IPC) mech-
anisms are signals, pipes, sockets, message queues,
semaphores (POSIX and SysV implementations), and
shared memory (either shared pages external to the process
as in POSIX shared memory or a shared program area and
heap memory as in POSIX threads).

Many of these IPC primitives have conditions under
which they block (suspend) the process utilizing them. This
would be unacceptable for the simulation process since its
computation is under a real-time constraint. Some sort of
shared memory approach was thus required, so that IPC
could occur without a system call. A thread-based ap-
proach was rejected as the available operating system did
not have an explicit real-time scheduler. Instead, processes
were scheduled on multiple cores of the simulation plat-
form. System V semaphores were implemented as rel-
atively simple DOWN() and UP() macros that are used
throughout the codebase. To utilize System V semaphores
there is no choice but to use the semop() system call. To
avoid blocking, a set of “new data” flags was implemented
in an approach similar to a general double-checked locking
approach. To be consistent with the implemented frame-
work code, these flags will hereafter be referred to as “stale”

flags. (A “stale” flag can simply be regarded as an active-
low “new data” flag.) Each stale flag Xf for interface vari-
able X exists as an atomically-updatable data type and cor-
responds to the data item or set that is protected by a lock
P(X). When that data set is updated by a writer holding the
corresponding semaphore, the stale flag is also reset before
releasing the semaphore. An interested reader can check the
stale flag before attempting to take the lock P(X). If the stale
flag Xf is set, there is no reason to take the lock P(X), since
the data set X has not yet been updated since the last time
it was read, and in this case a system call is avoided. If the
stale flag Xf is reset (not set), then the computational pro-
cess takes the lock P(X), reads the interface variable X, sets
the stale flag Xf, and finally releases the lock P(X) (Figure
3).

Stale flag

Xf

Interface

variable X

HAL Simulation

Lock P(X)

Take lock

P(X)

Sample interface

variable X, place

in mailbox, and

reset flag Xf

Release

lock P(X)

Shared memory

mailboxes

Check stale

flag Xf

Xf reset:

new data

Xf set:

data is still

stale, no action

Take lock

P(X)

Import value

of X, and set

Xf stale

Release

lock P(X)

Figure 3: The locking scheme, with stale flags.

In this paper, individual slots in shared memory will be
referred to as “mailboxes” (Figure 4).

5. Discussion of HIL Simulation Framework

The simulation framework contains many components.
Each component of the framework along with some de-
tails about its implementation will be described. Discus-
sion about the implementation of the simulation itself will
be limited to those aspects which affect its integration into
the framework; the simulation’s algorithmic implementa-
tion will remain a “black box” to assure the applicability
of the framework to any simulation satisfying the require-
ments.

5.1. System Block Diagram

In Figure 4, the framework is decomposed into several
principal components. The Simulation Engine is comprised

474747

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 3, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

PI Controller

Thread(s)

Shared Memory

Mailboxes
 HAL

(Hardware Abstraction

Layer)

D/A

(Hardware

Control to DAC

or Digital Output)

A/D

(Sample

Hardware

State)

If, RPM

set points

for motor

Vrms, Irms

from UPFC

3−phase

generator side

reading

Simulation Engine

Simulation Core

Task

Non Linear Solver

Newton Raphson

method

Sparse storage or

Flattened static system

GTK+ GUI

Simulation

Process monitor

thread

Simulation

Status

(current step)

Digital I/O

State

P and Q from

UPFC

3−phase

load side

reading

Vref set

point

Generator

actual field

current and

3 phase P

Load Bank

Controller

Thread(s)

P setting

Bus

Voltages

and

Phase

angles

MaxFlow

Sender

Visualization

Sender

User commands

Operator

state (to be

periodically

examined

by system

components)

Figure 4: High level diagram of the simulation sys-
tem.

of the PI (Proportional-Integral) controller that controls part
of the AC Power Transmission Line (the HIL line), a Sim-
ulation Core that contains the numeric solver, a Load Bank
Controller that controls the load of the HIL line, and a Vi-
sualization and Long Term Control sender. Latter two ele-
ments reflect sending state information from the simulated
power system. These interact with the Hardware Abstrac-
tion Layer (HAL) through Shared Memory regions.

The Simulation Framework uses a multi-process design.
Challenges are coordination of access to shared data and
avoiding race conditions through the use of locks. Misuse
of locks or the accidental introduction of a lock ordering
bug could lead to seemingly-random deadlock – a partial or
total halt of the system. Misuse of locks could also foil the
real-time performance of the system by stalling an impor-
tant process for longer than otherwise necessary.

To reduce complex scheduling, and to take advantage of
the available multi-core architecture, a multi-process design
was used where there are at least N+1 processor cores in
the system, where N is the number of concurrently running
processes that hold a lock. Those lock-holding processes
are pinned to distinct CPUs so that no other process can
be scheduled on the CPU that a lock-holding process owns.

Along with shielding critical processors from hardware in-
terrupts and disallowing calls to non-realtime-safe code in-
side critical sections, this scheme guarantees that the time
that any process holds the lock is bounded, ensuring that
the simulation process time step – which takes a lock it-
self in order to read the asynchronously updated values of
its real world variables – is bounded. The framework de-
scribed in this paper utilizes a shared memory architecture,
where the A/D is sampled and the D/A state is updated in
a process that runs concurrently with the simulation, and
where that process shares the simulation state memory as in
the approach of [17].

5.2. HAL (Hardware Abstraction Layer)

The approach of this framework is simply to sample
the real world values asynchronously so that they can be
sampled as frequently as necessary. Based on the Nyquist
rate, a 1ms sampling rate provides the simulation with suf-
ficient dynamics with respect to the 300 Hz filter in the
FACTS [16]. HAL runs as a separate process and acts as
a concentrator for all physical I/O.

Its main loop runs as often as the application requires.
On a SMP (Symmetric Multi-Processor) system such as in
this lab, one processor can be dedicated to running the HAL
process. In this case, the main loop can run continuously
and update the hardware state as quickly as the hardware
allows because the CPU does not have to yield to other pro-
cesses such as the simulation process or user interface.

The HAL main loop simply does the following in pseu-
docode:

SweepDtoA();
CollectAndConvertAD();
usleep(DELAY);

The function of SweepDtoA is to take the values that are
in the mailboxes which correspond to what the current state
of the DAC and Digital I/O outputs should be, and write
out the entire state to the hardware. The state of the real
hardware should thus consistently follow the state of these
variables in the mailbox .

CollectAndConvertAD is a collection of steps taken to
process the analog readings into an interface variable in the
system. Several variables, such as voltage and current read-
ings, are filtered through a first-order low-pass filter (LPF)
to reduce sampling noise caused by sensor inaccuracy. The
scale factors that are used to scale a voltage level to a real
value to be placed in an interface variable are dependent
both on the particular data item and the particular sensor
that was used to gather its value, and thus are experimen-
tally determined and then encoded as magic constants. The
flow of data for one interface variable is depicted in Figure
5.

484848

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 3, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

Read voltage level on A/D input

Use scale factor to convert voltage

level to value of real−world variable

Filter variable through low−pass filter

if necessary

Take mailbox lock, write scaled and

filtered value to interface variable mailbox,

and release lock

Reset stale flag to 0 for that mailbox

Figure 5: Data flow for an interface variable being
sampled into the system.

It should be noted that only memory-mapped I/O should
be utilized in the HAL and the interface card drivers during
execution of the simulation. Using any form of system-call
based I/O during the simulation besides that required to syn-
chronize shared memory access would introduce additional
real-time dependency on the operating system in order to
ensure correct and safe hardware operation in the general
case. Good practice would be to implement any timing-
critical hardware control in separate controller threads that
do not participate in the shared-memory locking such as in
the PI Controller implementation described in Section 5.5.

5.3. Simulation Core (Flatten4)

The simulation core is loosely coupled to the HAL
framework. It consists of a library that implements the solu-
tion of the non-linear power system at a particular time step.
The simulation core takes the physical connections, bus
voltages, phase angles, power generation, and admittances
of the power system as inputs, and calculates the new bus
voltages and phase angles using a non-linear system solver,
specifically Newton-Raphson(NR) [8, pp 52-69]. The NR
method involves repeatedly updating a Jacobian matrix that
describes the partial derivatives of the state variables with
respect to each other and directly solving the resulting lin-
ear system, until the error term variables (∆P and ∆Q) are
driven close enough to zero. This should take two to three
iterations in the average case, but may take many more de-
pending on how far away the system is from the steady state.

A new approach was developed to symbolically perform
the LU decomposition at compile time, avoiding the expen-
sive indexing and multiplications associated with the LU
decomposition in each NR solution. This was accomplished
by writing a MATLAB program that generated the C source
code files comprising the solver [14]. Memory accesses per-
formed by the C program were “flattened” so that memory

was accessed through a single pointer for each matrix in-
stead of through multiple levels of indirection.

This paper’s approach is to enable a soft-real-time HIL
simulation to be built by first relaxing the real-time con-
straints on the simulation algorithm itself. It cannot always
be guaranteed that a non-linear system with an arbitrary set
of values for the system’s real world variables will have a
bounded number of steps to convergence with an iterative
solver such as NR [7]. Once the power system has been al-
lowed to converge to a relatively steady state, convergence
of future time steps will be very fast (2 or 3 iterations); small
changes in the real world values will not impact this fast
convergence. However, when the system encounters a con-
tingency such as the removal of a line, a change in generator
voltage, or a change in power flow through the FACTS de-
vice under test, it initially violates the real time constraint,
but then catches up within several time steps. It is this av-
erage behavior that leads to a soft real-time constraint on
the simulation system. Since the system is simulating, and
sampling, a continuous phenomena, the experimental setup
is able to tolerate missed simulation time outputs with min-
imal loss of accuracy, although we do not have a quantifica-
tion of this particular facet of the system.

For the power system dynamics, a 1 ms simulation time
step is tied to the numerical analysis of the system, the sam-
ple rate, and, ultimately, the frequency response of the HUT.

5.4. Simulation Driver

This program wraps the simulation core and takes care of
minimal locking to update the simulated system state from
the sampled hardware state. The simulation task also up-
dates the state of the controller threads for the external hard-
ware and processes such as the generator and loadbank con-
trollers. It either takes the shared memory region passed to
it by the controller process, or sets up its own shared mem-
ory region. It then spawns the HAL process and passes it
the handle for the shared memory region.

5.5. PI (Proportional-Integral) Con-
troller(s)

The PI controller program is run as a thread within the
simulation process. The PI controller thread is in charge of
controlling the motor hardware and ensuring that it is left in
a safe condition and that all physical constraints are met. It
also controls the output voltage of the generator by varying
the field current (If).

The PI controller uses the mailbox system like any other
simulation component. It sets the RPM and field current
through the mailbox interface for the D/A card and reads
back the output voltage and field current through the mail-
box interface for the A/D card. Separate mailboxes are sup-
plied for up to three PI controllers.

494949

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 3, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

The PI controller’s only input is a voltage set point for
the bus to which the FACTS generator side is connected.
This set point is determined by the output of the simulation
for that time step. When the set point is updated, the PI al-
gorithm steps the output field current to approach the new V
set point asymptotically. The rate of stepping is controlled
by the constants Ki and Kp. The further away the present V
value is from the set point, the faster the new value will be
approached.

If at any point the generator voltage, output current, or
field current go out of range, the PI controller shuts down
the motor.

5.6. System State Transmitter

The system state transmitter component transmits the
current values of voltage and phase angles at each bus of
the power system in response to incoming network requests.
This state data is used by the algorithm in the Long Term
Control (LTC) process of the FACTS and by a power sys-
tem visualization console (not shown). This state data is
analogous to that which would be collected from the read-
ings of the physical electric power grid.

The transmitter is implemented as a thread which shares
the system state with the simulation. The thread implements
a minimal server which receives incoming connections and
then enters a request loop. The request loop only supports
a handful of commands, the most important of which is to
initiate a state dump, at which point the system’s “V” and
“theta” variables are captured in a snapshot and then copied
across the network. Since this is an infrequent operation,
it might be possible for the LTC to cause a slowdown in
the simulation by repeatedly requesting the state variables,
causing an increase in lock contention for the snapshot copy
and a possible missed deadline for the simulation.

There are several approaches to providing the snapshot
requests, depending on how the snapshot data is to be used.
If the snapshot is required to be consistent with respect to
the simulation time step, one approach is to limit the snap-
shot requests to no more than a certain number of requests
per time period. The snapshot would have to be first copied
into a local buffer before being sent to the network layer for
transmission so that the lock is not held for an unreasonable
amount of time. If the snapshot does not necessarily have
to be consistent with respect to a simulation time step, an-
other approach is possible. Since all of the simulation state
data are stored in atomic data types according to the system
design, the snapshot mechanism could be implemented so
that the simulation simply writes the state data as usual and
the state is read “as-is” from the buffer, possibly cutting into
the middle of a time step, but requiring no lock at all.

6. Results and Discussion

Experiments were performed with several different set-
tings for the HAL update delay: 100 µs, 50 µs, 5 µs, and
no delay. The time the simulation spent acquiring the lock,
as well as the time spent in each critical section, were then
examined.

Figure 6: Simulation latencies versus HAL update
latency.

The results as measured in several full HIL simulations
are given in Figure 6, and show the lock acquisition latency
to be less than 20 µs which is less than 5% of a 1 ms simula-
tion time step. The figure also shows that the average time
to acquire a lock increases as expected when the HAL up-
date delay decreases (with significance as shown by a sin-
gle tailed t-test with α=.01,n=36772-66912,σ=1.18-2.14).
This is because the time the simulation spends acquiring the
lock primarily depends on how frequently the HAL takes
the lock to update the interface variables; when the delay
is large, the lock is taken less often. While at the limit the
hardware can be updated constantly while remaining useful
with this particular simulation core, there remains a balanc-
ing act between having too many locks, which adds constant
runtime overhead even when lock contention is low, and too
few locks, which increases lock acquisition latency due to
waiting.

With a power system simulation implemented in this
framework, the simulation is able to respond to changes in
the power flow through the FACTS device in soft real time
with update latency determined by the polling frequency of
the HAL component. A system based on this framework
has been in use since March 2007 in the FACTS Interaction
Laboratory [1] at the Missouri University of Science and
Technology.

505050

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 3, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

7. Conclusions

In this paper, the goal was to create a framework capable
of soft real-time support for an HIL power system simu-
lation. This goal has been accomplished by enabling soft
real-time support at a 1 ms time step. While a 1 ms real-
time response is not unprecedented in the field, the goal of a
generalized open-source framework has been realized. This
framework can be used with an arbitrary real-time simula-
tion core and on any Unix-like operating system with the ap-
propriate scheduling controls. There is no requirement that
the simulation core be a power system simulation, so any
HIL application requiring a low average latency can benefit
from this framework.

8. Future Directions

Conceptually it is possible to integrate the entire sim-
ulation system into a single process with several POSIX
threads. An external semaphore region will still be neces-
sary unless the synchronization macros are ported to POSIX
semaphores. A drawback to this approach, as noted above,
is that a threaded system presents more problems with man-
aging CPU affinity and scheduling priority.

With respect to the real-time simulation, another avenue
for exploration could be the implementation of the tech-
niques described in [11], in which an interpolation tech-
nique is combined with a variable time step. This method
attempts to account for events that happen during a time
step. It would make the simulation more accurate, but at
the cost of computational complexity, and it is unclear if the
implementation of such a technique would be feasible in the
presence of real-time constraints. Additionally, a rigorous
method for the claim that "occasionally missing a real-time
constraint does not impact simulation correctness" could be
developed along the lines of [16].

References

[1] Fault-Tolerant and Secure Power Grid Systems us-
ing FACTS Devices; FIL Homepage. Online.
http://filpower.umr.edu/, fetched August 22, 2007.

[2] RTDS Technologies, Inc. Homepage. Online.
http://www.rtds.com/, fetched August 22, 2007.

[3] The Open Source Definition. Online.
http://www.opensource.org/docs/osd, fetched Septem-
ber 11, 2007.

[4] IEEE Power Engineering Society FACTS Application Task
Force, FACTS Applications. 1996.

[5] A. Armbruster, M. Gosnell, B. McMillin, and M. Crow. The
maximum flow algorithm applied to the placement and dis-
tributed steady-state control of FACTS devices. In Proceed-
ings of the 37th Annual North American Power Symposium
(NAPS), pages 77–83, October 2005.

[6] M. Bacic. On hardware-in-the-loop simulation. In 44th
IEEE Conference on Decision and Control (CDC-ECC ’05),
number 44, pages 3194–3198, December 2005.

[7] P. Baracos, G. Murere, C. Rabbath, and W. Jin. Enabling
PC-based HIL simulation for automotive applications. In
IEEE International Electric Machines and Drives Confer-
ences, 2001 (IEMDC 2001), pages 721–729, 2001.

[8] M. Crow. Computational Methods for Electric Power Sys-
tems. CRC Press, 2002.

[9] M. Crow, C. Gill, F. Liu, B. McMillin, D. Niehaus, and
D. Tauritz. Engineering the advanced power grid: Research
challenges and tasks. In RTAS 2006 Workshop on Research
Directions for Security and Networking in Critical Real-
Time and Embedded Systems (CRTES ’06), San Jose, CA,
USA, April 4 2006.

[10] L. Dong, M. L. Crow, Z. Yang, C. Shen, L. Zhang, and
S. Atcitty. A reconfigurable FACTS system for univer-
sity laboratories. IEEE Transactions on Power Systems,
19(1):120–128, February 2004.

[11] M. O. Faruque, V. Dinavahi, and W. Xu. Algorithms for the
accounting of multiple switching events in digital simualtion
of power-electronic systems. IEEE Transactions on Power
Delivery, 20(2):1157–1167, April 2005.

[12] B. Lu, X. Wu, H. Figueroa, and A. Monti. A low cost real-
time hardware-in-the-loop testing approach of power elec-
tronics controls. IEEE Transactions on Industrial Electron-
ics, 54(2):919–931, April 2007.

[13] W. Ren, L. Qian, M. Steurer, and D. Cartes. Real time dig-
ital simulations augmenting the development of functional
reconfiguration of PEBB and universal controller. In Pro-
ceedings of the 2005 American Control Conference, 2005,
volume 3, pages 2005–2010, June 2005.

[14] W. M. Siever. Power Grid Flow Control Studies And High
Speed Simulation. PhD thesis, University of Missouri-Rolla,
Rolla, MO, 2007.

[15] M. Steurer, S. Woodruff, N. Brooks, J. Giesbrecht, H. Li,
and T. Baldwin. Optimizing the transient response of volt-
age source converters used for mitigating voltage collapse
problems by means of real time digital simulation. In 2003
IEEE Bologna Power Tech Conference Proceedings, vol-
ume 1, page 6, June 2003.

[16] Y. Sun, B. McMillin, X. F. Liu, and D. Cape. Verifying
Noninterference in a Cyber-Physical System: The Advanced
Electric Power Grid. In Proceedings of the Seventh Inter-
national Conference on Quality Software (QSIC), Portland,
OR, October 2007.

[17] R. B. Wells, J. Fisher, Y. Zhou, B. K. Johnson, and M. Kyte.
Hardware and software considerations for implementing
hardware-in-the-loop traffic simulation. In The 27th Annual
Conference of the IEEE Industrial Electronics Society, 2001
(IECON ’01), volume 3, pages 1915–1919, Nov/Dec 2001.

[18] X. Wu, S. Lentijo, and A. Monti. A novel interface
for power-hardware-in-the-loop simulation. In 2004 IEEE
Workshop on Computers in Power Electronics, 2004, pages
178–182, August 2004.

[19] W. Zhu, S. Pekarek, J. Jatskevich, O. Wasynczuk, and
D. Delisle. A model-in-the-loop interface to emulate source
dynamics in a zonal DC distribution system. IEEE Transac-
tions on Power Electronics, 20(2):438–445, March 2005.

515151

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 3, 2009 at 13:24 from IEEE Xplore. Restrictions apply.

	An Open Framework for Highly Concurrent Real-Time Hardware-in-the-Loop Simulation
	Recommended Citation

	An open framework for highly concurrent real-time hardware-in-the-loop simulation 32nd Annual IEEE Computer Software and Applications, 2008. COMPSAC'08

