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Abstract:

Unified modeling language (UML) is widely taught in the information systems (IS) curriculum. To understand UML in IS
education, this paper reports on an empirical study that taps into students’ learning of UML. The study uses a concept-
mapping technique to identify the challenges in learning UML notational elements. It reveals that some technical
properties of UML diagrammatic representation, coupled with students’ cognitive attributes, hinder both perceptual and
conceptual processes involved in searching, recognizing, and inferring visual information, which creates learning
barriers. This paper also discusses how to facilitate perceptual and conceptual processes in instruction to overcome
learning challenges. The study provides valuable insights for the IS educators, the UML academic community, and
practitioners.
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546 Challenges in Learning Unified Modeling Language

1 Introduction

System analysis and design (SA&D) is a core component of the information systems (IS) curriculum (Topi
etal., 2010, 2017). As the SA&D field has changed from the structured to object-oriented (OO) methodology
(Nerur, Slinkman, & Mahapatra, 2005), OO methodology has become an integral part of IS education
(Satzinger, Batra, & Topi, 2007). Of the various OO techniques, unified modeling language (UML) has
emerged as the dominant modeling approach and become an essential part of any IS professional’s toolset.
To maintain their relevance, IS programs recognize the need to teach OO methodology. Many of them offer
courses on UML or incorporate UML into their existing SA&D courses.

In an effort to understand UML in the context of IS education, we report on an empirical study on learning
UML. Specifically, we use a cognitive technique to tap into students’ challenges in learning UML notational
elements. We interpret the findings through the lens of diagrammatic representation and diagrammatic
reasoning and offer insights into how to enhance teaching UML.

The paper proceeds as follows: in Section 2, we discuss diagrammatic representation and diagrammatic
reasoning that learning a visual language such as UML involves. In Section 3, we describe the cognitive
method we used in our empirical investigation. In Section 4, we present our empirical study and detail our
research procedures. In Section 5, we present our findings, which we discuss in Section 6. Finally, in Section
7, we discuss the study’s contributions and limitations and conclude the paper.

2 Theoretical Background

As a visual language, UML uses diagrams to represent information on a two-dimensional (2D) surface to
visualize, specify, construct, and document systems (Object Management Group, 2015). Diagrams,
therefore, play a critical and essential role for UML. In this section, we describe diagrammatic representation
and diagrammatic reasoning, the two integral areas for effective diagrams.

2.1 Diagrammatic Representation

Diagrammatic representation concerns how to represent information in diagrams. At its core, diagrammatic
representation has visual notations, also known as graphical notations and diagramming notations, that
comprise a set of graphical symbols (visual vocabulary), a set of compositional rules (visual grammar), and
the meaning of each symbol (visual semantics) (Moody, 2009). Graphical symbols make up the visual
vocabulary that represents information perceptually in diagrams. The vocabulary of a visual language should
be large enough to cover all the concepts to be communicated, and its users should have the same
understanding of it.

Computational rules represent the visual grammar that defines the relationships between various graphical
symbols to make them meaningful. A diagram will lose its informative value if it does not follow computational
rules. Different visual languages have different visual grammars. The visual vocabulary and visual grammar
together form the visual syntax of a visual language. Visual syntax and visual semantics work together to
deliver and make sense of the visual information embedded in diagrams.

2.2 Diagrammatic Reasoning

Diagrammatic reasoning studies how human beings search, recognize, and infer visual information in
diagrams. Different visual notations may represent the same information, but different representations for
the same information may not be equally effective for diagrammatic reasoning. Empirical studies show that
diagrams are cognitively effective only when they facilitate both perceptual and conceptual processes
involved in diagrammatic reasoning (Kim, Hahn, & Hahn, 2000; Hahn & Kim, 1999).

In perceptual processes (seeing), human beings sense the things in the outside world and recognize
relevant information. Automatic, very fast, and mostly executed in parallel, perceptual processes produce
automatic and intuitive reactions to directly observable features of the items such as shape and direction. In
conceptual processes (understanding), human beings infer and derive new information from the information
obtained in perceptual processes. Effortful, relatively slow, and mostly executed in sequence, conceptual
processes require attention, focus, deliberation, and analysis to form abstractions of the things in the outside
world.
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To enable effective perceptual processing, visual notations need to have certain features such as perceptual
discriminability and semantic transparency. Perceptual discriminability refers to how easily and accurately
individuals can visually differentiate visual notations from each other (Moody, 2009). The visual distinction
between different visual notations enables individuals to more quickly search for, recognize, and recall
information and, therefore, can reduce cognitive load in perceptual processes. To maximize discriminability,
individuals should be able to automatically and in parallel detect the differences of graphical symbols.
Individuals need to accurately visually discriminate between visual notations to accurately interpret
diagrams.

Semantic transparency stipulates that a visual notation’s meaning (semantic) should be clear (transparent)
from its appearance alone (Caire, Genon, Heymans, & Moody, 2013). While perceptual discriminability
requires different visual notations to have different appearances, semantic transparency demands the
appearance of a visual notation to provide cues to its meaning. The more natural and intuitive the association
between a visual notation’s appearance and meaning is, the more semantically transparent the visual
notation. Semantically transparent visual notations reduce cognitive load because individuals can directly
perceive or easily learn their meanings (e.g., a trash can icon to represent deleted items or the color red to
suggest danger, respectively) (Petre, 1995).

To support effective conceptual processing, visual notations need to have such properties as construct
clarity and manageable complexity to facilitate inductive inference. Construct clarity refers to one to one
correspondence between the graphical symbols and their referent concepts (Goodman, 1968). When a one-
to-one correspondence between the constructs and symbols does not exist, ontological discrepancies occur
(Wand & Weber, 1993). Four possible ontological discrepancies include symbol deficiency, overload,
redundancy, and excess (see Table 1). These ontological discrepancies add cognitive load and slow down
conceptual processing of diagrammatic information. For example, symbol redundancy places a burden on
choosing which symbol to use and to remember multiple representations of the same construct. Symbol
overload leads to ambiguity and the potential for misinterpretation. Symbol excess adds visual clutter to
diagrams and confounds the interpretation of diagrams. In contrast, construct clarity maximizes precision,
expressiveness, and parsimony and, therefore, is highly desirable.

Table 1. Ontological Discrepancies

Matching between
Semantic construct(s) Graphical symbol(s)
Symbol deficiency One or Many None
Symbol overload Many One
Symbol redundancy One Many
Symbol excess None One or Many

Individuals can comprehend only a limited number of visual notations at a time. When they exceed this
cognitive limit, they experience cognitive overload and their comprehension degrades rapidly. Visual
notations should be able to represent information without overloading the human mind. To optimize
conceptual processing, a visual language like UML should have some mechanisms to manage graphical
complexity. One such mechanism is graphical complexity, which the number of graphical symbols and their
various combinations in a visual language measures (Nordbotten & Crosby, 1999); that is, the size of the
visual vocabulary. Ideally, the visual vocabulary should be adequate enough to cover necessary constructs
but succinct enough to prevent cognitive overload.

3 Methodology

Cognitive mapping extracts statements from individuals about subjectively meaningful concepts and
relations in particular areas of interest and then describes these concepts and relations in diagrammatical
layout (Swan, 1997). Researchers have widely used it in many areas such as strategic management
(Johnson & Lipp, 2007), project management (Robertson & Williams, 2006), and education (Ihlenfeldt,
1981). It has also proven valuable for the SA&D field in which researchers have used it to complement and
augment the methods for information requirements analysis (Montazemi & Conrath, 1986) and to
understand software operation support expertise (Nelson, Nadkarni, Narayanan, & Ghods, 2000). Because

Volume 43 10.17705/1CAIS.04330 Paper 30



548 Challenges in Learning Unified Modeling Language

it taps into human cognitive processes and can discover latent characteristics, we used the cognitive
mapping method to solicit students’ perceived difficulties in learning UML.

Commonly used cognitive mapping approaches include causal mapping, mind mapping, and concept
mapping (Siau & Tan, 2005). We did not know the challenges in learning UML, so we did not have the
“‘central idea” that one needs for mind mapping (Buzan, 1993). While causal mapping represents the
antecedent-consequence relation between two concepts (Eden, Ackermann, & Cropper, 1992), other types
of relationships among concepts also exist, such as association. We used the concept-mapping approach,
which shows concepts and relationships between concepts in a graphical representation called a concept
map (Novak, 1993). Concept mapping helps one to generate ideas, communicate complex ideas, and
assess understanding and diagnose misunderstanding (Jonassen, Beissner, & Yacci, 1993). As such, it can
reveal the challenges in learning UML and the relationships among them.

We used the group concept-mapping technique that Trochim (1989), Kane and Trochim (2007, and Trochim
and McLinden (2017) have developed. We chose this technique because researchers have considerably
used it in many fields such as social services (Galvin, 1989) and healthcare (Valentine, 1989), and produces
reliable results according to generally recognized standard for acceptable reliability levels (Trochim, 1993).
Also, it provides clear procedures for collecting data and allows one to systematically statistically analyze it.
We conducted our study to identify challenges in learning UML from the student perspective. We then
analyzed the student-perceived learning challenges through the lens of diagrammatic representation and
reasoning and identified instructional strategies to facilitate both perceptual and conceptual processes
involved in the challenges in learning UML.

4 Procedures

We conducted our concept-mapping study in six steps as Trochim (1989), Kane and Trochim (2007), and
Trochim and McLinden (2017) specify. In this section, we describe how we performed each step in detail.

4.1 Preparation

In the first step of a concept-mapping project, one needs to select participants and develop the focus
statement based on the research question. Senior and graduate students who had completed a design
object-oriented system course at a large public university in the United States served as our study
participants. The university’s college of business administration offered the course to students who majored
or minored in MIS. The lecture-based course focused on basic concepts and processes in designing OO
systems with UML. Taught in a traditional classroom setting, the course introduced UML'’s fundamental
semantics, syntax, and diagramming techniques. In the 16-week course, students did in-class exercises,
quizzes, and exams and finished a semester-long SA&D project using UML. Thirty-two students participated
in our study.

Given UML’s complexity (with its multiple diagrams and numerous modeling techniques), the course
exposed students only to UML'’s fundamentals. Thus, instead of seeking students’ input on difficulties in
learning UML in general, we focused on their challenges in learning UML notational elements (i.e., the
building block of UML diagrams). UML notational elements refer to UML graphical symbols and their
combinations (Booch, Rumbaugh, & Jacobson, 2005). UML has four kinds of graphical symbols: icons, 2D
symbols, paths, and strings.

e Anicon refers to a graphical figure of a fixed size and shape, and it does not expand to hold
contents. The diamond shape exemplifies an icon.

¢ A 2D symbol has variable height and width and can expand to hold other things, such as a list
of strings or other symbols. Rectangles, ovals, and circles exemplify a 2D symbol.

e A path refers to a sequence of line segments that have attached endpoints. The lines that attach
other graphical symbols at both ends exemplify a path.

e Astring basically refers to a character sequence that may use some suitable character sets and
may exist as a singular element of a symbol or a component of a symbol, such as an element in
a list, a label attached to a symbol or path, or as a standalone element in a diagram. The name
of a class exemplifies a string.
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One can use the four kinds of graphical symbols alone and in combination to form notational elements,
which, in turn, one can map to construct various diagrams. Figure 1 illustrates UML graphical symbols in a
class diagram.

Company Icon
Department Office
Name Address

v

Path String

Person

2-D Symbols

Figure 1. lllustration of UML Graphical Symbols

We were interested in the challenges that students encountered in learning UML notational elements.
Accordingly, we developed a focus statement operationalized as: generate statements (short phrases or
sentences) that describes specific problems, difficulties, and/or concerns in drawing and interpreting UML
notational elements.

4.2 Generating Statements

In this step, participants brainstorm to generate as many statements relevant to the focus statements as
possible. We showed the focus statement to the participants, and they worked individually in generating
statements. They generated 112 statements in total. We then examined the 112 statements to eliminate
irrelevancies, redundancies, and inaccuracies. For example, statements such as “The software used to draw
UML is not very user friendly” concerned the usability of the supporting tools and did not pertain to our focus
statement. We considered statements like these to be irrelevant and removed them.

We combined statements that addressed the same idea. For example, statements such as “For the
generalization, the direct style and the tree style are almost the same” and “Direct style and tree style
depicted for super- and sub-classes could cause drawing difficulty” both expressed the concern that the
concept of generalization has two graphical styles. We collapsed these statements into one statement: “In
generalization, the two styles (i.e., the direct and tree style) should not be allowed. Having only one style
would make it easier.”. In addition, we checked the accuracy and validity of each statement. For example,
we removed statements such as “Distinction between squares and rectangles—all seem to be rectangles”
because the statement itself was incorrect—UML diagrams do not use squares at all.

As a result, 39 statements remained. A UML expert who served as an instructor of the class and was not
associated with this study evaluated the statement list. He validated that each statement represented one
unique learning challenge that pertained to learning UML notational elements and that each one read
well/clearly. We used these 39 statements (see the Appendix) for further analysis.
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Next, we conducted a multi-dimensional scaling (MDS) analysis on the total similarity matrix in SPSS. This
SPSS analysis yielded the point map (i.e., the 2D configuration of the 39 statements; see Figure 3). In the
point map, a point represented a statement. SPSS configured the relationships among the statements using
the criterion that statements that piled together should appear closer in 2D space and that those that piled
together less frequently should appear further apart.

20
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Figure 3. SPSS 2D Configuration (Point Map)

We then conducted a hierarchical cluster analysis to group individual statements on the point map into
clusters of statements (the cluster map). The key operative rule for a cluster analysis is to maintain the
integrity of the multidimensional scaling and partition the MDS configuration into non-overlapping clusters
in a 2D space (Trochim, 1989; Kane & Trochim, 2007; Trochim & McLinden, 2017). We used Ward’s
algorithm because it generally gives more sensible and interpretable solutions than other approaches (e.g.,
single linkage, centroid) (Kane & Trochim, 2007). The algorithm begins by considering each statement to
be its own cluster. It then combines two clusters until it has combined them all into a single cluster at the
end. Figure 4 shows the dendrogram graph that the SPSS hierarchical cluster analysis generated.

Subsequently, we had to decide how many clusters we should group the statements into for the final
solution. The point map (see Figure 3) suggests six clusters. First, a cluster with statements 3, 5, and 27
appeared in the upper-left corner of the point map. The dendrogram analysis merged these three statements
in the first combination round. A cluster with statements 8, 11, 13, 17, 21, 25, 26, and 39 appeared on the
very right side of the point map. The dendrogram analysis merged these eight statements in the second
combination round. Based on the convergence of the point map and the dendrogram graph, we classified
statements 3, 5, and 27 into one cluster and statements 8, 11, 13, 17, 21, 25, 26, and 39 into another.

Statements 1, 4, 7, 12, 16, 19, 20, 22, 24, 28, 33, 36, and 37 grouped together at the center of the point
map. The dendrogram analysis combined these 13 statements, along with statements 2 and 6, into one
cluster after four combination rounds. From carefully reading all the 15 statements, we found that statement
2 regarding the stereotype fit well with statements 1, 4, 7, 12, 16, 19, 20, 22, 24, 28, 33, 36, and 37 because
they all pertained to 2D symbols, while statement 6 regarding actor notation (i.e., an icon) did not. So we
decided to include statement 2 in and exclude statement 6 from the cluster that had statements 1, 4, 7, 12,
16, 19, 20, 22, 24, 28, 33, 36, and 37.

Statements 9, 30, 31, 34, and 38 appeared quite closely together in the left lower part in the point map. The
dendrogram analysis merged these five statements, along with statement 15, into one cluster after three
combination rounds. Statement 15, however, appeared in the point map closer to the block with the
statements 9, 14, 32, and 35. Considering that statement 15 described using two notations for the interface
concept, we classified it with statements 29, 30, 31, 34, and 38 because they all dealt with the issue of
symbol redundancy.
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Figure 4. SPSS Dendrogram Graph in Cluster Analysis

The point map seems to suggest two clusters for the remaining statements: one with the statements 10, 18,
and 23 and the other with the statements 9, 14, 32, and 35. Statements 18 and 23 both concerned the
multiplicity concept in the class diagram and statement 10 concerned the lifeline concept in the sequence
diagram. The dendrogram analysis did not merge these three statements (i.e., 18, 23, and 10) until it
combined them into one cluster with statements 9, 14, 32, and 35 after four combination rounds, though
they appeared together in the point map. Similarly, the dendrogram analysis did not merge statements 9,
14, 32, and 35 until it combined them into one cluster with statement 10, but they appeared close to each
other in the point map. So we decided to group these seven statements into one cluster. We also put
statement 6 into this cluster for two reasons: 1) because it appeared more closely to this cluster than to any
other clusters in the point map and 2) because, like the other seven statements in this cluster, it raised one
issue that did not belong to any other clusters.

In sum, based on the dendrogram graph, the point map, and on the sensemaking criterion, we came up with
five clusters. Figure 5 presents the cluster map that shows how we grouped the 39 statements.
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Figure 5. Cluster Map

Finally, we calculated the average rating for each statement (see the Appendix) and added each one to the
point map to produce the point rating map (Figure 6). We calculated the rating for each cluster by averaging
the sum of the average ratings of the statements in the cluster. We then added the average rating for each
cluster to the cluster map to produce the cluster rating map (Figure 7).
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4.5 Interpreting Concept Maps

In this step, participants validate and name the clusters. In our study, we showed each participant individually
the clusters and asked each one to come up with a phrase or short sentence to describe each cluster. Based
on the names that the participants provided, we finalized the name for each cluster. The UML expert who
independently validated the statement list in the second step (see Section 4.2) went through the cluster list
and analyzed the cluster names that the participants provided. He agreed that the cluster names were valid.
Table 2 summarizes the cluster information.

Table 2. Summary of Clusters

Cluster and name Statements in cluster ?l;tisr:gr Statement rating range
1) Similarity in notational Eight statements: 8, 11, 13, 17, 21, 25, 3.24 258 _353
elements 26, and 39
2) Ambiguity in notational 14 statements: 1, 2, 4, 7, 12, 16, 19, 20, _
elements 22, 24, 28, 33, 36, and 37 2.66 1.97-3.53
3) Inconsistency in notational | Six statements: 15, 29, 30, 31, 34, and 293 281 —322
elements 38
4) Confusm_g ngmbgrlng in Three statements: 3, 5, and 7 3.30 3.28-3.31
communication diagram
Eight statements: 6, 9, 10, 14, 18, 23,
5) Other problems 32, and 35 2.77 244 -3.41

4.6 Utilizing Concept Maps

In this step, one interprets and explains the concept maps using relevant theories and frameworks. In the
next two sections, we present the findings of our study and discuss how we interpret and use the concept
maps in the light of diagrammatic representation and diagrammatic reasoning, respectively.

5 Findings

The concept maps we constructed identify five clusters of challenges in learning UML notational elements.
In this section, we report the learning challenges in each cluster.
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51 Cluster 1: Similarity in Notational Elements

This cluster indicates that some UML notational elements do not differ enough from one another (i.e., they
look too similar to each other at a glance). The eight statements in this cluster concerned lines (e.g., dashed
and solid lines), arrowheads (e.qg., stick, empty, and filled arrowheads), and various combinations of different
lines and arrowhead styles (see Figure 8 for illustration). Such minute differences impose perceptual
challenges in distinguishing between graphical symbols and in seeing and linking relevant visual items,
which lowers the perceptual discriminability for accurate visual discrimination in perceptual processes.

Arrowheads =~ —> —= [:3‘ "

Lines - T ===

generalization sequential
D message ;

realization D' asynchronous — ™
message

------ > ol ——P

Figure 8. Examples of Similarity in Notational Elements

dependency

The cluster had a cluster rating of 3.24, which indicates that low perceptual discriminability represents an
important learning challenge for students. Seven statements (39, 17, 26, 25, 21, 8, and 11) had high ratings
over 3, and one statement (13) had a rating of 2.58. Statement 13 concerned the differentiation between
dependency and realization—the two specialized relationships. We can attribute statement 13’s lower rating
to the practice that the name of the dependency relation goes with the dashed line and stick arrowhead to
represent a dependency relationship. Using a string along with 2D symbols helps differentiate dependency
from realization. Overall, the participants found the subtle differences in notations for different semantic
concepts confusing.

5.2 Cluster 2: Ambiguity in Notational Elements

This cluster identifies learning challenges related to using one 2D symbol to represent two or more semantic
concepts. For example, rectangles represent classes in the class diagram and objects in the object diagram.
Rectangles also describe different concepts in the same diagram. For example, rounded rectangles
represent activity states and action states in the activity diagram. Ovals describe base use cases, extend
use cases, and include use cases in the use case diagram. Using one graphical symbol to represent two or
more semantic constructs shows the ontological discrepancy of symbol overload (see Table 1). Such a lack
of construct clarity slows down conceptual processing of visual information and, thus, contributes to learning
challenges.

The cluster had 14 statements—the largest of all clusters. It also had the lowest cluster rating of 2.66.
However, this cluster did have statements with ratings over 3. For example, statements 33, 2, and 7 had
ratings of 3.53, 3.50, and 3.34, respectively. A close look reveals the statements’ ratings ranged widely from
1.69 to 3.53. Further examination shows that statements with ratings higher than 3 (i.e., statements 33, 2,
7, and 4) concerned the use of same or similar notations to represent semantically related notions (e.g.,
excluding and included stereotypes in statement 2; classes and objects in statement 7), whereas statements
with a rating below 2 (i.e., statements 16, 19, 20, and 24) concerned semantically distinct notions (e.g.,
components and nodes in statement 16; notes and classes in statement 19). In other words, symbol
ambiguity poses significantly more challenges when it involves semantic constructs that individuals cannot
easily distinguish from one another.
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5.3 Cluster 3: Inconsistency in Notational Elements

The six statements in this cluster show that more than one graphical symbol represent some concepts. For
example, icons such as the computer and cube both represent a server. Some 2D symbols such as
rectangle and circle both represent an interface. Two styles can represent generalization: direct and tree.
Using more than one graphical symbol to represent one semantic construct shows the ontological
discrepancy of symbol redundancy. The cluster’s cluster rating of 2.93 indicates the symbol-redundancy
issue is not that serious. Nevertheless, the cluster did contain statements with a rating over 3 (e.g., 3.22 for
statement 29). Statements 29, 15, and 31 had ratings above the cluster rating and concerned components,
interfaces, and active classes, respectively. The other three statements in this cluster had lower ratings and
concerned servers (statement 30), classes (statement 34), and generalization (statement 38). The concepts
involved in higher rating statements were more abstract by definition and less used in the UML course than
those in lower rating statements.

5.4 Cluster 4: Confusing Numbering in Communication Diagrams

With only three statements, this cluster was the smallest one. However, it had the greatest importance with
the highest cluster rating of 3.30. In fact, all three statements in this cluster had a rating above 3. They
represent the challenges with communication diagrams from different perspectives. Statement 3 concerned
the difficulty in following the numbering, statement 5 concerned the difficulty in differentiating sequence
number from other similar notations, and statement 27 concerned the difficulty in retrieving information from
the sequence number. All three statements point out that discrimination that relies on only textual
characteristics (i.e. strings), sometimes in combination with contexts, makes it extremely difficult to
automatically and in parallel detect the differences between notational elements. That is, this cluster reveals
the issue of low perceptual discriminability due to the extensive use of strings in communication diagrams.

5.5 Cluster 5: Other Problems

This cluster included the problems, difficulties, or concerns that the other clusters did not cover. The eight
statements concerned strings such as multiplicity (statements 18 and 23), icons such as stickman
(statement 6), and 2D symbols such as object lifelines (statement 10) and circles (statement 14). The
cluster’s cluster rating of 2.77 indicates these concerns had moderate importance. Statements 35 and 6 had
ratings above 3. Statement 35, with a rating of 3.41, the highest in this cluster, interestingly observes the
lack of linkage between the various diagrams, which highlights the issue with complexity management.
Statement 6 shows that using a stick man to represent a non-human actor is counterintuitive, which relates
to the lack of semantic transparency.

6 Discussion

In this section, we explain what our findings explain about why students have challenges in learning UML
notational elements and discuss how to help overcome these challenges in teaching.

6.1 Learning Challenges

UML diagrammatic representations should facilitate diagrammatic reasoning. They need to be easy to
recognize and understand and support accurate model interpretation in a timely manner. We identified 39
challenges in learning UML. These learning challenges show how the issues with diagrammatic
representation of UML notational elements hinder perceptual and conceptual processes for effective
diagrammatic reasoning, which Table 3 summarizes.

The first cluster shows that UML notational elements with low perceptual discriminability impede students’
ability to readily recognize graphical symbols and see and link relevant visual items. Unlike experts who can
make much finer distinctions with experience (Britton & Jones, 1999), students (novices) cannot quickly and
accurately differentiate UML overly similar notational elements. Because such individuals need to make a
more conscious effort and to memorize elements, perceptual processes slow down and learning challenges
arise.

The fourth cluster shows similar perceptual challenges in that students found textual coding with strings
difficult to understand. Though more expressive semantically, textual encoding is less semantically
transparent and, therefore, less perceptually effective than graphical encoding (Nelson et al., 2000).
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Communication diagram’s sole reliance on strings for discrimination makes it difficult for novices to instantly
detect the difference. Instead, they need to perform serial searches to process perceptual cues in the textual
format. Because they need to expend more time and effort on searching for and inferring information,
students feel that it is difficult to learn message passing in the communication diagram.

Table 3. Summary of Diagrammatic Representation Issues

Issues in diagrammatic

. Hindrance to diagrammatic reasonin
representation 9 9

o Notational similarity (cluster 1) e Low perceptual discriminability slows down perceptual processing.

e Ontological discrepancy (i.e., symbol overload) impedes conceptual

¢ Notational ambiguity (cluster 2) processing

* Ontological discrepancy (i.e., symbol redundancy) impedes conceptual

¢ Notational inconsistency (cluster 3) processing

¢ Reliance on strings for message
passing in Communication Diagram | e Lack of semantic transparency slows down perceptual processing.
(cluster 4)

e Lack of semantic transparency (e.g., the use of stickman to represent
non-human actor) slows down perceptual processing.

¢ Lack of complexity-management mechanism impedes conceptual
processing.

e Problems with stickman, multiplicity,
and lack of linkage among diagrams
(cluster 5)

The lack of semantic transparency in perceptual processes also creates learning barriers, which some
statements in the fifth cluster indicate. Statement 6, for example, points out that a stickman (an icon)
represents non-human actors in practice. Using a stick figure for a non-human actor is counterintuitive
because it breaks the natural correspondence between a stick figure and a person. Such usage may not be
problematic to seasoned users who have experience with this type of representation. But, for untrained
eyes, it adds cognitive load in inferring the meaning of non-human actor from the appearance of a stick
figure alone.

Some technical properties of UML notational elements also impede conceptual processes. UML notational
elements lack construct clarity since we found ontological discrepancies in the second and third clusters.
Symbol overload, which we found in the second cluster, increases ambiguity, and symbol redundancy, which
we found in the third cluster, adds to the complexity of UML. Ambiguous and complex graphical symbols
affect novices more than experts who have developed the long-term memory that automates diagrammatic
interpretation (Blackenship & Dansereau, 2000). Research has also shown that novices have to more
consciously remember symbols’ meaning (Winn, 1993). Because novices need to more significantly pay
attention to and deliberate on choosing which symbol to use, ontological discrepancies negatively affect the
speed, ease, and accuracy in conceptual processes, which becomes an obstacle to learning.

In addition, the fifth cluster shows that the lack of complexity management challenges cognitive processes.
For example, statement 35 indicates that UML lacks an explicit mechanism to simplify navigation and
transition between diagrams (i.e., perceptual integration) and to help assemble information from separate
diagrams into a coherent mental representation of the system (i.e., conceptual integration). This shortcoming
places additional cognitive demands on individuals—especially novices who lack the training and
experience in searching for, recognizing, and inferring information from various diagrams and in assembling
such information to form a coherent mental representation.

In short, our group concept-mapping study shows that both the technical properties of UML notational
elements and the cognitive attributes of students obstruct one from learning UML. The concept maps also
show that learning challenges are not equally distanced to each other. The second, third, and fifth clusters
were very close to each other at the center of the cluster map, while the first and fourth were spread out
(i.e., one on the far right side and the other on the far left corner of the cluster map). Carefully examining
the statements in the five clusters shows that the second, third, and fifth dealt with concepts such as class,
object, action, activity, use case, and interfaces and that the first and fourth focused more on relationships
and interactions between things. That is, we can separate the learning challenges into two categories: one
related to static aspects (i.e., structures) and the other to dynamic aspects (i.e., behaviors). The issues with
the structures and behaviors impede conceptual processing and perceptual processing of information,
respectively.
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Finally, the cluster rating map indicates that individuals find learning behavioral aspects more challenging
than learning structural aspects, which we may explain in terms of the criticality of perceptual processing in
visual languages. Research has shown that diagrams’ major cognitive advantage lies in their ability to shift
some of the processing burden from conceptual processing to perceptual processing (Larkin & Simon, 1987;
Petre, 1995). Our study discovers that UML notational elements that represent behaviors relate primarily to
perceptual processes, whereas those that represent structures relate primarily to conceptual processes.
Therefore, it makes sense that the first and fourth clusters had higher ratings on importance than the second,
third, and fifth because the latter capitalize on the advantage of the power of diagrammatic representation.

6.2 Instructional Implications

First and foremost, we identify the 39 learning challenges that instructors need to address when teaching
UML to improve learning outcomes. Our study suggests that instructors should prioritize the dynamic aspect
of UML diagrammatic representation and, in particular, relationships and message passing. Specifically,
instructors should emphasize how to deal with low perceptual discriminability in the combinations of 2D
shape, paths, and strings. When teaching the static aspect, instructors should focus more on addressing
the issues of ontological discrepancy and symbol overload in particular. While a variety of learning strategies
(e.g., review session, study guide, and tutorials) can help students cope with the learning challenges, we
focus on the pedagogical strategies that can facilitate perceptual and conceptual processes involved in
learning behavioral and structural aspects of UML representations. Table 4 summarizes the teaching
strategies that one can use to address specific learning challenges.

Familiarity with graphical symbols can help individuals search for, recognize, and infer information from
perceptual cues in graphical symbols and, thus, facilitate perceptual processes (Briton & Jones, 1999) in
learning behavioral aspects of UML notational elements. Therefore, instructors need to familiarize students
with the graphical symbols that are difficult to recognize, counterintuitive to infer, and need serial searches.
They can do so by having more practices and drills in the form of both in-class exercises and homework
assignments. Based on our findings, students need to work on message passing and relationships to
overcome challenges in learning the behavioral aspects of UML notational elements. As such, instructors
need to allocate time for exercises in those areas both in and outside the classroom to enhance students’
visual perception capability.

Table 4. Summary of Teaching Strategies

Learning challenges Coping strategies in teaching

Perceptual challenges

e Assign more in-class exercises and homework assignments to familiarize students with
notations, particularly in relationships and message passing.

e Provide students with the descriptions and graphical displays of similar notations.
Require students to compare and outline differential features of similar notations.

Low discriminability

o Dirill students more on notations that lack semantic transparency (e.g., the use of a
stickman for non-human actors) to build and reinforce the connection between a
graphical symbol and its semantic construct.

Lack of semantic
transparency

Conceptual challenges

e Lecture more on the semantic constructs that similar notations represent, such as
relationships (generalization, dependency, and realization) and messages (sequential

Symbol overload and asynchronous messages).

e Conduct in-class mini-cases with the real-life scenarios so students can better
comprehend the semantic constructs.

e Summarize the semantic constructs with two or more graphical representations (e.g.,

Symbol redundancy server, interface, and generalization) with graphical illustration.

Complexity management| e Assign homework that focuses on linking and integrating information from different
diagrams throughout the class.

Moreover, instructors should provide students with documents that include both the descriptions and
graphical displays of the perceptually similar graphical symbols. They can also have students compare and
outline the differential features of similar notational elements. Such activities can reinforce students’ visual
memories, which helps them to more easily recall and more quickly process perceptual information.
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While untrained users find the lack of symbol discriminability and semantic transparency problematic,
conceptual confusion can also cause challenges. Research has demonstrated that prior knowledge informs
users about what to look for and how to organize information found in a diagram and, thus, improves their
performance in searching for and recognizing relevant visual information (Winn, 1993). Students may not
have knowledge about message passing. They may not firmly grasp the conceptual differences between a
call and an asynchronous message and between generalization and realization. This lack of comprehension
about the concepts that challenging graphical symbols represent can adversely affect perceptual processes
and contribute to challenges in learning.

Similarly, the difficulties with symbols’ meaning will burden conceptual processes. Construct overload for
semantically related notations (e.g., excluding and included stereotypes) is more difficult to overcome than
those for semantically distinct notations (e.g., component and node). Symbol inconsistencies for abstract
concepts (e.g., interface) are more challenging than for concrete concepts (e.g., server). To alleviate
learning challenges that arise from conceptual confusion, we recommend that instructors prioritize teaching
visual semantics that students experience difficulty in comprehending. Instructors should provide more
lectures on the cognitively challenging concepts (e.g., interfaces, active classes, and message passing) and
the differences between concepts with close relations in meaning (e.g., stereotypes and relationships). We
also recommend providing students with the opportunity to practice with real-life scenarios that pertain to
the concepts under study. Instructors can approach such scenarios by using mini-cases (Sirias, 2005) in
the class. If instructors use concrete examples that students can relate to, students can come to better
understand the concepts, which, in turn, will help them to differentiate and comprehend the graphical
symbols that represent those concepts.

Finally, we propose that instructors set homework that focuses on linking and integrating information from
different diagrams to enhance conceptual integration. Instructors should assign this type of homework as
soon as they introduce the two diagrams. As students progress through the course, instructors can decrease
the frequency of homework assignments but increase their difficulty because it is harder and harder to
navigate through multiple diagrams. Using time and repetition in this way to space learning can help students
develop long-term memories that help them automatically process information.

7 Conclusions

Over the last two decades, UML has gained tremendous popularity. It is now commonly practiced in OO
SA&D. College graduates with UML knowledge and skills are in demand, and the IS curriculum now
generally covers UML. Because the IS curriculum widely teaches UML, more systematic research needs to
evaluate teaching and learning of UML in IS education.

7.1 Contributions

In this study, we use a cognitive technique to investigate students’ challenges in learning UML. The concept
maps we constructed provide empirical evidence of the difficulties that novices experience in learning UML.
We present concrete recommendations to address the learning challenges. Therefore, we provide valuable
insights into and recommendations on teaching UML. Our study also demonstrates the usefulness of
participatory cognitive approach in developing the shared understanding between instructors and students
on difficult course materials. The concept-mapping technique enables one to meaningfully and efficiently
assess and represent learning challenges, and other IS courses can use it to enhance teaching and facilitate
learning.

Our study also has significance for the UML academic community. It identifies the cognitive weaknesses
and deficiencies in UML from the perspective of inexperienced users and offers theoretical understanding
of where and why UML notational elements hinder UML’s diagrammatic reasoning. This knowledge can
assist in UML diagrammatic representation’s continuous evolution and further development to enhance
UML'’s effectiveness. Finally, our study benefits UML practitioners, too. Student subjects in our study neared
the end of their university education and were about to enter industry. As such, they represent entry-level
practitioners. Thus, we can generalize our results to junior UML professionals. Our study sheds light on UML
training that entry-level professionals may need.
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7.2 Limitations and Future Research

Like any study, ours has limitations. First, we did not look into the more advanced aspects of UML
diagrammatic representation. Instead, we focused on the UML basics that the participants had prior
exposure to and revealed the challenges they faced in learning the fundamentals of UML notation. Future
research needs to examine the UML notation that represents more advanced topics to understand the
challenges individuals face in learning more complex and complicated areas of UML. In addition, since we
used students as research participants, our findings have limited generalizability. We cannot generalize our
findings to expert users. Research needs to replicate our study with UML experts to more comprehensively
understand the challenges that individuals face in learning UML diagrams. Finally, the three sorting rules
we used in structuring the statements step might have affected our study’s results. The fact that we did not
incorporate the “do not group dissimilar statements together into one pile” rule may have resulted in the fifth
cluster. Future concept-mapping studies should consider and use important sorting rules that might
influence the structuring process to resolve this methodological issue.

In conclusion, our concept-mapping study advances our empirical knowledge and theoretical understanding
about the challenges that individuals face in learning UML. We hope that our study stimulates more empirical
studies in UML in the context of IS education. Both educators and practitioners will find significance in work
that focuses on more deeply understanding and appreciating UML in the IS curriculum.
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Appendix
Table Al. List of Statements
Statement Statement Average
no. rating
The nested/composite state has the same notation as the regular state. It is confusing to
1 . 2.50
have the same notation for both cases.
The notations for the excluding and included stereotypes are confusing. Both use the same
2 . S S 3.50
arrow-notation but the direction of the arrow is different.
3 The numbering notation in the collaboration diagram is difficult to follow. 3.31
The notations for base use case, include use case, and extend use case are all the same. It
4 is difficult to determine which use case is the base use case in an extend or include 3.09
relationship without additional symbols.
5 In the communication diagram, the format for the sequence number can be easily 331
misunderstood as part of the operation or vice versa. '
The notation for an actor is a stick man. However, other information systems outside the
6 domain can be actors too and these systems are not human! So, the notation of a stick 3.16
man for actor can be misleading.
The notations for class and object are the same. Since a class contains multiple objects, we
7 . . . 3.34
should have a different notation for class (e.g., double-rectangle as a notation for classes).
8 The notations for sequential message, asynchronous message, and call are too similar. 3.09
9 Activity diagram is a special case of state-chart diagram but one cannot use a branch in a 278
state-chart diagram. '
The notation for lifelines of objects in the sequence diagram is confusing, and for most
10 ) o - 2.50
objects the lifeline is continuous.
1 The notations for generalization and realization are easily confused - both use a hollow 3.03
arrowhead. :
12 Collaboration could have a different shape, different from that of the use case. 3.16
13 Dependency and realization should differ more in their notations. 2.58
The notation for interface could be a little bigger so that instead of writing the interface name
14 . N . A 2.53
outside, we can write it inside the interface notation.
15 There are two notations for interface — the explicit style (as a rectangle) and the implicit style 3.09
(as a circle). :
16 Component and node notations are pretty hard to differentiate. 1.97
A dashed line with an arrow at the end is used to represent both dependency and
17 - . . 3.53
extend/include relationship.
18 Multiplicity of an association’s role is difficult to follow -- is there a better notation than using 244
0..* :
19 The notations for note and class are too similar. 1.69
20 The notations for states in state-chart diagram and classes in class diagram are too similar. 1.72
Different styles of arrow heads are used in UML. It is very hard to differentiate one from the
21 other. More obvious notation difference should be there other than the filled or hollow 3.22
arrowhead.
22 The notation for association class is the same as that of regular class. 2.94
23 Multiplicity notation (e.g., 1...*) can sometimes clutter up a diagram (i.e., making it messier). 2.84
24 Classes, notes, packages, and components all have a rectangular base for their notations. 1.91
o5 The dashed line with arrow is used to represent several different things (dependency, 3.47
realization). :
26 Extend and include relationships use the same notation -- an arrow with dotted line. 3.50
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Table Al. List of Statements

For communication diagrams, the notation for sequence number—thread names, and

27 iteration expressions—can become confusing and jumbled. Not easy to decipher 3.28
information.

28 The composition and aggregation symbols should be more different from each other. 2.50
The notation for component in a component diagram is not standardized (e.g., a database

29 X ) h : . 3.22
can be represented using different notations — cylinder, rectangle with tabs, etc.).

30 The notation for node in a deployment diagram is not standardized (e.g., a serve can be 263
represented using a computer symbol or using a cube). '

31 The notation for an active class is represented differently in different books. 3.00

32 The notation for template parameters is confusing. 2.50

33 The same rounded rectangle is used to represent activity state and action state in the 3.53
activity diagram. '
There are different notations for classes. A more consistent structure should be followed for

34 drawing the boxes. For example, (a) is how classes are drawn, but if one does not have any 281
methods or responsibility it is drawn like (b). Keep the number of compartments consistent ‘
even if some compartments are empty.
There should be notations to specify “linkages” among various diagrams. For example,

35 actors are used in sequence and collaboration diagram to provide “correspondence” to 341
actors in the use case diagram. More notations can be used to link up other diagrams.

36 The naming of classes and objects has to be more different. There has to be a way to 288
differentiate classes from objects other than a letter followed by a colon. '

37 The notations for join and fork are the same (using the synchronization bar). 2.47

38 In generalization, the two styles (i.e., the direct and tree style) should not be allowed. 2.84

39 Stick arrow is used in combination with different line styles to represent many different 353
things. .
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