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Numeric Tuning of Surface Plasmon Enhanced

Spontaneous Emission Inducted by Nano-Metallic
Particle Systems Embedded in GaN-Based LED

Yi-Zhu Lin, Member, IEEE, Duan-Yang Liu, and Jin-Wei Gao

Abstract—In this work, spontaneous emission enhancement in-
ducted by surface plasmon on nano-metallic particle systems em-
bedded in GaN-based LED is investigated numerically. The sys-
tems under study consist of two nano-Ag balls or cylinders. By
numerically tuning geometrical parameters of the system and po-
larization of the photon emitting source, we investigate the depen-
dence of spontaneous emission enhancement effect on those fac-
tors. It is found that the enhancement magnitude level and peak
position are subject to geometrical characteristics of the nano-Ag
components in different manners for symmetrical and asymmet-
rical systems respectively. Higher enhancement ratio for a specific
wavelength can be obtained by tweaking parameters of asymmet-
rical system. Polarization dependence of enhancement effect can
be utilized to improve performance of bi-color LED.

Index Terms—Gallium nitride, light emitting diodes, nanopho-
tonics, plasmons, spontaneous emission.

I. INTRODUCTION

ANO metallic particles are not rarely seen in modern
N optical systems due to their unique optical character-
istics. And recent researches have drawn growing attention
into their extraordinary properties in relate to surface plasmon
(SP) resonance [1]. SPs are quantization of collective oscilla-
tions of free-electron gas density on metal/dielectric interface
upon the impingement of electromagnetic (EM) waves [2].
SP resonance results in strong confinement of EM field in
the vicinity of metal/dielectric interface. This unprecedented
ability of confining EM field beyond diffraction limit opens
up a wide possibility of manipulating photons and electrons
inside opto-electronic devices. For both photon harvesting
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and emitting devices, SP resonance has seen great potential in
improving performances of opto-electronic devices in regard to
photon harvesting and emitting abilities. For photon harvesting
applications such as sensing and detecting of chemical and
biological analytes in the area of food and water safety, medical
diagnostics and environment monitoring, etc., significantly
enhanced EM field by resonant SP waves can lead to extra-
ordinary sensitivity improvement [3]-[6]. On the other hand,
density of states (DOS) of electrons and holes inside photon
emitting devices are subject to the modulation of the intensified
EM field, which is known as Purcell effect [7]. For photon
emitting devices, surface plasmon polaritons (SPPs) create
additional decay channel for the excited atoms, resulting in a
significant increase of spontaneous emission rate [8]; moreover
this additional decay channel is expected to compensate for the
loss of efficiency droop [9] of some photon emitting devices
such as GaN LEDs at high current injection, which is arguably
considered to be caused by Auger recombination [10], [11].
In a nutshell, SP resonance provides solutions to some critical
problems of photonic devices and should benefit the efforts of
improving photon harvesting and emitting ability.

Being a photon emitting device, LED is hailed as the future
source for general purpose lighting [12], [13]. The increase in
spontaneous emission rate in GaN LEDs can be achieved by
using large overlap quantum well (QW) concept, specifically by
using either non-/semi-polar QW [14], large overlap polar QW
[15], [16], and ternary substrate [17]. In regard to improving
photon emitting ability of LED, SP resonance recently has at-
tracted growing attention in research societies. Both theoret-
ical and experimental work has confirmed the overwhelming
effect of enhancing local DOS thus spontaneous emission rate
of LED in different frequency regions [18]-[24]. This photon
emitting improvement technology is usually achieved by en-
gineering nano-metallic structures either inside or on the sur-
face of LED dies. However, because of the confinement nature
of SP wave and its exponential decay in normal direction, nei-
ther of those are easy tasks. Extreme care has to be taken in
engineering nano-metallic structures in order to achieve spatial
overlap of decaying field and photon generation region, which
allows only a few tens of nano-meter margin for manipulation,
and at the same time other performances of LED such as cur-
rent distribution and carrier leakage prevention must be main-
tained. The spontaneous emission enhancement effect depends
strongly on the size, distance and shape of the nano-metallic
particles and are extremely sensitive [25]-[27]. As a result, the
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structural characteristics of nano-metallic components are of
great importance in the sense of achieving considerable sponta-
neous emission enhancement at an acceptable cost to the other
LED system performances. It is worth mentioning that for white
lighting applications blue LED based upon GaN materials can
work with phosphorus coating to produce white light emission,
which is considered to be a promising replacement of many
conventional daily lighting sources for energy saving purpose
[28]. In this work, we numerically investigate the characteris-
tics of SP waves and related spontaneous emission enhance-
ment performances inducted by nano-metallic particle systems
comprised of typical and easy-to-fabricate nano-metallic com-
ponents such as nano-ball and nano-cylinder embedded in GaN
material based LEDs. To the best of the authors' knowledge,
relevant work previously published mainly focused on nano-
metallic structures with uniform geometry, such as large uni-
form arrays or films, but work on non-uniform structures was
rarely reported. Thus our study features breaking uniformity of
the system and including tuning of asymmetrical structures be-
sides symmetrical ones.

The spontaneous recombination of electrons and holes is
the result of the overlap of wave functions of carriers in QWs
in a quantum physics point of view. However the variation
of carrier DOS led by changes of surrounding geometry is
analogous to the dependence of antenna radiating power on
surrounding medium, and thus can be understood semi-classi-
cally [29]-[32]. A. Taflove [33] has clarified their equivalence
and provided with rigorous mathematical derivation. As a
generalized approach, the electron and hole spontaneous re-
combination process in LED can be explained in terms of
current dipole source emission in the classical Maxwell's
equations frame. The DOS is mathematically proportional to
the radiated power by a dipole source. This relationship is of
great importance since it constructs the fundamental method
of quantitatively analyzing spontaneous emission of LED in a
classical EM field frame.

II. NUMERIC SIMULATION

Based upon the premise that uncoupled SP resonance en-
ergy of Ag approaches the photon energy emitted by GaN-based
LED, Ag based nano-components are selected in study. The
nano-Ag particle system under study is composed of a pair of Ag
components of varying shapes embedded in GaN medium. The
shapes of components include ball and cylinder which are typ-
ical choices in fabrication process. The active region (QW and
barrier) of a typical blue GaN LED is a few nanometers thick,
and along with the variation of composition of InGaN its emis-
sion peak can slightly shift around 450 nm. In order to simulate
the photon generation process inside blue GaN LED, the system
is excited by a dipole source at a given position inside the region,
which is ignited by transient Gausses pulse with a bandwidth
around 200 nm and centering at 450 nm so that the bandwidth
is wide enough to cover the entire emission spectrum and ade-
quate for an investigation of the transient response of the system
in broad wavelength range. Although literature reported that
transverse EM emission components are dominant in general
GaN blue LEDs grown along c-axis [34], in this numeric inves-
tigation the dipole orientation is respectively aligned with the
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Fig. 1. Comparison of dielectric constants of Ag taken from experimental data
and fitted in numeric simulation.

three orthogonal axes of Cartesian coordinate system with the
purpose of accounting for any possible radiating components
in both in-plane and out-of-plane directions which characterize
spontaneous emission process. The system is merged into GaN
bulk with dielectric constante = 6.25. Due to the incoherent na-
ture of spontaneous emission of LED, the entire region is trun-
cated by absorbing boundary conditions [35] on all the sides. 3D
full wave numeric method (a commercial solver by finite inte-
gral technique) is employed to calculate evolution of the fields,
and frequency responses are obtained by using Fourier trans-
form. For accurate representation of rapidly changing SP field,
maximal cell size is limited under 1% of minimal wavelength in
medium and sub-cells with finer size are deployed at certain po-
sitions as necessary. Monitors are set up for the storage of EM
field data during iteration as well as the measurement of total
radiating power evaluated on an enclosure face around dipole.
It should be noted that the proposed system is dispersive in that
the metallic particles have dispersive properties [36]. Hence in
the simulation, the dielectric constant of dispersive Ag material
is fitted into the promising experimental data [37], which is re-
liable within the frequency range of interest as shown in Fig. 1.

5  Re E(xo,w)ﬁ(w)*}
DOS; (g, w) = ——e(xg) —
™ Ip(w)|

)

The investigation of spontaneous emission enhancement is
straightforward since spontaneous emission rate is proportional
to DOS, and DOS is equivalent to the power exerted by a dipole
source as illustrated in (1). For a given angular frequency w,
DOS at position 2y in space is exactly proportional to the field
E; generated by dipole p by a factor of 2&(xy) /7 where £ de-
notes the dielectric constant of the medium [33]. It is worth
noting that (1) is normalized with |p(w)|? in order to obtain the
radiating power by unit-amplitude dipole source, yet this nor-
malization factor is usually cancelled out since only relative
enhancement is concerned most of the time. The spontaneous
emission enhancement ratio is thus measured by the variations
of the dipole radiating power in nano-particle systems with nor-
malization to a calculation for the same dipole source radiating
in homogeneous bulk GaN.
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Fig. 2. Schematic of double nano-Ag ball system. Two nano-Ag balls with
diameters d; and ds are separated by a gap g. A dipole p is fired at the center
of their spherical center connecting line.

III. RESULTS AND DISCUSSIONS FOR NANO-BALLS

The first nano-Ag particle system under investigation is
double nano-ball system. It is worth noting that for Ag/GaN
material system, SP fringing field penetration depth into GaN
medium is estimated by

i[EGaN - Re(sAg)]l/Q
27 EéaN

2)

where € 44 and 4 v denote dielectric constants of Ag and GaN,
respectively. This penetration depth d ~ 50 nm is within the
order of a few tens of nano-meters [18]. Therefore recombina-
tion centers should be placed at around this range with respect to
SP resonant surface where closer range is preferable for greater
field concentration. On the other hand, field modulation by SP
is only subject to resonance with metallic objects in immediate
adjacency with recombination centers whereas out-of-range re-
combination center and metallic particle pairs are hardly inter-
acted in terms of SP resonance.

The schematic of the system is shown in Fig. 2. Two nano-Ag
balls with diameters d; and d are separated by a gap g. A dipole
p is fired at the center of their spherical center connecting line,
which is the position with shortest distance to spherical surfaces.
Due to geometrical symmetry, the orientation of dipole is re-
duced to be either aligned with connecting line (parallel with
x-y plane) or perpendicular to it (parallel with y-z or x-z plane).

Fig. 3 plots the enhancement ratio as a function of wavelength
for two identical nano-Ag balls separated by a fixed gap ¢ =
10 nm. The dipole is placed at the center of their spherical center
connecting line with an orientation perpendicular to it. For blue
LED, highest enhancement is obtained at d; = ds = 50 nm with
a peak positon around 460 nm. For nano-balls with diameter
beyond 50 nm, the magnitude of enhancement is decreased as
ball diameter increases and blue shift of peak position is also
observed (450 nm for d; = d> = 70 nm, 430 nm for d; = dy =
90 nm, and 420 nm for dy = dy = 110 nm), whereas for ball
diameter below 50 nm, a red shift of peak position (475 nm for
d; = dy = 40 nm) and decline of magnitude are observed with
the decrease of diameter. The reversed direction of shift of peak
position might be relevant to the start of self-coupling of SP
on individual balls. Further decrease of diameter will lead to
stronger self-coupling of SP, which renders invalidation of SP
energy-momentum dispersion relation. Even with wavelength
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Fig. 3. Enhancement ratio of DOS as a function of wavelength for two identical
nano-Ag balls separated by a fixed gap. The dipole is placed at the center of their
spherical center connecting line with an orientation perpendicular to it. For ball
diameter beyond 50 nm, magnitude of enhancement peak decreases with the
increase of ball diameter and blue shift is also observed.
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Fig. 4. E-field profiles (log,, | E|?) evaluated on slices cutting through spher-
ical centers in parallel with x-y plane at peak wavelengths for: (a) d1 = da =
40 nm, (b) d; = d2 = 50 nm, and (c) d; = d2 = 70 nm, respectively, in all of
which enhanced SP resonant field can be observed on the surfaces of nano-balls.

shifting and magnitude declining, all the enhancement peaks on
the curves feature broadband shape with adequate bandwidth to
cover the line-width of typical LED [38].

In order to validate the enhancement led by SP resonance,
E-field on the slice cutting through spherical centers in parallel
with x-y plane is plotted in Fig. 4. The E-field data are eval-
uated at the peak wavelengths for (a) d; = dy = 40 nm,
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Fig. 5. Enhancement ratio of DOS as a function of wavelength for asymmet-
rical nano-Ag balls separated by a fixed gap. The dipole is placed at the center
of their spherical center connecting line with an orientation perpendicular to it.
The diameter of one nano-Ag ball is fixed at 50 nm whereas the other diameter
varies from 40 nm to 90 nm. The magnitudes of enhancement peaks approach
the same maximal level for varying diameters of nano-balls, yet slight blue shift
of peak position is observed with the increase of diameter of one ball.

(b)dy = dy = 50 nm and (c) dy = dy = 70 nm respec-
tively. Enhanced resonant SP field can be seen on the surfaces
of nano-balls. The comparison of magnitude can also be distin-
guished by the profiles where (b) features highest peak intensity
and largest area of high intensity region.

Asymmetrical systems are also of interest and investigated by
tweaking diameter of one nano-ball whereas keeping the other
one constant. Fig. 5 plots the enhancement ratio as a function
of wavelength for asymmetrical nano-Ag ball systems sepa-
rated by a fixed gap ¢ = 10 nm. The dipole is placed at the
center of their spherical center connecting line with an orien-
tation perpendicular to it. During the tuning procedure, the di-
ameter of one nano-Ag ball is fixed at 50 nm whereas the other
diameter varies from 40 nm to 90 nm. For varying diameters of
nano-balls, the magnitudes of enhancement peaks approach the
same maximal level as the one obtained in the case of two iden-
tical nano-Ag balls with diameter of 50 nm, yet slight blue shift
of peak positions is still observed with the increase of diameter
of one ball. Hence in order to obtain the same high magnitude
of enhancement ratio as for d; = dy = 50 nm in two iden-
tical nano-ball case in Fig. 1, the diameter of one nano-Ag ball
can be fixed at 50 nm whereas the other ball can be tailored
by tweaking the diameter for fine tuning of the positon of en-
hancement peak to match desired wavelength. This dependence
of enhancement peak position on asymmetrical geometry, on the
other hand, infers that any failure of maintaining uniformity of
nano-balls in fabrication process could disrupt enhancement ef-
fect, and in high Q factor resonance with narrower and sharper
peak shape would possibly result in the mismatch with LED
emission peak.

Fig. 6 plots the E-field profiles on slices cutting through
spherical centers in parallel with x-y plane at the peak wave-
lengths for (a) d; = 40 nm, d> = 50 nm, (b) d; = 60 nm,
dy = 50 nm and (c¢) d; = 80 nm, d; = 50 nm of the asymmet-
rical systems, all of which are obtained by the same procedure
as aforementioned. Enhanced SP resonant field can also be
seen on the surfaces of nano-balls, and the intensities are at
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Fig. 6. E-field profiles (log,, |E|?) evaluated on slices cutting through
spherical centers in parallel with x-y plane at peak wavelengths for:
(a) dy = 40,d> = 50 nm, (b) d; = 60 nm, d> = 50 nm, and (c) d; = 80
nm, d> = 50 nm, respectively, in all of which enhanced SP resonant field can
be observed on the surfaces of nano-balls, yet with asymmetrical distribution.

the same level. However it is evident that the profiles feature
asymmetrical field distribution, in which higher intensity region
is constrained on the surface of nano-ball with larger diameter
in each pair.

It is worth noting that the enhancement effect is only observed
for dipole with orientation perpendicular to the spherical center
connecting line. When the orientation is switched to be aligned
with the spherical center connecting line, no enhancement phe-
nomenon can be observed. This is due to the polarization se-
lectivity of SP excitation. SP resonance can only be excited by
p-polarized light where E-field is parallel with the metal surface.
Obviously when the dipole is placed in-line with the spherical
center connecting line, E-field component of dipole radiation
should be in a direction perpendicular to the ball surface, which
invalidates the excitation condition for SP resonance.

IV. RESULTS AND DISCUSSIONS FOR NANO-CYLINDERS

In this section, nano-Ag cylinder system is under investiga-
tion. The schematic of the system is show in Fig. 7. Two 50 nm
high nano-Ag cylinders with diameters d; and d» are sepa-
rated by a gap ¢. The axial directions of both nano-cylinders
are aligned with z axis. The height of both cylinders are fixed at
50 nm to avoid self-coupling of SP on individual nano-cylinder.
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Fig. 7. Schematic of double nano-Ag cylinder system. Two nano-Ag cylinders

with diameters d; and d» are separated by a gap g. A dipole p is fired at the
center of their cylindrical body center connecting line.
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Fig. 8. Enhancement ratio of DOS as a function of wavelength for two iden-
tical nano-Ag cylinders separated by a fixed gap. The dipole is placed at the
center of their cylindrical body center connecting line with an orientation in-line
with y axis. The highest enhancement peak is obtained at around 410 nm for
dy = d» = 40 nm. With the increase of cylinder diameter, the peak magnitude
declines, and blue shift is also observed.

And a dipole is fired at the center of cylindrical body center
connecting line, which is the position with shortest distances to
surfaces of both cylinders. The orientation of dipole source is
respectively aligned with x, y and z axes.

Fig. 8 plots the enhancement ratio as a function of wave-
length for two identical nano-Ag cylinders separated by a fixed
gap ¢ = 10 nm. The orientation of dipole is aligned with y
axis. The highest enhancement peak appears at 410 nm for
d; = dy = 40 nm. With the increase of cylinder diameter,
the peak magnitude declines. Compared with the two identical
nano-Ag balls, the trend behavior of blue shift of peak position
remains unchanged, however in a vibrating manner. Moreover
the magnitude levels are slightly reduced, and the bandwidths
of curves are broadened, which is an indication of slightly
lower Q factor of this type of system compared with that of two
identical nano-Ag ball system.

Asymmetrical nano-Ag cylinder system is also investigated
by fixing the geometrical parameters of one nano-Ag cylinder
and tweaking the diameter of the other nano-Ag cylinder only.
Fig. 9 plots the enhancement ratio as a function of wavelength
for asymmetrical nano-Ag cylinders separated by a fixed gap g
= 10 nm. The dipole is aligned with y axis. And the diameter
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Fig. 9. Enhancement ratio of DOS as a function of wavelength for asymmet-
rical nano-Ag cylinders separated by a fixed gap. The dipole is placed at the
center of their cylindrical body center connecting line with an orientation in-line
with y axis. The diameter of one nano-Ag cylinder is fixed at 40 nm whereas
the other diameter varies from 50 nm to 90 nm. The magnitudes of enhance-
ment peaks approach a maximal level for varying diameters of nano-cylinders,
yet slight blue shift of peak position is observed with the increase of diameter
of one nano-cylinder.
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Fig. 10. Enhancement ratio of DOS as a function of wavelength for two iden-
tical nano-Ag cylinders separated by a fixed gap. The dipole is placed at the
center of their cylindrical body center connecting line with an orientation in-line
with z axis. The highest enhancement peak is obtained at 450 nm fordy = do =
50 nm. For cylinder diameter beyond 50 nm, with the increase of cylinder di-
ameter, the peak magnitude declines, and slight blue shift is also observed.

of one of the cylinders is fixed at 40 nm for strongest resonance
as the one demonstrated in Fig. 8 whereas the other diameter
varies from 50 nm to 90 nm. It is evident that the magnitudes
of enhancement peaks approach a maximal level as the one ob-
tained in the case of two identical nano-Ag cylinders with diam-
eter of 40 nm. Yet slight blue shift of enhancement peak is still
observed with the increase of diameter of one of the nano-cylin-
ders. The general shape of the curves, however, are broader than
those in the two identical nano-Ag cylinder system, indicating
the change in Q factor.

Fig. 10 plots the enhancement ratio as a function of wave-
length for two identical nano-Ag cylinders separated by a fixed
gap ¢ = 10 nm, yet the orientation of dipole is aligned with
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Fig. 11. Enhancement ratio of DOS as a function of wavelength for asymmet-
rical nano-Ag cylinders separated by a fixed gap. The dipole is placed at the
center of their cylindrical body center connecting line with an orientation in-line
with z axis. The diameter of one nano-Ag cylinder is fixed at 50 nm whereas
the other diameter varies from 40 nm to 90 nm. The positions of peaks are all
aligned to 450 nm, yet with decreasing magnitude of peak level as the diameter
of one of the nano-cylinders varies from 50 nm to other values. It is evident that
no blue shift is observed.

z axis. With nano-cylinder diameter of 50 nm, the highest en-
hancement peak moves to 450 nm compared with 410 nm ob-
tained by the one with nano-cylinder diameter of 40 nm in Fig. 8.
However the magnitude of enhancement peak is slightly lower.
For diameter beyond 50 nm, the trend behavior of blue shift
of peak position is observed again, however at a slower pace,
as evident in the contiguity of the positions of peaks for d; =
dy = 70 nm and dy = d2 = 80 nm. This phenomenon indi-
cates the peak position is not as much sensitive to the diameter
of nano-cylinder as in the case of dipole orientation in-line with
y axis.

Fig. 11 plots the enhancement ratio as a function of wave-
length for asymmetrical nano-Ag cylinder system with dipole
orientation aligned with z axis. The asymmetrical nano-Ag
cylinders are separated by a fixed gap ¢ = 10 nm, and the
diameter of one of the cylinders is fixed at 50 nm for strongest
resonance as demonstrated in Fig. 10 whereas the other diam-
eter varies from 40 nm to 90 nm. It is evident that the resonance
is dominated by SP on nano-Ag cylinder with diameter of
50 nm as all the curves resemble the curve for d; = d3 = 50 nm
in Fig. 10. Moreover the positions of peaks are all aligned to
450 nm, yet with decreasing magnitude of peak level as the
diameter of one of the nano-cylinders varies from 50 nm to
other values. It should be noted that blue shift is not observed
in this case due to the insensitivity of peak position to the
diameter of nano-cylinder as aforementioned.

To validate the SP nature of the enhancement effect, E-field
is also evaluated as shown in Fig. 12. E-field is evaluated on the
slice cutting through cylindrical body centers in parallel with
x-y plane at peak wavelengths for (a) d; = ds = 40 nm where
the orientation of dipole is aligned with y axis, (b) d; = 50 nm,
dy = 40 nm where the orientation of dipole is aligned with y
axis, (¢) dy = d2 = 50 nm where the orientation of dipole is
aligned with z axis and (d) d; = 60 nm, d> = 50 nm where the

X (nm)
(b)
= -20 50
=
£ 0 40
> 20 30
-50 0 50
X (nm)

X (nm)

(d)

Fig. 12. E-field profiles (log,, | E'|*) evaluated on slices cutting through cylin-
drical body centers in parallel with x-y plane at peak wavelengths for: (a) d1 =
dz = 40 nm where the orientation of dipole is aligned with y axis, (b) d; = 50
nm, d» = 40 nm where the orientation of dipole is aligned with y axis,(c)
d; = dz = 50 nm where the orientation of dipole is aligned with z axis and
(d) d1 = 60 nm, d> = 50 nm where the orientation of dipole is aligned with
z axis respectively, in all of which enhanced SP resonant field can be observed
on the surfaces of nano-cylinders, either with symmetrical or asymmetrical dis-
tributions.

orientation of dipole is aligned with z axis respectively, in all of
which highest enhancement ratios are obtained. In each profile,
it is evident that enhanced field spots due to SP resonance are
observed on the surfaces of nano-cylinders, either with symmet-
rical or asymmetrical distributions according to the geometries
of nano-Ag cylinder system.

It is also worth noting that for dipole orientation in-line with
x axis, no enhancement effect can be observed. This is in agree-
ment with the fact that SP resonance can only be excited by
p-polarized incident light where E-field component is in par-
allel with metal surface. When dipole is placed along x axis,
main component of E-field is in the normal of the metal sur-
face, which invalidate the SP excitation condition.

V. CONCLUSION

In this work, SP resonance enhanced spontaneous emission
inducted by nano-Ag particles embedded in GaN-based LED
is numerically investigated. The enhancement is achieved by
nano-Ag particle systems comprised of typical and easy-to-fab-
ricate nano-metallic components such as nano-balls and
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nano-cylinders. Spontaneous emission enhancement system
under investigation contains two nano-Ag particles with photon
emitter being sandwiched. Symmetrical as well as asymmet-
rical systems are compared. It can be concluded based upon this
study that with either double nano-Ag ball or double nano-Ag
cylinder system, significant enhancement of spontaneous emis-
sion can be achieved. For systems comprised of two identical
nano-Ag balls or cylinders, the enhancement level as well as
peak position are subject to the change of geometry of nano
particles, and strong enhancement can be achieved at certain
wavelengths. Varying the geometrical parameters of nano-Ag
particles in symmetrical system can lead to the decline of
enhancement magnitude and shifting of peak position. Under
certain conditions, in order to obtain a higher enhancement ratio
at a given wavelength of interest, asymmetrical systems can be
used where the peak magnitude level and position can be tuned
by respectively tweaking the geometrical parameters of the two
asymmetrical nano-metallic particles. Generally the enhance-
ment effect is polarization sensitive, namely, enhancement can
only be obtained for certain orientations of dipole where the
E-field component of emitted light wave is in parallel with the
surfaces of nano-metallic particles. It also should be noted that
for double nano-Ag cylinder system, the enhancement peak
position varies for different orientations of dipole, which might
be suitable for application in bi-color LED chip.
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