
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2002

Adaptive Information Filtering: Concepts and Algorithms Adaptive Information Filtering: Concepts and Algorithms

Daniel R. Tauritz
Missouri University of Science and Technology, tauritzd@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
D. R. Tauritz, "Adaptive Information Filtering: Concepts and Algorithms,", pp. 1-180 Leiden Univeristy, Jan
2002.

This Book is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in
Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work
is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Adaptive Information Filtering
concepts and algorithms

Adaptive Information Filtering

concepts and algorithms

Proefschrift
ter verkrijging van

de graad van Doctor
aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties

te verdedigen op dinsdag 25 juni 2002
te klokke 14:15 uur

door

Daniel Remy Tauritz

geboren te Leiden in 1973

Promotiecommissie

Promotor: Prof. dr. J.N. Kok
Co-promotor: Dr. I.G. Sprinkhuizen-Kuyper (Universiteit Maastricht)
Referent: Prof. dr. M. Schoenauer (Ecole Polytechnique, Frankrijk)
Overige leden: Dr. T. Bäck

Prof. dr. F.J. Peters
Prof. dr. D. DeGroot

ISBN 90-9015926-6

The work described in this doctoral dissertation has been carried out in
assignment of the Dutch National Science Foundation (NWO), at the Leiden
Institute of Advanced Computer Science (LIACS), under the auspices of the
research school IPA (Institute for Programming research and Algorithms).
IPA Dissertation Series 2002-10.

Abstract

Adaptive information filtering is concerned with filtering information streams
in dynamic (changing) environments. The changes may occur both on the
transmission side — the nature of the streams can change — and on the
reception side — the interests of the user (or group of users) can change.
While information filtering and information retrieval have a lot in common,
this dissertation’s primary concern is with the differences. The temporal
nature of information filtering necessitates more flexible document represen-
tation methods than does information retrieval where all the occurring terms
are known in advance. Also, information filtering typically maintains user
interest profiles requiring a learning system capable of coping with dynamic
environments in place of the static queries characteristic of information re-
trieval.

The research described in this dissertation investigates the employment of
two distinct machine learning approaches, namely evolutionary computation
(evolutionary algorithms) and neural computation (neural networks), for the
intelligent optimization of incremental classification of information streams.
The document representation employed in this research is weighted n-gram
frequency distributions. The weights associated with the n-grams are the
attributes being optimized.

The results indicate the feasibility of the machine learning approach de-
scribed in the previous paragraph. Written documents as well as spoken
documents were succesfully classified, within the constraints posed by adap-
tive information filtering. The scalability issue requires further investigation:
the classification results dropped from above 95% correct for two topics to
below 85% correct for ten topics, although the drop in classification results
seemed to level off above eight topics.

v

Preface

The research described in this dissertation was instigated by a personal need
of the author to deal with an overflow of data. Unsatisfied with the avail-
able information filtering systems — which tended to be very domain and
media specific — he set out on a crusade to develop a general purpose in-
formation filtering system. Inspired by machine learning courses on neural
networks (classification / clustering) and evolutionary algorithms (optimiza-
tion), the idea took form to combine classification and optimization to build
the sought after information filtering system. Once an appropriate document
representation had been established, namely letter trigram distributions, a
first feasibility study was conducted, the results of which were reported in
[Tau96c]. These results were encouraging, and the outline of how such a
system might be constructed was presented in [Tau96b]. The logical next
step, namely the working out of the outline, the implementing of a first
prototype of such a system, and an experimental analysis of the said sys-
tem, constituted the author’s Master’s research, conducted at the NATO C3
Agency (formerly known as SHAPE Technical Center). This research was
published in the author’s Master’s thesis [Tau96a], a short abstract of which
was published in the JCIS’97/FEA’97 conference proceedings [TKSK97] with
a longer abstract being accepted for publication in Elsevier’s Information Sci-
ences journal [TKSK00].

After having obtained his Master’s degree, the author decided to pursue a
Doctoral degree, continuing the same line of inquiry. The theoretical deriva-
tion of the two-pool evolutionary algorithm developed during the Master’s
research and refined during the Doctoral research, was first published in a
technical report in 1999 [TSK99a], followed by a paper in the proceedings
of the 1999 Intelligent Data Analysis conference [TSK99b]; a more defini-
tive version of the derivation appears in this dissertation. The letter trigram
distributions of the Master’s research have been generalized to arbitrary al-
phabet n-gram distributions; in particular, the experiments reported on in
this dissertation employ letter n-grams to represent textual documents and
phoneme n-grams to represent spoken documents. Some preliminary results
of the generalized system were reported in [TSK00], but only for letter tri-
gram distributions; the results in this dissertation cover multiple values of n
as well as phoneme n-gram distribution results. The investigation of neural
networks instead of evolutionary algorithms as the learning component of
our adaptive information filtering system has not previously been reported

vi

on. The neural network approach is detailed in this dissertation, and the two
different machine learning approaches compared with each other as well as
with published results of researchers other than the author.

The overflow of data which motivated the author many years ago to com-
mence on this particular line of research, continues unabated. The treasure
on the other side of the rainbow (read: the perfect information filtering
system) is still on the drawing board, the research still in full swing. The
author has, however, learned about a great many things while conducting
this research, not the least of which has been how to conduct research, and
has had a jolly good time doing so. For every question answered, two new
questions have popped up, but that, the author has been told, is the hall-
mark of a healthy research program. On that note the author wishes you
an entertaining journey into the arcane realms of information systems, doc-
ument representations, evolutionary algorithms, and neural networks. And
remember, if you end your journey with more new questions than questions
answered, the author has done his job well!

This document was prepared and typeset using the MiKTEX1 distribution
of LATEX2ε and BibTEX. For literature research The Collection of Computer
Science Bibliographies2 administered by Alf-Christian Achilles was indispens-
able, as was the ResearchIndex 3 provided by the NEC Research Institute.

I owe a debt of gratitude to many people who have supported me during
my dissertation research. First and foremost I wish to acknowledge Dr. Ida
G. Sprinkhuizen-Kuyper for being my daily supervisor all these years. She
inspired me from the very beginning to boldly pursue my research interests,
which resulted first in my Master’s thesis and now has culminated in my
doctoral dissertation. She has gone far beyond the call of duty (even for an
academic advisor) in supporting and encouraging me; her door was never
closed to me, which I also mean quite literally as I was a guest in her house
on multiple occasions during visits to Maastricht University. If I can become
half the advisor to my students, that she was to me, I will consider that one
of the main accomplishments of my life.

Secondly I acknowledge Prof. dr. Joost N. Kok for being my dissertation
advisor. He gave the greatest gift a dissertation advisor can give: the freedom
to follow the road along which my research ideas led me, wherever that would

1http://www.miktex.org/
2http://liinwww.ira.uka.de/bibliography/
3http://www.researchindex.com

vii

take me. This is a dangerous gift, both for the giver and the receiver, and I
hope that I have lived up to his expectations.

Further I acknowledge all my colleagues and teachers who gave me advice;
in particular Dr. Thomas Bäck for instructing me in some of the fine points of
Evolution Strategies and Dr. Walter Kosters for critiquing my dissertation. A
special acknowledgement also to Marloes van der Nat, who with unwavering
equanimity and always with a smile, took care of my every administrative
need.

Finally I wish to acknowledge my family. My parents have proofread
my dissertation to the point where they probably know it better than I
do myself. My father provided many insightful comments and my mother
labored endlessly to perfect the spelling and grammar, and beautify my prose.
I saved for last the person closest to my heart: my wife Sharon, who has
encouraged me every minute of every hour for five years while I conducted
my research and wrote my dissertation. Nobody should have to be patient
that long and I am eternally thankful that she was. I therefore gratefully
dedicate this dissertation to my wife. This one is for you Sharon!

viii

Contents

Abstract . v
Preface . vi
List of Tables . xiii
List of Figures . xv

1 Introduction 1
1.1 Background . 1

1.1.1 Information overload 2
1.1.2 Information retrieval 3
1.1.3 Information filtering 6

1.2 Dissertation research . 9
1.2.1 Representation . 10
1.2.2 Adaptation . 11

2 Document representations employing n-grams 15
2.1 Representing documents in vector spaces 16
2.2 Introduction to n-grams . 17
2.3 Textual representation . 21
2.4 Phonetic representation . 25
2.5 Weighted representation . 29
2.6 Storage and retrieval . 30
2.7 Chapter conclusions . 31

3 Two-pool evolutionary algorithm 35
3.1 Introduction to evolutionary computation 36
3.2 Background . 38
3.3 Derivation of two-pool EA . 39

3.3.1 Expanding object set 41
3.3.2 Shifting window . 42

ix

CONTENTS

3.3.3 Age . 43

3.3.4 Two pool . 44

3.3.5 Simplified two pool . 44

3.4 Evolution . 46

3.5 Experiment . 48

3.6 Chapter conclusions . 51

4 Evolutionary classification 53

4.1 Evolutionary computation in the information sciences 54

4.2 AIF simulation system . 57

4.2.1 Schematic overview . 57

4.2.2 Algorithmic overview 58

4.3 Parameters . 60

4.3.1 Experiment parameters 60

4.3.2 Set sizes . 61

4.3.3 Evolution parameters 62

4.4 Experimental results . 65

4.5 Comparison . 68

4.6 Chapter conclusions . 70

5 Neural classification 73

5.1 Introduction to neural networks 74

5.2 Neural networks in the information sciences 78

5.3 Neural network simulation system 80

5.4 Experimental results . 82

5.5 Backpropagation . 91

5.5.1 Overview . 91

5.5.2 Results . 93

5.6 Comparison . 95

5.7 Chapter conclusions . 98

6 Conclusion 101

6.1 Summary of results . 101

6.2 Research questions . 105

6.3 Future research . 107

x

CONTENTS

A C++ n-gram class library 111
A.1 Overview . 111

A.1.1 Creation and destruction 112
A.1.2 Updating and storage 113
A.1.3 Metrics and other functions 115
A.1.4 Operators . 118

A.2 Details . 119

B Alphabet Index Lists 123
B.1 Text to Latin Alphabet Index List 124
B.2 Text to Phoneme Alphabet Index List 128

C A mathematical proof concerning normalized vectors 133

Bibliography 135

Nederlandstalige samenvatting 157

Curriculum Vitae 159

xi

CONTENTS

xii

List of Tables

2.1 Exponential n-gram explosion 22
2.2 Subset of Reuters-21578 used in experiments 23
2.3 Stop words removed during preprocessing 24
2.4 Comparison of trigram classification 25
2.5 Comparison of phoneme n-gram clustering for n = 1, 2, 3, 4.

The results are in the form of percentage correctly classified. . 29
2.6 Letter n-grams occurring in the part of the Reuters dataset

employed. 30
2.7 Phoneme n-grams occurring in the part of the Reuters dataset

employed. 30

3.1 Parameter values . 49

4.1 Experiment 1: parameter values 66
4.2 Experiments 1 & 2: results . 67
4.3 Experiments 3 & 4: results . 68
4.4 Langdon’s KNN letter trigram results 70

5.1 Experiment 1: parameter values 84
5.2 Simple perceptron results experiments 1-4 85
5.3 Backprop parameter values . 94
5.4 Backprop results . 94

6.1 Letter trigram results . 102
6.2 Phoneme trigram results . 104

A.1 Public members of ngramdistribution 120
A.2 Protected members of ngramdistribution 121
A.3 Types, constants, and supporting functions 121

xiii

LIST OF TABLES

A.4 Exceptions . 122

xiv

List of Figures

2.1 International Phonetic Alphabet 27

3.1 Evolutionary cycle . 37
3.2 The 8 class experiment . 50

4.1 Schematic overview of the classification cycle of the AIF evo-
lutionary simulation system 58

4.2 Weighted letter trigram versus weighted phoneme trigram results 69
4.3 Training set size = 30 versus training set size = 50 results . . 69
4.4 Letter trigram comparison . 71

5.1 Neural network models . 75
5.2 Simple perceptron . 81
5.3 Experiment 1: letter trigrams 86
5.4 Experiment 2: phoneme trigrams 87
5.5 Experiment 3: letter bigrams 88
5.6 Experiment 4: phoneme bigrams 89
5.7 Letter versus phoneme results 89
5.8 Bigram versus trigram results 90
5.9 Experiment 5: n parameter (10-topic, letter n-grams) 90
5.10 Experiment 6: learning rate η 91
5.11 Two-layer feed-forward network 92
5.12 Backprop experiment: letter trigrams 95
5.13 Backprop experiment: phoneme trigrams 96
5.14 Comparison of 2-pool EA, simple perceptron, and backpropa-

gation . 97

6.1 Comparison of 2-pool CEA, simple perceptron, and backprop-
agation . 103

xv

LIST OF FIGURES

6.2 Letter trigram comparison . 104

xvi

Chapter 1

Introduction

Synopsis

The principal objectives of this chapter are to state the problem of Infor-
mation Overload, giving an overview of the fields within the computer and
information sciences that deal with it and to introduce in particular the
subfield of Adaptive Information Filtering as a crucial part of the solution,
outlining the contributions this dissertation research has made to it.

Section 1.1 provides the background and motivation for the research re-
ported in this dissertation. Section 1.2 introduces adaptive information fil-
tering, lists some of the special challenges it poses, and indicates through the
formulation of research questions how the dissertation research attempts to
address these specific issues.

1.1 Background

Subsection 1.1.1 outlines the problem of Information Overload, motivating
the research reported in this dissertation and introduces traditional subdis-
ciplines within the computer and information sciences. The two fields of
prime concern to us, namely information retrieval and information filtering,
are further discussed in Subsection 1.1.2 and Subsection 1.1.3 respectively.

1

CHAPTER 1. INTRODUCTION

1.1.1 Information overload

The following is a quote from the August 2001 issue of “Communications of
the ACM” [Kei01]:

Computer systems today store vast amounts of data. Researchers,
including those working on the “How Much Information?” project
at the University of California, Berkeley, recently estimated, about
1 exabyte (1 million terabytes) of data is generated annually
worldwide, including 99.997% available only in digital form. This
worldwide data deluge means that in the next three years, more
data will be generated than during all previous human history.

One of the great problems of our time is our inability to deal with the
amount of data we generate. The above quote emphasizes the significance
of this problem. Nonetheless, the age we live in is often termed the “in-
formation age” and the problem is commonly known under such labels as
“Infoglut” [BYT92] and “Information Overload” [Mae94]. While this confu-
sion of “data” with “information” is widespread, distinguishing between the
two is, in fact, the foundation on which the field of information sciences is
built. The distinction can be precisely formulated in terms of the following
definition:

Definition 1.1 Information is defined to be relevant data.

The transformation from data to information, or, in other words, the separa-
tion of relevant data from irrelevant, is the central concern of the information
sciences. This chapter will investigate several aspects of this transformation
and various approaches to performing it. One approach in particular, Adap-
tive Information Filtering (AIF), will be singled out for attention. The re-
mainder of the dissertation focuses on developing algorithms in support of
AIF.

Following is an overview of some of the subfields of the information sci-
ences dealing with the above mentioned transformation:

Information Retrieval IR attempts to satisfy short-term information needs
by indicating the availability or non-availability of data relevant to par-
ticular requests (called queries in IR terminology). When the response
includes the actual data deemed relevant (instead of merely a reference
to it) information disclosure would be a more suitable term than IR.

2

1.1. BACKGROUND

However, as the term IR is widely accepted for both cases, we will
follow that custom in this document.

Information Filtering IF attempts to satisfy long-term information needs
by maintaining profiles describing those needs and filtering data streams,
returning data which matches one or more profiles.

While the emphasis of this dissertation is on IF, most of the research is also to
a certain extent applicable to IR. We will therefore first present an overview
of IR before moving on to IF.

1.1.2 Information retrieval

There is no commonly accepted definition of IR, and over the years it has
come to encompass an increasingly broad field. A few decades ago researchers
in this field, such as Lancaster and van Rijsbergen, adopted the view that
IR systems satisfy queries, put to them by users with a specific informa-
tion need, by returning references to material likely to be of interest. For
instance, in [Rij79] we find the following definition for IR as stated by Lan-
caster: “Information Retrieval is the term conventionally, though somewhat
inaccurately, applied to the type of activity discussed in this volume. An
information retrieval system does not inform (i.e. change the knowledge of)
the user on the subject of his inquiry. It merely informs on the existence
(or non-existence) and whereabouts of documents relating to his request.”
Now-a-days, however, users expect their information needs to be satisfied
by immediately being supplied with the material likely to be of interest. In
other words, today’s users expect an information disclosure system, a view
adopted for instance in [Bruza93]. As the term IR is more widely accepted,
we will employ it throughout this thesis, although in fact we will be referring
to an information disclosure system.

An IR system is the complete system necessary to perform the process of
IR. A librarian exemplifies such a system. Someone (e.g., the user) makes a
request for information which the librarian then tries to satisfy. An IR system
consists basically of two components: a user interface for making the requests
(called queries in IR terminology) and presenting the retrieved information,
and a retrieval system which tries to satisfy the query by returning relevant
references. The queries can be formulated either in natural language, or in
a so-called query language. The way the retrieval system works and the

3

CHAPTER 1. INTRODUCTION

method for formulating the queries are interdependent, and can be described
by a retrieval model.

Retrieval models

Here we will describe two classic retrieval models, namely the Boolean re-
trieval model [Rij79] and Salton’s Vector Space Model (VSM) [Sal89]. A
more recent model of interest is the Probabilistic model, see [BC92, Coo94].
In the Boolean retrieval model the user has to formulate queries based on
Boolean logic. Those documents which are “true” for the query are retrieved.
The queries have to be expressed in terms of index terms and combined by
the usual logical connectives and, or, and negation. The following example
will illustrate the Boolean retrieval model.

Assume the following query:

Q = (apple AND pie) OR ((not cheese) AND sandwich)

This will retrieve all documents containing the terms ‘apple’ and
‘pie’, as well as all documents containing the term ‘sandwich’,
but not the term ‘cheese’. Suppose for a moment that this query
was submitted to a recipe database. One can then imagine that
the person submitting the query is hungry for apple pie and any
sandwich not containing cheese.

The great advantage of the Boolean retrieval model is that searching can be
done very efficiently by using an inverted index, a matrix indicating which
documents contain which terms. There are, however, two disadvantages. The
first is that Boolean retrieval is an all-or-nothing decision, which does not
correspond to the intuitive notion that relevance of a document to a query
is a matter of degree. This makes it difficult to deal with the often vague
intentions of users, and makes the system very sensitive to spelling errors in
both the queries and the stored documents. The second disadvantage is that
humans, especially untrained ones, often find it very difficult to formulate
complex Boolean queries. In the VSM both documents and queries are rep-
resented as vectors in a common vector space. The dimensions of this space
are the indexing terms. Similarity of meaning is assumed proportional to the
distances between the vectors in the space. As vector spaces are only prop-
erly spanned by orthogonal vectors, the term vectors must be assumed to be

4

1.1. BACKGROUND

uncorrelated. This is, however, not usually the case. The issue is discussed
in depth in [Sal89]. The advantages of the VSM are that the queries can
be formulated in natural language and that retrieval yields a ranking of the
available documents according to relevance. The disadvantage is, however,
that the search is not efficient, making the use of very large document collec-
tions and large numbers of indexing terms impractical. A possible solution
is to cluster all the documents, and during retrieval find, for instance, the
closest cluster and then compute only the distances between the query and
the documents within that cluster. This is called cluster based retrieval and
is discussed in both [Rij79] and [Sal89].

Relevance feedback

A powerful enhancement to the user interface presented so far is to allow
the user to provide feedback to the system by indicating how relevant the
retrieved documents were. This information can then be used by the system
in various ways. The classic way is to use this information to refine the search
[Sal89], but it can also be used to optimize certain parameters associated with
the search process, creating a learning system.

Information disclosure systems

Information disclosure systems are composed of the previously mentioned
components as well as a full-document retrieval system. So-called Internet
search engines are one example of the sort of information disclosure systems
which are currently receiving a lot of attention. The most popular of these
search engines maintain huge keyword indexes to billions of World Wide Web
pages.

Evaluation

The classic method for evaluating the effectiveness of an IR system employs
the concepts of recall and precision [Zav95]. Precision is the ratio of the
number of relevant documents retrieved to the total number of documents
retrieved. Recall is the ratio of the number of relevant documens retrieved to
the total number of relevant documents. So for both, zero represents worst
and one best performance. The goal of an IR system is, thus, to maximize
both recall and precision. However, there is a trade-off between these two
measures. To increase recall one can relax the conditions to be met for

5

CHAPTER 1. INTRODUCTION

a document to be retrieved, but this will inevitably lead to a decrease in
precision, with more irrelevant documents being retrieved. To express the
effectiveness of an IR system by one number, recall (r) and precision (p) can
be combined in van Rijsbergen’s E-measure [Rij79]:

E = 1− (1 + B2) · p · r
B2 · p + r

(1.1)

The parameter B reflects the relative importance attached to recall and pre-
cision. A value of 0.5 (or 2.0) for B corresponds to attaching twice (or half)
as much importance to precision as to recall. With a value of 1.0 for B, the
two factors are weighted equally. The range of E is between 0 and 1. Lower
values of E indicate better performance, with 0 being best and 1 being worst.

For more information on information retrieval see, for instance, [Che95,
SJW97, Wie98, vdP00].

1.1.3 Information filtering

The following is a quote from the November 2001 issue of “Communications
of the ACM” [Fox01]:

An overload of information pouring into the U.S. National Secu-
rity Agency’s most secret information-gathering program might
have slowed the investigation into September’s terrorist attacks
in New York and Washington, reports the New York Post. Ech-
elon, a computerized interception program so powerful authori-
ties don’t officially acknowledge its existence, has spewed forth
so much information analysts can’t keep pace with the growing
mountains of clues that may reveal terrorist tactics and hideouts.
Intelligence experts say the backlog of intercepted communiqués
from Middle East, Africa, and even the U.S. is drowning NSA
agents in information as they sift through the past year’s data.
Echelon, operating within Europe, is reportedly able to intercept,
record, and translate any electronic communication — telephone,
data, cellular, fax, email, telex — sent anywhere in the world.

The above quote demonstrates an obvious lack in the Information Filtering
(IF) capabilities of the NSA. IF is the process of filtering incoming data
streams in such a way that only particular data are preserved, dependent on

6

1.1. BACKGROUND

given information needs. In the case of IF being employed as preprocessor for
an IR system, these needs are typically predefined and rather static. When
IF is being used as a replacement for IR to satisfy the needs of a particular
person (or group of persons), these needs are, generally speaking, apt to
change considerably over time. The remainder of this section will discuss IF
systems in general, while those aspects specific to adaptive IF systems will
be discussed in Section 1.2. For a comprehensive introduction to IF, see, for
instance, [FD92].

An IF system is the complete system necessary to perform the process
of IF. One example is a censure department. The incoming data stream is
filtered according to certain guidelines, leaving only approved documents in
the output data stream. This can be done manually, or automatically through
the use of a software system. The type of system discussed in this dissertation
will be a software system. There are two main components common to all
IF systems, namely the data stream and the filtering transformation. In the
case of a censure department the data stream might consist of movies and
the filtering transformation be performed by a computer program censuring
certain films based on content analysis.

The data stream

In the case of a software system the data stream can consist of any object
which can be digitally represented. Besides the traditional medium of tex-
tual documents, this also includes such modern media as audio, video, and
multimedia in general. Some examples are:

E-mail E-mail messages are typically textual documents with little struc-
ture. Sender and subject can be indicated, but predominantly the body
of the message is free form text. Recent extensions allow the inclusion
of multimedia in the messages, but do not generally add semantic struc-
ture to the text.

Internet newsgroups Messages posted to Internet newsgroups are par-
tially structured textual documents. While the body of the message
is free form text, just like an E-mail message, it typically includes in-
formation such as sender, subject, keywords, and implicit information
with regard to the topic of the message. This implicit information can
be derived by examining to which particular newsgroup the message
was posted.

7

CHAPTER 1. INTRODUCTION

News streams More and more news is becoming available via the Inter-
net, for example from Reuters (see http://www.reuters.com). This
usually involves textual documents ordered by topic.

Radio The traditional medium of the radio is (still) an important supplier
of data; by digitizing the (often analog) broadcasts it can be processed
by software systems. Recent years have seen an increasing number of
direct radio broadcasts via the Internet.

Television Television, arguably the most important medium of the present
day, can also be digitized and then processed by software systems. This
is even more complicated than processing straight audio data, both
because of the much wider bandwidth, and the necessity of having to
deal with the video component, for which no obvious transformation
to text exists. However, most — if not all — television broadcasting
corporations are offering multimedia enhanced news reports via the
World Wide Web.

The filtering transformation

The basic concept here is that any object which differs “too much” from
the stated information need will be filtered out, thus leaving only relevant
objects in the output stream. There are, however, a number of reasons
for desiring a more sophisticated approach to the filtering process. First of
all, the distinction between relevant and non-relevant data is not a sharp
one; rather the degree to which an object corresponds to an information
need gradually declines as the “distance” between the two increases. And,
secondly, the actual information needs are often not well understood, so the
danger exists that relevant data will be filtered out because of an incorrect
formulation of the information need. One way to deal with these problems
is to cluster the incoming data stream and represent the information need as
a set of points in the space of clusters.

Differences between IR and IF

There are two major differences between IR and IF. First of all, in IR the
information need is a short-term need, to be satisfied immediately, while in
IF the information need is typically a medium to long-term need. This has
various implications. For instance, in IR a query can be refined, as opposed

8

1.2. DISSERTATION RESEARCH

to IF, where user interests change over time. And secondly, in IR a static
data storage is assumed during the processing of a query, while in IF the
objective is the filtering of dynamic data streams. For an in depth review of
the differences between IR and IF, see [BC92].

Collaborative filtering

An interesting extension of IF is collaborative IF, as proposed in [GNOT92]
in which it is described as follows:

“Collaborative filtering simply means that people collaborate to
help one another perform filtering by recording their reactions to
documents they read. Such reactions may be that a document
was particularly interesting (or particularly uninteresting). These
reactions, more generally called annotations, can be accessed by
others’ filters.”

1.2 Dissertation research

Adaptive Information Filtering (AIF) is the process of filtering incoming data
streams in such a way that only relevant data (information) is preserved. The
relevancy of the data is dependent on the changing (adaptive) needs of a par-
ticular person or group of persons with a shared interest. Think, for example,
of a newspaper. From all the news in the world available to the reporters
a selection is made based on what is deemed to be of interest (relevant) to
the readers of the newspaper, the rest is filtered out. As the information
needs of the readers change, the reporters must adapt their selection criteria
correspondingly or the newspaper will fail.

An AIF system is the complete system necessary to perform the process
of AIF. One example is the system employed by our newspaper; radio and
television news reports employ similar systems. The type of system discussed
in this dissertation will be a software system. An AIF system consists of
three main components: the data stream, the transformation from data to
information through filtering, and the adaptive behavior. In the case of a
software system the data stream might, for example, consist of Internet news,
the transformation be performed by a computer program, and the adaptive
behavior by the interaction between the user and the computer program. For
more information on AIF see, for example, [Bac91, HKW94].

9

CHAPTER 1. INTRODUCTION

1.2.1 Representation

In the case of a software system with as incoming data stream Internet news,
the data stream consists of textual documents with a specific classification.
For example, if a document was posted to newsgroup x, then one may assume
that the document can be classified corresponding to the topic of newsgroup
x. This is of course not always the case, but except for groups with a very low
S/N (signal to noise) ratio it will hold for the majority of the posted docu-
ments. Another common incoming data stream is E-mail which also consists
of textual documents but which lacks a specific classification. In the rest of
this dissertation textual and phonetic documents will be assumed. To deal
with the data stream it is necessary to be able to compare the documents with
the interests of the user at a given time. This implies the necessity of storing
the interests of the user and the need for a transformation of documents and
user interests to a common space where they can be compared. This issue
will be examined in more detail in Section 2.1, which covers estimating doc-
ument similarity by applying a metric to document vector representations.
The classification algorithm employed in the dissertation research is intro-
duced at this point. The basic idea is that any object which differs “too
much” from the user’s interests will be filtered out, leaving only relevant
objects for the user to peruse. There are, however, a number of reasons for
desiring a more sophisticated approach to the filtering process. In addition
to the reasons mentioned in Subsection 1.1.3, there is also the fact that users
will often have varied interests and in such cases will prefer to have objects
pertaining to each particular interest grouped together. Again the solution
is to cluster the incoming data stream and represent the user interests as
points in the space of clusters.

A special challenge posed by AIF is the dynamic data environment. In
a static document collection, characteristics such as word occurences are
known a priori, facilitating the employment of word (term) indexing methods.
In AIF, on the other hand, this is not the case. New words may occur
frequently, resulting in diminished performance unless new indexes are built,
a process which can be very time consuming. One way to prevent this would
be to use complete dictionaries for indexing, but this would result in huge
indexes. Another drawback of using word based document representations is
their sensitivity to spelling variations/errors. An alternative representation
method is based on so-called n-grams. This brings us to our first research
question:

10

1.2. DISSERTATION RESEARCH

Do n-grams have the potential to provide document representa-
tions more suited to adaptive information filtering than tradi-
tional methods of representation?

Chapter 2 provides an in-depth introduction to n-grams. Various ways in
which they can be used for obtaining document representations are listed as
are a number of other applications. A set of conditions are introduced that
need to be satisfied in order for n-grams to have the potential to outperform
traditional methods of representation. Extensive bibliographic references on
the subject of n-grams are provided. Next, a detailed review of the employ-
ment of n-grams for textual representation is presented. The Latin alphabet
plus space delimiter is shown to satisfy the above mentioned conditions. Ad-
vantages of using n-grams over this alphabet are provided and the Reuters-
21578 text categorization collection is introduced as the data set employed
in the dissertation research. Some preprocessing methods for textual docu-
ments are indicated and a classification experiment is described illustrating
the baseline performance of letter trigrams. This section is followed by a look
at employing n-grams for phonetic representation. Phonetic alphabets are
shown to satisfy the n-gram usability conditions mentioned earlier. Details
on obtaining the topical phoneme encoded spoken document dataset required
for our experiments are furnished, as are advantages of using n-grams over
a phonetic alphabet. A classification experiment is described illustrating the
baseline performance of phoneme n-grams for varying values of n.

1.2.2 Adaptation

In order to adapt to the changing information needs of the user, interaction
with that user is necessary. Input from the user is needed with respect to
two important issues. First of all, input is required concerning the user’s
interests, and, secondly, the user must indicate which objects have been
clustered correctly and which incorrectly. One possibility is that the clusters
themselves represent the user’s interests.

In Chapter 2 it is argued that weighted n-gram representations are nec-
essary to improve the baseline performance of letter and phoneme n-gram
classification. The weights indicate relative importance of particular n-grams
in the classification process. As the interests of a user change, or changes oc-
cur in the data streams being filtered, the optimal set of weights changes too.
Therefore, an incremental weight optimization method is required to “learn”

11

CHAPTER 1. INTRODUCTION

the optimal weights for each user and continuously adapt them. This leads
us to a number of research questions:

Do machine learning techniques have the potential to satisfy the
specific requirements of adaptive information filtering systems?

How can machine learning techniques be employed to optimize
the weights associated with n-grams in n-gram document repre-
sentations?

What type of evolutionary algorithm is capable of addressing the
specific requirements of adaptive information filtering?

What degree of improvement in classification results can be achieved
through the use of weighted n-gram document representations?

We attempt to address these questions by exploring n-gram document rep-
resentations in combination with two machine learning techniques, namely
evolutionary computation and neural computation.

Chapter 3 provides an introduction to evolutionary computation: how it
works, what some of its advantages and disadvantages are, and from which
computational models the field originated. The core of the chapter is the
derivation of the two-pool Classification Evolutionary Algorithm (CEA) de-
veloped in the course of the dissertation research. It has been specifically
designed to optimize incremental classification algorithms suitable for em-
ployment in AIF systems. Their suitability rests on their incremental nature
which addresses the temporal aspect of AIF systems. The chapter continues
with a description of the evolution component as employed in our research,
as well as implementation details. This is followed by a description of an
experiment illustrating the two-pool CEA applied to simulated documents.

A historic overview of evolutionary computation in the information sci-
ences is set out in Chapter 4. The two-pool CEA introduced in Chapter 3
is employed by the AIF simulation system constructed as part of the disser-
tation research. After presenting a schematic overview and a more detailed
algorithmic overview, the parameters of the AIF simulation system are ex-
plained in-depth. Some experimental results are then provided and plots are
shown comparing the results. This is followed by a comparison of the two-
pool CEA and related research employing the k nearest neighbours classifier
and a genetic algorithm.

12

1.2. DISSERTATION RESEARCH

Chapter 5 provides an introduction to neural computation by describ-
ing some common types of neural network architectures and their dynamics.
A number of learning rules are listed and the stability-plasticity dilemma is
formulated. This is followed by a historic overview of neural networks in
the information sciences. Next, the neural network simulation system con-
structed as part of the dissertation research is explained in-depth. The neu-
ral network and its dynamics are then described, followed by an algorithmic
overview of the system. A section containing some experimental results for
letter and phoneme bigrams and trigrams comes next. Plots are displayed
which reveal that performance improves over time as the neural networks
learn; these plots also permit comparisons to be made among the results.
The effect of the parameter n and the learning rate are measured in sepa-
rate experiments. Finally, the neural network results are compared with the
evolutionary computation results of Chapter 4.

Chapter 6 consists of three parts. The first part presents a summary of
the most important results as reported in this dissertation. The second part
answers the research questions posed in this section. The third part makes
some suggestions with respect to future research. Appendix A describes the
C++ n-gram class library developed in the course of the dissertation research.
Appendix B explains what Alphabet Index Lists (AIL) are and provides the
source code of a Text to Latin AIL converter and of a Text to Phoneme
AIL converter. Finally, Appendix C provides the mathematical proof of a
statement made in Chapter 2.

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

Document representations
employing n-grams

Synopsis

This chapter introduces n-grams. They can be employed to obtain document
representations for a wide variety of document types and have advantages
over traditional document representations that are especially pertinent for
the application of adaptive information filtering.

A short introduction to representing documents in vector spaces is given
in Section 2.1, followed by a detailed introduction to n-grams, how they can
be employed to represent documents in vector spaces, and a summary of
their many other applications, in Section 2.2. The advantages of n-gram
document representations over more traditional document representations
are expounded and criteria provided for evaluating how well suited a partic-
ular n-gram representation is for a given document type.

This dissertation covers adaptive information filtering of textual and pho-
netic document types. Section 2.3 and Section 2.4 describe in detail the n-
gram representations of these respective document types and demonstrate
their suitability to such representation utilizing the criteria earlier provided.

While the n-gram document representations introduced in Section 2.3
and Section 2.4 are highly effective in certain restricted domains, for the ap-
plication of adaptive information filtering they fall short of what is required
for practical utilization. The premise of this dissertation is that this limita-
tion can be overcome by associating weights with the n-grams, contingent

15

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

on finding the right weights. Weighted n-gram document representations are
presented in Section 2.5; finding the right weights will be the subject matter
of the entire remainder of the dissertation!

The storage of n-gram document representations is not at all trivial, and
is the focus of Section 2.6. This section also introduces the C++ n-gram
class library that was developed in the course of the dissertation research.
It is described in detail along with its source code in Appendix A. Finally,
Section 2.7 contains the chapter conclusions.

2.1 Representing documents in vector spaces

Documents are sequences of symbols conveying information. The nature
of the information conveyed determines the topic, or topics, the document
is about. In information filtering a profile representing a user’s long-term
information requirements is maintained. As documents appear in certain
targeted data streams, they are compared with this profile, filtering those
of potential interest out and presenting them to the user. Some kind of
similarity measure is required in order to compare profiles and documents.
Optimally, we would like to measure conceptual similarity, because this would
be closest to our own perception of measuring similarity. An understanding
of the semantics of the documents is required in order to measure conceptual
similarity. While this is not yet feasible ([Sch93a], page 140), we can estimate
it by applying a metric to syntactic representations of profiles and documents.
The availability of transformations from profile and document space to one
particular vector space would permit using a metric in that vector space to
compute this estimate.

One way to represent profiles is by a set of topics. Documents are classified
and if they are found to match one of the topics they are filtered out and
presented to the user as belonging to one of the user’s topics of interest. A
topic can be represented as an average of the vector space representations of
documents known to belong to that topic. This has the great advantage that
profile and document space are one and the same, requiring only a single
transformation to a vector space instead of two. Traditionally, computing
term frequency distributions has been used for this transformation [Rij79].
In this dissertation we will examine the use of n-gram frequency distributions
instead.

Once one has determined a transformation from document space to vector

16

2.2. INTRODUCTION TO N -GRAMS

space, the similarity of documents can be estimated by applying a metric to
the vector representations of the documents. Consider two documents, d
and e. Let the vectors ~d = (d1, d2, . . . , dh) and ~e = (e1, e2, . . . , eh) be their
respective vector representations, with h being the dimension of the vector
space. The Minkowski 1-norm is defined as follows:

|~d| =
h∑

i=1

|di| (2.1)

Let ~d = (d1, d2, . . . , dh) with di = di/|~d| for i = 1, 2, . . . , h and ~e =
(e1, e2, . . . , eh) with ei = ei/|~e| for i = 1, 2, . . . , h, be their respective nor-
malized corresponding vectors. The vector representations employed in the
dissertation research are based on occurrence frequencies and are therefore
not length independent. Normalizing ensures that the length of a document
does not influence its vector representation. The similarity between d and e

can then be estimated by applying a metric to ~d and ~e. In this dissertation
the Minkowski `p-metric will be employed:

`p(
~d,~e) = p

√√√√√
h∑

j=1

(dj − ej)p (2.2)

In particular two special cases are used, namely for p equal to one which
is called the Manhattan metric, and for p equal to two which is called the
Euclidean metric. For an in depth overview of measuring in the information
sciences see [BMK94].

We can employ a classification algorithm to determine which topic belong-
ing to a user profile represents a particular document best. In the dissertation
research the nearest cluster algorithm (Algorithm 1) was used for classifying.
Given a document vector and the cluster prototype vectors which represent
the centers of the clusters, the closest cluster is returned by computing the
distance of the document vector to each cluster prototype vector.

2.2 Introduction to n-grams

Our definition of n-grams is a slightly modified version of the one given in
[Coh97]:

17

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

Algorithm 1 Nearest cluster

k ← number of clusters
C = (~c1, ~c2, . . . , ~ck) ← cluster prototype vectors
~d ← document vector
smallest dist ←∞
for i = 1, 2, . . . , k do

dist ← `p(~ci, ~d)
if dist < smallest dist then

smallest dist ← dist
closest cluster ← i

end if
end for
result ← closest cluster

Definition 2.1 Given a sequence of tokens S = (s1, s2, . . . , sN+(n−1)) over
the token alphabet A with N and n positive integers, an n-gram of the se-
quence is an n-long subsequence of consecutive tokens. The ith n-gram of S
is the sequence (si, si+1, . . . , si+n−1). Note that there are N such n-grams in
S.

The main difference between our definition and Cohen’s definition is that
Cohen employs the term symbols without specifying a symbol alphabet, while
we employ the term tokens and specify the token alphabet A.

Let |A| be the size of A and A(n) the number of unique n-grams over A.
A(n) can be computed as follows:

A(n) = |A|n (2.3)

The use of n-grams offers an intuitive, yet powerful, method of represent-
ing many different kinds of documents in vector space. There are various
methods for representing documents using n-grams. An n-gram occurrence
array (also called a non-positional binary n-gram array) is an n-dimensional
array of size A(n) whose elements represent all possible n-grams. The value
of each element in the array is set to either 1 or 0 depending on whether
the represented n-gram occurs or not. Such an array does not indicate the
position of n-grams within words. Conversely, a set of positional binary n-
gram arrays captures this information by maintaining for each n-gram an
n-dimensional array in which the value of (i1, i2, . . . , in) is set to 1 if and

18

2.2. INTRODUCTION TO N -GRAMS

only if the tokens appear in at least one word in positions i1, i2, . . . , in re-
spectively. While these two methods have been used to represent predefined
lexicons for the use of spelling error detection ([Kuk92b], page 381), they do
not capture sufficient information for document comparison. A third method
is to compute n-gram frequency distributions by counting the number of oc-
currences of all n-grams in a document and storing those values in a vector.
This method produces representations suitable for document comparison and
is employed in this dissertation. The similarity between documents can then
be estimated using the Minkowski `p-metric (see Equation 2.2 on page 17).

Let ~d and ~e be n-gram frequency distribution vectors with di ≥ 0 and ei ≥ 0
for i = 1, 2, . . . , h, then the dimension of the vector space is A(n). This
yields:

`p(
~d,~e) = p

√√√√√
A(n)∑

j=1

(dj − ej)p (2.4)

Computing the traditional term frequency distribution is a special case
of determining the n-gram frequency distribution, namely where the token
alphabet contains all the terms occurring in all the documents that need
to be classified, and then computing the 1-gram distribution. In 1-gram
analysis the occurrence of single tokens is determined, in 2-gram analysis
that of pairs of tokens, in 3-gram analysis that of triplets, etc. When talking
about a specific value of n, especially for lower values of n, its Latin name
is often used instead of the numeric value; for example, 2-grams are often
called bigrams, 3-grams trigrams, 4-grams quadgrams, but 5-grams usually
just 5-grams.

Documents need not be restricted to text. Speech can be transformed
employing an alphabet of phonemes, pictures employing an alphabet of 3x3
pixel combinations, musical scores employing an alphabet of musical symbols,
etc. One of the criteria for composing a token alphabet is the requirement
that the object to be vectorized can be described as a sequence of tokens
contained in the alphabet. So, for instance, if your object happens to be
a musical score it would make sense to select musical notes and symbols
for inclusion in your alphabet, but it would probably not make sense to in-
clude words (unless, of course, the musical score contained lyrics!). Because
traditionally n-grams have been used to vectorize textual documents using
the Latin alphabet (plus space delimeter) as token alphabet, many research
papers use a narrower definition which does not mention tokens nor token

19

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

alphabets, but is equivalent to the above definition employing the Latin al-
phabet as token alphabet. Examples of the use of n-grams for representing
music can be found in [UZ98, Dow99, UZ99].

When the following two conditions are met, n-grams have the potential
to outperform the traditional term frequency distribution:

1. The token alphabet is relatively small.

2. The token alphabet is representative.

The first condition is relative to the number of terms used in the traditional
term frequency distribution, which is in the rule quite large. The second
condition is to ensure that the original document is sufficiently represented
by the tokens of the token alphabet to make comparison based on n-grams
of those tokens feasible.

Document representation is but one of the many varied applications of n-
grams. In [BS01] n-grams are listed as a method for matching medical records
by applying n-gram analysis to record fields. And in [Mar00] n-grams are
employed for computer security, in specific for computational immunology.
It is stated in [Mar00] that:

Some recent advances in intrusion detection are based on de-
tecting anomalies in program behavior, as characterized by the
sequence of kernel calls the program makes.

Tokens are assigned to the different kernel calls. The sequences of kernel calls
can then be expressed as strings of tokens. The n-grams occurring in those
token strings are determined during a training phase. In operational mode
the then occurring kernel-call n-grams are compared to the ones generated
during training. A few mismatches may simply be due to the training not
having been exhaustive of all possible normal behavior n-grams, but a large
number of mismatches is a good indicator of an attack.

The scientific literature contains many more applications of n-grams,
such as spelling error detection and correction [ME62, MC75, Ull77, ZPZ81,
DeH82, AFW83, CVBW92, Kuk92a, Kuk92b, ZD95], optical character recog-
nition [Rav67, RE71, RH74, Neu75, HRF76, HS82, HSV87, Sen94], text com-
pression [Rub76, Wis87, Krz95], language identification [Sch91a, SR96], au-
tomated text categorization [CT94, HD94, Huf95, Dam95, Tau96c, Lan00a,
Lan00b, CMS01], information retrieval [SH73, Wil79, DeH82, TS88, Com90,
Ada91, AP92, Sch93a, Cav94, Dam95, ELW95, LA96, PPF96, MM97, LCP99,

20

2.3. TEXTUAL REPRESENTATION

MSL+99, MSLN00] and information filtering [Cav93, Tau96b, Tau96a, TKSK97,
TSKK97, TSK99a, TSK99b, TKSK00, TSK00, Lan00a, Lan00b]. Other ar-
eas of application for n-grams with corresponding references may be found
in [Kuk92b, Coh97, RW98]. For an extensive n-gram bibliography see the n-
gram clearinghouse1 or The Collection of Computer Science Bibliographies2.

2.3 Textual representation

The employment of n-grams for textual representation is not a novel concept.
In 1979, for instance, such was proposed in [Wil79]. And as early as 1973
the use of n-grams had already been suggested for information retrieval, for
example in [SH73]. As far back as 1962 n-grams had already been applied
to spelling error detection and correction in [ME62]. And in ([Coh97], page
292) a reference is given for employing n-grams for text compression dating
back to 1951.

Representing textual documents with n-gram frequency distributions is,
however, a very computational and memory intensive technique — especially
for higher values of n — and it was not until the early 1990’s that sufficient
computing power was available for making this a practical approach. The
reason for this is the exponential explosion associated with increasing the
value of n. For instance, if one employs a compact token alphabet, say let
A be the Latin alphabet plus the space delimiter, then |A| = 27. If one dis-
tinguishes between upper and lower case letters, and also places significance
in numerical digits, then |A| = 63. Table 2.1 gives an idea of how fast A(n)
increases with n. To deal with this exponential increase in size it is necessary
to employ special techniques such as sparse vectors and hash tables. How-
ever, employing the Latin alphabet plus the space delimiter fulfills both the
conditions set in Section 2.2:

1. |A| = 27 versus many thousands or even tens of thousands of terms in
a traditional term frequency distribution

2. the vast majority of text is composed of letters and spaces

Therefore it has the potential to outperform traditional term frequency dis-
tribution based methods. In the rest of this dissertation the token alphabet

1http://www.liacs.nl/home/dtauritz/ngram/
2http://liinwww.ira.uka.de/bibliography/

21

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

Table 2.1: Exponential n-gram explosion

n 27n 63n

1 27 63
2 729 3,969
3 19,683 250,047
4 531,441 15,752,961
5 14,348,907 992,436,543
6 387,420,489 62,523,502,209

consisting of the Latin alphabet and delimiter will be denoted by T . Here
are some of the advantages to using n-grams over T :

• Robustness: Relatively insensitive to spelling variations/errors

• Completeness: Token alphabet known in advance

• Domain independency: Language and topic independent

• Efficiency: One pass processing

• Simplicity: No linguistic knowledge is required

We experimented using the Reuters-21578 text categorization collection.
The documents in this collection appeared on the Reuters newswire in 1987.
The collection is downloadable from David D. Lewis’ professional home page3.
The documents are in SGML format and tagged for the purpose of splitting
into training and test sets as used in published studies concerning text clas-
sification. A subset of the collection suited our purposes. First of all it was
necessary that a document be indexed with only one topic. This limited the
subset to 9494 documents. And, secondly, it was required that the docu-
ment be a regular text document. This further limited the subset to 8654
documents. From that subset only those documents belonging to the ten
most frequently occurring topics in the subset, as listed in Table 2.2, were
employed.

Preprocessing textual documents can improve the classification results.
A number of methods are:

• Stop word filtering: filters out common words such as the.

3http://www.research.att.com/~lewis/

22

2.3. TEXTUAL REPRESENTATION

Table 2.2: Subset of Reuters-21578 used in experiments

tag topic size

acq Mergers/Acquisitions 2125
coffee Coffee 114
crude Crude Oil 355
earn Earnings and Earnings Forecasts 3735
interest Interest Rates 211
money-fx Money/Foreign Exchange 259
money-supply Money Supply 97
ship Shipping 156
sugar Sugar 135
trade Trade 333

• Stemming — also called base form reduction — is the process of reduc-
ing words to their stems, typically accomplished through suffix strip-
ping [Pai90].

• Conflation is the process of grouping together non-identical words which
refer to the same principal concept [Pai90].

We employed stop word filtering, but neither stemming nor conflation,
in our experiments. See Table 2.3 for the stop words used. All non-letters
were treated as spaces and all sequences of multiple spaces were replaced by
a single space.

The following experiment was conducted to illustrate the performance
of n-gram representations for classifying textual documents. Given a set
of classes, the cluster prototype vectors were initialized by averaging a cer-
tain number of normalized document vectors. Note that the resulting clus-
ter prototype vectors are automatically normalized; since we employed the
Minkowski 1-norm for normalization (Equation 2.1), all the elements of a
weighted frequency distribution vector were larger or equal to zero, and at
least one element was larger than zero. The proof is given in Appendix C.
Documents from those classes were chosen at random and the nearest clus-
ter algorithm (Algorithm 1 on page 18) was executed to determine which
class a document had been chosen from. The number of times this was done
correctly divided by the total number of tries, constituted the performance.
This n-gram cluster experiment algorithm is shown in Algorithm 2.

23

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

Table 2.3: Stop words removed during preprocessing

about after again all also always am an
and any are as at be been before
between beyond both but by can come could
did do does each every first for from
get go had has have he here how
if in into is it its last let
like made make makes many may me mine
more most much my never no not now
of off on one only or other our
ours out over reuter reuters said same say
she should so some such than that the
their them then there these they this to
too try until use very was we went
were what when where which who whose why
will with without would yes yet you your
yours

Algorithm 2 n-gram classification experiment

k ← number of classes
l ← number of documents to average for cluster initialization
m ← number of documents to classify for each class
for all k classes do

~ci ← normalized average of l documents belonging to class i
end for
for all k classes do

for all m documents belonging to current class do
let d be the document
compute normalized n-gram frequency distribution vector ~d

cluster ← nearest cluster (k,C,~d)
if class of d equals cluster then

score ← score + 1
end if

end for
end for
result ← score/(k ∗m)

24

2.4. PHONETIC REPRESENTATION

Table 2.4: Comparison of trigram classification with and without stop word
filtering. The results are in the form of percentage correctly classified.

Topics Unfiltered Keywords removed

Coffee, trade 99.0 98.0
+ crude 95.3 94.7
+ money-fx 89.5 90.0
+ sugar 88.4 89.6
+ money-supply 84.7 85.3
+ ship 82.0 82.3
+ interest 78.3 79.8
+ acq 79.1 79.3
+ earn 78.6 79.0

The results of running the n-gram cluster experiment algorithm (Algo-
rithm 2) for the number of classes ranging from 2 to 10, the number of
documents to average for cluster initialization set to 30, the number of doc-
uments to classify set to 50, n = 3 and p = 1 (Manhattan metric) on this
dataset, both without any preprocessing and with stop word filtering, are
shown in Table 2.4. The second row displays the results of the 2-topic ex-
periments, the topics being coffee and trade. Each following row adds one
topic, indicated with + < topic >. Thus the third row shows the results of
the 3-topic experiments, the topics being coffee, trade, and crude.

Stop-word filtered n-gram clustering has a small overall advantage over
unfiltered n-gram clustering, therefore filtering will be employed in this re-
search.

2.4 Phonetic representation

Although there has been a substantial amount of research into word and
letter n-grams going back for several decades, the use of phoneme n-grams is a
more recent development. Sequences of phoneme symbols have been analyzed
employing n-grams to guess missing phonemes in [YH92]. And phoneme n-
grams have been employed in spoken document retrieval in [NWZ00, Ng00].

In most languages written text does not correspond to its pronunciation,
so that in order to describe correct pronunciation some kind of symbolic
representation is needed. Every language has a different phonetic alphabet,

25

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

though the International Phonetic Association4 has attempted to create a
universal phonetic alphabet, aptly named the International Phonetic Alpha-
bet. This alphabet is depicted in Figure 2.15. It consists of the following
seven sections: consonants (pulmonic), consonants (non-pulmonic), vowels,
diacritics, suprasegmentals, tones & word accents, and other symbols. For a
detailed description of this alphabet, see [Ass99].

All human languages can be represented by a phonetic alphabet ranging
in size from about 13 to 85 phonemes. The number of phonemes in English
and most other languages cannot be defined exactly, due to differences in
dialect and ambiguity as to how precisely to define a phoneme. However,
most linguists put the number of phonemes in English at around 40.

Phonetic alphabets satisfy the conditions set in Section 2.2:

1. 13 ≤ |A| ≤ 85 versus many thousands or even tens of thousands of
terms in a traditional term frequency distribution

2. per definition all speech can be represented by phonemes

In order to experiment with classifying spoken documents through the use
of phoneme n-grams, a topical phoneme encoded spoken document dataset
is required. Not finding this readily available we considered two options,
namely:

1. obtain a topical spoken document dataset and software for transforming
it to phoneme space

2. simulate the previous option by transforming a topical textual docu-
ment dataset to phoneme space

We decided on the latter option for two reasons. First of all, we already had
a topical textual document dataset, namely the Reuters-21578 text catego-
rization collection introduced in the previous section. And secondly, given a
word-to-phoneme dictionary this transformation can be easily implemented,
therefore making it unnecessary to obtain transformation software. Em-
ploying the Reuters-21578 dataset has the added advantage of facilitating
comparisons between the classification of the original textual documents and
the classification of their phonetic transformations. The transformation was

4http://www.arts.gla.ac.uk/IPA/ipa.html
5Image provided by the International Phonetic Association (c/o Department of Lin-

guistics, University of Victoria, Victoria, British Columbia, Canada)

26

2.4. PHONETIC REPRESENTATION

Figure 2.1: International Phonetic Alphabet

27

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

accomplished by processing the stop-list filtered documents one at a time, re-
placing all the words with their phonetic counterparts (unknown words were
skipped). The Carnegie Mellon University Pronouncing Dictionary6 was em-
ployed to this end. This is a machine-readable pronunciation dictionary for
North American English that contains over 125,000 words and their tran-
scriptions. Version 0.6d was stripped of all entries containing symbols other
than letters, leaving 112,129 words. It employs 39 phonemes and three types
of lexical stress, namely no stress, primary stress and secondary stress. We
retained all 39 phonemes, but discarded the lexical stress.

In the rest of this dissertation the token alphabet consisting of the above
indicated 39 phonemes and delimeter will be denoted by P . The advantages
of employing n-grams over P are similar to the advantages of employing
n-grams over T (see Section 2.3), namely:

• Robustness: Relatively insensitive to pronunciation variations/errors

• Completeness: Token alphabet known in advance

• Domain independency: Language7 and topic independent

• Efficiency: One pass processing

• Simplicity: No linguistic knowledge required beyond speech-to-phoneme
transformation

To illustrate the performance of n-gram representations for classifying
phonetic documents, the experiment described in Section 2.3 was repeated,
this time using P and the phonetically transcribed Reuters dataset. Results
for varying values of n are shown in Table 2.5.

The results indicate that phoneme unigrams are not representative enough
for classification purposes, but that n-grams for higher values of n are. While
trigrams have an advantage over bigrams, quadgrams offer no further im-
provement, sometimes even constituting a disadvantage. Considering that
the computational time increases exponentially with n, it would seem that
bigrams and trigrams clearly offer the best performance and will therefore
be the main focus of the research reported in this dissertation.

6http://www.speech.cs.cmu.edu/cgi-bin/cmudict
7language independent under the condition of a shared alphabet

28

2.5. WEIGHTED REPRESENTATION

Table 2.5: Comparison of phoneme n-gram clustering for n = 1, 2, 3, 4. The
results are in the form of percentage correctly classified.

Topics n = 1 n = 2 n = 3 n = 4

Coffee, trade 82.0 99.0 100.0 100.0
+ crude 72.7 92.0 94.7 94.0
+ money-fx 69.5 87.5 92.0 92.0
+ sugar 71.6 87.6 90.0 90.0
+ money-supply 70.3 83.3 85.3 85.0
+ ship 63.1 79.4 82.3 80.9
+ interest 58.0 75.5 79.0 77.3
+ acq 54.2 74.9 79.3 78.2
+ earn 53.8 74.0 78.6 78.0

2.5 Weighted representation

As shown in Table 2.4, classification accuracy quickly drops as more classes
must be distinguished. For real world use we need to have higher accuracy
rates. This can be accomplished by associating weights with the n-grams.

Let ~w = (w1, w2, . . . , wA(n)) with 0 ≤ wi ≤ 1 for i = 1, 2, . . . ,A(n) be the
weight vector representing the relative importance of the different n-gram
frequencies. The weighted n-gram frequency vectors

−→
dw = (dw

1 , dw
2 , . . . , dw

A(n))

and
−→
ew = (ew

1 , ew
2 , . . . , ew

A(n)) are defined as follows: dw
i = diwi and ew

i = eiwi

for i = 1, 2, . . . ,A(n). The normalized weighted n-gram frequency vectors−→
dw = (dw

1 , dw
2 , . . . , dw

A(n)) and
−→
ew = (ew

1 , ew
2 , . . . , ew

A(n)) are defined as follows:

dw
i = dw

i /|−→dw| and ew
i = ew

i /|−→ew| for i = 1, 2, . . . ,A(n). The similarity between

d and e may then be estimated by applying the Minkowski `p-metric to
−→
dw

and
−→
ew:

`p(
−→
dw,

−→
ew) = p

√√√√√
A(n)∑

j=1

(dw
j − ew

j)p (2.5)

The central research theme of this dissertation will be the search for an
algorithm that optimizes ~w under the constraints imposed by the application
area of Adaptive Information Filtering.

29

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

Table 2.6: Letter n-grams occurring in the part of the Reuters dataset em-
ployed.

n 27n # occurring % occurring

1 27 27 100.0000
2 729 676 92.7298
3 19,683 8,013 40.7103
4 531,441 40,197 7.5638
5 14,348,907 124,225 0.8657
6 387,420,489 290,569 0.0750

Table 2.7: Phoneme n-grams occurring in the part of the Reuters dataset
employed.

n 40n # occurring % occurring

1 40 40 100.0000
2 1,600 1,095 68.4375
3 64,000 10,303 16.0984
4 2,560,000 45,958 1.7952
5 102,400,000 156,200 0.1525
6 4,096,000,000 360,979 0.0088

2.6 Storage and retrieval

All n-gram frequency distributions are vectors of size A(n) and can, there-
fore, be stored in arrays of the same size in a straightforward manner. This
is by far the easiest way to implement their storage and for 1 ≤ n ≤ 2 also
computationally efficient both in terms of processing speed and space require-
ments. For n ≥ 3, however, the vectors become ever more sparse in typical
application domains such as text or phonetics representation. This is illus-
trated by Table 2.6 and Table 2.7. Processing speed and space requirements
will, therefore, be severely and adversely affected unless more sophisticated
data structures are employed for n ≥ 3.

There are various methods for efficiently storing sparse vectors, differing
in complexity, speed and space requirements, dependent on the particular
application demands. The simplest method is to store the non-zero values
of an array together with their indices in a list. For example, the vector
(0,0,0,0,9,0,0,3,0) can be stored as {(5,9),(8,3)}. While this greatly reduces

30

2.7. CHAPTER CONCLUSIONS

the storage space requirements, it also introduces quite a bit of overhead, both
in terms of the storage space required for the indices, as well as the computa-
tional overhead associated with accessing a specific n-gram frequency value.
This can be overcome by employing hash tables, and in particular for n-
gram vectors, recursive hash tables [Coh97]. Although recursive hash tables
offer very high performance and require minimal storage space, they do still
involve computational overhead, namely executing a hash function and re-
solving collisions. An alternative approach that avoids such computational
overhead at the cost of allowing a certain amount of sparseness is the master
index method. In this method a master index stores n-gram indices for all
n-grams encountered and all vectors are stored as arrays of the same size
as the master index, their elements associated with the corresponding mas-
ter index element. For example, if the master index at a particular time is
(23,57,89,139,254), then the array (0,4,0,0,13) represents a document which
consists of 4 n-grams with index 57 and 13 n-grams with index 254. The
great advantage of this method is that operations on the vectors, for in-
stance adding, incur no overhead. Encountering a not yet indexed n-gram
involves updating the master index and inserting zeros in the correspond-
ing location of all stored arrays. It is therefore important to minimize such
occurrences by proper initialization.

For the research described in this dissertation a custom C++ n-gram class
library8 was developed employing the master index method. This library de-
fines the class ngramdistribution and some supporting functions, types and
constants. It supports the use of n-gram distributions for various applica-
tions. The value of n as well as the token alphabet is user definable. There
is full support for exception handling through the use of custom exceptions
of the type ngram exception. A detailed description is given in Appendix A.

2.7 Chapter conclusions

This chapter provides an introduction to representing documents in vector
space and measuring similarity between documents and user profiles employ-
ing the Minkowski `p-metric (Equation 2.2 on page 17). It further introduces
the nearest cluster algorithm (Algorithm 1 on page 18) as the classification
algorithm employed in the dissertation research. This is followed by an intro-
duction to n-grams and the various ways they can be employed to represent

8http://www.liacs.nl/home/dtauritz/ngram/

31

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

documents. In particular, n-gram frequency distributions are discussed as
the method of representation employed in the dissertation research. The
following criteria are provided for evaluating the effectiveness of an n-gram
token alphabet: it should be small and it should be complete. Examples of
many different applications of n-grams are provided along with an extensive
list of references.

The next part of the chapter examines in detail the employment of n-
grams with the Latin alphabet as token alphabet for representing textual
documents. This type of n-gram will be further referred to as a letter n-
gram. Advantages of employing letter n-grams for this purpose are listed and
the Reuters-21578 text categorization collection is introduced as the dataset
employed in our experiments. An experiment demonstrating the potential of
letter n-grams for the classification of textual documents is described. The
algorithm (Algorithm 2 on page 24) is presented and the results displayed
in Table 2.4 (page 25). The results show that when few classes are involved
the classification accuracy is very high, but that as classes are added this
accuracy drops considerably. They also show that, excepting experiments
with few classes, filtering out common words such as the and and provides a
small improvement in accuracy.

This section is followed by a section on the employment of n-grams with
a token alphabet consisting of phonemes. This type of n-gram will be further
referred to as a phoneme n-gram. The International Phonetic Alphabet is
introduced and the Carnegie Mellon University Pronouncing Dictionary is
presented as the key to obtaining our phoneme encoded dataset. The ad-
vantages of employing phoneme n-grams are indicated and the results of an
experiment demonstrating the classification of spoken documents for vari-
ous values of n are displayed in Table 2.5 (page 29). The best results are
obtained for trigrams, followed by bigrams. Unigrams provide insufficient
discriminating power and quadgrams perform slightly worse than trigrams
while requiring exponentially more computational resources. Just as with
the letter n-gram experiment, classification accuracy drops considerably as
the number of classes is increased.

The next part of the chapter introduces weighted n-grams as a potential
solution to the problem of insufficient classification accuracy. Optimizing
these weights is the focus of the entire remainder of the dissertation. The
last part of the chapter is concerned with the storage and retrieval of n-
grams. For larger values of n this is not a trivial problem as it involves huge
sparse vectors. Various methods such as indexed lists, hash tables and the

32

2.7. CHAPTER CONCLUSIONS

method employed in our research, master indexed lists, are described. This
section concludes with the introduction of the C++ n-gram class library.

33

CHAPTER 2. DOCUMENT REPRESENTATIONS EMPLOYING
N -GRAMS

34

Chapter 3

Two-pool evolutionary
algorithm

Synopsis

It is our aim to optimize the weight vector ~w in order to improve classification
accuracy for the application area of Adaptive Information Filtering (AIF).
We do not have an a priori solution to this optimization problem. And to
complicate matters further, the optimal value of ~w changes over time due to
the nature of AIF. Therefore, classic optimization techniques are inadequate
due to the size of the search space. This chapter introduces Evolutionary
Computation (EC) as a method capable of efficiently approximating optimal
values of ~w.

A short introduction to evolutionary computation is given in Section 3.1,
and some advantages and disadvantages are noted. In Section 3.2 some back-
ground to the field is offered by describing the four main streams from which
the field originated: Genetic Algorithms, Evolutionary Programming, Evo-
lution Strategies, and Genetic Programming. This is followed in Section 3.3
by a detailed derivation of the general purpose two-pool classification evolu-
tionary algorithm developed in the dissertation research. The component of
the algorithm responsible for performing an actual step of the evolutionary
process (selection, reproduction, mutation and competition) is left undefined
as it is specific to the particular problem domain in which the algorithm is ap-
plied. Section 3.4 describes the specification of this component as employed
in the domain of AIF. Details concerning representation and related matters

35

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

are also provided. Section 3.5 illustrates the working of the two-pool classi-
fication evolutionary algorithm with the evolutionary component described
in Section 3.4. This is done in the form of an experiment employing objects
generated on-the-fly. Section 3.6 contains the chapter conclusions.

3.1 Introduction to evolutionary computation

EC is the field that studies Evolutionary Algorithms (EAs). EAs are a class
of optimization algorithms which come in handy when no a-priori solutions
to a specific optimization problem are available. They work by evolving a
population of trial solutions employing techniques inspired by evolutionary
biology [Mic96, Fog95]. Some of their advantages are:

General purpose EAs are not problem specific; they show acceptable per-
formance for acceptable costs over a wide range of problems.

Complex problems EAs are capable of solving complex problems for which
no classical analytical method is available; they have the ability to deal
with large amounts of data, many free parameters, complex relation-
ships between the parameters, and many local optima.

Solution availability EAs are iterative optimizing algorithms; the best so-
lution found so far is always available, in contrast to the usual case
where no solution is available till the algorithm has terminated.

There are also some disadvantages, including:

Premature convergence EAs are prone to getting stuck in local optima;
for many EAs there is no guarantee that the optimal solution will be
found in finite time.

Computationally intensive EAs tend to be computationally intensive, es-
pecially when many free parameters are involved and the required pop-
ulation is large.

Parameter optimization Determining optimal values for the EA parame-
ters — those are the parameters that control the EA, not the problem
parameters being optimized — is very difficult and problem dependent.

36

3.1. INTRODUCTION TO EVOLUTIONARY COMPUTATION

The main components of an EA are initialization of the start population
plus those components associated with the evolutionary cycle: evaluation,
selection, reproduction, mutation and competition. See Figure 3.1 for a dia-
gram of the evolutionary cycle. Each member of a population consists of a

Figure 3.1: Evolutionary cycle

initialization

evaluation

selection

reproduction

mutation

competition

trial solution to a particular problem and, possibly, attributes such as age.
A trial solution is encoded in genes. The genes are represented by, for in-
stance, bits, integers or floating point numbers. There are various methods
for initializing the start population. It can be done, for example, randomly
or homogeneously. Sometimes specific knowledge is available allowing more
directed initialization, for instance knowledge gleaned from previous opti-
mization attempts. There are in general no rules for this, the best method
for a particular application must often be determined experimentally. To
evaluate the members of a population, it is necessary to determine their in-
dividual fitness. This is dependent on their genotype and their environment
and is computed using the so-called fitness function. In the next step of the
cycle, parents are selected to generate offspring. In most EAs population
members with a higher fitness have a correspondingly greater chance to be
selected. This causes selective pressure. The higher the selective pressure,
the faster the EA converges, but also the greater the chance that it converges
to a local optimum instead of to a global one. In the reproductive phase off-
spring are created by applying so-called genetic operators to the parents. A
genetic operator can be as simple as the duplication function, creating a du-
plicate of a parent, or a more complex operator such as performing crossover
on two (or more) parents. There are various ways of performing crossover,

37

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

but they all have in common that the genes of the offspring are obtained by
applying a function to the genes of the parents. In one-point crossover all
the genes up to a specific point called the crossover point are duplicated from
the one parent, all the genes after the crossover point from the other parent.
In uniform crossover each gene has an equal chance to be selected from each
of the parents. Which types of genetic operators are best depends on the
specific application and invariably needs to be determined experimentally.
After reproduction the genes of the offspring are mutated with a certain
probability. This introduces new genetic material into the population pool,
which allows new regions of the search space to be entered and reduces the
chance of premature convergence. In the last phase of the cycle the newly
expanded population is reduced in order to limit the population size. This
can be done in various ways, such as randomly, based on fitness or dependent
on an attribute such as age. For a comprehensive hands-on introduction to
EAs see [Mic96], for a more philosophical approach see [Fog95].

3.2 Background

The field of Evolutionary Computation has its origins in a number of different
models that, until recently, were studied independently and were not seen to
be instances of a generic model unifying the field. To this day the various
models maintain their own identities and supporters, although increasingly
the lines separating the models are fading. Some of the better known models
are:

Genetic Algorithms (GAs) Classical GAs were developed by John Hol-
land in the 1960’s and 1970’s. They operate on fixed-length binary
strings which encode the optimization problem and employ binary
crossover and mutation. Holland laid the theoretical foundations for
classical GAs in [Hol75].

Evolutionary Programming (EP) was originally developed by Lawrence
J. Fogel in the 1960’s. He co-authored the 1966 landmark publication
for the field [FOW66], in which finite state automata were evolved
to predict symbol strings generated from Markov processes and non-
stationary time series. Unlike classical GAs, classical EP employs no
prescribed type of representation. Instead of operating on encoded

38

3.3. DERIVATION OF TWO-POOL EA

problems, EP operates directly on the problem representation. Typi-
cally the only genetic operator employed is mutation. The mutation
operator makes changes to the representation according to a statistical
distribution in which minor changes are far more prevalent than major
changes.

Evolution Strategies (ES) were originally developed by Ingo Rechenberg
and Hans-Paul Schwefel in 1963. They were intended for real valued
function optimization employing multi-variate zero-mean Gaussian mu-
tations. While they are similar to EP, they differ in a number of ways.
For instance, EP typically employs stochastic selection while ES em-
ploy deterministic selection. And ES employ recombination, unlike EP.
Landmark publications in the field of ES include [Rec73] and [Sch81].

Genetic Programming (GP) was introduced in 1990 by John R. Koza
[Koz90]. GP is an automated method for creating a computer program
to solve a particular problem. This is done by evolving a population
of computer programs. These programs are expressed as parse trees,
rather than as lines of code. Because of this, Lisp is often used as
the programming language of choice. In GP the most important ge-
netic operator is recombination, implemented by exchanging randomly
selected subtrees in the individuals.

For an in-depth comparison of the first three models see [Bäc96]. The two-
pool classification algorithm derived in Section 3.3 and employed in the dis-
sertation research, as specified in Section 3.4, is inspired by the Evolutionary
Strategies approach. As with ES, the aim is to optimize problems encoded in
real-valued vectors. The same type of genetic operators are employed: Gaus-
sian zero-mean mutation and uniform crossover. Some of the differences are
in the selection process and the self-adaption component of ES that provides
local fine-tuning of the mutation rate. The use of separate child and adult
pools is also specific to our two-pool classification algorithm.

3.3 Derivation of two-pool EA

In this section we will consider the development of classification EAs (CEAs)
from a general perspective. However, in our case the members of a population

39

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

are weight vectors, the score of a member is the number of correctly classified
documents and its age is the total number of documents it has classified.

The set of objects to be classified will be denoted by S and the number
of objects in S with |S|. An object in S will be denoted by σ and c(σ) will
represent the class that σ maps to. The set P = {P1, P2, . . . , Ppop size}
is the population of trial solutions, with pop size a positive integer. For the
purpose of indexing the population members we define i as an integer between
1 and pop size. Two essential components of any CEA are the evaluation
of all the population members and, based on that, the evolvement of the
population. The evolvement component will be denoted with EVOLVE (P)
and will remain undefined as it is dependent on the application domain. The
evaluation component will be denoted with EVAL(S, P) and is defined as
follows:

EVAL(S, P) : ∀Pi ∈ P determine FITNESS(S, Pi) (3.1)

The result of classifying an object given a trial solution is either zero (incor-
rect) or one (correct). The result function is defined as follows:

RESULT(σ, Pi) =

{
0 if CLASSIFY (σ, Pi) 6= c(σ)
1 if CLASSIFY (σ, Pi) = c(σ)

(3.2)

The result function works by comparing the actual mapping of an object to
the mapping of that object computed using a trial solution. The function
which performs that computation is defined as:

CLASSIFY(σ, Pi) = the class σ maps to using Pi (3.3)

The fitness of a trial solution given an object set is the average score of that
trial solution on classifying all the objects in the object set. The range of
the fitness is from zero to one with zero being the worst (all classifications
incorrect) and one the best (all classifications correct). The fitness function
is defined as follows:

FITNESS(S, Pi) =

∑
σ∈S RESULT(σ, Pi)

|S| (3.4)

The static object set CEA can then be defined as given in Algorithm 3. First
P and S are initialized and the initial population evaluated. This is followed
by the main loop in which the population is consecutively evolved, then
evaluated. The loop terminates as soon as the termination condition is true.

40

3.3. DERIVATION OF TWO-POOL EA

Note that the efficiency of this algorithm can be enhanced by restricting the
evaluation of population members to newly added members only.

Algorithm 3 Static object set CEA

initialize P, S
EVAL(S,P)
while not termination condition do

EVOLVE(P)
EVAL(S,P)

end while

The initialization of P is performed by creating the start population and
initializing each individual in it. S is initialized by creating the set of objects
to be classified. The definition of the termination condition depends on
various factors, such as time and solution requirements. A fixed number of
loop executions puts an upper boundary on the required computational time,
but does not guarantee convergence to an optimal solution. On the other
hand, a termination condition based solely on the best solution found so
far leaves the computational time unbounded. The property of evolutionary
computation that at all times the best solution found so far is available, as
opposed to many classical algorithms which need to complete their entire
execution in order to compute a solution, is a key advantage.

3.3.1 Expanding object set

If S expands over time we can simply execute the static object set CEA
(Algorithm 3) after each expansion to find a mapping from object space to
class space at any given time. If the set of objects is smaller than the object
space and represents it better as it expands, then the mapping found by
the CEA will better approximate the mapping from object space to class
space as time progresses. In this case it is likely that the mapping found
at any particular time is a good approximation of the mapping to be found
the following time and therefore would make a good starting point for the
next search. Time will be denoted with τ and the object added to S at
τ = τ̂ with στ̂ . The expanding object set CEA is given in Algorithm 4.
First P and S are initialized, the initial population is evaluated, and τ is
set to 0. This is followed by an infinite loop in which first τ is increased by
one indicating a single time step, then an object is added to S, and finally

41

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

evolution takes place. Evolution works the same as with the static object
set CEA: consecutively the population is evolved, then evaluated, till the
termination condition is true. The comments with respect to the termination
condition are identical to those in the previous section.

Algorithm 4 Expanding object set CEA

initialize P, S
EVAL(S,P)
τ ← 0
loop

τ ← τ + 1
add στ to S
while not termination condition do

EVOLVE(P)
EVAL(S,P)

end while
end loop

3.3.2 Shifting window

There are a number of reasons why we may not want to use an ever expanding
set of objects to find a mapping from object space to class space. For one,
this requires an ever increasing amount of computational resources, both in
terms of memory and in CPU cycles. And secondly, the mapping may change
over time so that obtaining c(σ)’s might prove to be an expensive operation
or it is even possible that old c(σ)’s are not obtainable at all. In this case
we can impose a shifting window on S limiting the number of objects to be
used in the evolutionary process at any given time. The size of the shifting
window will be indicated with ω. Once |S| = ω the window starts to shift.
For each new object added to S, the oldest one is removed. The shifting
window CEA is given in Algorithm 5. First P is initialized, S is set to the
empty set, and τ is set to 0. This is followed by an infinite loop in which
first τ is increased by one indicating a single time step, an object is added to
S, and if now |S| > ω (true if τ > ω) the first added object to S is removed,
the population is evaluated, and then evolution takes place. Evolution and
its termination condition are again identical to the case of the static object
set CEA.

42

3.3. DERIVATION OF TWO-POOL EA

Algorithm 5 Shifting window CEA

initialize P
S ← ∅
τ ← 0
loop

τ ← τ + 1
add στ to S
if (τ > ω) then

remove στ−ω from S
end if
EVAL(S,P)
while not termination condition do

EVOLVE(P)
EVAL(S,P)

end while
end loop

3.3.3 Age

One thing we lose by employing a shifting window is the information with
respect to how well trial solutions performed on objects no longer contained
in S. And the smaller ω is, the greater this loss. We introduce the concepts
of member age and member score to preserve this information in our shifting
window CEA. The age of a member is defined as the number of population
generations since the creation of that member and is denoted with P age

i . The
score of a member is defined as the number of correct classifications it has
made since its creation and is denoted with P score

i . The fitness function is
now defined as:

FITNESS(Pi) =
P score

i

P age
i

(3.5)

And the evaluation component becomes:

EVAL(S, P) : ∀Pi ∈ P : ∀σ ∈ S : if σ = στ or Pi changed :

P age
i ← P age

i + 1, P score
i ← P score

i + RESULT(σ, Pi)

and compute FITNESS (Pi) (3.6)

43

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

3.3.4 Two pool

One of the consequences of the new way of determining fitness is that, as the
age of a member increases, so does its statistical reliability in approximating
the true fitness of a member. That is, its fitness if computed using S equal
to the entire object space. If, when producing offspring, the new member’s
score and age are set to zero, as opposed to basing them on those of its
parent(s), its statistical reliability plunges and time is needed to recover
some measure of reliability. In that case it is necessary to prevent the new
member from participating in the evolution process until it matures. This can
be accomplished by splitting the population into two pools, namely a child
pool P c and an adult pool P a with P = P c∪P a, |P c| the number of members
in P c , |P a| the number of members in P a and maturity age the age at which
members are moved from P c to P a. Note that this requires a modified
EVOLVE (P) function which restricts the selection and reproduction phases
to P a and adds the offspring generated from P a to P c. The two-pool CEA
is given in Algorithm 6. First P is initialized such that the population is
equal to the child pool and the adult pool is empty, S is set to the empty
set, and τ is set to 0. This is followed by an infinite loop in which first τ is
increased by one indicating a single time step, an object is added to S, and
if now |S| > ω (true if τ > ω) the first added object to S is removed, then
evolution takes place. While the termination condition of the evolution loop
is identical to that employed with the static object set CEA, the evolution
loop has changed. Instead of the entire population evolving, this is now
restricted to the adult pool. Thus, if the adult pool is empty, no evolution
takes place. And after evaluating the population, any children that have
reached maturity are moved to the adult pool.

3.3.5 Simplified two pool

A special case of the two-pool CEA (Algorithm 6) can be distinguished when
the shifting window size is set to one and the termination condition is set such
that the inner loop is executed only once for each outer loop. This results
in a considerable increase in the speed of the algorithm. This simplified
two-pool CEA is given in Algorithm 7. First P is initialized such that the
population is equal to the child pool and the adult pool is empty, and τ is
set to 0. This is followed by an infinite loop in which first τ is increased by
one, indicating a single time step, and then evolution takes place. Evolution

44

3.3. DERIVATION OF TWO-POOL EA

Algorithm 6 Two-pool CEA

initialize P such that P = P c and P a = ∅
S ← ∅
τ ← 0
loop

τ ← τ + 1
add στ to S
if (τ > ω) then

remove στ−ω from S
end if
while not termination condition do

if |P a| > 0 then
EVOLVE(P)

end if
EVAL(S,P)
for all Pi ∈ P c do

if P age
i ≥ maturity age then

move Pi from P c to P a

end if
end for

end while
end loop

45

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

is now implemented as a single instance of evolving the adult pool (if it is
not empty), evaluating the population on the current object, and moving
any children that have reached maturity to the adult pool. Note that the
evaluation component (Equation 3.6 on page 43) can be simplified; because
S = {στ} the condition if σ = στ or Pi changed is redundant.

Algorithm 7 Simplified two-pool CEA

initialize P such that P = P c and P a = ∅
τ ← 0
loop

τ ← τ + 1
if |P a| > 0 then

EVOLVE(P)
end if
EVAL({στ}, P)
for all Pi ∈ P c do

if P age
i = maturity age then

move Pi from P c to P a

end if
end for

end loop

3.4 Evolution

The algorithms presented in the previous section are generic in the sense
that they do not specify the EVOLVE (P) function, nor the function CLAS-
SIFY (σ, Pi) (Equation 3.3). In our research we employed the simplified two-
pool CEA (Algorithm 7). This section will describe the specific EVOLVE (P)
function we used with it. But first we will discuss representation and some
related matters. Each population member has two attributes, namely age
and score, represented by positive integers. The age and score of the mem-
bers of the start population are initialized to 0. Taking Equation 3.5 and
Equation 3.6 together we obtain 0 ≤ FITNESS(Pi) ≤ 1, 0 indicating that
all documents were classified incorrectly and 1 indicating that all documents
were classified correctly. The genes hold the weights employed in the weighted

46

3.4. EVOLUTION

n-gram representations of the AIF system. They are implemented as doubles
ranging from 0 to 1.

The evolve algorithm is shown in Algorithm 8. It is implemented as a loop
to be executed the number of times indicated by the number of offspring vari-
able. However, since for each offspring created an individual is removed from
the adult pool, the number of times the loop can be executed is also bounded
by the size of the adult pool. Two kinds of reproduction were investigated,
namely single parent duplication (crossover disabled) and uniform crossover
(crossover enabled). When crossover is enabled two parents are selected and
uniform crossover is applied to obtain a child. When crossover is disabled
a parent is selected and a child is obtained through duplication. The child,
independent of the way in which it was created, is next mutated and then
added to the child pool. Finally, the weakest adult is removed from the adult
pool in order to maintain the same population size.

Algorithm 8 Evolve algorithm

for i = 1 to min(number of offspring,|P a|) do
if evolution with crossover then

first parent ← SELECTION(P a)
second parent ← SELECTION(P a)
child ← CROSSOVER(first parent,second parent)

else
parent ← SELECTION(P a)
child ← COPY(parent)

end if
MUTATE(child)
add child to P c

remove adult with lowest fitness from P a

end for

Selection is carried out by choosing with a certain probability the fittest
adult, otherwise by selecting with the same probability the next fittest, and
so on till either a parent has been selected or the adult pool is exhausted,
in which case the fittest adult gets selected by default. This means that the
probability of selection decreases exponentially from the fittest adult to the
least fit adult, creating considerable selective pressure. The amount of selec-
tive pressure can be regulated via the selective pressure rate, implemented
by a floating point number ranging from 0 to 1. For example, a selective

47

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

pressure rate of 0.1 means that we begin with a 0.1 chance of selecting the
fittest member, then a 0.9×0.1 chance of selecting the second fittest member,
a 0.92 × 0.1 chance of selecting the third fittest member, etc. The chance
that none of the members is selected is 0.9|P

a|. Therefore, the total chance
of selecting the fittest member is 0.1 + 0.9|P

a|.
The age and score attributes of the offspring were initialized to 0. Muta-

tion was performed by adding with a certain probability zero-mean Gaussian
noise to the genes of a member. Note that after two age threshold generations
the size of the child pool is maturity age × number of offspring, under the
condition that that is not larger than the population size. So, for example,
if the size of the population is 100, the maturity age is 10 and the number of
offspring is 4, then after 20 generations the child pool will stabilize at size
40 and the adult pool at size 60. If, however, maturity age × number of off-
spring is larger than the population size, the population will never stabilize
and individuals will never get the chance to become mature adults. There-
fore, we impose the following restriction: |P | > maturity age × number of
offspring.

3.5 Experiment

In order to illustrate the simplified two-pool CEA (Algorithm 7 on page 46)
employing the evolve algorithm (Algorithm 8 on page 47), the following ex-
periment was conducted. Given a set of classes, initialize the cluster proto-
type vectors by averaging a certain number of object vectors and normalizing
the averages. Then execute the simplified two-pool CEA with the infinite loop
modified so as to terminate after a certain specified number of loopings. Ob-
jects were generated on-the-fly in the following vector format (noise| informa-
tion). Noise is encoded as a vector of noise elements (a1, a2, . . . , anoise) with
noise indicating the amount of noise called the noise factor and 0 ≤ ai ≤ 1.
Information is encoded as a vector (b1, b2, . . . , bclasses) with classes indicating
the number of classes and bi = 0.8 if and only if the class the object maps
to is class i, otherwise bi = 0.2. So, for example, in an experiment with 4
classes an object belonging to class 3 could be represented as follows:

(0.1, 0.9, . . . , 0.6︸ ︷︷ ︸
noise

, 0.2, 0.2, 0.8, 0.2︸ ︷︷ ︸
information

)

48

3.5. EXPERIMENT

Table 3.1: Parameter values
parameter value

noise factor 1000
number of runs 20
plot step size 50
number of generations 1000
population size 40
maturity age 10
number of offspring 2
gene initialization uniform random
selective pressure 0.1
gene mutation chance 0.1
deviation 0.1
averaging number 30
system score array size 100

The genes of a population member encode a weight vector ~w of size noise +
classes. The function CLASSIFY (σ, Pi) (Equation 3.3) employs the nearest
cluster algorithm (Algorithm 1 on page 18). The elements of σ are multiplied
by the elements of ~w (the genes) and the resulting vector is normalized.
Each of the cluster prototype vectors is multiplied in the same way and
then normalized. The performance of a CEA is defined as the number of
correct classifications made by the fittest member at the time of classification
divided by the total number of loopings. For this particular experiment a
global optimum is known, namely zeros to cancel out the noise and ones to
maximize the information. Therefore the upper bound for the fitness is 1:
perfect classification. The experiment was run with the parameter values as
shown in Table 3.1.

A noise factor of 1000 means that an optimal solution will contain 1000
genes/variables with (near) zero values. The number of runs (20) indicates
how many times the experiment was repeated to obtain a reliable average
result. The plot step size (50) is the number of generations between each
plot point in the result graph. The number of generations (1000) indicates
how many documents will be processed in one run of the experiment. A gene
initialization set to uniform random means that the genes of the members of
the start population as well as the genes of offspring are uniform randomly

49

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

set to between 0 and 1. A gene mutation chance of 0.1 indicates that in the
mutation phase each gene has a chance of 0.1 of being mutated. A deviation
of 0.1 means that a gene mutation is performed by adding Gaussian noise
with zero mean and 0.1 standard deviation. The averaging number (30) is
the number of objects that will be averaged during initialization to create
the cluster prototype vectors. A system score array size of 100 indicates
that the last 100 classifications (or the total number of classifications if there
have been fewer than 100) are employed for determining performance. This
limit is employed to ensure plasticity of the performance measure; otherwise
new classifications have a decreasing impact while the performance measure
is intended to measure current performance, not past performance. The re-
sults for experiments with and without crossover are shown in Figure 3.2.
The result graph clearly shows the importance of the crossover operator in

Figure 3.2: The 8 class experiment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800 900 1000

sc
or

e

generations

with crossover
without crossover

this particular experiment. While this does not necessarily mean that this
operator will be as effective in our other experiments, it does warrant inves-
tigation. The crossover graph bears resemblance to an S-curve: during the
first 200 generations the noise elements outweigh the information elements,
causing a lot of poorly performing offspring to be created. As the weights
associated with the noise elements decrease and the offspring improve in

50

3.6. CHAPTER CONCLUSIONS

quality, the results improve at an accelerating pace. Between roughly 200
and 500 generations the results improve at a constant rate, improvements
becoming more difficult as the amount of search space containing better so-
lutions decreases in size. After about 500 generations the performance level
obtained makes finding better solutions so difficult that the increase in per-
formance starts to bog down. While the global optimum of 100% accuracy is
not reached within the alotted number of generations, the experiment with
crossover enabled surpasses the 95% mark without any evidence of prema-
ture convergence. After 1000 generations a typical population member with
high fitness encodes a weight vector such as the following:

(. . . , 0.00415, 0.00000, 0.00025, 0.00065, 0.00000, 0.00022, 0.00000, 0.00000︸ ︷︷ ︸
noise

,

1.00000, 0.79215, 0.79295, 0.24354, 0.80772, 0.34838, 0.16689, 0.83221︸ ︷︷ ︸
information

)

As mentioned earlier, one known global optimum has zero valued noise ele-
ments and one valued information elements. The weight vector shown here
is comparable: the noise elements are close to zero, while the information
elements are relatively much larger.

3.6 Chapter conclusions

This chapter covers the application of Evolutionary Computation (EC) for
the optimization of the weight vectors introduced in Section 2.5 and is partic-
ularly concerned with the development of Classification EAs (CEAs). Some
common components are defined, such as the evaluation component and its
subcomponents: the result function, the classify function, and the fitness
function. The first CEA introduced is the static object set CEA (Algorithm 3
on page 41). Next the concept of time is introduced along with its accompa-
nying expanding object set CEA (Algorithm 4 on page 42). In order to limit
the size of the expanding object set the shifting window CEA is introduced
(Algorithm 5 on page 43). To prevent all information on past performance
being lost as the window shifts, we next introduce the concepts of age and
score. This necessitates the concept of maturity and results in the last step
of the derivation of the two-pool CEA (Algorithm 6 on page 45). The CEA
employed in the dissertation research is a special case of the two-pool CEA
called the simplified two-pool CEA (Algorithm 7 on page 46).

51

CHAPTER 3. TWO-POOL EVOLUTIONARY ALGORITHM

The next section details the particular evolvement component employed
in our research (Algorithm 8 on page 47), including the details of the selec-
tion, crossover, and mutation mechanisms, as well as a number of implemen-
tation details. This is followed by an experiment illustrating the simplified
two-pool CEA employing the above mentioned evolve component. The ex-
periment consists of classifying randomly generated objects which contain
a lot of noise. The objects are vectors of the format (noise| information).
The weights associated with the noise part of the vector should optimally
be zero and the weights associated with the information part of the vector
should optimally be one. The results when employing crossover demonstrate
the effectiveness of the simplified two-pool CEA: within 500 generations the
classification accuracy is over 85% and within 800 generations the accuracy
surpasses 95%.

52

Chapter 4

Evolutionary classification

Synopsis

To measure the real-world performance of the two-pool Classification Evo-
lutionary Algorithm (CEA) introduced in Chapter 3 as applied to Adaptive
Information Filtering (AIF) would require running a trial for a prolonged
period with real users and a live data stream. Though this would of course
be desirable, it is not practicable until the AIF system has proven itself
in experimental setups. Simulations must therefore be employed to gauge
the potential real-world performance. In the dissertation research the user
feedback and data stream are simulated as follows: documents are selected
from the Reuters-21578 text categorization collection (see Section 2.3) and
presented for classification to the AIF simulation system. The classification
function does not have access to information concerning from which topic the
document was selected. This information is, however, employed to simulate
user feedback.

Section 4.1 introduces a number of selected publications concerning pre-
vious research on evolutionary computation in the information sciences. Sec-
tion 4.2 begins with a conceptual overview of the AIF simulation system, and
then goes on to take a closer look at its algorithmic description. A detailed
investigation of its parameters is presented in Section 4.3. In Section 4.4 some
experimental results are shown and discussed. This is followed in Section 4.5
by a comparison between our experimental results and those of William B.
Langdon, who’s research was based on ours. Finally, in Section 4.6 some
conclusions are drawn as to the effectiveness of the two pool CEA for AIF

53

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

and with respect to the present limitations of the AIF simulation system and
the dataset employed.

4.1 Evolutionary computation in the infor-

mation sciences

In [JRSW95] it is stated that Raghavan and Birchard in their 1979 publica-
tion [RB79] seem to have been the first to suggest that it would be possible
to employ a Genetic Algorithm (GA) for document clustering, although none
of their experiments used actual documents and queries. One of the earliest
“real” works on the application of Evolutionary Computation (EC) in the in-
formation sciences was Michael Gordon’s research on employing GAs for doc-
ument retrieval in 1985 [Gor85], followed up in 1988 by [Gor88]. He describes
therein a document retrieval system where competing document descriptions
are associated with a document and altered over time by a GA according
to the queries used and relevance judgements made during retrieval. Blair
published related research in 1990 [Bla90]. Gordon took a similar approach
in his research reported in 1991 on document clustering [Gor91]. For another
early work on the application of GAs to document clustering, see Raghavan
and Agarwal’s 1987 publication [RA87]. Baclace employed a GA as part
of a hybrid learning algorithm within an information filtering system in his
1991 work [Bac91]. The GA evolves a population of feature agents employ-
ing crossover as sole genetic operator. Instead of encoding the genes as bit
strings, the GA acts directly upon the features.

A different approach was taken by Yang, Korfhage and Rasmussen in
their 1993 publication [YKR93]. While previous research had mainly fo-
cused on employing EC for document redescription and document cluster-
ing, they developed an adaptive method using GAs to improve query for-
mulation through direct modification of the user queries based on relevance
judgements. Kraft, Buckles, Petry, and Prabhu also employed EC for query
improvement, but instead of modifying queries they optimized weights asso-
ciated with Boolean queries [KBPP93, KPBP93, KPB+94]. Their research
was continued by Kraft, Buckles, Petry, and Sadasivan [KPBS95, KPBS97].
In 1997 they, together with Prabhu, published their research in the Handbook
for Evolutionary Computation [PBK+97].

While most of the early research on employing EC in the information

54

4.1. EVOLUTIONARY COMPUTATION IN THE INFORMATION
SCIENCES

sciences was directed at information retrieval and document clustering —
with the notable exception of Baclace’s work — 1994 saw the appearance of
a number of information filtering systems employing EAs. Höfferer, Knaus
and Winiwarter published a paper on the development of an AIF system they
called Cognitive Information Filtering System (CIFS) [HKW94]. It provides
prioritized E-mail based on content analysis and employs EAs to adapt de-
scriptions of E-mails in response to user feedback and observed user behavior.
Another AIF system was described in Sheth’s doctoral dissertation [She94].
It provides filtered Internet news by maintaining a dynamic set of information
filtering interface agents. Each agent is responsible for satisfying a specific
information need of the user. An agent consists of a population of profile
individuals. When processing Internet news, articles are matched against
the profiles, and top scoring documents are presented to the user. The scores
are based on how well the documents matched a profile, and on that profile’s
fitness. The user can provide positive or negative feedback with respect to
an article. The profile which presented the document is then modified based
on the relevance feedback received from the user. At the same time, the
fitness of that profile will increase or decrease based on positive or negative
feedback, respectively. The populations of profile individuals are all evolved
separately. The system adapts to the user’s changing information needs and
minimizes the amount of required user feedback for the system to perform
adequately, while allowing fine-tuning at the user’s convenience. Keyword
feature extraction is employed to represent the articles. The performance of
the system is quite good, though it shares a weakness of many IF systems:
it is not adept at dealing with information streams (Internet news groups, in
this case) that exhibit a low signal-to-noise ratio.

Jones, Robertson, and Willett published an introduction to GAs and
their use for information retrieval in their 1994 paper [JRW94]. Together
with Santimetvirul they describe their research on the application of GAs
for document clustering in their 1995 paper [JRSW95]. Their GA employed
mutation and one-point crossover as genetic operators, steady-state replace-
ment, and conventional roulette-wheel selection. In their experiments they
used the Cranfield (1400 documents and 225 queries on the subject of aero-
dynamics), Harding (2472 documents from the INSPEC database and 65
queries), and LISA (6004 documents from the Library and Information Sci-
ence Abstracts database and 35 queries) test collections. For performance
measure they employed van Rijsbergen’s E-measure (see Equation 1.1 on
page 6). These experiments revealed slightly worse results for their GA clus-

55

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

tering method versus standard nearest-neighbour clustering. Robertson and
Willett published further research on the application of GAs for information
retrieval in their 1995 report [RW95]. And in 1996 they published an article
which describes the development of a GA for the assignment of weights to
query terms in a ranked-output document retrieval system [RW96]. Their
experimental results indicate a slight overall superiority for their GA over
the deterministic weighting scheme they had compared it with.

In 1995 Chen published a long article in the Journal of the American So-
ciety for Information Science on machine learning for information retrieval
[Che95]. In it he compares three machine learning methods applied to in-
formation retrieval, namely Hopfield networks to represent neural networks,
ID3/ID5R to represent symbolic learning, and GAs to represent EC. His ar-
ticle begins with a detailed introduction to information retrieval and machine
learning, followed by a historic overview of machine learning techniques ap-
plied to information retrieval. The article concludes with some experimental
comparisons.

A 1996 paper by Zhang, Kwak, and Lee [ZKL96] describes a genetic
programming approach to building software agents for information filtering.
Another genetic programming paper is Smith’s 1997 article [Smi97] on the
employment of genetic programming to construct Boolean queries for text
retrieval through relevance feedback. Terms from relevant documents are
used to randomly create Boolean queries. Boolean queries are thought of
as genetic programming organisms and, as such, are used for breeding to
produce new organisms. The aim is to develop the best Boolean query for
a particular information need, given a small corpus of test documents, and
then to use that query on the full collection to retrieve yet more relevant
documents.

The concepts and first results of the research on employing EC for opti-
mizing weights associated with n-grams for AIF, which has culminated in this
dissertation, were also published in 1996 [Tau96c, Tau96b, Tau96a]. Since
1996 several more publications have appeared [TKSK97, TSKK97, TSK99a,
TSK99b, TKSK00, TSK00].

Vrajitoru published research on a custom GA crossover operator opti-
mized for information retrieval in an article which appeared in 1998 [Vra98].
And in an article from 1999 [Win99], Winiwarter presented PEA (Personal
Email Assistant with Evolutionary Adaptation). PEA filters incoming E-
mails and ranks them according to their relevance. Pathak, Gordon, and Fan
published a paper in 2000 on employing GAs to adapt matching functions

56

4.2. AIF SIMULATION SYSTEM

that are used to match document descriptions with queries for information
retrieval [PGF00].

To summarize, while the idea of employing evolutionary computation in
the information sciences dates back to 1979, the first published results did
not appear till the second half of the eighties, and the field only started to
blossom in the mid-nineties.

4.2 AIF simulation system

Our AIF simulation system employs the simplified two-pool CEA (Algo-
rithm 7 on page 46) and the evolve algorithm (Algorithm 8 on page 47).
The simplified two-pool CEA has been slightly modified: the infinite loop
is replaced by a user-specified number of iterations, and the performance of
the system is measured periodically using a test set. The function CLAS-
SIFY (σ, Pi) (Equation 3.3 on page 40) is implemented by the nearest cluster
algorithm (Algorithm 1 on page 18). For details with respect to representa-
tion, selection, crossover, and mutation, see Section 3.4. Below is a schematic
overview of the AIF system, followed by a more detailed algorithmic overview.

4.2.1 Schematic overview

The core of the AIF simulation system is the classification cycle, depicted in
Figure 4.1. The cycle starts with the selection of a document for classification.
Both the document vector and the cluster prototype vectors are weighted
by associating a weight with each n-gram as proposed in Section 2.5. In
each cycle this weighted classification is performed for the weight vectors
encoded in each member of the population. The fitness of each member is
adjusted based on the classification result obtained employing the weight
vector encoded in it. Note that the correctness of a classification is based
on simulated user feedback. In our experiments the correct classification is
provided immediately, in lieu of a user providing such feedback at a later
time. At this point evolution takes place and the cycle starts over. At the
end of each cycle the member with the highest fitness provides the weight
vector used to make the system classification. In a real-world application this
would be presented to the user. Optionally the cluster prototype vectors can
be modified after each cycle, for example by moving the prototype vector of
the class the document is assigned to closer to the document vector. In our

57

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

Figure 4.1: Schematic overview of the classification cycle of the AIF evolu-
tionary simulation system

CEA classification
algorithm

document

n-gram vector

document
classification

fitness of the
weight vectors

weight vectors

prototype
vectors

experiments we did not do this in order to reduce the number of parameters
we had to deal with.

4.2.2 Algorithmic overview

An algorithmic overview of the AIF 2-pool CEA simulation system is shown
in Algorithm 9. First the parameter file is processed and a data structure
is created containing the following information for each topic employed in a
particular experiment:

• topic label

• directory containing AIL files1

• file listing the names of the individual AIL files

• cluster averaging set size

• training set size

1AIL stands for Alphabet Index List and is explained in depth in Appendix B

58

4.2. AIF SIMULATION SYSTEM

Algorithm 9 AIF evolutionary simulation system

read parameter file
load dataset file indexes
initialize random number generators
build n-gram index
create cluster prototype vectors
for run = 1, 2, . . . ,number of runs do

initialize start population
for generation = 1, 2, . . . ,number of generations do

training phase
if generation is an integer multiple of plot step size then

test phase
end if

end for
end for
write averaged test results to plot file

• test set size

This is followed by initializing the random number generators as specified
in the parameter file: the seed can be user specified or provided by the
hardware timer. Next a pass is made through all the AIL files employed in
the current experiment, indexing every occurring n-gram. The result is a
list of all the n-grams occurring in the experiment data set. By employing
this preconstructed list as the master index in the experiment, the time
required to run the experiment is considerably decreased. This is because
by using this method the need for time-consuming incremental updating
of the master index is avoided. In a dynamic non-simulated environment,
in which the data set is not known beforehand and documents arrive in a
temporal fashion, this would obviously not be possible; instead, however, the
master index could be initialized with a list of frequently occurring n-grams,
reducing the frequency of a non-listed n-gram occurring and thus minimizing
the overhead of incremental updating of the master index without losing any
of the benefits of employing the full set of possible n-grams.

In the next step the cluster prototype vector of each topic is created
by averaging the set of documents belonging to each topic as specified in
the parameter file. This is followed by the outer loop of the system which
provides averaging of the experimental results by running the experiment

59

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

multiple times and averaging the results of the different runs. The first
operation for each new run is to initialize the start population. Then the
inner loop is executed, each execution being one generation of the system.
Each new generation begins with a training phase. For every plot step size
generations the document vectors belonging to the test set are presented and
the score is stored for later averaging. When all the generations of all the runs
have been executed, the stored test results of all the runs are averaged and
the averages are written away to a log file for later inspection and plotting.
The averaged results can be expressed as pairs (g,p), with g indicating the
amount of training measured in generations, and p indicating the averaged
performance of the fittest population member applied to the test set after g
training generations.

4.3 Parameters

This section describes in detail all the parameters that can be set for an
experiment.

4.3.1 Experiment parameters

These parameters describe the classification problem which this experiment
attempts to solve.

n

type integer
range ≥ 1

n is the variable in n-grams. For an in-depth examination of n-grams see
Chapter 2. Computational time increases exponentially with n; in Section 2.4
it was noted that the results did not improve for n > 3. Therefore this
research focuses primarily on the use of trigrams.

alphabet size

type integer
range ≥ 2

The alphabet size |A| is equal to the number of tokens in the corresponding
alphabet. For example, the two alphabets employed in this research are T

60

4.3. PARAMETERS

and P with corresponding alphabet sizes of 27 and 40 respectively (see Sec-
tion 2.3 and Section 2.4 respectively). The bare minimum value for alphabet
size is 2. If there was only a single token in the alphabet the power to dis-
criminate between n-gram representations of documents would be zero. The
larger the alphabet, the larger the discriminating power. However, larger al-
phabets also require more storage space, more memory, more computational
time, and enlarge the search space, making optimization more difficult.

number of topics

type integer
range ≥ 1

The number of topics determines from how many topics documents will be
presented for classification. In general, the more topics, the more difficult
the classification problem. The only exception is that when an “easy” topic
is added — easy in the sense that the n-gram distribution document repre-
sentations have on average a larger metric distance to those of other topics
than is on average the case at that moment — the increase of the average
inter-topic document distance can on some occasions more than compensate
for the added complexity of increasing the number of topics. In such cases
the classification results are improved by the addition of a topic.

number of runs

type integer
range ≥ 1

A consequence of the randomness inherent in evolutionary algorithms is that
each time an experiment is run the results may differ from the last time it was
run, even when all the parameters are identical. It is therefore necessary to
run the same experiment multiple times and average the results. The larger
the number of runs, the more compensation one obtains for the variation
in results. The increase in computational time is linear with the number of
runs.

4.3.2 Set sizes

The data set employed is split into three parts for each experiment: for
initialization, for training and for testing. This may necessitate a compromise
when the sum of the desired set sizes exceeds the available data.

61

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

number to average

type integer
range ≥ 1

During initialization number to average documents are averaged, resulting in
prototype vectors representing the topic cluster centers. The more documents
employed in averaging, the more representative the prototype vectors are of
the true topic cluster center. However, the more documents employed in
averaging, the fewer the documents available for training and testing.

training set size

type integer
range ≥ 1

The aim of the training phase is to optimize the weights for the test phase. As
there is no access to the test set during training, the only way the optimiza-
tion of the test set can be accomplished is through generalization. Therefore
the size of the training set should be optimized for generalization. The larger
the training set, the more representative it is of the entire data set and thus
the better it is suited for obtaining generalization. However, the larger the
training set, the fewer the documents available for initialization and testing.

test set size

type integer
range ≥ 1

In the test phase the performance of the AIF simulation is measured by
presenting documents the system has not been trained on. The performance
is defined as the number of correctly classified documents divided by the
total number of documents presented. The larger the test set, the more
representative it is of the entire data set and thus the closer the performance
of the test set resembles the performance of the data set as a whole. However,
the larger the test set, the fewer the documents available for initialization
and training.

4.3.3 Evolution parameters

These parameters are all associated with the evolution process and most are
common to all evolutionary algorithms, the exception being maturity age

62

4.3. PARAMETERS

which is specific to the 2-pool EA.

population size

type integer
range ≥ 1

The population size is one of the principal parameters determining the amount
of genetic diversity. The larger it is, the more potential for genetic diversity
is present in the population. And the more genetic diversity is present, the
smaller the chance of premature convergence to a suboptimal point of the
search space. However, the larger the population size, the longer it takes to
evaluate all the members of the population for each generation. Also, the
more memory is required to contain the population members. It is, there-
fore, important to find a good balance by experimenting with a variety of
population sizes. The optimum size will then be the smallest size that does
not (too often) result in premature convergence.

maturity age

type integer
range ≥ 0

Maturity age was introduced in Section 3.3.4 (page 44) as the age (number
of evaluations) of a member at which it is moved from the child pool to the
adult pool. A higher maturity age means the member will have obtained a
more reliable fitness value before it is allowed to participate in the selection
and reproduction cycles. However, it also means that there will be a larger
child pool and thus a smaller adult pool. To compensate for this, a larger
population size is required.

number of offspring

type integer
range ≥ 1

The number of offspring determines the number of new members added to
the child pool. The same number of members will be removed from the adult
pool. As noted in Section 3.4, after 2 × maturity age generations the size
of the child pool is maturity age × number of offspring, under the condition
that that is not larger than the population size. Therefore, the larger the

63

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

number of offspring, the larger the child pool and thus the smaller the adult
pool.

selective pressure rate

type floating point
range [0,1]

The selective pressure rate determines the amount of selective pressure. This
is discussed in Section 3.4 (page 46).

gene initialization

type floating point
range [0,1]

The genes (weights) can be either initialized to a constant value between 0
and 1, or uniform randomly distributed.

gene mutation chance

type floating point
range [0,1]

The gene mutation chance is the chance that a particular gene will be mu-
tated. The greater this chance, the more new genetic material is introduced
during mutation, thus lowering the chance of premature convergence. How-
ever, raising the gene mutation chance also makes the retention of good
genetic material more difficult, thereby causing instability in the search pro-
cess.

standard deviation

type floating point
range > 0

The standard deviation determines the amount of Gaussian noise added to
a gene during mutation. The mean employed in this research is 0, so for a
standard deviation of 1 we have the standard normal (Gaussian) distribution.
A bound check is performed after each gene mutation. If the new value is
smaller than 0 it is set to zero and if the new value is larger than 1 it is set
to 1. Because of this, appropriate values for the standard deviation should
be small enough to prevent frequent boundary overruns.

64

4.4. EXPERIMENTAL RESULTS

crossover

type Boolean
range enabled,disabled

Crossover can either be enabled or disabled. The type of crossover employed
is uniform crossover (see Section 3.1). Note that the size of the adult pool
has to be larger than or equal to 2 for crossover to be possible.

number of generations

type integer
range ≥ 0

Each generation all the members are increased one in age and are evaluated
by performing a classification. If the classification is correct their score is
also increased one. The number of generations indicates the duration of the
training. The larger the number of generations, the more training will be
performed; computation time increases linearly with the number of genera-
tions. Besides the restriction of computational time, there is another reason
for limiting the number of generations. Namely, it is possible that too large
a number of generations could result in overtraining. This is an effect due to
overfitting for the training set resulting in a decrease in generalization.

4.4 Experimental results

A number of experiments were run with the aim of answering the following
questions:

• How well does the two-pool CEA perform for our classification task?

• Is there a difference in performance depending on whether letter n-
grams or phoneme n-grams are employed?

• What are the optimal parameter values?

• How does the two-pool CEA compare to other EAs when applied to
the same problem?

To this end experiments were performed both for letter trigrams and for
phoneme trigrams employing identical parameter settings in order to permit
direct comparison. The only parameter that was found to make a non-trivial

65

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

Table 4.1: Experiment 1: parameter values

parameter value

n 3
alphabet size 27
number of topics 2,3,. . . ,10
number of runs 20
initialization set size 30
training set size 30
test set size 30
population size 50
maturity age 10
number of offspring 2
selective pressure 0.5
gene initialization uniform random in [0,1]
gene mutation chance 0.5
standard deviation 0.2
crossover disabled
number of generations 2000

difference in the results was the training set size; therefore we will present here
both letter trigram and phoneme trigram experiments for differing training
set sizes.

The parameter settings for Experiment 1 are shown in Table 4.1; the pa-
rameter settings for Experiments 2, 3, and 4 are very similar, the differences
being noted in the text. The results are shown in the form of system scores.
The system score is defined as the number of correct system classifications
divided by the total number of system classifications.

Experiment 1 employed letter trigrams (n = 3, alphabet size = 27) and
was consecutively executed for the number of topics ranging from 2 through
10. The cluster prototype vectors were computed by averaging the first 30
document vectors of each topic, the training set was comprised of the next
30 document vectors of each topic, and, finally, the test set consisted of
the following 30 documents of each topic. The population size was set to
50, the maturity age to 10, and the number of offspring to 2. Note that
this means that the child pool stabilized at 20 individuals, while the adult
pool stabilized at 30 individuals. The selective pressure rate was set at

66

4.4. EXPERIMENTAL RESULTS

Table 4.2: Experiments 1 & 2: results

letter trigrams phoneme trigrams
Topics unweighted weighted unweighted weighted

Coffee, trade 0.983 0.988 0.983 0.978
+ crude 0.944 0.964 0.911 0.953
+ money-fx 0.925 0.928 0.892 0.924
+ sugar 0.927 0.941 0.893 0.934
+ money-supply 0.867 0.878 0.850 0.886
+ ship 0.833 0.849 0.810 0.839
+ interest 0.788 0.795 0.767 0.789
+ acq 0.789 0.793 0.770 0.781
+ earn 0.783 0.786 0.770 0.782

0.5, the genes (weights) were initialized uniform randomly between 0 and
1, the chance of mutating a particular gene was 0.5, and gene mutation
was performed by adding Gaussian noise with zero mean and 0.1 standard
deviation. If mutation resulted in a weight obtaining a value smaller than 0
or larger than 1, the weight was set to 0 or 1 respectively. No crossover was
employed. Each run of the experiment consisted of 2000 training generations.
The results were averaged over 20 runs and are shown in the third column
(weighted letter trigrams) of Table 4.2. The unweighted results are shown in
the second column (unweighted letter trigrams) of Table 4.2. Experiment 2
differs from Experiment 1 only in that it employs phoneme trigrams instead
of letter trigrams. The results from Experiment 2 are shown in the fifth
column (weighted phoneme trigrams) of Table 4.2. The unweighted results
are shown in the fourth column (unweighted phoneme trigrams) of Table 4.2.

Experiment 3 and Experiment 4 mirror Experiment 1 and Experiment 2
respectively, except for the training set size which was increased from 30 to
50 (except in the case of money-supply which could only be increased to 37
due to its smaller size). The results for Experiment 3 are shown in the third
column (weighted letter trigrams) of Table 4.3. The unweighted results are
shown in the second column (unweighted letter trigrams) of Table 4.3. The
results for Experiment 4 are shown in the fifth column (weighted phoneme
trigrams) of Table 4.3. The unweighted results are shown in the fourth
column (unweighted phoneme trigrams) of Table 4.3.

67

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

Table 4.3: Experiments 3 & 4: results

letter trigrams phoneme trigrams
Topics unweighted weighted unweighted weighted

Coffee, trade 0.983 0.980 0.967 0.973
+ crude 0.933 0.966 0.922 0.958
+ money-fx 0.925 0.938 0.908 0.942
+ sugar 0.920 0.933 0.920 0.938
+ money-supply 0.867 0.895 0.900 0.909
+ ship 0.833 0.846 0.852 0.872
+ interest 0.833 0.843 0.850 0.853
+ acq 0.815 0.826 0.844 0.839
+ earn 0.823 0.831 0.857 0.850

To be able to better compare the results of the four experiments, plots
are provided showing letter versus phoneme results (Figure 4.2) and training
set size = 30 versus 50 results (Figure 4.3).

The weighted letter trigram versus weighted phoneme trigram plots for a
training set size of 30 in Figure 4.3(a) show that those results are very similar,
with, overall, a slight lead for the weighted letter trigrams. However, when
the training set size is increased to 50, Figure 4.3(b) reveals that for more
than three topics the weighted phoneme trigrams are in the lead. In both
cases, however, the differences are quite small. The training set size = 30
versus 50 plots for letter trigrams in Figure 4.4(a)) show that for more than
eight topics the training set size = 50 results are superior to the training set
size = 30 results. This superiority manifests itself more strongly for phoneme
trigrams, as one can see in Figure 4.4(b)), with the training set size = 50
results beating the training set size = 30 results by an increasingly large
margin as the number of topics increases beyond five.

4.5 Comparison

Langdon has conducted related research based on an earlier version of our
C++ n-gram class library [Lan00a, Lan00b]. In his experiments Langdon
employed the same data set as we employed in ours, thus making a direct
comparison possible. The difference lies in the classifier and the EA: he

68

4.5. COMPARISON

Figure 4.2: Weighted letter trigram versus weighted phoneme trigram results

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

letter
phoneme

(a) training set size = 30

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

letter
phoneme

(b) training set size = 50

Figure 4.3: Training set size = 30 versus training set size = 50 results

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

training set size = 30
training set size = 50

(a) weighted letter trigrams

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

training set size = 30
training set size = 50

(b) weighted phoneme trigrams

69

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

Table 4.4: Langdon’s KNN letter trigram results

Topics unweighted weighted

Coffee, trade 0.91 0.99
+ crude 0.79 0.93
+ money-fx 0.77 0.91
+ sugar 0.76 0.91
+ money-supply 0.76 0.89
+ ship 0.72 0.87
+ interest 0.69 0.82

employed the k nearest neighbours (KNN) classifier (with k=1) and a GA
implemented using a customized version of the QGAME C++ library. A
summary of his results is presented in Table 4.4. A comparison of his results
with ours is provided in Figure 4.4. The unweighted KNN results are taken
from the second column (unweighted) of Table 4.4, the weighted KNN results
are taken from the third column (weighted) of Table 4.4, and the two-pool
CEA results are taken from the third column (weighted letter trigrams) of
Table 4.3. Overall our two-pool EA seems to outperform Langdon’s QGAME
KNN algorithm.

4.6 Chapter conclusions

This chapter provides an extensive historic overview of the application of
evolutionary computation in the information sciences, covering various sub-
fields such as information retrieval, document classification, and (adaptive)
information filtering. Our AIF simulation system is described at varying
levels of detail, first by presenting a schematic overview of the system, then
a more detailed algorithmic overview, and finally an in-depth look at the
many parameters. The experimental section of the chapter poses the follow-
ing questions:

1. How well does the two-pool CEA perform for our classification task?

2. Is there a difference in performance depending on whether letter tri-
grams or phoneme trigrams are employed?

3. What are the optimal parameter values?

70

4.6. CHAPTER CONCLUSIONS

Figure 4.4: Letter trigram comparison

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2 3 4 5 6 7 8

sc
or

e

topics

Unweighted KNN
Weighted KNN
Two-pool CEA

4. How does the two-pool CEA compare to other EAs when applied to
the same problem?

The answer to the first question is that for small numbers of topics the two-
pool CEA performs quite well, but as the number of topics increases, the
performance drops considerably. And, although for a training set size of 50
the drop in performance slows down as the number of topics increases, it
is not sufficient to make the system scalable. Ways in which the scalability
issue might be addressed will be explored in the future research section of
the concluding chapter (Section 6.3). The answer to the second question is
that for a training set size of 30, letter trigrams perform overall just a hair
better than phoneme trigrams, but for a training set size of 50 phoneme tri-
grams perform overall better than letter trigrams. The third question is more
difficult to answer, because the lack of positive examples is not conclusive.
The only parameter that has positively been shown to have an influence on
the results is the training set size: the results for larger numbers of topics
improve markedly when the training set size is increased from 30 to 50. The
answer to the final question is that the two-pool CEA seems to outperform a

71

CHAPTER 4. EVOLUTIONARY CLASSIFICATION

QGAME based GA and KNN hybrid algorithm in the only known compara-
tive research. In the next chapter neural networks will be investigated as an
alternative classification and optimization method. A comparison with the
results obtained in this chapter will also be provided.

72

Chapter 5

Neural classification

Synopsis

Chapter 3 introduced evolutionary computation as an efficient optimization
method in the absence of an a priori solution. One of the main problems
which employing evolutionary computation to optimize the weights associ-
ated with particular n-grams brings with it is the huge and complex search
space, involving a very large number of calculations and numerous parame-
ters. Another approach is to replace the clustering algorithm and evolution-
ary optimization technique with a neural network capable of classification as
well as optimization.

This chapter will introduce neural networks as a promising document
classification method for n-gram document representations, well suited to
adaptive information filtering. Section 5.1 explains what neural networks
are, how they work, and presents a short overview of the different types
of neural networks. Section 5.2 focuses on the application of neural net-
works in the information sciences. Section 5.3 describes the employment of
the simple perceptron neural network architecture in our research, followed
by Section 5.4 which presents the accompanying experimental results. Sec-
tion 5.5 describes the employment of a multi-layer feed-forward architecture
using the backpropagation learning algorithm and presents some experimen-
tal results. The perceptron and backpropagation results are compared with
the evolutionary computation results of Chapter 4 in Section 5.6. Section 5.7
contains the chapter conclusions.

73

CHAPTER 5. NEURAL CLASSIFICATION

5.1 Introduction to neural networks

Artificial Neural Networks, further referred to as neural networks, are parallel-
distributed computational systems inspired by biological neural networks.
They are also known as parallel-distributed networks or connectionist net-
works. For an excellent in-depth introduction to neural networks, see [Bis95].
More comprehensive mathematical introductions to neural networks can be
found in [HKP91, HN91], while more applied introductions can be found in
[FS92, Fu94]. This section will provide a basic introduction, with emphasis
on the type of neural networks employed in the dissertation research.

Neural networks are systems composed of units, connections, and weights
associated with the connections. Units correspond to neurons in biological
neural networks, connections correspond to axons/synapses and weights cor-
respond to synaptic strength. The topology of a neural network is defined by
its units and their interconnections. When the units can be separated into
non-trivial groups having solely inter-group connections, that is to say, no
intra-group connections, the neural network topology is called layered. Two
neural network topologies, one layered and one not, are shown in Figure 5.1.
Intuitively, a connection is called recurrent when it “loops back” to itself
or an “earlier” unit. For a precise definition see [HKP91]. Some examples
of recurrent connections are shown in Figure 5.1. In the absence of recur-
rent connections the network is called a feed-forward network, otherwise it
is called a recurrent network.

Units can be classified into three types: input units, hidden units, and
output units. Data is presented to the neural network by setting the acti-
vation levels of the input units, which can be expressed in either discrete or
continuous values. Input units do not perform computations. The results are
expressed as the activation levels of the output units. If there are other units,
they are called hidden units, “hidden” because they have no direct connection
to the system input nor the system output. Layered neural networks con-
tain one input layer, one output layer and zero or more hidden layers. When
counting the number of layers in a layered neural network it is customary not
to count the input layer because input units do not perform computations.
Thus, for example, the neural network depicted in Figure 5.2(b) is referred
to as a two-layer neural network.

The activation levels of all the other units are computed by applying an
activation function (also called a transfer function, gain function, or squash-
ing function) to their net input. The net input for units in the first layer is

74

5.1. INTRODUCTION TO NEURAL NETWORKS

Figure 5.1: Neural network models

input
units

output
units

hidden
units

feed forward connection
recurrent connection

(a) non-layered

input
layer

output
layer

hidden
layer

feed forward connection
recurrent connection

(b) layered

computed as follows:
netj =

∑
WjiXi − θj (5.1)

where netj is the net input of the jth unit, Wji is the weight associated
with the connection from input unit Xi to the jth unit, and θj is the unit
threshold of the jth unit. The type of activation function employed is problem
dependent. For instance, if a Boolean activation level (e.g., on or off) is
desired, the hard-limiting function Fh (also called the unit step function or
Heaviside function) may be employed:

Fh(netj) =

{
1 if netj > 0
0 else

(5.2)

If a continuous activation level in the range [0,1] is desired, the sigmoid
function Fβ may, for instance, be employed:

Fβ(netj) =
1

1 + e−2βnetj
(5.3)

The closer the value of β is to zero, the more “smoothly” the function Fβ

goes from 0 to 1 as netj goes from −∞ to ∞. For a more detailed discussion
of the parameter β see, for example, [HKP91].

75

CHAPTER 5. NEURAL CLASSIFICATION

The dynamic behaviour of a neural network is controlled by its learning
rule. A learning rule specifies how to adapt weights in order to optimize
performance. In many types of neural networks learning only occurs during
training. When a certain performance level has been achieved, the weights
in such neural networks are fixed and the networks are ready for use. It
is important to note that while training can be very time consuming, once
the weights are fixed and learning has ceased neural networks tend to be
very fast in operation. In some neural networks (i.e., Kohonen networks) the
rate of adaptation — also called the learning rate — is decreased after each
adaptation. In addition to the benefit of faster operation when no learning
has to be performed, decreasing the learning rate ensures a certain amount
of stability because new knowledge then has increasingly less ability to sup-
plant knowledge previously encoded in the weights of the neural network.
The consequence is, however, that over time the neural network loses more
and more of its plasticity. This tension between stability and plasticity is
called the stability-plasticity dilemma [CG87b] and can be posed as follows
[CG88]: “How does the system know how to switch between its stable and
its plastic modes to achieve stability without rigidity and plasticity without
chaos?”1 Stephen Grossberg’s Adaptive Resonance Theory (ART) overcomes
this dilemma [Gro76a, Gro76b]. The term “resonance” refers here to the so
called resonant state of the network in which a category prototype vector
matches the current input vector closely enough for it to be selected and
modified to resemble the input vector. If the input vector does not match
any of the category prototype vectors within a certain tolerance, as speci-
fied by the vigilance parameter, then a new category is created by storing
a category prototype vector similar to the input vector. Consequently, no
category is ever modified unless the input vector matches the category pro-
totype vector within a certain tolerance. This means that an ART network
has both plasticity and stability: new categories can be formed when the
environment does not match any of the stored patterns, but the environment
cannot change stored patterns unless they are sufficiently similar. The origi-
nal ART-1 neural network is capable of classifying binary input vectors. The
ART-2 neural network extended this capability to real-valued input vectors
[CG87a]. A large family of ART neural networks has been developed based
on the original ART-1 and ART-2 neural networks, further extending the
ART capabilities to include hierarchical clustering, fuzzy clustering, agglom-

1When to switch would seem the more pertinent question.

76

5.1. INTRODUCTION TO NEURAL NETWORKS

erative clustering, and more. For an overview of the many ART models, an
extensive ART bibliography, and anything else ART related, see The Adap-
tive Resonance Theory (ART) clearinghouse2. For an easy introduction to
ART see [HT95] which describes ART-1 in detail.

Learning rules can be divided into two distinct classes, supervised and
unsupervised. We can distinguish two types of supervised learning, namely
learning with a teacher and learning with a critic. In learning with a teacher
the solution (output) of the neural network is compared with the known so-
lution, and the neural network receives instructive feedback about any errors
it has made. In learning with a critic, also called reinforcement learning, the
only feedback the neural network receives is whether the solution was correct
or not. Examples of supervised learning are the Hebb rule, the perceptron
learning rule, the delta rule, the backpropagation algorithm and the Boltz-
mann rule [HKP91]. The Hebb rule, the earliest and weakest of the learning
rules, has been very influential in inspiring many of the later rules. It can be
written as follows:

Wji(t + 1) = Wji(t) + Xi · Tj (5.4)

where Wji(t) is the weight associated with the connection from input unit
Xi to output unit Oj at time t (the tth iteration) and where Tj is the desired
(target) output activation. The Hebb rule can, for example, be employed in
single-layer feed-forward neural networks.

The delta rule is one of the learning rules employed in the dissertation
research and will be discussed in Section 5.3. The backpropagation algorithm
is the other learning rule employed in the dissertation research and will be
discussed in Section 5.5. We can also distinguish two types of unsupervised
learning, namely unsupervised Hebbian learning and competitive learning. In
unsupervised learning there is neither “teacher” nor “critic” and no notion
of correct or incorrect solutions; the network must discover for itself cat-
egories or features in the input data. In unsupervised Hebbian learning a
modified Hebb rule is employed and the output units do not have a winner-
take-all character, while in competitive learning the output units compete
for being the one to fire and only one, or one per group, is on at a time.
Examples of unsupervised Hebbian learning are Oja’s rule and Sanger’s rule
[HKP91]. Examples of competitive learning are Kohonen’s learning rule and
Adaptive Resonance Theory (ART), except for the branch of the ART fam-
ily of neural networks based on ARTMAP, which employ supervised learning

2http://www.liacs.nl/art/

77

CHAPTER 5. NEURAL CLASSIFICATION

[CGR91, CGM+92]. There are also some hybrid learning schemes which com-
bine supervised and unsupervised learning in the same neural network. An
example of such a hybrid learning scheme is counterpropagation [HN91].

5.2 Neural networks in the information sci-

ences

According to J.C. Scholtes [Sch93b] Michael Mozer is credited for the first
application of neural networks in information retrieval [Moz84]. However, as
pointed out by Richard Belew in [Bel89], Mozer’s model lacked the ability
to learn. One of the earliest works on the application of “learning” neural
networks in the field of information retrieval was Belew’s dissertation in 1986
[Bel86]. In it he describes an approach he calls “Adaptive Information Re-
trieval” (AIR). His AIR system employs relevance feedback for the purpose
of representation adaptation, leading to incremental improvement in the re-
trieval process. His dissertation was followed by a succession of papers on
AIR, including a paper presented at the Twelfth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
in 1989 [Bel89]. Belew was Daniel Rose’s dissertation advisor. Rose’s 1991
dissertation [Ros91] extended the AIR system to a hybrid connectionist and
symbolic artificial intelligence system called SCALIR (Symbolic and Connec-
tionist Approach to Legal Information Retrieval) which employs analogical
reasoning to find relevant documents for legal research (see also [RB91]).

While the AIR and SCALIR systems employ neural networks with archi-
tectures and learning rules specifically designed for their application, many
other approaches have concentrated on the application of existing neural net-
works. One neural network that has received considerable attention in the
domain of the information sciences is the Kohonen SOM [Koh01], a member
of the class of self-organizing feature maps, also called topology preserving
maps, topographic maps, or self-organizing maps. The abbreviation for the
latter, SOM, is the most widely used. Unlike most other neural networks,
with SOMs the geometrical arrangement of the competitive output units is
of importance. The location of the winning output unit conveys information,
with nearby outputs corresponding to nearby input patterns. Currently, by
far the most popular learning rule for SOMs is the Kohonen rule [Koh01].
Because of this, Kohonen SOMs are often referred to as simply SOMs and

78

5.2. NEURAL NETWORKS IN THE INFORMATION SCIENCES

SOMs are sometimes referred to as Kohonen networks. In the context of the
information sciences, a SOM organizes documents onto a two-dimensional
grid so that related documents appear close to each other. In other words, a
SOM provides a topographic map of the document space.

One of the first applications of SOMs for information retrieval was re-
ported in 1990 [GR90]. This was followed in 1991 by [LSM91] and [Sch91c].
One of the first applications of SOMs for information filtering was also re-
ported in 1991 [Sch91b]. J.C. Scholtes’ dissertation in 1993 [Sch93b] reviews
the state of the art in connectionist information retrieval and filtering as of
1993. It presents his extensive research into the employment of the Kohonen
SOM for Natural Language Processing, Information Retrieval, and Informa-
tion Filtering. Jakub Zavrel’s masters thesis in 1995 [Zav95] discusses two
variants of the Kohonen SOM for information retrieval which overcome some
of the Kohonen SOM’s limitations. The two variants are Blackmore and
Miikkulainen’s incremental growing grid [BM93] and Fritzke’s growing cell
structures [Fri94].

These early publications were followed by a flood of SOM applications
in the information sciences, such as [Mer95, Roz95, Mer97, Nik97, Mer98,
Mer99]. Surprisingly, it was not until 1996 that Kohonen started apply-
ing SOMs to document classification with his WEBSOM3. WEBSOM is a
method of organizing miscellaneous text documents onto meaningful maps
for exploration and search. For a comprehensive overview of the WEBSOM,
see [KKL+00].

Many other neural network architectures have been employed in the in-
formation sciences, in particular backpropagation and counterpropagation
networks. A comparison of these two neural networks for automatic text
categorization was made in [RS97]. That paper presents the results obtained
from a series of experiments in automatic text categorization of MEDLINE
articles. MEDLINE is the USA National Library of Medicine’s (NLM) pre-
mier bibliographic database, covering the fields of medicine, nursing, den-
tistry, veterinary medicine, the health care system, and the preclinical sci-
ences. The main goal of this research was to build neural networks and to
train them in assigning MeSH phrases based on term frequency of single
words from title and abstract. MeSH stands for Medical Subject Headings,
NLM’s controlled subject vocabulary used for indexing and cataloging. The
experiments compared the performance of a counterpropagation network ver-

3http://websom.hut.fi/websom/

79

CHAPTER 5. NEURAL CLASSIFICATION

sus a backpropagation neural network. Results obtained by using a set of
2,344 MEDLINE documents are presented and discussed. Some other pa-
pers dealing with the application of miscellaneous types of neural networks
in the information sciences include: [GBW93, SHP95, WPW95, LL99, RS99,
WPA99, WAP99, YL99a, YL99b, Wer00, YL00, Tan01].

While most research on neural networks employed for document classifi-
cation, retrieval and filtering employ term based representations, some have
employed n-gram based representations. J.C. Scholtes experimented with n-
grams and Kohonen networks [Sch93b] and also cited research done in 1990
by David Mitzman and Rita Giovannini employing n-grams and backpropa-
gation networks [MG91].

5.3 Neural network simulation system

As it is our aim to optimize the weights associated with the full set of all
occurring n-grams, a neural network with as many input units as there are
occurring n-grams in the Reuters dataset is required. For letter trigrams that
number is 8,013 (see Table 2.6 on page 30) and for phoneme trigrams that
number is 10,303 (see Table 2.7 on page 30). While Mitzman and Giovannini
employed a backpropagation network [MG91], they only used bigrams. And
although Scholtes experimented with higher values of n employing Kohonen
networks, in his experiments the number of n-grams was limited to several
hundreds. In order to be able to handle the large number of inputs required in
our research we employ a one-layer perceptron, often referred to as a simple
perceptron. An example of a simple perceptron with five input units and
three output units is shown in Figure 5.2. The activation level of an input unit
is determined by the instance presented to the neural network, in this case
an n-gram distribution vector. The net input of an output unit is computed
according to Equation 5.1. Output units fire to indicate a category, otherwise
remaining inactive. Therefore, the activation of an output unit is calculated
according to the hard-limiting function Fh as given in Equation 5.2. As
the training and test sets consist of pairs of n-gram distribution vectors and
single categories (~v, c), the neural network classification of ~v can be defined
to be correct if and only if the output unit associated with category c is active
and all other output units are inactive. The weights are trained by adjusting
them as follows:

Wji(t + 1) = Wji(t) + ∆Wji (5.5)

80

5.3. NEURAL NETWORK SIMULATION SYSTEM

Figure 5.2: Simple perceptron

X1 X2 X3 4 5X X

O O O
1 2 3

W
11

W
35

where Wji(t) is the weight associated with the connection from input unit
Xi to output unit Oj at time t (the tth iteration) and ∆Wji is the weight
adjustment. The adjustment can be made in different ways. In our research
the delta rule was employed:

∆Wji = η(Tj −Oj)Xi (5.6)

where η is the learning rate with 0 < η < 1, Tj is the desired (target) output
activation and Oj is the actual output activation.

An algorithmic overview of the neural simulation system is shown in Al-
gorithm 10. First the random number generators are initialized and the
parameter file processed. Then a data structure is created containing the
following information for each topic employed in a particular experiment:

• topic label (e.g. coffee)

• directory containing AIL files4

• file listing the names of the individual AIL files

• training set size

• test set size

4AIL stands for Alphabet Index List and is discussed in depth in Appendix B

81

CHAPTER 5. NEURAL CLASSIFICATION

Next a pass is made through all the AIL files employed in the current ex-
periment, indexing every n-gram occurrence. The result is a list of all the
n-grams occurring in the experiment data set. The need for time consuming
incremental updating of the master index is avoided by employing this pre-
constructed list as the master index in the experiment, thus considerably re-
ducing the time required to run the experiment. In a dynamic non-simulated
environment in which the data set is not known beforehand and documents
arrive in a temporal fashion, this would obviously not be possible; instead,
however, the master index could be initialized with a list of frequently oc-
curring n-grams, reducing the frequency of a non-listed n-gram occurrence
and thus minimizing the overhead for incremental updating of the master
index without losing any of the benefits of employing the full set of possible
n-grams.

This is followed by the outer loop of the system which averages the ex-
perimental results by running the experiment multiple times and averaging
the results of the individual runs. The connection weights are initialized and
an initial test is carried out for each run. Then the inner loop is executed,
each execution being one cycle of the system. A cycle consists of presenting a
pattern (document vector) to the neural network and comparing the activity
pattern (the output units that fire) with the class the presented document
vector belongs to. If the only output unit which is fired is the one associated
with that class, the classification is correct. Otherwise, the neural network
weights are adjusted to better represent the correct activity pattern. Every
plot step size cycles, the document vectors belonging to the test set are pre-
sented and the score is stored for later averaging. The exception is the case in
which the delta rule has not been applied since the last time the test set was
presented. This is the case if no misclassifications of training set documents
have occurred since that time. In this case the test set result will be identical
to the previous test set result and can therefore be stored without further
computation. When all the cycles of all the runs have been executed, the
stored results of all the runs are averaged and the averages written away to
a log file for later inspection and plotting.

5.4 Experimental results

A number of experiments were run in order to answer the following questions:

• How well does a simple perceptron perform for our classification task?

82

5.4. EXPERIMENTAL RESULTS

Algorithm 10 AIF Neural simulation system

initialize random number generators
read parameter file
load dataset file indexes
build n-gram index
for run = 1, 2, . . . ,number of runs do

initialize connection weights
test phase
for cycle = 1, 2, . . . ,number of cycles do

training phase
if cycle is an integer multiple of plot step size then

if delta rule applied then
test phase

end if
record result of last executed test phase

end if
end for

end for
write averaged test results to plot file

83

CHAPTER 5. NEURAL CLASSIFICATION

Table 5.1: Experiment 1: parameter values

parameter value

n 3
alphabet size 27
number of runs 5
number of topics 2,. . .,10
training set size 80
test set size 30
weight initialization uniform random in [-0.1,0.1]
learning rate η 0.3
number of training cycles 10,000

• Is there a difference in performance depending on whether letter n-
grams or phoneme n-grams are employed?

• What values of n provide the best results?

• How does the learning rate η affect the performance?

• How do the results for the simple perceptron compare to the results
obtained in Chapter 4 with the 2-pool CEA?

To this end experiments were conducted using varying parameter sets. The
parameter set for Experiment 1 is shown in Table 5.1; the parameter sets for
Experiments 2, 3 and 4 are very similar, the differences being noted in the
text.

Experiment 1 employed letter trigrams (n = 3, alphabet size = 27) and
was consecutively executed for the number of topics ranging from 2 through
10. To facilitate comparisons between the perceptron results reported in
this chapter and the evolutionary results reported in the previous chapter,
identical test sets were employed. The training set size was chosen to be
equal to the sum of the initialization set size and training set size employed
in the second evolutionary experiment (Section 4.4 on page 65). Thus, the
training set consists of the first 80 documents of each topic, while the test
set consists of the following 30 documents of each topic. Each run of the
experiment consisted of 10,000 training cycles. Initially the weights were
uniform randomly distributed over the interval [-0.1,0.1] and the learning
rate η was set to 0.3. The results were averaged over five runs and are shown

84

5.4. EXPERIMENTAL RESULTS

Table 5.2: Simple perceptron results experiments 1-4

trigrams bigrams
Topics letter phoneme letter phoneme

Coffee, trade 0.983 0.987 0.947 0.973
+ crude 0.911 0.920 0.876 0.876
+ money-fx 0.897 0.908 0.845 0.842
+ sugar 0.893 0.888 0.831 0.839
+ money-supply 0.872 0.889 0.793 0.818
+ ship 0.820 0.856 0.749 0.788
+ interest 0.816 0.827 0.698 0.719
+ acq 0.790 0.791 0.652 0.711
+ earn 0.786 0.796 0.599 0.690

in the second column (letter trigrams) of Table 5.2. To illustrate the results
a plot is provided in Figure 5.3 for even values of the number of topics
parameter. Adding more results to the plot would make it cluttered and
therefore less legible. The results reveal a decreasing score as the number of
topics increases. Also, the number of training cycles required for obtaining
peak performance increases along with the number of topics. One can glean
from the plot that for more than six topics the results might be further
improved by increasing the number of training cycles. Note that the problem
of overlearning does not seem to be present; the performance levels off at
around its peak instead of dropping off as would happen if overlearning had
occurred.

Experiment 2 differs from Experiment 1 only in that it employs phoneme
trigrams instead of letter trigrams. The results for Experiment 2 are shown
in the third column (phoneme trigrams) of Table 5.2 and a plot is provided
in Figure 5.4. While for all but one of the values of the number of topics
parameter the results are slightly better than those of Experiment 1, the
plots are very similar and further improvement of the results by increasing
the number of training cycles for more than six topics is again possible.

Experiment 3 is identical to Experiment 1, except that letter bigrams are
employed instead of letter trigrams. The results for Experiment 3 are shown
in the fourth column (letter bigrams) of Table 5.2 and a plot is provided
in Figure 5.5. While letter trigrams clearly outperform letter bigrams, the
possibility of improving the results through further training seems to be

85

CHAPTER 5. NEURAL CLASSIFICATION

Figure 5.3: Experiment 1: letter trigrams

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000

sc
or

e

training cycles

2 topics
4 topics
6 topics
8 topics

10 topics

present for values of the number of topics parameter larger than four versus
larger than six for letter trigrams. This is surprising because the letter bigram
search space is far smaller than the letter trigram search space, leading to
the expectation that there would be less opportunity for further learning.

Experiment 4 in its turn mirrors Experiment 2, except that phoneme
bigrams are employed instead of phoneme trigrams. The results for Experi-
ment 4 are shown in the fifth column (phoneme bigrams) of Table 5.2 and a
plot is provided in Figure 5.6. While phoneme trigrams clearly outperform
phoneme bigrams, the possibility of improving the results through further
training seems to be present only for eight or more topics. This is again
unexpected, considering that the letter bigrams experiment (Experiment 3)
showed the possibility of improved results through further training for six or
more topics, while the phoneme bigram search space is larger than the letter
bigram search space.

To be able to better compare the results of the four experiments, plots
are provided showing letter versus phoneme results (Figure 5.7) and bigram
versus trigram results (Figure 5.8).

86

5.4. EXPERIMENTAL RESULTS

Figure 5.4: Experiment 2: phoneme trigrams

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000

sc
or

e

training cycles

2 topics
4 topics
6 topics
8 topics

10 topics

The letter trigram versus phoneme trigram plot in Figure 5.8(a) shows
again how similar those results are, with a very slight lead for the phoneme
trigrams. However, there also seems to be the suggestion of a decreasing
performance penalty for an increasing number of topics. It is interesting
to compare this to the letter bigram versus phoneme bigram plot in Fig-
ure 5.8(b). While the plots look the same at first, as the number of topics
increases they show a marked degree of variation. The phoneme bigram
results show the same suggestion of a decreasing performance penalty for
an increasing number of topics, but the letter bigram results reveal a linear
drop in performance as the number of topics increases. The superiority of
trigrams over bigrams is especially clear in Figure 5.8. As the number of
topics increases, the gap between letter trigrams and letter bigrams grows
quickly (Figure 5.9(a)), while the gap between phoneme trigrams and letter
trigrams grows at a decreasing rate (Figure 5.9(b)).

The preceding experiments demonstrate conclusively the advantage of
employing trigrams over bigrams. In Experiment 5 the same parameters are
employed as in Experiment 1, except that the number of topics is fixed at

87

CHAPTER 5. NEURAL CLASSIFICATION

Figure 5.5: Experiment 3: letter bigrams

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sc
or

e

training cycles

2 topics
4 topics
6 topics
8 topics

10 topics

10 and n ranges from 1 through 5. This 10-topic letter n-gram experiment
provides a good comparison of how performance is affected by the value of
n. The results are plotted in Figure 5.9. The plot shows that unigrams
perform very badly, trigrams outperform bigrams as earlier noted, and that
quadgrams outperform trigrams by a small margin. However, increasing n
to 5 shows no further improvement.

The effect of the learning rate is measured in Experiment 6. The pa-
rameters are the same as those employed in Experiment 1, except that the
number of topics is fixed at 10 as in Experiment 5 and the learning rate η
ranges from 0.1 to 1.0. This 10-topic letter trigram experiment will permit a
useful comparison to be made of how performance is affected by the value of
η. The results are plotted in Figure 5.10. The plot shows that, surprisingly,
the value of η does not have a significant effect on the performance.

88

5.4. EXPERIMENTAL RESULTS

Figure 5.6: Experiment 4: phoneme bigrams

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sc
or

e

training cycles

2 topics
4 topics
6 topics
8 topics

10 topics

Figure 5.7: Letter versus phoneme results

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

letter
phoneme

(a) trigrams

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

letter
phoneme

(b) bigrams

89

CHAPTER 5. NEURAL CLASSIFICATION

Figure 5.8: Bigram versus trigram results

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

trigram
bigram

(a) letter n-grams

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

trigram
bigram

(b) phoneme n-grams

Figure 5.9: Experiment 5: n parameter (10-topic, letter n-grams)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sc
or

e

training cycles

 n = 1
 n = 2
 n = 3
 n = 4
 n = 5

90

5.5. BACKPROPAGATION

Figure 5.10: Experiment 6: learning rate η

0.75

0.76

0.77

0.78

0.79

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sc
or

e

η

10-topic letter trigram

3 3

3

3

3

3

3

3

3

3

3

5.5 Backpropagation

This section reports on the employment of multi-layer feed-forward neural
networks in the AIF simulator. Specifically, we will investigate the potential
of a two-layer feed-forward network using the backpropagation algorithm as
its learning rule. The first part of the section will provide a detailed overview
of the backpropagation algorithm. The second part will describe its use in the
AIF simulator and report some results. For more information on multi-layer
feed-forward neural networks in general, and the backpropagation algorithm
in particular, see, for instance, [HN91, HKP91, FS92, Fu94].

5.5.1 Overview

An example of a two-layer feed-forward network with five inputs, three hidden
units, and four output units is shown in Figure 5.11. Initially, the weights wji

are uniform randomly distributed over the interval [−γ/
√

num of inputs,
γ/
√

num of inputs] and the weights vji are initialized uniform randomly in
the interval [−Γ/

√
num of hidden units, Γ/

√
num of hidden units] [BK92].

The value of γ is dependent on the distribution of input activations and the
value of Γ is dependent on the activation function.

91

CHAPTER 5. NEURAL CLASSIFICATION

Figure 5.11: Two-layer feed-forward network

X1 X2 X3 4 5X X

O O
1 2 3

W
11

W
35

O O4

1
H 2

H
3

H

v
11

v
43

One iteration of the backpropagation algorithm as applied to a two-layer
feed-forward network can be formulated as follows:

Present instance The activation level of an input unit is determined by
the instance presented to the neural network, in our case an n-gram
distribution vector.

Calculate activation The net input for units in the hidden layer is com-
puted in the same manner as the net input for units in the output layer
of a simple perceptron (Equation 5.1 on page 75). The net input for
units in the output layer is computed using the same equation, with
the exception that the Xi’s represent the outputs of the hidden units
instead of the input units. The activation level of the hidden units
and the output units is determined by the sigmoid function Fβ (Equa-
tion 5.3 on page 75). Note that in our backpropagation experiments β
was set at 0.5.

Perform backpropagation Begin at the output units, working backward
to the hidden layer. The weights are adjusted in the same manner as

92

5.5. BACKPROPAGATION

with the simple perceptron (Equation 5.5 on page 80). The weight
change of the output units is determined as follows:

∆Wji = ηδjHi (5.7)

and for the hidden units as follows:

∆Wji = ηδjXi (5.8)

where η is the learning rate with 0 < η < 1 and δj is the error gradient
at unit j. The error gradient of the output units is calculated as follows:

δj = Oj(1−Oj)(Tj −Oj) (5.9)

where Tj is the desired (target) output activation and Oj is the actual
output activation at output unit j. The error gradient of the hidden
units is calculated as follows:

δj = Hj(1−Hj)
∑

k

δkvkj (5.10)

where δk is the error gradient at output unit k which is connected to
the hidden unit j with vkj being the connection weight.

The number of iterations of the backpropagation algorithm can be fixed, or
dependent on, for example, an error criterion.

5.5.2 Results

The parameter set for the backpropagation experiments is shown in Table 5.3.
For comparison purposes the parameters were chosen as follows. The exper-
iments employ letter and phoneme trigrams respectively, with the number of
topics ranging from 2 to 10. The training set size and the test set size are
respectively 80 and 30, which is identical to the values of those parameters in
the simple perceptron experiments. The other parameters were chosen after
evaluating some trial runs. The number of runs was set at 10, the number of
hidden units was set at 10, the learning rate η was set at 0.1, γ was set to 30,
and Γ was set to 1 since the activation function employed was the sigmoid
function. Finally, the number of training cycles was set at 10,000.

The results of the backpropagation experiments are shown in Table 5.4.
To illustrate the backpropagation results plots are provided in Figure 5.12

93

CHAPTER 5. NEURAL CLASSIFICATION

Table 5.3: Backprop parameter values

parameter value

n 3
alphabet size 27,40
number of runs 10
number of topics 2,. . .,10
training set size 80
test set size 30
number of hidden units 10
learning rate η 0.1
γ 30
Γ 1
number of training cycles 10,000

Table 5.4: Backprop results

Topics letter phoneme

Coffee, trade 0.972 0.960
+ crude 0.920 0.940
+ money-fx 0.918 0.928
+ sugar 0.911 0.932
+ money-supply 0.888 0.911
+ ship 0.847 0.871
+ interest 0.830 0.864
+ acq 0.797 0.827
+ earn 0.799 0.829

94

5.6. COMPARISON

Figure 5.12: Backprop experiment: letter trigrams

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

sc
or

e

training cycles

2 topics
4 topics
6 topics
8 topics

10 topics

and Figure 5.13 for even values of the number of topics parameter. Adding
more results to the plot would clutter it, decreasing legibility. The results
show a decreasing score as the number of topics increases. Also, the number
of training cycles required for obtaining peak performance increases along
with the number of topics. One can glean from the letter trigram plot that
the results might be further improved by increasing the number of training
cycles, though probably only marginally. This is true also for the phoneme
trigram plot, when the value of the number of topics parameter is greater
than four. Note that the problem of overlearning does not seem to be present;
the performance levels off at around its peak instead of dropping off as would
happen if overlearning had occurred.

5.6 Comparison

In Figure 5.15(a) and Figure 5.15(b) results obtained running the two-pool
EA, the simple perceptron, and the backpropagation experiments are com-
pared for letter and phoneme trigrams respectively. The perceptron results

95

CHAPTER 5. NEURAL CLASSIFICATION

Figure 5.13: Backprop experiment: phoneme trigrams

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

sc
or

e

training cycles

2 topics
4 topics
6 topics
8 topics

10 topics

are taken from Table 5.2 (page 85), the backpropagation results are taken
from Table 5.4 (page 94), and the 2-pool CEA results are taken from Ta-
ble 4.3 (page 68). Both for letter trigrams and for phoneme trigrams, the
2-pool CEA delivers the best overall performance and the perceptron the
worst. For the number of topics equal to two, the results for all three meth-
ods are almost identical for letter trigrams, and pretty close for phoneme
trigrams. For letter trigrams the difference between the 2-pool CEA and the
perceptron are considerable between three and five topics, from six to eight
topics the margin narrows, and after that the gap starts to grow again. The
backprop results remain in between; they are generally closer to the per-
ceptron results except between six and eight topics when they are closer to
the CEA results. The same pattern emerges for phoneme trigrams, except
that the backprop results are always closer to the CEA results, sometimes
even surpassing them. We know from the perceptron experiments as well as
from the backpropagation experiments that further training has the potential
to improve the results, especially for higher values of the number of topics
parameter. Therefore, it is probable that a narrowing of the gap between

96

5.6. COMPARISON

Figure 5.14: Comparison of 2-pool EA, simple perceptron, and backpropa-
gation

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

2-pool CEA
2

2

2 2

2

2 2
2 2

2
simple perceptron×

× × ×
×

× ×
× ×

×
backpropagation4

4 4 4
4

4
4

4 4

4

(a) letter trigrams

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

2-pool CEA
2

2
2 2

2

2
2

2
2

2
simple perceptron

×

× ×
× ×

×
×

× ×

×
backpropagation4

4 4 4
4

4 4
4 4

4

(b) phoneme trigrams

97

CHAPTER 5. NEURAL CLASSIFICATION

the CEA results and the neural network results could be obtained for higher
values of the number of topics parameter by increasing the training time.

5.7 Chapter conclusions

This chapter provides an introduction to neural networks. Various topolo-
gies, activation functions, and learning rules are discussed. The general in-
troduction to neural networks is followed by an overview of the application
of neural networks in the information sciences. Some notable early systems
such as AIR and SCALIR are mentioned, followed by a more extensive look
at self-organizing maps (SOMs) and a number of other neural network mod-
els. In Section 5.3 the implementation of the AIF system employing a neural
network, in particular a simple perceptron, is described in detail and an algo-
rithmic overview of the system is shown in Algorithm 10. Section 5.4 poses
the following questions:

1. How well does a simple perceptron perform for our classification task?

2. Is there a difference in performance depending on whether letter n-
grams or phoneme n-grams are employed?

3. What values of n provide the best results?

4. How does the learning rate η affect the performance?

5. How do the results using the simple perceptron compare to the results
obtained in Chapter 4 with the 2-pool CEA?

The answer to the first question is that for small numbers of topics a sim-
ple perceptron performs quite well, but as the number of topics increases
the performance drops considerably. And although the drop in performance
slows down as the number of topics continues to increase, it is not sufficient
to make the system scalable. Ways in which the scalability issue might be
addressed will be explored in the future research section of the conclusions
chapter (Section 6.3). The answer to the second question is that phoneme tri-
grams perform just a hair better than letter trigrams, but phoneme bigrams
outperform letter bigrams by an increasing margin as the number of topics
increases. The third question is more difficult to answer, because of the need

98

5.7. CHAPTER CONCLUSIONS

to take into account the exponential increase in computational resources re-
quired as n increases. Unigrams perform terribly, bigrams far better, but
not sufficiently better for real-world use, trigrams perform quite well, and
quadgrams slightly better. Considering the computational cost advantage of
trigrams over quadgrams it is doubtful, however, whether the performance
advantage of quadgrams over trigrams is sufficient to be of interest. Higher
values of n are definitely not worthwhile as they provide little or no perfor-
mance improvement. Note that this might not be the case for more advanced
neural networks. Surprisingly, the value of the learning parameter η does not
seem to have a noticeable effect on the learning process. The answer to the
final question is that while the difference between the performance of the
2-pool CEA and the perceptron is not very large, and further training of the
perceptron has the potential for decreasing the performance difference for a
larger number of topics, overall, the 2-pool CEA outperforms the perceptron.
Section 5.5 introduces a multi-layer feed-forward network using the backprop-
agation algorithm and presents some experimental results. The comparison
between the perceptron, backpropagation, and 2-pool CEA results in Sec-
tion 5.6 suggests that the backpropagation network outperforms the simple
perceptron, and is very close in performance to the 2-pool CEA, sometimes
even outperforming it. Further tuning of the backpropagation parameters,
together with increased training, therefore has the potential to improve its
performance beyond that of the 2-pool CEA.

99

CHAPTER 5. NEURAL CLASSIFICATION

100

Chapter 6

Conclusion

Synopsis

This chapter consists of three sections. A summary of the most important
results is presented in Section 6.1. The research questions posed in Section 1.2
are answered in Section 6.2. Suggestions are made for future research in
Section 6.3.

6.1 Summary of results

Representing textual as well as phonetic documents with their n-gram fre-
quency distributions is shown in Chapter 2 to be an effective statistical
method for document classification. That method does not, however, have
sufficient discriminatory power for real-world use in an adaptive information
filtering system; weighted n-gram frequency distributions are a solution, but
require a mechanism to incrementally optimize the weights associated with
the n-grams. Such a mechanism will also facilitate adaptation to any changes
in the information stream and in the user’s interests. Chapter 3 introduces
a possible mechanism based on evolutionary computation, namely the two-
pool classification evolutionary algorithm (CEA). Chapter 4 demonstrates
how the two-pool CEA can be employed in an adaptive information filtering
system. Table 6.1 and Table 6.2 give an overview of the most important
results found in this dissertation for letter trigrams and phoneme trigrams
respectively. Letter trigram results for the two-pool CEA are shown in the
second column of Table 6.1, phoneme trigram results in the second column

101

CHAPTER 6. CONCLUSION

Table 6.1: Letter trigram results

Topics 2-pool simple back- unweighted weighted
CEA perceptron prop KNN KNN

Coffee, trade 0.980 0.983 0.972 0.91 0.99
+ crude 0.966 0.911 0.920 0.79 0.93
+ money-fx 0.938 0.897 0.918 0.77 0.91
+ sugar 0.933 0.893 0.911 0.76 0.91
+ money-supply 0.895 0.872 0.888 0.76 0.89
+ ship 0.846 0.820 0.847 0.72 0.87
+ interest 0.843 0.816 0.830 0.69 0.82
+ acq 0.826 0.790 0.797 - -
+ earn 0.831 0.786 0.799 - -

of Table 6.2. The results of related research by Langdon employing the k
nearest neighbours (KNN) classifier and a genetic algorithm based on the
QGAME library is shown in the fifth and sixth columns of Table 6.1. A
graph comparing the two-pool CEA, unweighted KNN, and weighted KNN
results is displayed in Figure 6.2. Chapter 5 introduces two mechanisms for
incremental optimization based on neural computation, namely simple per-
ceptrons and feed-forward networks employing the backpropagation learning
algorithm. Letter trigram results for each are shown in the third and fourth
columns of Table 6.1 respectively, phoneme trigram results in the third and
fourth columns of Table 6.2 respectively. Graphs comparing the two-pool
CEA, simple perceptron, and backpropagation network for letter trigrams
and phoneme trigrams are displayed in Figure 6.2(a) and in Figure 6.2(b)
respectively.

Overall, the two-pool CEA seems to outperform the other methods by
a narrow margin. The feed-forward network with backpropagation learning
algorithm ties with the weighted KNN approach, closely followed by the
simple perceptron. The unweighted KNN approach renders the worst result
by far, demonstrating the superiority of the weighted methods.

102

6.1. SUMMARY OF RESULTS

Figure 6.1: Comparison of 2-pool CEA, simple perceptron, and backpropa-
gation

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

2-pool CEA
2

2

2 2

2

2 2
2 2

2
simple perceptron×

× × ×
×

× ×
× ×

×
backpropagation4

4 4 4
4

4
4

4 4

4

(a) letter trigrams

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6 7 8 9 10

sc
or

e

topics

2-pool CEA
2

2
2 2

2

2
2

2
2

2
simple perceptron

×

× ×
× ×

×
×

× ×

×
backpropagation4

4 4 4
4

4 4
4 4

4

(b) phoneme trigrams

103

CHAPTER 6. CONCLUSION

Table 6.2: Phoneme trigram results

Topics 2-pool CEA simple perceptron backprop

Coffee, trade 0.973 0.987 0.960
+ crude 0.958 0.920 0.940
+ money-fx 0.942 0.908 0.928
+ sugar 0.938 0.888 0.932
+ money-supply 0.909 0.889 0.911
+ ship 0.872 0.856 0.871
+ interest 0.853 0.827 0.864
+ acq 0.839 0.791 0.827
+ earn 0.850 0.796 0.829

Figure 6.2: Letter trigram comparison

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2 3 4 5 6 7 8

sc
or

e

topics

Unweighted KNN
Weighted KNN
Two-pool CEA

104

6.2. RESEARCH QUESTIONS

6.2 Research questions

Each of the research questions posed in Section 1.2 are answered in this
section. Our first question was:

Do n-grams have the potential to provide document representa-
tions more suited to adaptive information filtering than tradi-
tional methods of representation?

Employing n-grams for adaptive information filtering has several advantages
over traditional methods of representation which are typically based on terms.
First, n-grams provide a robust representation in the face of spelling vari-
ations/errors. They are also language/topic independent. Both of these
advantages are due to the fact that employing n-grams relies on statistics
whereas employing terms requires linguistic knowledge. A more extensive
examination of the advantages associated with employing n-grams can be
found in Section 2.3 and in Section 2.4. The method of representing doc-
uments by computing their n-gram frequency distribution, as introduced in
Section 2.2, was successfully employed in the dissertation research as reported
in Chapter 4 and Chapter 5. Discussion of the other research questions in this
chapter will further expand on this point. The answer to our first question
is thus affirmative: the dissertation research has demonstrated the poten-
tial of n-grams to provide document representations more suited to adaptive
information than traditional methods of representation.

Our second question was:

Do machine learning techniques have the potential to satisfy the
specific requirements of adaptive information filtering systems?

Adaptive information filtering entails adapting to changes in both the user’s
needs and the nature of the information streams. Machine learning allows this
adaptation to be performed in an intelligent manner. The specific machine
learning techniques employed in the dissertation research are reviewed in
the answer to the next research question. Their successful application as
reported in this dissertation (the results of which are summarized in the
previous section) indicates that this research question too can be answered
in the affirmative.

The third question concerns the specific machine learning techniques:

105

CHAPTER 6. CONCLUSION

How can machine learning techniques be employed to optimize
the weights associated with n-grams in n-gram document repre-
sentations?

In the dissertation research the adaptation is encoded in the weights as-
sociated with the n-grams. This weighted representation is introduced in
Section 2.5. Adaptation is thus achieved through continuous optimization of
the weights. In Chapter 3 the two-pool CEA is proposed as an optimization
method well suited to this temporal task and experimental results for this
method are presented in Chapter 4. An alternative method is to employ
neural computation; this is explored in Chapter 5.

Our fourth question was:

What type of evolutionary algorithm is capable of addressing the
specific requirements of adaptive information filtering?

Adaptive information filtering imposes special requirements on data process-
ing systems. The first requirement holds true for any information filtering
system: it must be able to process data in a temporal fashion (i.e., incremen-
tally). The second requirement is specific to adaptive information filtering:
the system must be able to adapt to changes in users’ information needs as
well as changes in the data streams being filtered. Traditional evolution-
ary algorithms optimize in a batch fashion as opposed to in an incremental
fashion; a major part of the dissertation research involved the development
of an incremental classification evolutionary algorithm: the two-pool CEA.
The details of its development are discussed in Chapter 3 and experimental
results produced by its implementation in a simulated adaptive information
filtering system are presented in Chapter 4. The only comparable research we
are aware of are Langdon’s KNN QGAME experiments, which we reported
in Section 4.5. Typically our results were better with a margin of 2% to
4%, but in a few cases our results were only equal to or slightly worse than
Langdon’s. A graph illustrating this comparison is displayed in Figure 6.2.
It should be kept in mind, however, that this comparison is between our spe-
cific combination of an EA and a classification algorithm and his, preventing
a direct comparison of the EAs alone.

Our fifth and final question was:

What degree of improvement in classification results can be achieved
through the use of weighted n-gram document representations?

106

6.3. FUTURE RESEARCH

This is a difficult question to answer for a number of reasons. The upper-
bound depends on the particular data set employed, the specific classification
algorithm used, and the exact values of numerous parameters. However, one
can glean a rough estimate from the experimental results (summarized in the
previous section). The degree of improvement reported in Chapter 4 for the
AIF simulation system ranged typically from 1% to 3%, with in a few cases a
negative result and in one case an improvement exceeding 4%. A comparison
of the three methods explored in the dissertation research, namely the two-
pool CEA, the simple perceptron, and the two-layer feed-forward network
using the backpropagation learning algorithm, are shown in Figure 6.1. This
comparison is discussed in detail in Section 5.6.

The research reported in this dissertation has demonstrated the poten-
tial of combining statistical methods of representation (e.g., n-grams) with
machine learning techniques (e.g., evolutionary algorithms and neural net-
works) for enhancing adaptive information filtering systems to address the
important problem of Information Overload. The next section will outline
the most promising directions for future research.

6.3 Future research

Document similarity was estimated by employing the Minkowski `p-metric for
p equal to one, which is sometimes known as the Manhattan metric. Future
research should investigate other values of p and other metrics as such.

The classification algorithm we employed, the nearest cluster algorithm
(Algorithm 1 on page 18), was purposely chosen to be of a simple nature
with as few parameters as possible, thus facilitating the optimization of the
other system parameters. Better results can, however, probably be attained
employing a more advanced classification algorithm.

As token alphabet for textual representation we employed the Latin al-
phabet with space delimiter, for a total of 27 tokens. Experimenting with
more elaborate alphabets might yield better results. For instance, one could
distinguish between lower and upper case letters, and expand the token al-
phabet by placing significance on numerals and grammatical symbols.

The data set employed in the dissertation research is the Reuters-21578
text categorization collection, as described in Section 2.3. The use of addi-
tional data sets would allow less data set dependent conclusions to be drawn
and would facilitate comparisons with related research. A particularly re-

107

CHAPTER 6. CONCLUSION

warding collection of data sets are those employed in the TREC Conference
series1.

While one of the advantages of employing weighted n-gram represen-
tations is that one need not use preprocessing methods (see Section 2.3),
minor improvements in the results were obtained using stop word filtering.
The employment of stemming and conflation routines might result in further
improvements.

In Table 2.5 it was shown that the use of quadgrams sometimes leads to
poorer results than when employing trigrams. This may be due to the “curse
of dimensionality”; investigating this phenomenon and finding an explanation
could provide important insights.

The two-pool CEA derived in Section 3.3 and employed in the dissertation
research as specified in Section 3.4 is inspired by Evolutionary Strategies
(ES). However, our two-pool CEA lacks some of the more advanced features
of ES, such as the self-adaptation component that provides local fine-tuning
of the mutation rate. Incorporating this feature into the two-pool CEA has
the potential to significantly speed up the convergence rate.

The simplified two-pool CEA (Algorithm 7 on page 46) is employed in the
dissertation research. It would be interesting to compare the results with
those obtained by employing the two-pool CEA (Algorithm 6 on page 45)
from which the simplified two-pool CEA is derived.

The evolve algorithm (Algorithm 8 on page 47) currently supports evo-
lution with or without crossover. This could be improved by introducing
a crossover chance parameter, ranging from 0 (no crossover) to 1 (always
crossover).

The AIF simulation system employs static non-hierarchic clusters. A
more advanced model would use dynamic hierarchic clusters.

One of the main problems with the current two-pool CEA based AIF sim-
ulation system is the tuning of the EA parameters. In [EHM99], parameter
control was suggested as a promising approach for solving this problem.

The neural network architectures employed in the dissertation research,
as reported in Chapter 5, were a simple perceptron and a multi-layer feed-
forward network employing the backpropagation learning algorithm. More
advanced neural networks would most likely yield better results. Their use
would entail, however, far greater computational demands. To address this
requires either the allocation of greater computational resources or a reduc-

1http://trec.nist.gov/

108

6.3. FUTURE RESEARCH

tion in the number of inputs (one each per n-gram). One possiblity worth
exploring is the use of principal component analysis [HKP91]. If this is-
sue can be resolved, some neural network architectures worth investigating
include SOMs and ART networks [HKP91].

Both neural networks and evolutionary algorithms are inspired by nature.
While in the dissertation research they are employed independently, in nature
they have symbiotic roles. Our DNA provides a blueprint for our “construc-
tion”, including the architecture of the neural networks that form our brain.
Learning occurs thus at two levels: at the individual level via training of
neural networks, and at the species level via evolving of the gene population.
This suggests two ways of improving on the current design, namely:

• The use of hybrid EA/NN systems.

• Evolving NN architectures using an EA.

For the first see, for instance, [MS94]. For the second see [BBSK95, BSK01].
To conclude, the future research outlined in this section holds the promise

of further advancing the ideas, methods and algorithms presented in this
dissertation. Much work is still to be done in order to develop the powerful
and practical tool that we envision.

109

CHAPTER 6. CONCLUSION

110

Appendix A

C++ n-gram class library

This appendix details the C++ n-gram class library. The newest version of
this library is always available from the n-gram clearinghouse1. A general
description and user manual are presented in Section A.1; in Section A.2, a
set of tables provides the library details.

A.1 Overview

The C++ n-gram class library defines the class ngramdistribution and some
supporting functions, types and constants. This library supports the use of
n-gram distributions for various applications and a range of n values. As in
many applications of n-grams, especially for n equal to or larger than three,
sparse distributions are employed, this library fully supports sparse n-gram
distributions. This is implemented by employing separate data structures to
hold the indices of the occurring n-grams. It is up to the user of the library
to keep track of which indices go with which n-gram distributions.

A short user manual for the library, with examples, is presented below; for
a detailed overview of the library see Section A.2. Note that for the sake of
brevity the inclusion of the library header file ngram.h is not shown, though
it is assumed.

1http://www.liacs.nl/home/dtauritz/ngram/

111

APPENDIX A. C++ N -GRAM CLASS LIBRARY

A.1.1 Creation and destruction

The library offers a default constructor, a copy constructor, and a destruc-
tor for the class ngramdistribution. In the following example, the default
constructor is called first, then the copy constructor; upon exiting the main
function, the destructor is invoked automatically.

int main(void) {

ngramdistribution d1;

try {ngramdistribution d2(d1);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

return 0;

}

Two initialization functions are offered, one for constant initialization
and one for uniform random. In the following example, d1 is initialized
uniformly employing the constant c and d2 is initialized uniform randomly
in the interval [0,1]. The alphabet size a is set to 27 and the vector size is
set to 100.

int main(void) {

unsigned n=3;

unsigned a=27;

unsigned size=100;

double c=0.5;

RUniform frand(1);

ngramdistribution d1,d2;

try {d1.init(n,a,size,c);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

try {d2.init(n,a,size,frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

112

A.1. OVERVIEW

};

return 0;

}

The create function constructs an ngramdistribution from an AIL file. In
the following example a trigram distribution (n = 3) is created from the AIL
file file.ail. If the create function executed correctly, unlisted will contain the
indices of the trigrams occurring in the AIL file.

int main(void) {

unsigned n=3;

ngram_set index,unlisted;

ngramdistribution d;

try {unlisted=d.create("file.ail",n,index);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

return 0;

}

A.1.2 Updating and storage

A critical component of the master index method is to keep both the master
index and all the associated lists updated at all times. This is accomplished
via the uniform constant update function and the uniform random update
function. In the following example, first a trigram distribution d1 is con-
structed from the file file1.ail, then a weight vector w is initialized uniform
randomly, next a trigram distribution d2 is constructed from the file file2.ail.
This is followed by updating d1 through the addition of zeros for the trigram
indices added to the master index during the creation of d2 (using the uni-
form constant update function). Finally, w is updated through the addition
of random values in the interval [0,1] for the trigram indices added to the
master index during the creation of d2 (using the uniform random update
function).

int main(void) {

unsigned n=3;

113

APPENDIX A. C++ N -GRAM CLASS LIBRARY

unsigned a;

RUniform frand(1);

ngram_set index,unlisted;

ngramdistribution d1,d2,w;

try {index=d1.create("file1.ail",n,index);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

a = d1.return_a();

try {w.init(n,a,index.size(),frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

try {unlisted=d2.create("file2.ail",n,index);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

try {d1.index_update(index,unlisted,0);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

try {w.index_update(index,unlisted,frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

index.insert(unlisted.begin(),unlisted.end());

return 0;

}

Functions are provided for the storing and loading of an ngramdistribu-
tion. In the following example, a trigram distribution is created from the
AIL file file.ail, stored in the file file.dist, and then loaded again from the last
mentioned file.

114

A.1. OVERVIEW

int main(void) {

unsigned n=3;

unsigned a;

ngram_set index,unlisted;

ngramdistribution d1,d2;

try {index=d1.create("file.ail",n,index);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

a = d1.return_a();

try {d1.store("file.dist",index);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

try {unlisted=d2.load("file.dist",index);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

};

return 0;

}

A.1.3 Metrics and other functions

A function is provided to normalize an ngramdistribution such that the sum
of its elements is precisely one. This is accomplished by dividing each element
by the sum of the elements.

int main(void) {

unsigned n=3;

unsigned a=27;

unsigned size=100;

double c=0.5;

ngramdistribution d;

try {d.init(n,a,size,c);}

catch (ngram_exception exception) {

115

APPENDIX A. C++ N -GRAM CLASS LIBRARY

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {d.normalize();}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

return 0;

}

While in the next subsection covering operators, a multiply operator is
provided, a special purpose function is offered which assigns the multiple of
two distributions to a third distribution. This function is substantially faster
than using separate multiply and assignment operators. In the dissertation
research this is of critical importance because the assignment of the multiple
of two distributions to a third distribution is one of the most frequently
occurring operations.

int main(void) {

unsigned n=3;

unsigned a=27;

size=100;

RUniform frand(1);

ngramdistribution d1,d2,d3;

try {d1.init(n,a,size,frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {d2.init(n,a,size,frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {d3.assign_multiple(d1,d2);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

116

A.1. OVERVIEW

exit(1);

}

return 0;

}

Two metric functions are provided, namely for the Manhattan metric and
for the Euclidean metric. In the following example two uniform random dis-
tributions are created after which the Manhattan distance and the Euclidean
distance between the two are displayed.

int main(void) {

unsigned n=3;

unsigned a=27;

unsigned size=100;

double dist;

RUniform frand(1);

ngramdistribution d1,d2;

try {d1.init(n,a,size,frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {d2.init(n,a,size,frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {dist=d1.ManhattanDist(d2);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

cout << dist << endl;

try {dist=d1.EuclideanDist(d2);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

117

APPENDIX A. C++ N -GRAM CLASS LIBRARY

cout << dist << endl;

return 0;

}

A.1.4 Operators

Operators are provided for addition, multiplication, assignment, and the test-
ing of equality. In the following example distributions d1 and d2 are created
uniform randomly, then d2 is added to d1, next d1 is multiplied by d2. This
is followed by assigning d1 to d2, and finally d1 and d2 are tested for equality.

int main(void) {

unsigned n=3;

unsigned a=27;

unsigned size=100;

RUniform frand(1);

ngramdistribution d1,d2;

try {d1.init(n,a,size,frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {d2.init(n,a,size,frand);}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {d1+=d2;}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {d1*=d2;}

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

try {d2=d1;}

118

A.2. DETAILS

catch (ngram_exception exception) {

cerr << return_ngram_exception_message(exception) << endl;

exit(1);

}

if (d1==d2) cout << "correct" << endl;

else cout << "incorrect" << endl;

return 0;

}

A.2 Details

Table A.1 shows the public members of the class ngramdistribution; Table
A.2 shows the protected members of the class ngramdistribution; Table A.3
shows the types, constants and supporting functions; and Table A.4 shows
for each class function which exceptions can occur.

119

APPENDIX A. C++ N -GRAM CLASS LIBRARY

Table A.1: Public members of ngramdistribution
Member declaration Description

ngramdistribution() default constructor; guarantees that value is initialized as a
NULL pointer

ngramdistribution(const ngramdistribution
&original)

copy constructor

∼ngramdistribution() destructor
void init(unsigned n, unsigned a, unsigned
size, RUniform &frand)

initializes value uniform randomly in the range [0,1] using ran-
dom number generator frand

void init(unsigned n, unsigned a, unsigned
size, double uniform value)

initializes value homogeneously to uniform value

ngram set create(string s, unsigned n,
ngram set index)

create n-gram distribution from AIL file s and return indices
of any occurring n-grams not listed in index

void index update(ngram set index, ngram set
unlisted, RUniform &frand)

expand value for n-grams indexed in unlisted and initialize the
new entries in value uniform randomly in the range [0,1] using
random number generator frand; index specifies the n-grams
already indexed

void index update(ngram set index, ngram set
unlisted, double uniform value)

expand value for n-grams indexed in unlisted and initialize the
new entries in value homogeneously to uniform value; index
specifies the n-grams already indexed

ngram set load(string s, ngram set index) load n-gram distribution from n-gram file s and return indices
of any occurring n-grams not listed in index

void store(string s, ngram set index) store n-gram distribution in n-gram file s; index lists the oc-
curring n-grams

void normalize() divide all the values in value by sum and then assign the value
1 to sum

void assign multiple(const ngramdistribution
&dist1, const ngramdistribution &dist2)

assign the multiple of n-gram distributions dist1 and dist2; note
that this is considerably faster than using separate assignment
and multiplication operators

double ManhattanDist(const
ngramdistribution &dist)

return the Manhattan Distance with n-gram distribution dist

double EuclideanDist(const ngramdistribution
&dist)

return the Euclidean Distance with n-gram distribution dist

ngramdistribution & operator+=(const
ngramdistribution &dist)

add to self n-gram distribution dist

ngramdistribution & operator*=(const
ngramdistribution &dist)

multiply self with n-gram distribution dist

ngramdistribution & operator=(const
ngramdistribution &dist)

assign n-gram distribution dist

bool operator==(const ngramdistribution
&dist)

return true if equal to n-gram distribution dist, otherwise false;
note that this only works as long as value contains solely integer
values; this is a test function and will be removed from future
releases

double* return value() return a pointer to value
double return sum() return the value of sum

120

A.2. DETAILS

Table A.2: Protected members of ngramdistribution

Member declaration Description

unsigned n the value of n being used
unsigned a the size of the alphabet
unsigned size the number of n-grams indexed by value
double *value values for each n-gram occurring in this dis-

tribution
double sum the sum of the values indexed by value

Table A.3: Types, constants, and supporting functions

Definition Description

const string ngram version (”0.41”) ngram version contains revision in-
formation for the n-gram C++ class
library

typedef set<unsigned> ngram set ngram set defines a data type to hold
the indices of occurring n-grams

enum ngram exception {N MISMATCH,
A MISMATCH, SIZE MISMATCH,
FILE OPEN FAILURE,
INCORRECT FILE FORMAT,
MEMORY ALLOCATION FAILURE,
N OUT OF BOUNDS,
VALUE ARRAY UNDEFINED,
DIVIDE BY ZERO SUM}

in table A.4 for each class function a
list of the possible exception values is
given

unsigned compute num of ngrams
(unsigned n, unsigned a)

returns the total number of n-grams
for given values of n and a

void ngram token (unsigned index value,
unsigned n,char s[])

given index value and n return the
corresponding n-gram in s under the
assumption that the alphabet con-
sists of the letters a through z and
the space delimiter

unsigned return ngram position (char
ngram[], unsigned n)

given an n-gram and n, return the
position value of the n-gram (with
’a’=0, ’z’=25, and space=26)

121

APPENDIX A. C++ N -GRAM CLASS LIBRARY

Table A.4: Exceptions

Function N
M

IS
M

A
T

C
H

A
M

IS
M

A
T

C
H

S
IZ

E
M

IS
M

A
T

C
H

F
IL

E
O

P
E

N
F
A

IL
U

R
E

IN
C

O
R

R
E

C
T

F
IL

E
F
O

R
M

A
T

M
E

M
O

R
Y

A
L
L
O

C
A
T

IO
N

F
A

IL
U

R
E

N
O

U
T

O
F

B
O

U
N

D
S

V
A

L
U

E
A

R
R

A
Y

U
N

D
E

F
IN

E
D

D
IV

ID
E

B
Y

Z
E

R
O

S
U

M

ngramdistribution()
ngramdistribution(const ngramdistribution &original)

√
∼ngramdistribution()
void init(unsigned n, unsigned a, unsigned size, RUniform &frand)

√ √
void init(unsigned n, unsigned a, unsigned size, double
uniform value)

√ √

ngram set create(string s,unsigned n,ngram set index)
√ √ √ √

void index update(ngram set index, ngram set unlisted, RUniform
&frand)

√

void index update(ngram set index, ngram set unlisted, double
uniform value)

√

ngram set load(string s, ngram set index)
√ √

void store(string s, ngram set index)
√ √

void normalize()
√ √

void assign multiple(const ngramdistribution &dist1, const
ngramdistribution &dist2)

√ √ √ √ √

double ManhattanDist(const ngramdistribution &dist)
√ √ √ √

double EuclideanDist(const ngramdistribution &dist)
√ √ √ √

ngramdistribution & operator+=(const ngramdistribution &dist)
√ √ √ √

ngramdistribution & operator*=(const ngramdistribution &dist)
√ √ √ √

ngramdistribution & operator=(const ngramdistribution &dist)
√

bool operator==(const ngramdistribution &dist)
double* return value()
double return sum()

122

Appendix B

Alphabet Index Lists

An Alphabet Index List (AIL) is a vector of the form:

(< token index >,< token index >, . . . , < token index >)

with < token index > being an integer in the interval [0, |A| − 1] and each
token index corresponding to the token in the token stream represented by
the AIL. For example, if the token alphabet A consisted of the colors red,
white, and blue, and the token stream contained first two times red, then
once blue, once more red, and finally three times white, the AIL would be as
follows:

(0, 0, 2, 0, 1, 1, 1)

To facilitate the storage of AILs, the following standard form of storing AILs
is adopted:

ail
< alphabet size >
< token index > < token index > . . . < token index >
< token index > < token index > . . . < token index >
...

...
...

...
< token index > < token index > . . . < token index >

The first line contains the letters “ail”, for the purpose of identifying the file
type. The second line contains the size of the alphabet, and the following
lines contain the token indices. While the line breaks are not significant, it
enhances the readability of the file to break the lines after delimiter token

123

APPENDIX B. ALPHABET INDEX LISTS

indices, if those are present. To illustrate the AIL file structure, the above
color example is now shown stored in an AIL file:

ail

3

0 0 2 0 1 1 1

The following two sections contain the source code employed in the disser-
tation research for converting text files to AIL files: Section B.1 for T and
Section B.2 for P .

B.1 Text to Latin Alphabet Index List

This section is concerned with converting text files to AIL files for T , the
Latin alphabet specified in Section 2.3. Such “Latin” AIL files will further
be referred to as LAIL files. Consider the following example text:

international coffee organization

The corresponding LAIL file is:

ail

27

9 14 20 5 18 14 1 20 9 15 14 1 12 0

3 15 6 6 5 5 0

15 18 7 1 14 9 26 1 20 9 15 14 0

The first line contains the file type identifying text “ail”. The second line
contains the number 27, which is equal to |T |. And each following line
contains the token indices of the corresponding word in the text (the ‘i’s in
international are the 9th letter of the Latin alphabet), followed by a zero, the
index of the delimiter token. The source code of the conversion program is
as follows:

// t2lail - text to Latin alphabet index list
//
// Author : Daniel R. Tauritz
// Created : June 21st 2001
// Last revised: July 11th 2001
// Compiler : GNU C++

124

B.1. TEXT TO LATIN ALPHABET INDEX LIST

//
// Input : either a text file to be processed or a text file
// containing the file names of the text files to be
// processed (note that in the latter case the
// filenames need to contain one single dot)
// Output : Latin alphabet index list file(s)

#include <fstream>
#include <string>
#include <map>
#include <vector>
#include <set>

typedef vector<char> phoneme_vector_type;
map<string,phoneme_vector_type> tp_map;
set<string> unknown_set;

void loop(string);
void process(string,string);
void write_unknown_terms(void);

int main(int argc, char *argv[])
{
cout << "t2lail : Text-to-Latin Alphabet Index List\n" << endl;
switch (argc) {
case 2: loop(argv[1]);

break;
case 3: process(argv[1],argv[2]);

break;
default: cout << "Incorrect number of arguments." << endl;

cout << "Format: t2lail [text file] [pail file] or" << endl;
cout << " t2lail [list file]" << endl;

}
return 0;

}

void loop(string listfile_name)
{
ifstream listfile (listfile_name.c_str());
if (!listfile) {

125

APPENDIX B. ALPHABET INDEX LISTS

cerr << "Error: Unable to open " << listfile_name << endl;
exit(1);

}

// open lail list file
string laillistfilename = "lail.ind";
ofstream laillistfile (laillistfilename.c_str());
if (!laillistfile) {
cerr << "Error: Unable to open " << laillistfilename << endl;
exit(1);

}

cout << "Processing files" << flush;
char inputfilename[255],outputfilename[255];
while (listfile >> inputfilename) {
cout << ’.’ << flush;
strcpy(outputfilename,inputfilename);

// Find dot in outputfilename (dot in filename required!)
unsigned i=0;
while (outputfilename[i]!=’.’) i++;

// Replace suffix with "lail"
outputfilename[i+1]=’l’;
outputfilename[i+2]=’a’;
outputfilename[i+3]=’i’;
outputfilename[i+4]=’l’;
outputfilename[i+5]=’\0’;

process(inputfilename,outputfilename);
laillistfile << outputfilename << ’\n’;

}
cout << endl;

laillistfile.close();
listfile.close();

}

void process(string tf_name, string lail_name)
{

126

B.1. TEXT TO LATIN ALPHABET INDEX LIST

// open text file
ifstream tf (tf_name.c_str());
if (!tf) {
cerr << "Error! Unable to open " << tf_name << endl;
exit(1);

}

// open alphabet index vector file
ofstream ailf (lail_name.c_str());
if (!ailf) {
cerr << "Error! Unable to open " << lail_name << endl;
exit(1);

}
ailf << "ail" << endl; // label
ailf << "27" << endl; // alphabet size : 26 letters + delimiter

// process text file
char ch;
bool previous_char_is_delimeter = true;
while(tf.get(ch)) {
if (!isalpha(ch)) {

if (!previous_char_is_delimeter) {
ailf << (int)0 << ’\n’;
previous_char_is_delimeter = true;

}
} else {

ailf << (int)(1+tolower(ch)-’a’) << ’ ’;
previous_char_is_delimeter = false;

}
}

// close files
tf.close();
ailf.close();

}

127

APPENDIX B. ALPHABET INDEX LISTS

B.2 Text to Phoneme Alphabet Index List

This section is concerned with converting text files to AIL files for P , the
Latin alphabet specified in Section 2.4. Such “phonetic” AIL files will further
be referred to as PAIL files. Consider the following example text:

international coffee organization

The corresponding PAIL file is:

ail

40

17 23 31 12 23 2 30 3 23 3 21 0

20 1 14 18 0

4 28 15 3 23 3 38 13 30 3 23 0

The first line contains the file type identifying text “ail”. The second line
contains the number 40, which is equal to |P|. And each following line
contains the token indices of the corresponding word in the text, followed by
a zero, the index of the delimiter token. The source code of the conversion
program is as follows:

// t2pail - text to phoneme alphabet index list
//
// Author : Daniel R. Tauritz
// Created : May 31st 2001
// Last revised: July 11th 2001
// Compiler : GNU C++
//
// Input : either a text file to be processed or a text
// file containing the file names of the text files
// to be processed (note that in the latter case
// the filenames need to contain one single dot)
// Auxiliary input: cmudict 0.6d - stripped
// Output : phoneme alphabet index list file(s)

#include <fstream>
#include <string>
#include <map>
#include <vector>
#include <set>

128

B.2. TEXT TO PHONEME ALPHABET INDEX LIST

typedef vector<char> phoneme_vector_type;
map<string,phoneme_vector_type> tp_map;
set<string> unknown_set;

void loop(string);
void process(string,string);
void write_unknown_terms(void);

int main(int argc, char *argv[])
{
cout << "t2pail : Text-to-Phoneme Alphabet Index List\n" << endl;

// open stripped cmudict file
ifstream cmudict_stripped ("cmudict.0.6d-stripped");
if (!cmudict_stripped) {
cerr << "Error! Unable to open cmudict.0.6d-stripped" << endl;
exit(1);

}

// build term-phoneme index vector lookup table
cout << "Building term-phoneme index vector lookup table" << endl;
string term;
cmudict_stripped >> term;
for (unsigned i=1;i<=112151;i++) {
char phoneme[256];
phoneme_vector_type v;
while(1) {

cmudict_stripped >> phoneme;
if (atoi(phoneme) == 0) {
tp_map.insert(pair<string,phoneme_vector_type>(term,v));
term=phoneme;
break;

}
v.push_back(atoi(phoneme));

};
}
cmudict_stripped.close();

// process command line arguments

129

APPENDIX B. ALPHABET INDEX LISTS

switch (argc) {
case 2: loop(argv[1]);

break;
case 3: process(argv[1],argv[2]);

break;
default: cout << "Incorrect number of arguments." << endl;

cout << "Format: t2pail [text file] [pail file] or" << endl;
cout << " t2pail [list file]" << endl;

}

write_unknown_terms();
return 0;

}

void loop(string listfile_name)
{
ifstream listfile (listfile_name.c_str());
if (!listfile) {
cerr << "Error: Unable to open " << listfile_name << endl;
exit(1);

}

// open pail list file
string paillistfilename = "pail.ind";
ofstream paillistfile (paillistfilename.c_str());
if (!paillistfile) {
cerr << "Error: Unable to open " << paillistfilename << endl;
exit(1);

}

cout << "Processing files" << flush;
char inputfilename[255],outputfilename[255];
while (listfile >> inputfilename) {
cout << ’.’ << flush;
strcpy(outputfilename,inputfilename);

// Find dot in outputfilename (dot in filename required!)
unsigned i=0;
while (outputfilename[i]!=’.’) i++;

130

B.2. TEXT TO PHONEME ALPHABET INDEX LIST

// Replace suffix with "pail"
outputfilename[i+1]=’p’;
outputfilename[i+2]=’a’;
outputfilename[i+3]=’i’;
outputfilename[i+4]=’l’;
outputfilename[i+5]=’\0’;

process(inputfilename,outputfilename);
paillistfile << outputfilename << ’\n’;

}
cout << endl;

paillistfile.close();
listfile.close();

}

void process(string tf_name, string pail_name)
{
// open text file
ifstream tf (tf_name.c_str());
if (!tf) {
cerr << "Error! Unable to open " << tf_name << endl;
exit(1);

}

// open alphabet index vector file
ofstream ailf (pail_name.c_str());
if (!ailf) {
cerr << "Error! Unable to open " << pail_name << endl;
exit(1);

}
ailf << "ail" << endl; // label
ailf << "40" << endl; // alphabet size : 39 phonemes + delimiter

// process text file
map<string,phoneme_vector_type>::iterator p;
string term;
while(1) {
tf >> term;
if (tf.eof()) break;

131

APPENDIX B. ALPHABET INDEX LISTS

p = tp_map.find(term);
if (p != tp_map.end()) {
for (unsigned i=0;i<p->second.size()-1;i++) {

ailf << (int)p->second[i] << ’ ’;
}
ailf << (int)p->second[p->second.size()-1] << ’ ’ << 0 << ’\n’;

} else unknown_set.insert(term);
}
tf.close();
ailf.close();

}

void write_unknown_terms(void)
{
ofstream unknown ("unknown.txt");
if (!unknown) {
cerr << "Error! Unable to open unknown.txt" << endl;
exit(1);

}
set<string>::iterator q;
q = unknown_set.begin();
while (q != unknown_set.end())
unknown << *q++ << endl;

unknown.close();
}

132

Appendix C

A mathematical proof
concerning normalized vectors

An operation occurring frequently in the dissertation research is the computa-
tion of prototype cluster vectors by averaging a certain number of document
vectors in the form of normalized weighted frequency distribution vectors. If
the resulting vectors were already normalized, a separate normalization oper-
ation would be unnecessary, thus saving computational time. The following
mathematical proof shows that this is the case.

The number of document vectors to average is indicated with l and the di-
mension of the document vectors is indicated with k. The indexing variables
i and j will range as follows: i = 1, 2, . . . , k and j = 1, 2, . . . , l. The unnor-

malized document vectors are indicated with
−→
dj . Let

−→
dj = (dj

1, d
j
2, . . . , d

j
k)

with dj
i ≥ 0 and ∀j ∃i : dj

i > 0 (in plain English: empty documents are

not allowed). The normalized document vectors are indicated with
−→
dj . Let−→

dj = (dj
1, d

j
2, . . . , d

j
k) with dj

i = dj
i/|
−→
dj |. The cluster prototype vector ~c is de-

fined as follows as an average of document vectors: ~c = (c1, c2, . . . , ck) with

ci = 1/l ·∑j dj
i . The theorem we want to prove is shown in Equation C.1:

~c = ~c (C.1)

In order to do that we will first prove the lemma shown in Equation C.2:

|−→dj | = 1 (C.2)

133

APPENDIX C. A MATHEMATICAL PROOF CONCERNING
NORMALIZED VECTORS

The proof of the lemma is as follows:

|−→dj | = ∑

i

|dj

i | =
∑

i

| dj
i

|−→dj |
| = ∑

i

dj
i

|−→dj |
=

∑
i d

j
i

|−→dj |
=
|−→dj |
|−→dj |

= 1

Note that the fact that dj
i ≥ 0 is essential. The following equalities hold:

~c =
−→
c ⇔ ∀i : ci = ci ⇔ ∀i : ci =

ci

|~c|
So to prove the theorem, all we have to prove is that |~c| = 1:

|~c| = ∑

i

|ci| =
∑

i

∣∣∣1/l·∑
j

dj
i

∣∣∣ = 1/l·∑
i

∣∣∣
∑

j

dj
i

∣∣∣ = 1/l·∑
i

∑

j

dj
i = 1/l·∑

j

∑

i

dj
i

= 1/l ·∑
j

∑

i

|dj

i | = 1/l ·∑
j

|−→dj | = 1/l ·∑
j

1 = 1/l · l = 1 2

134

Bibliography

[Ada91] Elizabeth Shaw Adams. A Study of Trigrams and Their Feasibil-
ity as Index Terms in a Full Text Information Retrieval System.
PhD thesis, George Washington University, 1991.

[AFW83] Richard C. Angell, George E. Freund, and Peter Willett. Au-
tomatic spelling correction using a trigram similarity measure.
Information Processing & Management, 19(4):255–261, 1983.

[AP92] Elizabeth Shaw Adams and Gregory Popovici. On using a
relational database to store full text for information retrieval
with a trigram based index. In Proceedings of the First In-
ternational Conference on Information and Knowledge Manage-
ment (CIKM-92), pages 112–119, Baltimore, Maryland, U.S.A.,
November 1992. International Society for Computers and Their
Applications (ISCA).

[Ass99] International Phonetic Association. Handbook of the Interna-
tional Phonetic Association: A Guide to the Use of the Inter-
national Phonetic Alphabet. Cambridge University Press, Cam-
bridge, England, UK, July 1999.

[Bac91] Paul E. Baclace. Personal information intake filtering. In Pro-
ceedings of Bellcore Workshop on High-Performance Information
Filtering: Foundations, Architectures and Applications, Novem-
ber 1991. http://www.baclace.net/Resources/ifilter1.

html.

[Bäc96] Thomas Bäck. Evolutionary Algorithms in Theory and Practice.
Oxford University Press, New York, USA, 1996.

135

BIBLIOGRAPHY

[BBSK95] Egbert J.W. Boers, M.V. Borst, and Ida G. Sprinkhuizen-
Kuyper. Evolving artificial neural networks using the “baldwin
effect”. In D.W. Pearson, N.C. Steele, and R.F. Albrecht, edi-
tors, Artificial Neural Nets and Genetic Algorithms, Proceedings
of the International Conference, pages 333–336, New York, NY,
USA, 1995. Springer-Verlag.

[BC92] Nicholas J. Belkin and W. Bruce Croft. Information fil-
tering and information retrieval: two sides of the same
coin? Communications of the ACM, 35(12):29–38, December
1992. http://www.acm.org/pubs/citations/journals/cacm/
1992-35-12/p29-belkin/.

[Bel86] Richard K. Belew. Adaptive Information Retrieval: Machine
Learning in Associative Networks. PhD thesis, University of
Michigan, Ann Arbor, MI, USA, 1986.

[Bel89] Richard K. Belew. Adaptive information retrieval: Using a con-
nectionist representation to retrieve and learn about documents.
In Proceedings of the Twelfth Annual International ACM SIGIR
Conference on Research and Development in Information Re-
trieval, pages 11–20, June 1989. http://www.acm.org/pubs/

citations/proceedings/ir/75334/p11-belew/.

[Bis95] Christopher M. Bishop. Neural Networks for Pattern Recogni-
tion. Clarendon Press, 1995.

[BK92] Egbert J.W. Boers and H. Kuiper. Biological metaphors and
the design of artificial neural networks. Master’s thesis, Leiden
University, 1992.

[Bla90] David C. Blair. Language and Representation in Information
Retrieval. Elsevier, Amsterdam, The Netherlands, 1990.

[BM93] Justine Blackmore and Risto Miikkulainen. Incremental grid
growing: Encoding high-dimensional structure into a two-
dimensional feature map. In Proceedings ICNN’93, International
Conference on Neural Networks, volume I, pages 450–455, Pis-
cataway, NJ, USA, 1993. IEEE Service Center.

136

BIBLIOGRAPHY

[BMK94] Bert R. Boyce, Charles T. Meadow, and Donald H. Kraft. Mea-
surement in Information Science. Academic Press, 1994.

[BS01] Glenn B. Bell and Anil Sethi. Matching records in a national
medical patient index. Communications of the ACM, 44(9):83–
88, September 2001. http://www.acm.org/pubs/citations/

journals/cacm/2001-44-9/p83-bell/.

[BSK01] Egbert J.W. Boers and Ida. G. Sprinkhuizen-Kuyper. Chapter
6: Combined biological metaphors. In M. Patel, V. Honavar, and
K. Balakrishnan, editors, Advances in the Evolutionary Synthe-
sis of Intelligent Agents, pages 153–183. MIT Press, Cambridge,
MA, USA, 2001.

[BYT92] Managing infoglut. Byte Magazine, 17(6), June 1992.

[Cav93] William B. Cavnar. n-gram-based text filtering for trec-2. In
D.K. Harman, editor, Overview of the Second Text REtrieval
Conference (TREC-2), volume 500-215 of Special Publications,
pages 171–179, Gaithersburg, Maryland, U.S.A., 1993. National
Institute of Standards and Technology (NIST). http://www.

nonlineardynamics.com/trenkle/papers/trec93ps.gz.

[Cav94] William B. Cavnar. Using an n-gram-based document represen-
tation with a vector processing retrieval model. In D.K. Harman,
editor, Overview of the Third Text REtrieval Conference (TREC-
3), volume 500-225 of Special Publications. National Institute of
Standards and Technology (NIST), April 1994. http://trec.

nist.gov/pubs/trec3/papers/cavnar_ngram_94.ps.

[CG87a] Gail A. Carpenter and Stephen Grossberg. Art 2: Selforganisa-
tion of stable category recognition codes for analog input pat-
terns. Applied Optics, 26:4919–4930, 1987.

[CG87b] Gail A. Carpenter and Stephen Grossberg. A massively paral-
lel architecture for a self-organizing neural pattern recognition
machine. Computer Vision, Graphics and Image Processing,
37(1):54–115, January 1987.

137

BIBLIOGRAPHY

[CG88] Gail A. Carpenter and Stephen Grossberg. The art of adaptive
pattern recognition by a self-organizing neural network. IEEE
Computer, 21(3):77–88, March 1988.

[CGM+92] Gail A. Carpenter, Stephen Grossberg, N. Markuzon, J.H.
Reynolds, and D.B. Rosen. Fuzzy artmap: A neural network
architecture for incremental supervised learning of analog mul-
tidimensional maps. IEEE Transactions on Neural Networks,
3(5):698–713, September 1992.

[CGR91] Gail A. Carpenter, Stephen Grossberg, and J.H. Reynolds.
Artmap: Supervised real-time learning and classification of non-
stationary data by a self-organizing neural network. Neural Net-
works, 4:565–588, 1991.

[Che95] Hsinchun Chen. Machine learning for information retrieval: neu-
ral networks, symbolic learning, and genetic algorithms. Journal
of the American Society for Information Science, 46(3):194–216,
April 1995.

[CMS01] Maria Fernanda Caropreso, Stan Matwin, and Fabrizio Sebas-
tiani. A learner-independent evaluation of the usefulness of sta-
tistical phrases for automated text categorization. In Amita G.
Chin, editor, Text Databases and Document Management: The-
ory and Practice, pages 78–102. Idea Group Publishing, Her-
shey, US, 2001. http://faure.iei.pi.cnr.it/~fabrizio/

Publications/TD01a/TD01a.pdf.

[Coh97] Jonathan D. Cohen. Recursive hashing functions for n-grams.
ACM Transactions on Information Systems, 15(3):291–320,
1997. http://www.acm.org/pubs/articles/journals/tois/

1997-15-3/p291-cohen/p29%1-cohen.pdf.

[Com90] Fatih Mehmet Comlekoglu. Optimizing a Text Retrieval System
Utilizing N-gram Indexing. PhD thesis, The George Washing-
ton University, May 1990. University Microfilms Order Number
ADG90-20669.

[Coo94] William S. Cooper. The formalism of probability theory in ir: a
foundation or an encumbrance? In Proceedings of the seventeenth

138

BIBLIOGRAPHY

annual international ACM-SIGIR conference on Research and
development in information retrieval, pages 242–247, New York,
NY, USA, 1994. Springer-Verlag.

[CT94] William B. Cavnar and John M. Trenkle. n-gram-based text
categorization. In Proceedings of the Third Annual Symposium
on Document Analysis and Information Retrieval (SDAIR-94),
pages 161–175, Las Vegas, Nevada, USA, April 1994. UNLV Pub-
lications/Reprographics. http://www.nonlineardynamics.

com/trenkle/papers/sdrbcps.gz.

[CVBW92] Vladimir Cherkassky, Nikolaos Vassilas, Gregory L. Brodt, and
Harry Wechsler. Conventional and associative memory ap-
proaches to automatic spelling correction. International Journal
of Engineering Applications of Artificial Intelligence, 5(3):223–
237, 1992.

[Dam95] Marc Damashek. Gauging similarity with n-grams: Language-
independent categorization of text. Science, 267(10):843–848,
February 1995.

[DeH82] T. DeHeer. The application of the concept of homeosemy to
natural language information retrieval. Information Processing
& Management, 5(18):229–236, 1982.

[Dow99] J. Stephen Downie. Evaluating a simple approach to Mu-
sic Information Retrieval: conceiving melodic n-grams as text.
PhD thesis, University of Western Ontario, London, Ontario,
Canada, July 1999. http://alexia.lis.uiuc.edu/~jdownie/

mir_papers/thesis_missing_some_music_figs.pdf.

[EHM99] Ágoston Endre Eiben, Robert Hinterding, and Zbigniew
Michalewicz. Parameter Control in Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation, 3(2), July
1999.

[ELW95] F. Çuna Ekmekçioglu, Michael F. Lynch, and Peter Wil-
lett. Language processing techniques for the implemen-
tation of a document retrieval system for turkish text

139

BIBLIOGRAPHY

databases. In Proceedings of the Eighteenth Annual Interna-
tional ACM SIGIR Conference on Research and Development
in Information Retrieval, Posters: Abstracts, pages 369–370,
1995. http://www.acm.org/pubs/articles/proceedings/ir/
215206/p369-liddy/p369-%liddy.pdf.

[FD92] Peter W. Foltz and Susan T. Dumais. Personalized information
delivery: An analysis of information filtering methods. Commu-
nications of the ACM, 35(12):51–60, December 1992.

[Fog95] David B. Fogel. Evolutionary Computation: Toward a New Phi-
losophy of Machine Intelligence. IEEE Press, 1995.

[FOW66] Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Ar-
tificial Intelligence through Simulated Evolution. John Wiley &
Sons, New York, U.S.A., 1966.

[Fox01] Robert Fox. News track. Communications of the ACM, 44(11):9–
10, November 2001.

[Fri94] Bernd Fritzke. Growing cell structures—a self-organizing net-
work for unsupervised and supervised learning. Neural Networks,
7(9):1441–1460, 1994.

[FS92] James A. Freeman and David M. Skapura. Neural Networks:
algorithms, applications, and programming techniques. Addison-
Wesley, July 1992.

[Fu94] LiMin Fu. Neural Networks in Computer Intelligence. McGraw-
Hill Series in Computer Science. McGraw-Hill, 1994.

[GBW93] Petra Geutner, Uli Bodenhausen, and Alex Waibel. Flexibility
through incremental learning: Neural networks for text catego-
rization. In Proceedings of WCNN-93, World Congress on Neu-
ral Networks, pages 24–27, 1993. http://www.is.cs.cmu.edu/

papers/speech/1993/WCNN_93_petra_geutner.ps.gz.

[GNOT92] David Goldberg, David Nichols, Brian M. Oki, and Dou-
glas Terry. Using collaborative filtering to weave an infor-
mation tapestry. Communications of the ACM, 35(12):61–
70, December 1992. Special Issue on Information Filter-

140

BIBLIOGRAPHY

ing, http://www.acm.org/pubs/citations/journals/cacm/

1992-35-12/p61-goldberg%/.

[Gor85] Michael David Gordon. A genetic algorithm for document re-
trieval. In Proceedings of Workshop on Foundations of Adaptive
Information Processing, June 1985.

[Gor88] Michael David Gordon. Probabilistic and genetic algorithms in
document retrieval. Communications of the ACM, 31(10):1208–
1218, October 1988.

[Gor91] Michael David Gordon. User-based document clustering by re-
describing subject descriptions with a genetic algorithm. Journal
of the American Society for Information Science, 42(5):311–322,
June 1991.

[GR90] M. Gersho and R. Reiter. Information retrieval using self-
organizing and heteroassociative supervised neural network. In
Proc. INNC’90, Int. Neural Network Conference, volume 1, pages
361–364, Dordrecht, Netherlands, 1990. Kluwer.

[Gro76a] Stephen Grossberg. Adaptive pattern classification and universal
recoding: I. Parallel development and coding of neural feature
detectors. Biological Cybernetics, 23:121–134, 1976. Reprinted
in Anderson and Rosenfeld, 1988.

[Gro76b] Stephen Grossberg. Adaptive pattern recognition and univer-
sal recoding: II. Feedback, expectation, olfaction, and illusions.
Biological Cybernetics, 23:187–202, 1976.

[HD94] Stephen Huffman and Marc Damashek. Acquaintance: A novel
vector-space N-gram technique for document categorization. In
Donna K. Harman, editor, Proceedings of TREC-3, 3rd Text Re-
trieval Conference, pages 305–310, Gaithersburg, US, 1994. Na-
tional Institute of Standards and Technology, Gaithersburg, US.

[HKP91] John Hertz, Anders Krogh, and Richard G. Palmer. Introduc-
tion to the Theory of Neural Computation, volume 1 of Santa Fe
Institute Studies In The Sciences of Complexity Lecture Notes.
Addison-Wesley, 1991.

141

BIBLIOGRAPHY

[HKW94] Max Höfferer, Bernd Knaus, and Werner Winiwarter. Using ge-
netics in information filtering. In Proceedings of the 22nd Annual
Conference of the Canadian Association for Information Science,
May 1994.

[HN91] Robert Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1991.

[Hol75] John H. Holland. Adaptation in natural and artificial systems :
an introductory analysis with applications to biology, control, and
artificial intelligence. University of Michigan Press, Ann Arbor,
MI, U.S.A., 1975.

[HRF76] A.R. Hanson, E.M. Riseman, and E. Fisher. Context in word
recognition. Pattern Recognition, 8:35–45, 1976.

[HS82] Jonathan J. Hull and Sargur N. Srihari. Experiments in text
recognition with binary n-gram and viterbi algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
4(5):520–530, September 1982.

[HSV87] J. Henseler, J. C. Scholtes, and C. R. J. Verhoest. The design of
a parallel knowledge-based optical-character recognition system.
Master’s thesis, Delft University, Delft, Netherlands, 1987.

[HT95] Lucien G. Heins and Daniel R. Tauritz. Adaptive resonance the-
ory (art): An introduction. Technical Report 95-35, Leiden Uni-
versity, 1995. http://www.liacs.nl/home/dtauritz/papers/

art.ps.gz.

[Huf95] Stephen Huffman. Acquaintance: Language-independent doc-
ument categorization by N-grams. In Donna K. Harman and
Ellen M. Voorhees, editors, Proceedings of TREC-4, 4th Text
Retrieval Conference, pages 359–371, Gaithersburg, US, 1995.
National Institute of Standards and Technology, Gaithersburg,
US. http://trec.nist.gov/pubs/trec4/papers/nsa.ps.gz.

[JRSW95] Gareth Jones, Alexander M. Robertson, Chawchat San-
timetvirul, and Peter Willett. Non-hierarchic document clus-
tering using a genetic algorithm. Information Research News,
5(3):2–6, 1995.

142

BIBLIOGRAPHY

[JRW94] Gareth Jones, Alexander M. Robertson, and Peter Willett. An
introduction to genetic algorithms and to their use in information
retrieval. Online & CDROM Review, 18(1):3–13, February 1994.

[KBPP93] Donald H. Kraft, Bill P. Buckles, Fred E. Petry, and Devaraya
Prabhu. Generating fuzzy information retrieval queries via ge-
netic programming. In Proceedings of the 5th IFSA World
Congress, Seoul, Korea, July 1993.

[Kei01] Daniel A. Keim. Visual exploration of large data sets. Commu-
nications of the ACM, 44(8):38–44, August 2001.

[KKL+00] Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salojärvi,
Vesa Paatero, and Antti Saarela. Organization of a massive doc-
ument collection. IEEE Transactions on Neural Networks, Spe-
cial Issue on Neural Networks for Data Mining and Knowledge
Discovery, 11(3):574–585, May 2000.

[Koh01] Teuvo Kohonen. Self-Organizing Maps, volume 30 of In-
formation Sciences. Springer, Berlin, Heidelberg, New
York, 3 edition, 2001. http://www.cis.hut.fi/research/

som-research/book/.

[Koz90] John R. Koza. Genetic programming: A paradigm for genetically
breeding populations of computer programs to solve problems.
Technical Report STAN-CS-90-1314, Stanford University Com-
puter Science Department, June 1990.

[KPB+94] Donald H. Kraft, Fred E. Petry, Bill P. Buckles, T. Sadasivan,
and Devaraya Prabhu. Construction of Boolean queries for doc-
ument retrieval via genetic algorithms. In Proceedings of AISB
Workshop on Evolutionary Computation, pages 307–315, Leeds,
England, April 1994.

[KPBP93] Donald H. Kraft, Fred E. Petry, Bill P. Buckles, and Devaraya
Prabhu. Fuzzy information retrieval using genetic algorithms
and relevance feedback. In 1993 Proceedings of the 56th Annual
Meeting of the American Society for Information Science, vol-
ume 30, Columbus, OH, USA, October 1993.

143

BIBLIOGRAPHY

[KPBS95] Donald H. Kraft, Fred E. Petry, Bill P. Buckles, and T. Sada-
sivan. Applying genetic algorithms to information retrieval
systems via relevance feedback. In Patrick Bosc and Janusz
Kacprysk, editors, Fuzziness in Database Management Systems,
pages 330–344. Physica-Verlag, Heidelberg, Germany, 1995.

[KPBS97] Donald H. Kraft, Fred E. Petry, Bill P. Buckles, and T. Sadasi-
van. Genetic programming for query optimization in information
retrieval: Relevance feedback. In Elie Sanchez, Takanori Shibata,
and Lotfi A. Zadeh, editors, Genetic Algorithms and Fuzzy Logic
Systems, Soft Computing Perspectives, pages 155–173. World Sci-
entific Publishing Co., Singapore, 1997.

[Krz95] Roman M. Krzanowski. Compression of spatial data. In Twelfth
International Symposium on Computer- Assisted Cartography,
volume 4, pages 331–340, Charlotte, North Carolina, 1995.

[Kuk92a] Karen Kukich. Spelling correction for the telecommunications
network for the deaf. Communications of the ACM, 35(5):80–90,
May 1992. http://www.acm.org/pubs/citations/journals/

cacm/1992-35-5/p80-kukich/.

[Kuk92b] Karen Kukich. Techniques for automatically correcting words
in text. ACM Computing Surveys, 24(4):377–439, Decem-
ber 1992. http://www.acm.org/pubs/citations/journals/

surveys/1992-24-4/p377-kukic%h/.

[LA96] Joon Ho Lee and Jeong Soo Ahn. Using n-grams for ko-
rean text retrieval. In Proceedings of the 19th Annual Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Asian Languages, pages 216–224,
1996. http://www.acm.org/pubs/articles/proceedings/ir/
243199/p216-lee/p216-le%e.pdf.

[Lan00a] William B. Langdon. Natural language text classification and
filtering with trigrams and evolutionary nearest neighbour clas-
sifiers. Technical Report SEN-R0022, CWI, July 2000. http:

//www.cwi.nl/ftp/CWIreports/SEN/SEN-R0022.ps.Z.

144

BIBLIOGRAPHY

[Lan00b] William B. Langdon. Natural language text classification and fil-
tering with trigrams and evolutionary NN classifiers. In Darrell
Whitley, editor, Late Breaking Papers at the 2000 Genetic and
Evolutionary Computation Conference, pages 210–217, Las Ve-
gas, Nevada, USA, 8 July 2000. ftp://cs.ucl.ac.uk/genetic/
ga_papers/WBL.kneighbours.ps.gz.

[LCP99] Joon Ho Lee, Hyun Yang Cho, and Hyouk Ro Park. n-gram-
based indexing for korean text retrieval. Information Processing
and Management, 35(4):427–441, 1999.

[LL99] Savio L. Lam and Dik L. Lee. Feature reduction for neural net-
work based text categorization. In Arbee L. Chen and Fred-
erick H. Lochovsky, editors, Proceedings of DASFAA-99, 6th
IEEE International Conference on Database Advanced Systems
for Advanced Application, pages 195–202, Hsinchu, TW, 1999.
IEEE Computer Society Press, Los Alamitos, US. http://dlib.
computer.org/conferen/dasfaa/0084/pdf/00840195.pdf.

[LSM91] X. Lin, D. Soergel, and G. Marchionini. A self-organizing seman-
tic map for information retrieval. In Proceedings 14th. Annual
International ACM/SIGIR Conf. on R & D In Information Re-
trieval, pages 262–269, 1991.

[Mae94] Pattie Maes. Agents that Reduce Work and Information
Overload. Communications of the ACM, 37(7):31–40, July
1994. http://pattie.www.media.mit.edu/people/pattie/

CACM-94/CACM-94.p1.html.

[Mar00] Carla Marceau. Characterizing the behavior of a program using
multiple-length N-grams. In Proceedings of the 2000 new security
paradigm workshop, pages 101–110, September 2000. ftp://

ftp.oracorp.com/documents/MultiLengthStrings.pdf.

[MC75] Robert Morris and Lorinda L. Cherry. Computer detection of
typographical errors. IEEE Transactions on Professional Com-
munication, PC-18(1):54–56, March 1975.

[ME62] Constance K. McElwain and Martha B. Evens. The degarbler—
A program for correcting machine-read Morse code. Information
and Control, 5(4):368–384, December 1962.

145

BIBLIOGRAPHY

[Mer95] Dieter Merkl. Content-based document classification with highly
compressed input data. In F. Fogelman-Soulié and P. Galli-
nari, editors, Proceedings ICANN’95, International Conference
on Artificial Neural Networks, volume II, pages 239–244, Nan-
terre, France, 1995. EC2.

[Mer97] Dieter Merkl. Lessons learned in text document classification. In
Proceedings of WSOM’97, Workshop on Self-Organizing Maps,
Espoo, Finland, June 4–6, pages 316–321. Helsinki University of
Technology, Neural Networks Research Centre, Espoo, Finland,
1997.

[Mer98] Dieter Merkl. Text classification with self-organizing maps: SOM
lessons learned. Neurocomputing, 21(1):61–77, 1998.

[Mer99] Dieter Merkl. Document classification with self-organizing maps.
In E. Oja and S. Kaski, editors, Kohonen Maps, pages 183–197.
Elsevier, Amsterdam, The Netherlands, 1999.

[MG91] David Mitzman and Rita Giovannini. Activitynets: A neural
classifier of natural language descriptions of economic activities.
In Proceedings of the International Workshop on Neural Nets for
Statistics and Economic Data, December 1991.

[Mic96] Zbigniew Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer-Verlag, third edition, June 1996.

[MM97] James Mayfield and Paul McNamee. Indexing using both N-
grams words. In Ellen M. Voorhees and Donna K. Harman, ed-
itors, The Seventh Text REtrieval Conference (TREC 7), pages
419–424. USA Department of Commerce and National Institute
of Standards and Technology, November 1997. http://trec.

nist.gov/pubs/trec7/papers/JHUAPL.pdf.

[Moz84] Michael C. Mozer. Inductive information retrieval using parallel
distributed computation. Technical Report TR8406, Institute
for Cognitive Science, UCSD, La Jolla, CA, USA, May 1984.

[MS94] Michael McElligott and Humphrey Sorensen. An evolution-
ary connectionist approach to personal information filtering.

146

BIBLIOGRAPHY

In INNC 94 (Fourth Irish Neural Network Conference), pages
141–146. University College Dublin, September 1994. ftp:

//odyssey.ucc.ie/pub/filtering/INNC94.ps.

[MSL+99] Ethan L. Miller, Dan Shen, Junli Liu, Charles Nicholas, and
Ting Chen. Techniques for gigabyte-scale n-gram based infor-
mation retrieval on personal computers. In Proceedings of the
1999 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’99), pages 1410–
1416, June 1999.

[MSLN00] Ethan L. Miller, Dan Shen, Junli Liu, and Charles Nicholas.
Performance and scalability of a large-scale n-gram based infor-
mation retrieval system. Journal of Digital Information (online
refereed journal), January 2000. http://journals.ecs.soton.
ac.uk/jodi/.

[Neu75] David L. Neuhoff. The viterbi algorithm as an aid in text recogni-
tion. IEEE Transactions on Information Theory, IT-21:222–226,
March 1975.

[Ng00] Kenney Ng. Subword-based Approaches for Spoken Document
Retrieval. PhD thesis, MIT, Cambridge, Massachusetts, USA,
February 2000. http://www.sls.lcs.mit.edu/kng/papers/

phd_thesis.pdf.

[Nik97] Kazuhisa Niki. Self-organizing information retrieval system on
the web: SirWeb. In Nikola Kasabov, Robert Kozma, Kitty
Ko, Robert O’Shea, George Coghill, and Tom Gedeon, editors,
Progress in Connectionsist-Based Information Systems. Proceed-
ings of the 1997 International Conference on Neural Information
Processing and Intelligent Information Systems, volume 2, pages
881–884. Springer, Singapore, 1997.

[NWZ00] Corinna Ng, Ross Wilkinson, and Justin Zobel. Experiments in
spoken document retrieval using phonetic n-grams. Speech Com-
munication, special issue on Accessing Information in Spoken
Audio, 32(1–2):61–77, September 2000.

[Pai90] Chris D. Paice. Another stemmer. ACM-SIGIR Forum,
24(3):56–61, 1990.

147

BIBLIOGRAPHY

[PBK+97] Fred E. Petry, Bill P. Buckles, Donald H. Kraft, Devaraya
Prabhu, and Thyagarajan Sadasivan. The use of genetic pro-
gramming to build queries for information retrieval. In Thomas
Bäck, David B. Fogel, and Zbigniew Michalewicz, editors, Hand-
book of Evolutionary Computation, pages G2.1:1–6. Institute of
Physics Publishing and Oxford University Press, Bristol, New
York, USA, 1997.

[PGF00] Praveen Pathak, Michael Gordon, and Weiguo Fan. Effective
information retrieval using genetic algorithms based matching
functions adaptation. In Proceedings of the 33rd Hawaii Inter-
national Conference on System Sciences, January 2000.

[PPF96] Ulrich Pfeifer, Thomas Poersch, and Norbert Fuhr. Re-
trieval effectiveness of proper name search methods. In-
formation Processing and Management, 32(6):667–679,
1996. http://ls6-www.informatik.uni-dortmund.de/

ir/publications/1996/Pfeifer\%_etal:96.html.

[RA87] V. V. Raghavan and B. Agarwal. Optimal determination of user-
oriented clusters: An application for the reproductive plan. In
Proceedings of the Second International Conference on Genetic
Algorithms and their applications, pages 241–246, Hillsdale, NJ,
USA, July 1987. Lawrence Erlbaum Associates.

[Rav67] Josef Raviv. Decision making in markov chains applied to the
problem of pattern recognition. IEEE Transactions on Informa-
tion Theory, 3(4):536–551, October 1967.

[RB79] Vijay V. Raghavan and Kim Birchard. A clustering strategy
based on a formalism of the reproductive process in natural sys-
tems. In Information Implications into the Eighties, Proceedings
of the Second International Conference on Information Storage
and Retrieval, pages 10–22. ACM, 1979.

[RB91] Daniel Eric Rose and Richard K. Belew. A connectionist and
symbolic hybrid for improving legal research. International Jour-
nal of Man-Machine Studies, 35(1):1–33, July 1991.

148

BIBLIOGRAPHY

[RE71] Edward M. Riseman and Roger W. Elrich. Contextual word
recognition using binary digrams. IEEE Transactions on Com-
puters, 20(4):397–403, April 1971.

[Rec73] Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution, volume 15
of Problemata. Friedrich Frommann Verlag · Günter Holzboog,
Stuttgart, Germany, 1973.

[RH74] Edward M. Riseman and Allen R. Hanson. A contextual postpro-
cessing system for error correction using binary n-grams. IEEE
Transactions on Computers, 23(5):480–493, May 1974.

[Rij79] C.J. van Rijsbergen. Information Retrieval. Butterworths,
second edition, 1979. http://www.dcs.gla.ac.uk/Keith/

Preface.html.

[Ros91] Daniel Eric Rose. A symbolic and connectionist approach to legal
information retrieval. PhD thesis, University of California, San
Diego, 1991.

[Roz95] J.M. Rozmus. Information retrieval by self-organizing maps.
In M.E. Williams, editor, 16th National Online Meeting
Proceedings—1995, pages 349–54, Medford, NJ, USA, 1995.
Smart Syst., USA, Learned Inf.

[RS97] Miguel E. Ruiz and Padmini Srinivasan. Automatic text catego-
rization using neural networks. In Efthimis Efthimiadis, editor,
Proceedings of the 8th ASIS/SIGCR Workshop on Classification
Research, pages 59–72, Washington, US, 1997. American Soci-
ety for Information Science, Washington, US. http://www.cs.

uiowa.edu/~mruiz/papers/sigcr97/sigcrfinal2.html.

[RS99] Miguel E. Ruiz and Padmini Srinivasan. Hierarchical neural net-
works for text categorization. In Marti A. Hearst, Fredric Gey,
and Richard Tong, editors, Proceedings of SIGIR-99, 22nd ACM
International Conference on Research and Development in In-
formation Retrieval, pages 281–282, Berkeley, US, 1999. ACM
Press, New York, US. http://www.acm.org/pubs/articles/

proceedings/ir/312624/p281-ruiz/p281-r%uiz.pdf.

149

BIBLIOGRAPHY

[Rub76] Frank Rubin. Experiments in text file compression. Communi-
cations of the ACM, 19(11):617–623, November 1976.

[RW95] Alexander M. Robertson and Peter Willett. The use of genetic al-
gorithms in information retrieval. Technical Report BLRDD Re-
port no. 6201, Research and Development Department, British
Library, London, UK, 1995.

[RW96] Alexander M Robertson and Peter Willett. An upperbound to
the performance of ranked-output searching: Optimal weighting
of query terms using a genetic algorithm. Journal of Documen-
tation, 52(4):405–420, December 1996.

[RW98] Alexander M. Robertson and Peter Willett. Applications of n-
grams in textual information systems. Journal of Documenta-
tion, 54(1):48–69, January 1998.

[Sal89] Gerard Salton. Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. Addison-
Wesley, 1989.

[Sch81] Hans-Paul Schwefel. Numerical Optimization of Computer Mod-
els. Wiley, Chichester, UK, 1981.

[Sch91a] J. C. Schmitt. Trigram-based method of language identification,
October 1991. U.S. Patent No. 5,062,143.

[Sch91b] Johannes Cornelis Scholtes. Filtering the Pravda with a self-
organizing neural net. In Worknotes of the Bellcore Workshop
on High Performance Information Filtering, Chester, NJ, USA,
1991. Bellcore.

[Sch91c] Johannes Cornelis Scholtes. Unsupervised learning and the in-
formation retrieval problem. In Proceedings IJCNN’91, Inter-
national Joint Conference on Neural Networks, volume I, pages
95–100, Piscataway, NJ, USA, 1991. IEEE; International Neural
Networks Society, IEEE Service Center.

[Sch93a] Johannes Cornelis Scholtes. Neural Networks in Natural Lan-
guage Processing and Information Retrieval. PhD thesis, Uni-
versity of Amsterdam, 1993.

150

BIBLIOGRAPHY

[Sch93b] Johannes Cornelis Scholtes. Neural Networks in Natural Lan-
guage Processing and Information Retrieval. PhD thesis, Uni-
versiteit van Amsterdam, Amsterdam, The Netherlands, 1993.

[Sen94] Rene Sennhauser. Integration of contextual knowledge sources
into a blackboard- based text recognition system. In Proceedings
of DAS94 (Workshop on Document Analysis Systems), pages
211–228, 1994.

[SH73] E.J. Schuegraf and H.S. Heaps. Selection of equifrequent word
fragments for information retrieval. Information Storage and Re-
trieval, 9:697–711, 1973.

[She94] Beered Dilip Sheth. A learning approach to personalized in-
formation filtering. Master’s thesis, Massachusetts Institute of
Technology, 1994.

[SHP95] Hinrich Schütze, David A. Hull, and Jan O. Pedersen. A compar-
ison of classifiers and document representations for the routing
problem. In Edward A. Fox, Peter Ingwersen, and Raya Fidel,
editors, Proceedings of SIGIR-95, 18th ACM International Con-
ference on Research and Development in Information Retrieval,
pages 229–237, Seattle, US, 1995. ACM Press, New York, US.
ftp://parcftp.xerox.com/pub/qca/papers/sigir95.ps.gz.

[SJW97] Karen Sparck-Jones and Peter Willett, editors. Readings in In-
formation Retrieval. Morgan Kaufmann, San Francisco, CA,
USA, 1997.

[Smi97] Martin Smith. The use of genetic programming to build boolean
queries for text retrieval through relevance feedback. Journal of
Information Science, 23(6):423–431, 1997.

[SR96] Penelope Sibun and Jeffrey C. Reynar. Language identification:
Examining the issues. In 5th Symposium on Document Analysis
and Information Retrieval, pages 125–135, Las Vegas, Nevada,
U.S.A., April 1996. http://www.cis.upenn.edu/~jcreynar/

sdair96.ps.gz.

[Tan01] Ah-Hwee Tan. Predictive self-organizing networks for text cat-
egorization. In David Cheung, Qing Li, and Graham Williams,

151

BIBLIOGRAPHY

editors, Proceedings of PAKDD-01, 5th Pacific-Asia Confer-
enece on Knowledge Discovery and Data Mining, pages 66–77,
Hong Kong, CN, 2001. Springer Verlag, Heidelberg, DE. Pub-
lished in the “Lecture Notes in Computer Science” series, num-
ber 2035, http://link.springer.de/link/service/series/

0558/papers/2035/20350066.p%df.

[Tau96a] Daniel R. Tauritz. Adaptive information filtering as a means to
overcome information overload. Master’s thesis, Leiden Univer-
sity, September 1996. http://www.liacs.nl/home/dtauritz/

papers/thesis.ps.gz.

[Tau96b] Daniel R. Tauritz. Concepts of adaptive information filtering.
Technical Report 96-19, Leiden University, July 1996. http:

//www.liacs.nl/home/dtauritz/papers/concepts.ps.gz.

[Tau96c] Daniel R. Tauritz. Optimization of the discriminatory power
of a trigram based document clustering algorithm using evolu-
tionary computation. Technical Report 96-5, Leiden University,
April 1996. http://www.liacs.nl/home/dtauritz/papers/

trigram.ps.gz.

[TKSK97] Daniel R. Tauritz, Joost N. Kok, and Ida G. Sprinkhuizen-
Kuyper. Adaptive information filtering using evolutionary com-
putation. In Proceedings of JCIS’97, volume 1, pages 77–80,
March 1997. http://www.liacs.nl/home/dtauritz/papers/

jcis97.ps.gz.

[TKSK00] Daniel R. Tauritz, Joost N. Kok, and Ida G. Sprinkhuizen-
Kuyper. Adaptive information filtering using evolutionary com-
putation. Information Sciences, 122(2–4):121–140, February
2000. http://www.elsevier.nl/gej-ng/10/23/143/56/27/

27/show/.

[TS88] Bernd Teufel and Stephanie Schmidt. Full text retrieval based on
syntactic similarities. Information Systems, 13(1):65–70, 1988.

[TSK99a] Daniel R. Tauritz and Ida G. Sprinkhuizen-Kuyper. Adaptive
information filtering: improvement of the matching technique
and derivation of the evolutionary algorithm. Technical Report

152

BIBLIOGRAPHY

99-04, Leiden University, April 1999. http://www.liacs.nl/

TechRep/1999/tr99-04.html.

[TSK99b] Daniel R. Tauritz and Ida G. Sprinkhuizen-Kuyper. Adaptive
information filtering algorithms. In David J. Hand, Joost N.
Kok, and Michael R. Berthold, editors, Advances in Intelligent
Data Analysis, Third International Symposium, IDA-99, vol-
ume 1642 of Lecture Notes in Computer Science, pages 513–
524. Springer-Verlag, 1999. http://link.springer.de/link/

service/series/0558/bibs/1642/16420513.htm%.

[TSK00] Daniel R. Tauritz and Ida G. Sprinkhuizen-Kuyper. Adaptive in-
formation filtering: evolutionary computation and n-gram rep-
resentation. In Antal van den Bosch and Hans Weigand, edi-
tors, Proceedings of the Twelfth Belgium-Netherlands Artificial
Intelligence Conference, pages 157–164, November 2000. http:

//www.liacs.nl/home/dtauritz/papers/bnaic00.pdf.gz.

[TSKK97] Daniel R. Tauritz, Ida G. Sprinkhuizen-Kuyper, and Joost N.
Kok. Evolutionary computation applied to adaptive information
filtering. In K. van Marcke and W. Daelemans, editors, Proceed-
ings NAIC’97, pages 17–26, 1997. http://www.liacs.nl/home/
dtauritz/papers/naic97.ps.gz.

[Ull77] J.R. Ullmann. A binary n-gram technique for automatic cor-
rection of substitution, deletion, insertion and reversal errors in
words. The Computer Journal, 20(2):141–147, May 1977.

[UZ98] Alexandra L. Uitdenbogerd and Justin Zobel. Manipulation of
music for melody matching. In Proceedings of the sixth ACM in-
ternational conference on Multimedia, pages 235–240, New York,
NY, USA, 1998. ACM Press. http://www.mds.rmit.edu.au/

~sandra/mm98/.

[UZ99] Alexandra L. Uitdenbogerd and Justin Zobel. Melodic
matching techniques for large music databases. In Pro-
ceedings of the seventh ACM international conference on
Multimedia, pages 57–66, New York, NY, USA, 1999.
ACM Press. http://www.kom.e-technik.tu-darmstadt.de/

acmmm99/ep/uitdenbogerd/index.html.

153

BIBLIOGRAPHY

[vdP00] Ruud W. van der Pol. Knowledge-based Query Formulation
in Information Retrieval. PhD thesis, Universiteit Maastricht,
Maastricht, The Netherlands, 2000.

[Vra98] Dana Vrajitoru. Crossover improvement for the genetic algo-
rithm in information retrieval. Information Processing and Man-
agement, 34(4):405–415, 1998.

[WAP99] Stefan Wermter, Garen Arevian, and Christo Panchev. Re-
current neural network learning for text routing. In Proceed-
ings of ICANN-99, 9th International Conference on Artificial
Neural Networks, pages 898–903, Edinburgh, UK, 1999. Insti-
tution of Electrical Engineers, London, UK. http://www.his.

sunderland.ac.uk/ps/icann99.pdf.

[Wer00] Stefan Wermter. Neural network agents for learning seman-
tic text classification. Information Retrieval, 3(2):87–103, 2000.
http://www.his.sunderland.ac.uk/ps/ir4.pdf.

[Wie98] Floris J. Wiesman. Information Retrieval by Graphically Brows-
ing Meta-Information. PhD thesis, Universiteit Maastricht,
Maastricht, The Netherlands, 1998.

[Wil79] Peter Willett. Document retrieval experiments using indexing
vocabularies of varying size. ii. hashing, truncation, digram and
trigram encoding of index terms. Journal of Documentation,
35(4):296–305, December 1979.

[Win99] Werner Winiwarter. PEA - a Personal Email Assistant with
evolutionary adaptation. International Journal of Information
Technology, 5(1), 1999.

[Wis87] Janusz L. Wisniewski. Effective text compression with simul-
taneous digram and trigram encoding. Journal of Information
Science: Principles & Practice, 13(3):159–164, 1987.

[WPA99] Stefan Wermter, Christo Panchev, and Garen Arevian. Hybrid
neural plausibility networks for news agents. In Proceedings
of AAAI-99, 16th Conference of the American Association for
Artificial Intelligence, pages 93–98, Orlando, US, 1999. AAAI

154

BIBLIOGRAPHY

Press, Menlo Park, US. http://www.his.sunderland.ac.uk/

ps/aaai99.pdf.

[WPW95] Erik D. Wiener, Jan O. Pedersen, and Andreas S. Weigend.
A neural network approach to topic spotting. In Proceed-
ings of SDAIR-95, 4th Annual Symposium on Document
Analysis and Information Retrieval, pages 317–332, 1995.
http://www.stern.nyu.edu/~aweigend/Research/Papers/

TextCategorization/Wiener.Pedersen.Weigend_SDAIR95.

ps.

[YH92] E. J. Yannakoudakis and P. J. Hutton. An assessment of n-
phoneme statistics in phoneme guessing algorithms which aim
to incorporate phonotactic constraints. Speech Communications,
11(6):581–602, December 1992.

[YKR93] Jing-Jye Yang, Robert R. Korfhage, and Edie Rasmussen. Query
improvement in information retrieval using genetic algorithm:a
report on the experiments of the trec project. In Text Retrieval
Conference (TREC-1), pages 31–58, 1993.

[YL99a] Yiming Yang and Xin Liu. A re-examination of text categoriza-
tion methods. In Marti A. Hearst, Fredric Gey, and Richard
Tong, editors, Proceedings of SIGIR-99, 22nd ACM Interna-
tional Conference on Research and Development in Informa-
tion Retrieval, pages 42–49, Berkeley, US, 1999. ACM Press,
New York, US. http://www.cs.cmu.edu/~yiming/papers.yy/
sigir99.ps.

[YL99b] Edmund S. Yu and Elizabeth D. Liddy. Feature selection in text
categorization using the Baldwin effect networks. In Proceed-
ings of IJCNN-99, 10th International Joint Conference on Neu-
ral Networks, pages 2924–2927, Washington, DC, 1999. IEEE
Computer Society Press, Los Alamitos, US.

[YL00] Hsin-Chang Yang and Chung-Hong Lee. Automatic category
generation for text documents by self-organizing maps. In Shun-
Ichi Amari, C. Lee Giles, Marco Gori, and Vincenzo Piuri, ed-
itors, Proceedings of IJCNN-00, International Joint Conference
on Neural Networks, volume 3, pages 581–586, Como, IT, 2000.

155

BIBLIOGRAPHY

IEEE Computer Society Press, Los Alamitos, US. http://dlib.
computer.org/conferen/ijcnn/0619/pdf/06193581.pdf.

[Zav95] Jakub Zavrel. Neural information retrieval: An experimental
study of clustering and browsing of document collections with
neural networks. Master’s thesis, University of Amsterdam, 1995.

[ZD95] Justin Zobel and Philip W. Dart. Finding approximate matches
in large lexicons. Software: Practice and Experience, 25(3):331–
345, March 1995.

[ZKL96] Byoung-Tak Zhang, Ju-Hyun Kwak, and Chang-Hoon Lee.
Building software agents for information filtering on the inter-
net: A genetic programming approach. In John R. Koza, editor,
Late Breaking Papers at the Genetic Programming 1996 Confer-
ence (GP-96), page 196. Stanford University Bookstore, 1996.

[ZPZ81] E. M. Zamora, J. J. Pollock, and Antonio Zamora. The use of
trigram analysis for spelling error detection. Information Pro-
cessing and Management, 17(6):305–316, June 1981.

156

Nederlandstalige samenvatting

Adaptieve informatiefiltering houdt zich bezig met het filteren van infor-
matiestromen in dynamische (veranderende) omgevingen. De veranderin-
gen kunnen plaatsvinden zowel aan de transmissiezijde — de aard van de
stromen kan veranderen — als aan de receptiezijde — de interesses van de
gebruiker (of gebruikersgroep) kunnen veranderen. Hoewel informatiefilter-
ing en informatievergaring veel gemeen hebben, richt deze dissertatie zich
juist op de verschillen. Het temporele aspect vereist flexibelere methoden
van documentrepresentatie voor informatiefiltering dan voor informatiever-
garing, waar alle voorkomende termen van tevoren bekend zijn. Ook houdt
informatiefiltering typisch gebruikersprofielen bij in plaats van de statische
queries (vragen) van informatievergaring. Dit maakt een lerend systeem met
het vermogen om met dynamische omgevingen om te gaan noodzakelijk.

Het onderzoek beschreven in deze dissertatie exploreert de toepassing
van twee karakteristieke machine learning technieken, namelijk evolution-
aire computatie en neurale computatie (neurale netwerken), voor de intelli-
gente optimalisatie van de incrementele classificatie van informatiestromen.
De documentrepresentatie die in dit onderzoek gehanteerd werd, is die van
gewogen frequentiedistributies van n-grammen. De gewichten geassocieerd
met de n-grammen zijn de attributen die geoptimaliseerd worden.

De resultaten in deze dissertatie geven een positieve indicatie voor het
gebruik van de machine learning technieken zoals beschreven in de vorige
alinea. Zowel geschreven documenten als gesproken documenten worden
succesvol geclassificeerd, met inachtneming van de beperkingen gesteld door
adaptieve informatiefiltering. Een belangrijk aspect dat nog verder onder-
zoek vraagt is schaalbaarheid: de classificatieresulten zakken van meer dan
95% correct voor twee onderwerpen tot iets onder de 85% correct voor tien
onderwerpen, hoewel het dalen van de classificatieresultaten lijkt te stoppen
wanneer het aantal onderwerpen meer dan acht is.

157

158

Curriculum Vitae

Daniel Remy Tauritz was born in Leiden, The Netherlands, on July 22nd,
1973. He finished his pre-academic secondary education in 1991 at Rijnlands
Lyceum in Wassenaar. After studying computer science and mathematics for
about two years at Leiden University, he concentrated on computer science
and specialized in the fields of computational intelligence (evolutionary com-
putation in particular), information filtering, and automatic document clas-
sification. He received his Masters degree in 1996 after completing a research
internship at the NATO C3 Agency (formerly known as SHAPE Technical
Center) in The Hague, where he investigated the application of evolutionary
computation for the optimization of adaptive information filtering systems.

In 1997 he taught for two quarters as an instructor in the School of
Computer and Information Sciences at the University of South Alabama in
Mobile, Alabama, USA. From December 1st 1997 through November 30th
2001 he performed his Ph.D. research under a grant from NWO (the Dutch
National Science Foundation). His dissertation advisor was Prof. dr. Joost
N. Kok and his daily supervisor was Dr. Ida G. Sprinkhuizen-Kuyper.

159

160

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Pro-
cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-1

A.M. Geerling. Transformational Devel-
opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Sci-
ence, KUN. 1996-2

P.M. Achten. Interactive Functional
Programs: Models, Methods, and Imple-
mentation. Faculty of Mathematics and
Computer Science, KUN. 1996-3

M.G.A. Verhoeven. Parallel Local
Search. Faculty of Mathematics and Com-
puting Science, TUE. 1996-4

M.H.G.K. Kesseler. The Implementa-
tion of Functional Languages on Paral-
lel Machines with Distrib. Memory. Fac-
ulty of Mathematics and Computer Sci-
ence, KUN. 1996-5

D. Alstein. Distributed Algorithms
for Hard Real-Time Systems. Faculty
of Mathematics and Computing Science,
TUE. 1996-6

J.H. Hoepman. Communication, Syn-
chronization, and Fault-Tolerance. Fac-
ulty of Mathematics and Computer Sci-
ence, UvA. 1996-7

H. Doornbos. Reductivity Arguments
and Program Construction. Faculty
of Mathematics and Computing Science,
TUE. 1996-8

D. Turi. Functorial Operational Seman-
tics and its Denotational Dual. Faculty
of Mathematics and Computer Science,
VUA. 1996-9

A.M.G. Peeters. Single-Rail Handshake
Circuits. Faculty of Mathematics and
Computing Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Me-
chanical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type
Inference. Faculty of Mathematics and
Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and
Partition Refinement for Model Checking.
Faculty of Mathematics and Computing
Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities
in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for
Graphs of Small Treewidth. Faculty of
Mathematics and Computer Science, UU.
1997-01

W.T.M. Kars. Process-algebraic Trans-
formations in Context. Faculty of Com-
puter Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of
Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-
ory in Logic and Mathematics. Faculty
of Mathematics and Computing Science,
TUE. 1997-04

C.J. Bloo. Preservation of Termination
for Explicit Substitution. Faculty of Math-
ematics and Computing Science, TUE.
1997-05

J.J. Vereijken. Discrete-Time Process
Algebra. Faculty of Mathematics and Com-
puting Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional
Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-
07

A.W. Heerink. Ins and Outs in Refusal
Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A
Discrete-Event Simulator for Systems En-
gineering. Faculty of Mechanical Engineer-
ing, TUE. 1998-02

J. Verriet. Scheduling with Communica-
tion for Multiprocessor Computation. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 1998-03

J.S.H. van Gageldonk. An Asyn-
chronous Low-Power 80C51 Microcon-
troller. Faculty of Mathematics and Com-
puting Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System
Design with Petri Nets and Process Alge-
bra. Faculty of Mathematics and Comput-
ing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with
Laws and Subtyping – A Relational Model.
Faculty of Mathematics and Computing
Science, TUE. 1999-01

H. ter Doest. Towards Probabilis-
tic Unification-based Parsing. Faculty of
Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-
tion of Surface Processes. Faculty of Math-
ematics and Computing Science, TUE.
1999-03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathe-
matics and Natural Sciences, Univ. Lei-
den. 1999-04

E.I. Barakova. Learning Reliability: a
Study on Indecisiveness in Sample Selec-
tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimiza-
tion in Real-Time Distributed Databases.

Faculty of Mathematics and Computing
Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Math-
ematics and Computing Science, TUE.
1999-07

J.P. Warners. Nonlinear approaches to
satisfiability problems. Faculty of Math-
ematics and Computing Science, TUE.
1999-08

J.M.T. Romijn. Analysing Industrial
Protocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator
for Hybrid Systems. Faculty of Mechanical
Engineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Con-
cepts and Proof Rules. Faculty of Math-
ematics and Computing Science, TUE.
1999-12

R.S. Venema. Aspects of an Integrated
Neural Prediction System. Faculty of
Mathematics and Natural Sciences, RUG.
1999-13

J. Saraiva. A Purely Functional Imple-
mentation of Attribute Grammars. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Progam Construction. Faculty
of Mathematics and Computing Science,
TUE. 1999-15

K.M.M. de Leeuw. Cryptology and
Statecraft in the Dutch Republic. Fac-
ulty of Mathematics and Computer Sci-
ence, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A
stratified approach to the verification of

distributed algorithms. Faculty of Mathe-
matics and Computer Science, UU. 2000-
02

W. Mallon. Theories and Tools for the
Design of Delay-Insensitive Communicat-
ing Processes. Faculty of Mathematics and
Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending
and Packaging Plant. Faculty of Mechani-
cal Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for De-
riving Correct Programs. Faculty of Math-
ematics and Computing Science, TUE.
2000-07

P.A. Olivier. A Framework for De-
bugging Heterogeneous Applications. Fac-
ulty of Natural Sciences, Mathematics and
Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specifica-
tion Language. Faculty of Mathematics
and Natural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolution-
ary Search Discovering and Representing
Search Space Structure. Faculty of Mathe-
matics and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events
a computational approach to knowledge,
observation and communication. Faculty
of Mathematics and Computing Science,
TU/e. 2001-02

M. Huisman. Reasoning about Java pro-
grams in higher order logic using PVS and
Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design
Processes through Structured Reflection.

Faculty of Mathematics and Computing
Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting:
syntax and semantics. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2001-05

R. van Liere. Studies in Interactive Vi-
sualization. Faculty of Natural Sciences,
Mathematics and Computer Science, UvA.
2001-06

A.G. Engels. Languages for Analysis
and Testing of Event Sequences. Faculty
of Mathematics and Computing Science,
TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Nat-
ural Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for
Analysis of Data in Environmental Epi-
demiology: A Case-study into Acute Ef-
fects of Air Pollution Episodes. Faculty
of Mathematics and Natural Sciences, UL.
2001-09

T.C. Ruys. Towards Effective Model
Checking. Faculty of Computer Science,
UT. 2001-10

D. Chkliaev. Mechanical verification of
concurrency control and recovery protocols.
Faculty of Mathematics and Computing
Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presen-
tation of formal mathematical documents.
Faculty of Mathematics and Computing
Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine con-
trol: A simulation approach using χ. Fac-
ulty of Mechanical Engineering, TU/e.
2001-13

D. Bošnački. Enhancing state space
reduction techniques for model checking.

Faculty of Mathematics and Computing
Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for
Intelligent Data Analysis: theoretical and
experimental aspects. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Sys-
tems. Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understand-
ing Legacy Software Systems. Faculty of
Natural Sciences, Mathematics and Com-
puter Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity.

Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Ver-
ification of Probabilistic, Real-time and
Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
KUN. 2002-06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems.
Faculty of Science, Mathematics and Com-
puter Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin
Packing. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-09

D.R. Tauritz. Adaptive Information Fil-
tering: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

	Adaptive Information Filtering: Concepts and Algorithms
	Recommended Citation

	tmp.1460412727.pdf.zFZ2x

