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Abstract: 

Unified modeling language (UML) is widely taught in the information systems (IS) curriculum. To understand UML in IS 
education, this paper reports on an empirical study that taps into students’ learning of UML. The study uses a concept-
mapping technique to identify the challenges in learning UML notational elements. It reveals that some technical 
properties of UML diagrammatic representation, coupled with students’ cognitive attributes, hinder both perceptual and 
conceptual processes involved in searching, recognizing, and inferring visual information, which creates learning 
barriers. This paper also discusses how to facilitate perceptual and conceptual processes in instruction to overcome 
learning challenges. The study provides valuable insights for the IS educators, the UML academic community, and 
practitioners. 
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1 Introduction 

System analysis and design (SA&D) is a core component of the information systems (IS) curriculum (Topi 
et al., 2010, 2017). As the SA&D field has changed from the structured to object-oriented (OO) methodology 
(Nerur, Slinkman, & Mahapatra, 2005), OO methodology has become an integral part of IS education 
(Satzinger, Batra, & Topi, 2007). Of the various OO techniques, unified modeling language (UML) has 
emerged as the dominant modeling approach and become an essential part of any IS professional’s toolset. 
To maintain their relevance, IS programs recognize the need to teach OO methodology. Many of them offer 
courses on UML or incorporate UML into their existing SA&D courses. 

In an effort to understand UML in the context of IS education, we report on an empirical study on learning 
UML. Specifically, we use a cognitive technique to tap into students’ challenges in learning UML notational 
elements. We interpret the findings through the lens of diagrammatic representation and diagrammatic 
reasoning and offer insights into how to enhance teaching UML. 

The paper proceeds as follows: in Section 2, we discuss diagrammatic representation and diagrammatic 
reasoning that learning a visual language such as UML involves. In Section 3, we describe the cognitive 
method we used in our empirical investigation. In Section 4, we present our empirical study and detail our 
research procedures. In Section 5, we present our findings, which we discuss in Section 6. Finally, in Section 
7, we discuss the study’s contributions and limitations and conclude the paper. 

2 Theoretical Background 

As a visual language, UML uses diagrams to represent information on a two-dimensional (2D) surface to 
visualize, specify, construct, and document systems (Object Management Group, 2015). Diagrams, 
therefore, play a critical and essential role for UML. In this section, we describe diagrammatic representation 
and diagrammatic reasoning, the two integral areas for effective diagrams. 

2.1 Diagrammatic Representation 

Diagrammatic representation concerns how to represent information in diagrams. At its core, diagrammatic 
representation has visual notations, also known as graphical notations and diagramming notations, that 
comprise a set of graphical symbols (visual vocabulary), a set of compositional rules (visual grammar), and 
the meaning of each symbol (visual semantics) (Moody, 2009). Graphical symbols make up the visual 
vocabulary that represents information perceptually in diagrams. The vocabulary of a visual language should 
be large enough to cover all the concepts to be communicated, and its users should have the same 
understanding of it. 

Computational rules represent the visual grammar that defines the relationships between various graphical 
symbols to make them meaningful. A diagram will lose its informative value if it does not follow computational 
rules. Different visual languages have different visual grammars. The visual vocabulary and visual grammar 
together form the visual syntax of a visual language. Visual syntax and visual semantics work together to 
deliver and make sense of the visual information embedded in diagrams. 

2.2 Diagrammatic Reasoning 

Diagrammatic reasoning studies how human beings search, recognize, and infer visual information in 
diagrams. Different visual notations may represent the same information, but different representations for 
the same information may not be equally effective for diagrammatic reasoning. Empirical studies show that 
diagrams are cognitively effective only when they facilitate both perceptual and conceptual processes 
involved in diagrammatic reasoning (Kim, Hahn, & Hahn, 2000; Hahn & Kim, 1999). 

In perceptual processes (seeing), human beings sense the things in the outside world and recognize 
relevant information. Automatic, very fast, and mostly executed in parallel, perceptual processes produce 
automatic and intuitive reactions to directly observable features of the items such as shape and direction. In 
conceptual processes (understanding), human beings infer and derive new information from the information 
obtained in perceptual processes. Effortful, relatively slow, and mostly executed in sequence, conceptual 
processes require attention, focus, deliberation, and analysis to form abstractions of the things in the outside 
world. 
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To enable effective perceptual processing, visual notations need to have certain features such as perceptual 
discriminability and semantic transparency. Perceptual discriminability refers to how easily and accurately 
individuals can visually differentiate visual notations from each other (Moody, 2009). The visual distinction 
between different visual notations enables individuals to more quickly search for, recognize, and recall 
information and, therefore, can reduce cognitive load in perceptual processes. To maximize discriminability, 
individuals should be able to automatically and in parallel detect the differences of graphical symbols. 
Individuals need to accurately visually discriminate between visual notations to accurately interpret 
diagrams. 

Semantic transparency stipulates that a visual notation’s meaning (semantic) should be clear (transparent) 
from its appearance alone (Caire, Genon, Heymans, & Moody, 2013). While perceptual discriminability 
requires different visual notations to have different appearances, semantic transparency demands the 
appearance of a visual notation to provide cues to its meaning. The more natural and intuitive the association 
between a visual notation’s appearance and meaning is, the more semantically transparent the visual 
notation. Semantically transparent visual notations reduce cognitive load because individuals can directly 
perceive or easily learn their meanings (e.g., a trash can icon to represent deleted items or the color red to 
suggest danger, respectively) (Petre, 1995). 

To support effective conceptual processing, visual notations need to have such properties as construct 
clarity and manageable complexity to facilitate inductive inference. Construct clarity refers to one to one 
correspondence between the graphical symbols and their referent concepts (Goodman, 1968). When a one-
to-one correspondence between the constructs and symbols does not exist, ontological discrepancies occur 
(Wand & Weber, 1993). Four possible ontological discrepancies include symbol deficiency, overload, 
redundancy, and excess (see Table 1). These ontological discrepancies add cognitive load and slow down 
conceptual processing of diagrammatic information. For example, symbol redundancy places a burden on 
choosing which symbol to use and to remember multiple representations of the same construct. Symbol 
overload leads to ambiguity and the potential for misinterpretation. Symbol excess adds visual clutter to 
diagrams and confounds the interpretation of diagrams. In contrast, construct clarity maximizes precision, 
expressiveness, and parsimony and, therefore, is highly desirable. 

Table 1. Ontological Discrepancies 

 Matching between 

 Semantic construct(s) Graphical symbol(s) 

Symbol deficiency One or Many None 

Symbol overload Many One 

Symbol redundancy One Many 

Symbol excess None One or Many 

Individuals can comprehend only a limited number of visual notations at a time. When they exceed this 
cognitive limit, they experience cognitive overload and their comprehension degrades rapidly. Visual 
notations should be able to represent information without overloading the human mind. To optimize 
conceptual processing, a visual language like UML should have some mechanisms to manage graphical 
complexity. One such mechanism is graphical complexity, which the number of graphical symbols and their 
various combinations in a visual language measures (Nordbotten & Crosby, 1999); that is, the size of the 
visual vocabulary. Ideally, the visual vocabulary should be adequate enough to cover necessary constructs 
but succinct enough to prevent cognitive overload. 

3 Methodology 

Cognitive mapping extracts statements from individuals about subjectively meaningful concepts and 
relations in particular areas of interest and then describes these concepts and relations in diagrammatical 
layout (Swan, 1997). Researchers have widely used it in many areas such as strategic management 
(Johnson & Lipp, 2007), project management (Robertson & Williams, 2006), and education (Ihlenfeldt, 
1981). It has also proven valuable for the SA&D field in which researchers have used it to complement and 
augment the methods for information requirements analysis (Montazemi & Conrath, 1986) and to 
understand software operation support expertise (Nelson, Nadkarni, Narayanan, & Ghods, 2000). Because 
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it taps into human cognitive processes and can discover latent characteristics, we used the cognitive 
mapping method to solicit students’ perceived difficulties in learning UML. 

Commonly used cognitive mapping approaches include causal mapping, mind mapping, and concept 
mapping (Siau & Tan, 2005). We did not know the challenges in learning UML, so we did not have the 
“central idea” that one needs for mind mapping (Buzan, 1993). While causal mapping represents the 
antecedent-consequence relation between two concepts (Eden, Ackermann, & Cropper, 1992), other types 
of relationships among concepts also exist, such as association. We used the concept-mapping approach, 
which shows concepts and relationships between concepts in a graphical representation called a concept 
map (Novak, 1993). Concept mapping helps one to generate ideas, communicate complex ideas, and 
assess understanding and diagnose misunderstanding (Jonassen, Beissner, & Yacci, 1993). As such, it can 
reveal the challenges in learning UML and the relationships among them. 

We used the group concept-mapping technique that Trochim (1989), Kane and Trochim (2007, and Trochim 
and McLinden (2017) have developed. We chose this technique because researchers have considerably 
used it in many fields such as social services (Galvin, 1989) and healthcare (Valentine, 1989), and produces 
reliable results according to generally recognized standard for acceptable reliability levels (Trochim, 1993). 
Also, it provides clear procedures for collecting data and allows one to systematically statistically analyze it. 
We conducted our study to identify challenges in learning UML from the student perspective. We then 
analyzed the student-perceived learning challenges through the lens of diagrammatic representation and 
reasoning and identified instructional strategies to facilitate both perceptual and conceptual processes 
involved in the challenges in learning UML. 

4 Procedures 

We conducted our concept-mapping study in six steps as Trochim (1989), Kane and Trochim (2007), and 
Trochim and McLinden (2017) specify. In this section, we describe how we performed each step in detail. 

4.1 Preparation 

In the first step of a concept-mapping project, one needs to select participants and develop the focus 
statement based on the research question. Senior and graduate students who had completed a design 
object-oriented system course at a large public university in the United States served as our study 
participants. The university’s college of business administration offered the course to students who majored 
or minored in MIS. The lecture-based course focused on basic concepts and processes in designing OO 
systems with UML. Taught in a traditional classroom setting, the course introduced UML’s fundamental 
semantics, syntax, and diagramming techniques. In the 16-week course, students did in-class exercises, 
quizzes, and exams and finished a semester-long SA&D project using UML. Thirty-two students participated 
in our study. 

Given UML’s complexity (with its multiple diagrams and numerous modeling techniques), the course 
exposed students only to UML’s fundamentals. Thus, instead of seeking students’ input on difficulties in 
learning UML in general, we focused on their challenges in learning UML notational elements (i.e., the 
building block of UML diagrams). UML notational elements refer to UML graphical symbols and their 
combinations (Booch, Rumbaugh, & Jacobson, 2005). UML has four kinds of graphical symbols: icons, 2D 
symbols, paths, and strings. 

• An icon refers to a graphical figure of a fixed size and shape, and it does not expand to hold 
contents. The diamond shape exemplifies an icon. 

• A 2D symbol has variable height and width and can expand to hold other things, such as a list 
of strings or other symbols. Rectangles, ovals, and circles exemplify a 2D symbol. 

• A path refers to a sequence of line segments that have attached endpoints. The lines that attach 
other graphical symbols at both ends exemplify a path. 

• A string basically refers to a character sequence that may use some suitable character sets and 
may exist as a singular element of a symbol or a component of a symbol, such as an element in 
a list, a label attached to a symbol or path, or as a standalone element in a diagram. The name 
of a class exemplifies a string. 
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One can use the four kinds of graphical symbols alone and in combination to form notational elements, 
which, in turn, one can map to construct various diagrams. Figure 1 illustrates UML graphical symbols in a 
class diagram. 

 

Figure 1. Illustration of UML Graphical Symbols 

We were interested in the challenges that students encountered in learning UML notational elements. 
Accordingly, we developed a focus statement operationalized as: generate statements (short phrases or 
sentences) that describes specific problems, difficulties, and/or concerns in drawing and interpreting UML 
notational elements. 

4.2 Generating Statements 

In this step, participants brainstorm to generate as many statements relevant to the focus statements as 
possible. We showed the focus statement to the participants, and they worked individually in generating 
statements. They generated 112 statements in total. We then examined the 112 statements to eliminate 
irrelevancies, redundancies, and inaccuracies. For example, statements such as “The software used to draw 
UML is not very user friendly” concerned the usability of the supporting tools and did not pertain to our focus 
statement. We considered statements like these to be irrelevant and removed them. 

We combined statements that addressed the same idea. For example, statements such as “For the 
generalization, the direct style and the tree style are almost the same” and “Direct style and tree style 
depicted for super- and sub-classes could cause drawing difficulty” both expressed the concern that the 
concept of generalization has two graphical styles. We collapsed these statements into one statement: “In 
generalization, the two styles (i.e., the direct and tree style) should not be allowed. Having only one style 
would make it easier.”. In addition, we checked the accuracy and validity of each statement. For example, 
we removed statements such as “Distinction between squares and rectangles—all seem to be rectangles” 
because the statement itself was incorrect—UML diagrams do not use squares at all. 

As a result, 39 statements remained. A UML expert who served as an instructor of the class and was not 
associated with this study evaluated the statement list. He validated that each statement represented one 
unique learning challenge that pertained to learning UML notational elements and that each one read 
well/clearly. We used these 39 statements (see the Appendix) for further analysis. 

 

Figure 1. Illustration of UML Graphical Symbols 
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4.3 Structuring Statements 

In this step, participants sort the brainstormed statements and rate each statement according to a Likert-
type scale. In our study, we first showed the 39 statements in a randomized order to every participant. We 
asked them to go through the statements and answered their questions (if they had any) about the 
statements before they sorted and rated each statement individually. We then instructed the participants to 
sort the statements into piles in a way that made sense to them following three sorting rules: 1) they could 
place each statement in only one pile, 2) they could not place all statements into one single pile, and 3) each 
pile needed to have more than one statement. After sorting statements into piles, the participants rated each 
statement on a five-point Likert type scale (1: relatively less important, 2: somewhat important, 3: moderately 
important, 4: very important, and 5: extremely important) in terms of each one’s relative importance to 
learning UML notational elements. 

4.4 Concept-mapping Analysis 

In this step, one conducts several analyses to represent the statements and construct four concept maps 
(i.e., the point map, the cluster map, the point rating map, and the cluster rating map). In our study, we first 
constructed two types of similarity matrices: an individual similarity matrix for each participant and a total 
similarity matrix. In constructing the individual similarity matrix, for any two statements i and j, we placed a 
“1” in the individual similarity matrix if a sorter placed the two statements in the same pile; otherwise, we 
entered a “0”. We obtained the total similarity matrix by summing the individual matrices. Any cell in the total 
similarity matrix could assume an integer value between 0 and 32 (the total number of sorters), and the 
value indicates the number of sorters who placed the i and j pair in the same pile. Figure 2 shows the total 
similarity matrix. 

 

Figure 2. Total Similarity Matrix 
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Next, we conducted a multi-dimensional scaling (MDS) analysis on the total similarity matrix in SPSS. This 
SPSS analysis yielded the point map (i.e., the 2D configuration of the 39 statements; see Figure 3). In the 
point map, a point represented a statement. SPSS configured the relationships among the statements using 
the criterion that statements that piled together should appear closer in 2D space and that those that piled 
together less frequently should appear further apart.  

 

Figure 3. SPSS 2D Configuration (Point Map) 

We then conducted a hierarchical cluster analysis to group individual statements on the point map into 
clusters of statements (the cluster map). The key operative rule for a cluster analysis is to maintain the 
integrity of the multidimensional scaling and partition the MDS configuration into non-overlapping clusters 
in a 2D space (Trochim, 1989; Kane & Trochim, 2007; Trochim & McLinden, 2017). We used Ward’s 
algorithm because it generally gives more sensible and interpretable solutions than other approaches (e.g., 
single linkage, centroid) (Kane & Trochim, 2007). The algorithm begins by considering each statement to 
be its own cluster. It then combines two clusters until it has combined them all into a single cluster at the 
end. Figure 4 shows the dendrogram graph that the SPSS hierarchical cluster analysis generated. 

Subsequently, we had to decide how many clusters we should group the statements into for the final 
solution. The point map (see Figure 3) suggests six clusters. First, a cluster with statements 3, 5, and 27 
appeared in the upper-left corner of the point map. The dendrogram analysis merged these three statements 
in the first combination round. A cluster with statements 8, 11, 13, 17, 21, 25, 26, and 39 appeared on the 
very right side of the point map. The dendrogram analysis merged these eight statements in the second 
combination round. Based on the convergence of the point map and the dendrogram graph, we classified 
statements 3, 5, and 27 into one cluster and statements 8, 11, 13, 17, 21, 25, 26, and 39 into another. 

Statements 1, 4, 7, 12, 16, 19, 20, 22, 24, 28, 33, 36, and 37 grouped together at the center of the point 
map. The dendrogram analysis combined these 13 statements, along with statements 2 and 6, into one 
cluster after four combination rounds. From carefully reading all the 15 statements, we found that statement 
2 regarding the stereotype fit well with statements 1, 4, 7, 12, 16, 19, 20, 22, 24, 28, 33, 36, and 37 because 
they all pertained to 2D symbols, while statement 6 regarding actor notation (i.e., an icon) did not. So we 
decided to include statement 2 in and exclude statement 6 from the cluster that had statements 1, 4, 7, 12, 
16, 19, 20, 22, 24, 28, 33, 36, and 37. 

Statements 9, 30, 31, 34, and 38 appeared quite closely together in the left lower part in the point map. The 
dendrogram analysis merged these five statements, along with statement 15, into one cluster after three 
combination rounds. Statement 15, however, appeared in the point map closer to the block with the 
statements 9, 14, 32, and 35. Considering that statement 15 described using two notations for the interface 
concept, we classified it with statements 29, 30, 31, 34, and 38 because they all dealt with the issue of 
symbol redundancy. 
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Figure 4. SPSS Dendrogram Graph in Cluster Analysis 

The point map seems to suggest two clusters for the remaining statements: one with the statements 10, 18, 
and 23 and the other with the statements 9, 14, 32, and 35. Statements 18 and 23 both concerned the 
multiplicity concept in the class diagram and statement 10 concerned the lifeline concept in the sequence 
diagram. The dendrogram analysis did not merge these three statements (i.e., 18, 23, and 10) until it 
combined them into one cluster with statements 9, 14, 32, and 35 after four combination rounds, though 
they appeared together in the point map. Similarly, the dendrogram analysis did not merge statements 9, 
14, 32, and 35 until it combined them into one cluster with statement 10, but they appeared close to each 
other in the point map. So we decided to group these seven statements into one cluster. We also put 
statement 6 into this cluster for two reasons: 1) because it appeared more closely to this cluster than to any 
other clusters in the point map and 2) because, like the other seven statements in this cluster, it raised one 
issue that did not belong to any other clusters. 

In sum, based on the dendrogram graph, the point map, and on the sensemaking criterion, we came up with 
five clusters. Figure 5 presents the cluster map that shows how we grouped the 39 statements. 
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Figure 5. Cluster Map 

Finally, we calculated the average rating for each statement (see the Appendix) and added each one to the 
point map to produce the point rating map (Figure 6). We calculated the rating for each cluster by averaging 
the sum of the average ratings of the statements in the cluster. We then added the average rating for each 
cluster to the cluster map to produce the cluster rating map (Figure 7). 

 

Figure 6. Point Rating Map 

 

 



554 Challenges in Learning Unified Modeling Language 

 

Volume 43  10.17705/1CAIS.04330 Paper 30  

 

 

Figure 7. Cluster Rating Map 

 

4.5 Interpreting Concept Maps 

In this step, participants validate and name the clusters. In our study, we showed each participant individually 
the clusters and asked each one to come up with a phrase or short sentence to describe each cluster. Based 
on the names that the participants provided, we finalized the name for each cluster. The UML expert who 
independently validated the statement list in the second step (see Section 4.2) went through the cluster list 
and analyzed the cluster names that the participants provided. He agreed that the cluster names were valid. 
Table 2 summarizes the cluster information. 

Table 2. Summary of Clusters 

Cluster and name Statements in cluster 
Cluster 
rating 

Statement rating range 

1)  Similarity in notational 
elements 

Eight statements: 8, 11, 13, 17, 21, 25, 
26, and 39 

3.24 2.58 – 3.53 

2)  Ambiguity in notational 
elements 

14 statements: 1, 2, 4, 7, 12, 16, 19, 20, 
22, 24, 28, 33, 36, and 37 

2.66 1.97 – 3.53 

3)  Inconsistency in notational 
elements 

Six statements: 15, 29, 30, 31, 34, and 
38 

2.93 2.81 – 3.22 

4)  Confusing numbering in 
communication diagram 

Three statements: 3, 5, and 7 3.30 3.28 – 3.31 

5)  Other problems 
Eight statements: 6, 9, 10, 14, 18, 23, 
32, and 35 

2.77 2.44 – 3.41 

4.6 Utilizing Concept Maps 

In this step, one interprets and explains the concept maps using relevant theories and frameworks. In the 
next two sections, we present the findings of our study and discuss how we interpret and use the concept 
maps in the light of diagrammatic representation and diagrammatic reasoning, respectively. 

5 Findings 

The concept maps we constructed identify five clusters of challenges in learning UML notational elements. 
In this section, we report the learning challenges in each cluster. 



Communications of the Association for Information Systems 555 

 

Volume 43  10.17705/1CAIS.04330 Paper 30  

 

5.1 Cluster 1: Similarity in Notational Elements 

This cluster indicates that some UML notational elements do not differ enough from one another (i.e., they 
look too similar to each other at a glance). The eight statements in this cluster concerned lines (e.g., dashed 
and solid lines), arrowheads (e.g., stick, empty, and filled arrowheads), and various combinations of different 
lines and arrowhead styles (see Figure 8 for illustration). Such minute differences impose perceptual 
challenges in distinguishing between graphical symbols and in seeing and linking relevant visual items, 
which lowers the perceptual discriminability for accurate visual discrimination in perceptual processes. 

 

Figure 8. Examples of Similarity in Notational Elements 

The cluster had a cluster rating of 3.24, which indicates that low perceptual discriminability represents an 
important learning challenge for students. Seven statements (39, 17, 26, 25, 21, 8, and 11) had high ratings 
over 3, and one statement (13) had a rating of 2.58. Statement 13 concerned the differentiation between 
dependency and realization—the two specialized relationships. We can attribute statement 13’s lower rating 
to the practice that the name of the dependency relation goes with the dashed line and stick arrowhead to 
represent a dependency relationship. Using a string along with 2D symbols helps differentiate dependency 
from realization. Overall, the participants found the subtle differences in notations for different semantic 
concepts confusing. 

5.2 Cluster 2: Ambiguity in Notational Elements 

This cluster identifies learning challenges related to using one 2D symbol to represent two or more semantic 
concepts. For example, rectangles represent classes in the class diagram and objects in the object diagram. 
Rectangles also describe different concepts in the same diagram. For example, rounded rectangles 
represent activity states and action states in the activity diagram. Ovals describe base use cases, extend 
use cases, and include use cases in the use case diagram. Using one graphical symbol to represent two or 
more semantic constructs shows the ontological discrepancy of symbol overload (see Table 1). Such a lack 
of construct clarity slows down conceptual processing of visual information and, thus, contributes to learning 
challenges. 

The cluster had 14 statements—the largest of all clusters. It also had the lowest cluster rating of 2.66.  
However, this cluster did have statements with ratings over 3. For example, statements 33, 2, and 7 had 
ratings of 3.53, 3.50, and 3.34, respectively. A close look reveals the statements’ ratings ranged widely from 
1.69 to 3.53. Further examination shows that statements with ratings higher than 3 (i.e., statements 33, 2, 
7, and 4) concerned the use of same or similar notations to represent semantically related notions (e.g., 
excluding and included stereotypes in statement 2; classes and objects in statement 7), whereas statements 
with a rating below 2 (i.e., statements 16, 19, 20, and 24) concerned semantically distinct notions (e.g., 
components and nodes in statement 16; notes and classes in statement 19). In other words, symbol 
ambiguity poses significantly more challenges when it involves semantic constructs that individuals cannot 
easily distinguish from one another. 
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5.3 Cluster 3: Inconsistency in Notational Elements 

The six statements in this cluster show that more than one graphical symbol represent some concepts. For 
example, icons such as the computer and cube both represent a server. Some 2D symbols such as 
rectangle and circle both represent an interface. Two styles can represent generalization: direct and tree. 
Using more than one graphical symbol to represent one semantic construct shows the ontological 
discrepancy of symbol redundancy. The cluster’s cluster rating of 2.93 indicates the symbol-redundancy 
issue is not that serious. Nevertheless, the cluster did contain statements with a rating over 3 (e.g., 3.22 for 
statement 29). Statements 29, 15, and 31 had ratings above the cluster rating and concerned components, 
interfaces, and active classes, respectively. The other three statements in this cluster had lower ratings and 
concerned servers (statement 30), classes (statement 34), and generalization (statement 38). The concepts 
involved in higher rating statements were more abstract by definition and less used in the UML course than 
those in lower rating statements. 

5.4 Cluster 4: Confusing Numbering in Communication Diagrams 

With only three statements, this cluster was the smallest one. However, it had the greatest importance with 
the highest cluster rating of 3.30. In fact, all three statements in this cluster had a rating above 3. They 
represent the challenges with communication diagrams from different perspectives. Statement 3 concerned 
the difficulty in following the numbering, statement 5 concerned the difficulty in differentiating sequence 
number from other similar notations, and statement 27 concerned the difficulty in retrieving information from 
the sequence number. All three statements point out that discrimination that relies on only textual 
characteristics (i.e. strings), sometimes in combination with contexts, makes it extremely difficult to 
automatically and in parallel detect the differences between notational elements. That is, this cluster reveals 
the issue of low perceptual discriminability due to the extensive use of strings in communication diagrams. 

5.5 Cluster 5: Other Problems 

This cluster included the problems, difficulties, or concerns that the other clusters did not cover. The eight 
statements concerned strings such as multiplicity (statements 18 and 23), icons such as stickman 
(statement 6), and 2D symbols such as object lifelines (statement 10) and circles (statement 14). The 
cluster’s cluster rating of 2.77 indicates these concerns had moderate importance. Statements 35 and 6 had 
ratings above 3. Statement 35, with a rating of 3.41, the highest in this cluster, interestingly observes the 
lack of linkage between the various diagrams, which highlights the issue with complexity management. 
Statement 6 shows that using a stick man to represent a non-human actor is counterintuitive, which relates 
to the lack of semantic transparency. 

6 Discussion 

In this section, we explain what our findings explain about why students have challenges in learning UML 
notational elements and discuss how to help overcome these challenges in teaching. 

6.1 Learning Challenges 

UML diagrammatic representations should facilitate diagrammatic reasoning. They need to be easy to 
recognize and understand and support accurate model interpretation in a timely manner. We identified 39 
challenges in learning UML. These learning challenges show how the issues with diagrammatic 
representation of UML notational elements hinder perceptual and conceptual processes for effective 
diagrammatic reasoning, which Table 3 summarizes. 

The first cluster shows that UML notational elements with low perceptual discriminability impede students’ 
ability to readily recognize graphical symbols and see and link relevant visual items. Unlike experts who can 
make much finer distinctions with experience (Britton & Jones, 1999), students (novices) cannot quickly and 
accurately differentiate UML overly similar notational elements. Because such individuals need to make a 
more conscious effort and to memorize elements, perceptual processes slow down and learning challenges 
arise. 

The fourth cluster shows similar perceptual challenges in that students found textual coding with strings 
difficult to understand. Though more expressive semantically, textual encoding is less semantically 
transparent and, therefore, less perceptually effective than graphical encoding (Nelson et al., 2000). 
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Communication diagram’s sole reliance on strings for discrimination makes it difficult for novices to instantly 
detect the difference. Instead, they need to perform serial searches to process perceptual cues in the textual 
format. Because they need to expend more time and effort on searching for and inferring information, 
students feel that it is difficult to learn message passing in the communication diagram. 

Table 3. Summary of Diagrammatic Representation Issues 

Issues in diagrammatic 
representation 

Hindrance to diagrammatic reasoning 

• Notational similarity (cluster 1) • Low perceptual discriminability slows down perceptual processing. 

• Notational ambiguity (cluster 2) 
• Ontological discrepancy (i.e., symbol overload) impedes conceptual 

processing. 

• Notational inconsistency (cluster 3) 
• Ontological discrepancy (i.e., symbol redundancy) impedes conceptual 

processing. 

• Reliance on strings for message 
passing in Communication Diagram 
(cluster 4) 

• Lack of semantic transparency slows down perceptual processing. 

• Problems with stickman, multiplicity, 
and lack of linkage among diagrams 
(cluster 5) 

• Lack of semantic transparency (e.g., the use of stickman to represent 
non-human actor) slows down perceptual processing. 

• Lack of complexity-management mechanism impedes conceptual 
processing. 

The lack of semantic transparency in perceptual processes also creates learning barriers, which some 
statements in the fifth cluster indicate. Statement 6, for example, points out that a stickman (an icon) 
represents non-human actors in practice. Using a stick figure for a non-human actor is counterintuitive 
because it breaks the natural correspondence between a stick figure and a person. Such usage may not be 
problematic to seasoned users who have experience with this type of representation. But, for untrained 
eyes, it adds cognitive load in inferring the meaning of non-human actor from the appearance of a stick 
figure alone. 

Some technical properties of UML notational elements also impede conceptual processes. UML notational 
elements lack construct clarity since we found ontological discrepancies in the second and third clusters. 
Symbol overload, which we found in the second cluster, increases ambiguity, and symbol redundancy, which 
we found in the third cluster, adds to the complexity of UML. Ambiguous and complex graphical symbols 
affect novices more than experts who have developed the long-term memory that automates diagrammatic 
interpretation (Blackenship & Dansereau, 2000). Research has also shown that novices have to more 
consciously remember symbols’ meaning (Winn, 1993). Because novices need to more significantly pay 
attention to and deliberate on choosing which symbol to use, ontological discrepancies negatively affect the 
speed, ease, and accuracy in conceptual processes, which becomes an obstacle to learning. 

In addition, the fifth cluster shows that the lack of complexity management challenges cognitive processes. 
For example, statement 35 indicates that UML lacks an explicit mechanism to simplify navigation and 
transition between diagrams (i.e., perceptual integration) and to help assemble information from separate 
diagrams into a coherent mental representation of the system (i.e., conceptual integration). This shortcoming 
places additional cognitive demands on individuals—especially novices who lack the training and 
experience in searching for, recognizing, and inferring information from various diagrams and in assembling 
such information to form a coherent mental representation. 

In short, our group concept-mapping study shows that both the technical properties of UML notational 
elements and the cognitive attributes of students obstruct one from learning UML. The concept maps also 
show that learning challenges are not equally distanced to each other. The second, third, and fifth clusters 
were very close to each other at the center of the cluster map, while the first and fourth were spread out 
(i.e., one on the far right side and the other on the far left corner of the cluster map). Carefully examining 
the statements in the five clusters shows that the second, third, and fifth dealt with concepts such as class, 
object, action, activity, use case, and interfaces and that the first and fourth focused more on relationships 
and interactions between things. That is, we can separate the learning challenges into two categories: one 
related to static aspects (i.e., structures) and the other to dynamic aspects (i.e., behaviors). The issues with 
the structures and behaviors impede conceptual processing and perceptual processing of information, 
respectively. 
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Finally, the cluster rating map indicates that individuals find learning behavioral aspects more challenging 
than learning structural aspects, which we may explain in terms of the criticality of perceptual processing in 
visual languages. Research has shown that diagrams’ major cognitive advantage lies in their ability to shift 
some of the processing burden from conceptual processing to perceptual processing (Larkin & Simon, 1987; 
Petre, 1995). Our study discovers that UML notational elements that represent behaviors relate primarily to 
perceptual processes, whereas those that represent structures relate primarily to conceptual processes. 
Therefore, it makes sense that the first and fourth clusters had higher ratings on importance than the second, 
third, and fifth because the latter capitalize on the advantage of the power of diagrammatic representation. 

6.2 Instructional Implications 

First and foremost, we identify the 39 learning challenges that instructors need to address when teaching 
UML to improve learning outcomes. Our study suggests that instructors should prioritize the dynamic aspect 
of UML diagrammatic representation and, in particular, relationships and message passing. Specifically, 
instructors should emphasize how to deal with low perceptual discriminability in the combinations of 2D 
shape, paths, and strings. When teaching the static aspect, instructors should focus more on addressing 
the issues of ontological discrepancy and symbol overload in particular. While a variety of learning strategies 
(e.g., review session, study guide, and tutorials) can help students cope with the learning challenges, we 
focus on the pedagogical strategies that can facilitate perceptual and conceptual processes involved in 
learning behavioral and structural aspects of UML representations. Table 4 summarizes the teaching 
strategies that one can use to address specific learning challenges. 

Familiarity with graphical symbols can help individuals search for, recognize, and infer information from 
perceptual cues in graphical symbols and, thus, facilitate perceptual processes (Briton & Jones, 1999) in 
learning behavioral aspects of UML notational elements. Therefore, instructors need to familiarize students 
with the graphical symbols that are difficult to recognize, counterintuitive to infer, and need serial searches. 
They can do so by having more practices and drills in the form of both in-class exercises and homework 
assignments. Based on our findings, students need to work on message passing and relationships to 
overcome challenges in learning the behavioral aspects of UML notational elements. As such, instructors 
need to allocate time for exercises in those areas both in and outside the classroom to enhance students’ 
visual perception capability. 

Table 4. Summary of Teaching Strategies 

Learning challenges Coping strategies in teaching 

Perceptual challenges  

Low discriminability 

• Assign more in-class exercises and homework assignments to familiarize students with 
notations, particularly in relationships and message passing. 

• Provide students with the descriptions and graphical displays of similar notations. 

• Require students to compare and outline differential features of similar notations. 

Lack of semantic 
transparency 

• Drill students more on notations that lack semantic transparency (e.g., the use of a 
stickman for non-human actors) to build and reinforce the connection between a 
graphical symbol and its semantic construct. 

Conceptual challenges  

Symbol overload 

• Lecture more on the semantic constructs that similar notations represent, such as 
relationships (generalization, dependency, and realization) and messages (sequential 
and asynchronous messages). 

• Conduct in-class mini-cases with the real-life scenarios so students can better 
comprehend the semantic constructs. 

Symbol redundancy 
• Summarize the semantic constructs with two or more graphical representations (e.g., 

server, interface, and generalization) with graphical illustration. 

Complexity management • Assign homework that focuses on linking and integrating information from different 
diagrams throughout the class. 

Moreover, instructors should provide students with documents that include both the descriptions and 
graphical displays of the perceptually similar graphical symbols. They can also have students compare and 
outline the differential features of similar notational elements. Such activities can reinforce students’ visual 
memories, which helps them to more easily recall and more quickly process perceptual information. 
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While untrained users find the lack of symbol discriminability and semantic transparency problematic, 
conceptual confusion can also cause challenges. Research has demonstrated that prior knowledge informs 
users about what to look for and how to organize information found in a diagram and, thus, improves their 
performance in searching for and recognizing relevant visual information (Winn, 1993). Students may not 
have knowledge about message passing. They may not firmly grasp the conceptual differences between a 
call and an asynchronous message and between generalization and realization. This lack of comprehension 
about the concepts that challenging graphical symbols represent can adversely affect perceptual processes 
and contribute to challenges in learning. 

Similarly, the difficulties with symbols’ meaning will burden conceptual processes. Construct overload for 
semantically related notations (e.g., excluding and included stereotypes) is more difficult to overcome than 
those for semantically distinct notations (e.g., component and node). Symbol inconsistencies for abstract 
concepts (e.g., interface) are more challenging than for concrete concepts (e.g., server). To alleviate 
learning challenges that arise from conceptual confusion, we recommend that instructors prioritize teaching 
visual semantics that students experience difficulty in comprehending. Instructors should provide more 
lectures on the cognitively challenging concepts (e.g., interfaces, active classes, and message passing) and 
the differences between concepts with close relations in meaning (e.g., stereotypes and relationships). We 
also recommend providing students with the opportunity to practice with real-life scenarios that pertain to 
the concepts under study. Instructors can approach such scenarios by using mini-cases (Sirias, 2005) in 
the class. If instructors use concrete examples that students can relate to, students can come to better 
understand the concepts, which, in turn, will help them to differentiate and comprehend the graphical 
symbols that represent those concepts. 

Finally, we propose that instructors set homework that focuses on linking and integrating information from 
different diagrams to enhance conceptual integration. Instructors should assign this type of homework as 
soon as they introduce the two diagrams. As students progress through the course, instructors can decrease 
the frequency of homework assignments but increase their difficulty because it is harder and harder to 
navigate through multiple diagrams. Using time and repetition in this way to space learning can help students 
develop long-term memories that help them automatically process information. 

7 Conclusions 

Over the last two decades, UML has gained tremendous popularity. It is now commonly practiced in OO 
SA&D. College graduates with UML knowledge and skills are in demand, and the IS curriculum now 
generally covers UML. Because the IS curriculum widely teaches UML, more systematic research needs to 
evaluate teaching and learning of UML in IS education. 

7.1 Contributions 

In this study, we use a cognitive technique to investigate students’ challenges in learning UML. The concept 
maps we constructed provide empirical evidence of the difficulties that novices experience in learning UML. 
We present concrete recommendations to address the learning challenges. Therefore, we provide valuable 
insights into and recommendations on teaching UML. Our study also demonstrates the usefulness of 
participatory cognitive approach in developing the shared understanding between instructors and students 
on difficult course materials. The concept-mapping technique enables one to meaningfully and efficiently 
assess and represent learning challenges, and other IS courses can use it to enhance teaching and facilitate 
learning. 

Our study also has significance for the UML academic community. It identifies the cognitive weaknesses 
and deficiencies in UML from the perspective of inexperienced users and offers theoretical understanding 
of where and why UML notational elements hinder UML’s diagrammatic reasoning. This knowledge can 
assist in UML diagrammatic representation’s continuous evolution and further development to enhance 
UML’s effectiveness. Finally, our study benefits UML practitioners, too. Student subjects in our study neared 
the end of their university education and were about to enter industry. As such, they represent entry-level 
practitioners. Thus, we can generalize our results to junior UML professionals. Our study sheds light on UML 
training that entry-level professionals may need. 
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7.2 Limitations and Future Research 

Like any study, ours has limitations. First, we did not look into the more advanced aspects of UML 
diagrammatic representation. Instead, we focused on the UML basics that the participants had prior 
exposure to and revealed the challenges they faced in learning the fundamentals of UML notation. Future 
research needs to examine the UML notation that represents more advanced topics to understand the 
challenges individuals face in learning more complex and complicated areas of UML. In addition, since we 
used students as research participants, our findings have limited generalizability. We cannot generalize our 
findings to expert users. Research needs to replicate our study with UML experts to more comprehensively 
understand the challenges that individuals face in learning UML diagrams. Finally, the three sorting rules 
we used in structuring the statements step might have affected our study’s results. The fact that we did not 
incorporate the “do not group dissimilar statements together into one pile” rule may have resulted in the fifth 
cluster. Future concept-mapping studies should consider and use important sorting rules that might 
influence the structuring process to resolve this methodological issue. 

In conclusion, our concept-mapping study advances our empirical knowledge and theoretical understanding 
about the challenges that individuals face in learning UML. We hope that our study stimulates more empirical 
studies in UML in the context of IS education. Both educators and practitioners will find significance in work 
that focuses on more deeply understanding and appreciating UML in the IS curriculum. 
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Appendix  

Table A1. List of Statements 

Statement 
no. 

Statement 
Average 

rating 

1 
The nested/composite state has the same notation as the regular state.  It is confusing to 
have the same notation for both cases. 

2.50 

2 
The notations for the excluding and included stereotypes are confusing.  Both use the same 
arrow-notation but the direction of the arrow is different. 

3.50 

3 The numbering notation in the collaboration diagram is difficult to follow. 3.31 

4 
The notations for base use case, include use case, and extend use case are all the same. It 
is difficult to determine which use case is the base use case in an extend or include 
relationship without additional symbols. 

3.09 

5 
In the communication diagram, the format for the sequence number can be easily 
misunderstood as part of the operation or vice versa. 

3.31 

6 
The notation for an actor is a stick man.  However, other information systems outside the 
domain can be actors too and these systems are not human!  So, the notation of a stick 
man for actor can be misleading. 

3.16 

7 
The notations for class and object are the same.  Since a class contains multiple objects, we 
should have a different notation for class (e.g., double-rectangle as a notation for classes). 

3.34 

8 The notations for sequential message, asynchronous message, and call are too similar. 3.09 

9 
Activity diagram is a special case of state-chart diagram but one cannot use a branch in a 
state-chart diagram. 

2.78 

10 
The notation for lifelines of objects in the sequence diagram is confusing, and for most 
objects the lifeline is continuous. 

2.50 

11 
The notations for generalization and realization are easily confused - both use a hollow 
arrowhead. 

3.03 

12 Collaboration could have a different shape, different from that of the use case. 3.16 

13 Dependency and realization should differ more in their notations. 2.58 

14 
The notation for interface could be a little bigger so that instead of writing the interface name 
outside, we can write it inside the interface notation. 

2.53 

15 
There are two notations for interface – the explicit style (as a rectangle) and the implicit style 
(as a circle). 

3.09 

16 Component and node notations are pretty hard to differentiate. 1.97 

17 
A dashed line with an arrow at the end is used to represent both dependency and 
extend/include relationship. 

3.53 

18 
Multiplicity of an association’s role is difficult to follow -- is there a better notation than using 
0 … *? 

2.44 

19 The notations for note and class are too similar. 1.69 

20 The notations for states in state-chart diagram and classes in class diagram are too similar. 1.72 

21 
Different styles of arrow heads are used in UML. It is very hard to differentiate one from the 
other. More obvious notation difference should be there other than the filled or hollow 
arrowhead. 

3.22 

22 The notation for association class is the same as that of regular class. 2.94 

23 Multiplicity notation (e.g., 1…*) can sometimes clutter up a diagram (i.e., making it messier). 2.84 

24 Classes, notes, packages, and components all have a rectangular base for their notations. 1.91 

25 
The dashed line with arrow is used to represent several different things (dependency, 
realization). 

3.47 

26 Extend and include relationships use the same notation -- an arrow with dotted line. 3.50 
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Table A1. List of Statements 

27 
For communication diagrams, the notation for sequence number—thread names, and 
iteration expressions—can become confusing and jumbled. Not easy to decipher 
information. 

3.28 

28 The composition and aggregation symbols should be more different from each other. 2.50 

29 
The notation for component in a component diagram is not standardized (e.g., a database 
can be represented using different notations – cylinder, rectangle with tabs, etc.). 

3.22 

30 
The notation for node in a deployment diagram is not standardized (e.g., a serve can be 
represented using a computer symbol or using a cube). 

2.63 

31 The notation for an active class is represented differently in different books. 3.00 

32 The notation for template parameters is confusing. 2.50 

33 
The same rounded rectangle is used to represent activity state and action state in the 
activity diagram. 

3.53 

34 

There are different notations for classes.  A more consistent structure should be followed for 
drawing the boxes. For example, (a) is how classes are drawn, but if one does not have any 
methods or responsibility it is drawn like (b). Keep the number of compartments consistent 
even if some compartments are empty. 

2.81 

35 
There should be notations to specify “linkages” among various diagrams.  For example, 
actors are used in sequence and collaboration diagram to provide “correspondence” to 
actors in the use case diagram.  More notations can be used to link up other diagrams. 

3.41 

36 
The naming of classes and objects has to be more different. There has to be a way to 
differentiate classes from objects other than a letter followed by a colon. 

2.88 

37 The notations for join and fork are the same (using the synchronization bar). 2.47 

38 In generalization, the two styles (i.e., the direct and tree style) should not be allowed. 2.84 

39 
Stick arrow is used in combination with different line styles to represent many different 
things. 

3.53 
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