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Abstract— This paper discusses a novel bidding strategy of a 
generation company (genco) in an hourly day-ahead market.  In 
the proposed method, a genco learns the returns of supply offers 
and adapts its strategy accordingly, based on the Variant Roth-
Erev (VRE) reinforcement learning algorithm.  Every supply 
offer submitted to the market receives a profit at the end of each 
day, and is strategically updated for the next day based on this 
profit.  The novelty of our proposed method is that every supply 
offer has a propensity (an inclination or a tendency) to be 
selected associated with it.  The propensity is updated as a 
percentage relative to every other supply offer’s propensity based 
on the profit received.  The DC optimal power flow problem 
solved by the system operator is also improved by including the 
physical inter-temporal constraints such as the generator ramp 
rates, in addition to the supply offers.  Simulations on a 5-bus test 
system show that a genco learns to strategically bid in the market 
using the relative percentage propensity update technique.  As a 
result, without any market regulations, the locational marginal 
prices increased by 29% on average.     

Keywords—strategic bidding, electricity market, reinforcement 
learning, generator bidding, DC optimal power flow  

I.  INTRODUCTION 
Generation of electric energy is scheduled to meet 

forecasted demand through a day-ahead electricity market in 
most deregulated industries.  This particular forward market 
operates a day in advance of the actual physical delivery of 
power.  The decision on power generation for the next day in 
the market is a result of a two-sided auction where gencos 
(power producers; supply agents) and load serving entities 
(demand agents) submit a set of price-quantity bids [1].  As 
such, a genco needs to decide its supply bids in order to secure 
the maximum possible profits for itself.  

A considerable amount of work has been done in the past 
regarding strategic bidding by gencos to improve their profits.  
The Agent Based Modeling of Electricity Systems (AMES) 
Wholesale Power Market Test Bed is an agent-based 
computational laboratory for studying the dynamic 
performance of restructured wholesale power markets [3].  
AMES models gencos with reinforcement learning capabilities 
interacting over time with electric power buyers (load-serving 
entities) in a wholesale power market.  [4] applies optimal 

control to study generator bidding in an oligopolistic 
electricity market.  Game theory has been used to describe a 
simple method to derive strategic equilibrium solutions for a 
single genco bidding in electricity markets in [5].  [6] 
discusses the effect of generators’ strategic behavior on 
individual’s payoffs and market efficiency by studying the 
generator bidding using stochastic optimal control.    

In this paper, we use reinforcement learning to decide 
supply offers (marginal cost coefficients and maximum 
production levels) that the gencos bid in the day-ahead market.  
The gencos use learning algorithms that adjust bid supply 
offers to produce power in the electricity market.  The supply 
offers can be improvised or adjusted for the next day when the 
gencos analyze the profits that they make at the end of each 
day’s market clearance.  This helps them secure higher profits 
with time in a wholesale electricity market.  The main 
objective of this paper is to investigate whether the gencos can 
employ strategic supply offers given inter-temporal physical 
constraints of system components.  This is done by modifying 
the VRE reinforcement learning algorithm.  A five-bus 
transmission grid test system [2] is used to show the results.  
We also show that all generators learn over time to implicitly 
report higher than true marginal costs, thus considerably 
raising the value of the locational marginal price of the 
system. 

II. FORMULATIONS FOR SYSTEM OPERATION 

A. The problem of a genco 
   In this model, without loss of generality, we assume that each 
genco owns a single generator.  The cost function of a 
generator has a variable and fixed cost of generation.  For 
simplicity, we do not consider no-load, startup or shut down 
costs.  Each generator’s lower and upper production limits are 
denoted by LCapi and UCapi in MWs, that define the feasible 
production interval for its hourly real-power production level 
PGi (in MWs) where i represents each genco.  

For each generator i, 

                                UCap PLCap iiGi ≤≤                          (1) 
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Genco i’s total cost function giving its total costs of production 
per hour for each PGi takes the form 

                 2( ) . .i Gi i i Gi i GiTC P   FC  a P   b P= + +                         (2) 

where ai ($/MWh), bi ($/MWh2), and FCi ($/h) are given 
constants.  The marginal cost function for Generator i is given 
by 

                             ( ) 2· ·i Gi i i GiMC P   a   b  P= +                          (3) 

The scheduling of generators on day D is a result of the 
market clearance by the ISO computed on the previous day D-
1.  At the beginning of each day D-1, Genco i submits a 
supply offer si

R(D-1), a function of each day (for simplicity, 
gencos submit a single bid for each of the 24 hours) to the 
system operator for use in each hour H of the day-ahead 
market for day D. 
This supply offer consists of a reported marginal cost function 

                     ( ) 2· ·R R R
i Gi i i GiMC P   a   b  P= +                             (4) 

defined over a reported feasible production interval 

                         R
iGi

R
i UCap PLCap ≤≤                                 (5) 

 The reported cost coefficients ai
R and bi

R differs from the 
generator i’s true cost coefficients ai and bi after the process of 
strategic learning.  

 Let generator i, located at bus k, report a supply offer 
si

R(D), for the day D (along with the market participants) on the 
previous day D−1.  Let LMPk be the locational marginal price 
at bus k calculated by the system operator for hour H on day D, 
and PGi, the real power that Genco i has been cleared to 
produce in hour H of day D.  The profit of Genco i from the 
day D settlement of this financial contract for hour H of day D 
is given by    

                      Profit( )  LMP . ( )Gi k Gi i GiP P TC P= −                  (6) 

B. The problem of a Load Serving Entities (LSE) 
 The LSEs purchase energy in the day-ahead market each 
day in order to meet the demand (load).  We assume that the 
LSEs do not involve in production or sale of energy in the 
wholesale market and thus purchase energy only from 
generators and not from each other.  A daily load profile is 
submitted into the day-ahead market as demand bids without 
any strategic learning for day D at the beginning of day D−1 
for each of the 24 successive hours.  For simplicity, the hourly 
system load is assumed to be the same for all days. 

C. The problem of the Independent System Operator (ISO) 
The activities of the ISO during a day D is shown in Fig. 1.  

The ISO in our model during each day D determines a 
schedule of optimal power commitments for each hour of the 
day-ahead market conditional to the supply offers submitted 
by gencos, demand bids submitted by LSEs, branch flow 
limits, and nodal balance constraints ensuring the total supply 
meets the total demand. 

The resulting optimization problem is known as a bid-
based DC optimal power flow (OPF).  This is a convex 
quadratic programming problem when the bids of gencos are 
linear to their respective supply output. 
 
 

 
 

Fig. 1. Activities of the ISO on day D-1 for day-ahead market 
 

The objective of the problem as stated in [7] can be formulated 
as follows: 

∑
=

++
m

i
GiiGiii PbP a FC

1

2 ][min   

subject to:             ( ) ( )Gi Gi GiLCap P P UCap P≤ ≤                  (6) 

                                   KDKGK BθPP =−                                (7) 

                           
max max

1 [ ]ik i k ik
ik

P P
X

θ θ− ≤ − ≤                         (8) 

Equation (6) represents the generator output constraint.  
Equation (7)  represents the active power balance for the kth bus 
of transmission system (nodal power balance constraint) where 
PGK and PDK are active power generation and demand at bus k, 
B is the susceptance of the system, θk is the voltage angle at bus 
k. In (7), Pikmax is the maximum power that can flow in the 
branch i-k, Xik is the line reactance of branch i-k and θi and θk 
are the respective voltage angle setting.  We use MATPOWER 
[9] to simulate this problem. 

III. THE VARIANT ROTH EREV LEARNING ALGORITHM FOR 
GENCOS’ BIDS 

  
The objective of a genco is to maximize its profits at the 

end of each day.  Submitting supply offers with expensive 
prices can return high profits if accepted.  However, the 
likelihood of expensive bids being accepted is lower, since the 
other suppliers may submit lower-price bids. 

Therefore, a genco has to strategically bid in supply offers 
that are low enough to be cleared by the system operator as 
well as sufficient enough to make profits for itself.  This can 
be made possible if the gencos can analyze their profits at the 
end of each day, learn over time on how to improve their bids 
based on their rewards (profits) and achieve better profits with 
time.  

In [3], gencos adaptively select their supply offers based on 
their past profit outcomes using stochastic reinforcement 
learning algorithm developed by Roth-Erev, referred to as the 
Variant Roth Erev (VRE) learning algorithm.  We adopt the 
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same methodology, but modify the algorithm to make it a lot 
easier in terms of calculation and understanding.  The learning 
processes of the gencos are shown in Fig.2. 
 

 
 

Fig. 2. Learning process of gencos for strategic bidding 
 

At the starting of the initial day D=1, Genco i chooses a 
supply offer from its action domain ADi to report to the ISO 
for the day-ahead market in day D+1.  The action domain ADi 
is a collection of supply offers in a matrix form.  Numerous 
supply offers are generated through mathematical 
formulations to provide a flexibility for the gencos to choose 
and submit from.  The supply offer is picked from the matrix 
based on the VRE reinforcement learning algorithm and is 
submitted to the system operator for the day-ahead market.  
The building of the action domain matrix ADi is explained in 
[1]. 

Every supply offer in ADi is assigned with a propensity.  
The propensity of a supply offer m indicates the genco's profit 
expectation at the end of each day when the supply offer m is 
submitted.  The initial propensity of Genco i to choose a 
supply offer m from ADi is given by qim

0.  We fix a constant 
value qi

0 such that qim
0 = qi

0 for all supply offers in m ∈ ADi to 
allow random selection of supply offer on day D=1. 

Let the propensity of generator i choose supply offer m ∈ 
ADi be qim(D) on day D.  The choice probability that Genco i 
uses to select a supply offer for day D is then constructed from 
these propensities as follows: 
                     

1

exp( ( ) / )( ) ,    
exp( ( ) / )

i

im i
in iM

ij i
j

q D CP D m AD
q D C

=

= ∈

∑

              (9)                       

where the propensity is updated every day with respect to the 
profit as shown below 

   

'
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M

+ = − +
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          (10) 

where m≠m� implies that there are more than two supply 
offers. 

The parameters used in the reinforcement learning algorithm 
are explained in [8] and are summarized as follows: 

• Boltzmann cooling parameter (Ci): The Boltzmann 
cooling factor calculates the action choice probability, 
given their respective propensity. An appropriate 
selection of the cooling factor helps in determining 
the probability when the difference between 
propensities of two supply offers is very small. 

• Experimentation (ei): The experimentation factor (ei) 
controls the frequency of selecting new supply offers 
from the action domain ADi.  A higher value of 
experimentation factor gives the genco flexibility to 
experiment new supply offers more frequently and 
vice versa.  The purpose of an experimentation factor 
is to prevent a genco from choosing a single supply 
offer at a very early stage. 

• Recency (ri): The recency factor is used to minimize 
the selection of a supply offer that was selected for a 
longer timeline before.  This enables a genco to ignore 
profits obtained by the supply offer before and helps 
them “learn” the current scenario of market and 
submit bids accordingly. 

Once the values for the initial propensity value qi
0, the 

experimentation parameter ei are designed given specific 
requirements, Genco i starts learning to strategically bid in the 
electricity market.  

IV. RELATIVE PERCENTAGE UPDATE OF SUPPLY OFFER’S 
PROPENSITY  

 According to the VRE reinforcement learning algorithm, 
the initial propensity of every supply offer in the action domain 
matrix ADi for Genco i is chosen to be a finite real number.  
When the initial propensity chosen is too low compared to the 
expected profit from the genco’s action, the genco fixates on a 
particular supply offer at a very early stage.  This reduces the 
probability of choosing other supply offers to an extremely 
small value. When the initial propensity is too high, the genco 
will cycle through a lot of supply offers.  To avoid the 
complexity, we choose the propensity and profits of the supply 
offers to be in percentages with respect to every other supply 
offer and update them based on the profit incurred by the 
chosen supply offer.  

 Fig. 3 shows the configuration with five gencos (each with 
one generator) and three across a 5-bus transmission grid [2].  
The generator cost functions and ramp rates are given in Table 
I. The ramp rates (% capacity per minute) of generators G1, 
G2, G3, G4 and G5 are 40, 4, 3, 3 and 1 respectively.  This 
five-bus transmission grid configuration [2] is used extensively 
in ISO New England and PJM training manuals to solve for 
bid-based DC optimal power flow (OPF) solutions using 
supply offers by gencos and demand bids by LSEs.  This 
problem is solved subject to branch flow limits and nodal 
supply-demand balance at each bus [1].  The grid branch and 
load input data for the dynamic five-bus test case are taken 
from [1]. 
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Fig. 3. John Lally 5-bus system [2] 

 
 

TABLE I. Gencos’ cost functions 
Gen 
ID Bus      FCi  

($) 
bi 

($/MWh) 
ai 

($/MWh2) 
Cap 

(MW) 
1 1 832.75 48.58 0.0072 110 
2 1 100.00 0.001 0.00001 100 
3 3 665.10 11.85 0.0049 520 
4 4 382.23 12.38 0.0083 200 
5 5 395.37 4.42 0.0002 600 

 

To validate the proposed approach, we solve an example for 
one of the gencos, Genco 4, by updating its propensity for the 
day D based on the profit incurred at the end of day D−1.  At 
the start of Day 1, all the initial propensity q4m(1) of the supply 
offers are equal.  For simplicity, let m = [1, 2…, 5], i.e. the 
action domain AD4 contains five supply offers to be chosen 
from and submitted.  Table II below represents the supply 
offers, their initial propensities and its respective action choice 
probabilities for the example.  As mentioned before, all the 
propensities of the supply offer are written as a relative 
percentage of each other.  

TABLE II.  Genco 4’s supply offer selections on Day 1 

Supply 
offer  

m 

Supply bids 
 

      bi                    ai 
 ($/MWh)   ($/MWh2) 

Propensity 
q4m(1) 

(percentage) 

Action choice 
probability 

P4m(1) 

1 12.38 0.0083 20 0.2 
2 12.38 0.0346 20 0.2 
3 13.76 0.0147 20 0.2 
4 13.76 0.0311 20 0.2 
5 15.48 0.0104 20 0.2 
 
Since all the action choice probabilities are equal by the 

setup, supply offer 1 is randomly chosen and reported to the 
ISO on Day 1.  For simplicity, supply offer 1 is assumed to be 
the true marginal cost of Genco 4.  The system price and 
quantities are settled at the end of the day by the ISO (using 
equations (2) and (6)).  The profit for each genco is calculated 
according to the cleared market price and supply quantity.  
BPCG (Bid Production Cost Guarantee) is a guarantee 
provided by the ISO to the Gencos where in a unit will not 
incur a net loss, if dispatched.  The BPCG payment made to 

Gencos is settled on a daily basis.  In order for a Genco to 
receive a BPCG payment, the net sum of loss/profit incurred 
every hour must result in a net loss. This paper assumes no 
BPCG as the objective of this model is to see if Gencos can 
learn from their results (loss/profit).  The BPCG could be 
implemented in the future work to see its significance in the 
learning of Gencos. 
 
Total revenue of Genco 4 on Day 1 when supply offer 1 is 
chosen = $4576.371 
Total cost of production on Day 1 = $13107.528 
Profit on Day 1 = −$8531.157 
 
 Clearly, Genco 4 has incurred a loss on Day 1 when supply 
offer 1 is chosen.  Hence, the propensity and action choice 
probability of offer 1 being chosen again on Day 2 should be 
lowered.  Thus, based on the loss (negative profit), the recency 
and the experimentation factor, the propensities are updated for 
Day 2.  Another important reason why gencos must learn to 
strategically bid in the electricity market is seen in the above 
example. Genco 4 in the example submitted the true marginal 
cost as their supply offer and incurred loss on Day 1.  Genco 4 
has to analyze this loss, learn what offers incur losses, and 
achieve better profits instead of submitting their true marginal 
cost.      

 The propensities and action choice probabilities (using 
equation (9) and (10)) are updated and are converted to relative 
percentages and are shown in Table III below.  Clearly, the 
action choice probability of supply offer 1 dropped to 0.1979 
from 0.2 because its percentage propensity of supply offer 1 
decreased from 20% to 18.96%. 

TABLE III. Genco 4’s supply offer selections on Day 2 

Supply 
offer (m)

 
Supply bids 

 
      bi                    ai 
 ($/MWh)   ($/MWh2) 

Propensity 
q4m(2) 

(percentage)

Action choice 
probability 

P4m(2) 

1 12.38 0.0083 18.96 0.1979 
2 12.38 0.0346 20.24 0.2005 
3 13.76 0.0147 20.24 0.2005 
4 13.76 0.0311 20.24 0.2005 
5 15.48 0.0104 20.24 0.2005 

 

The entire procedure of the model is listed below: 

Step 1:  On Day 1, the gencos choose a supply offer randomly 
from their respective action domain ADi and submit them to the 
ISO. The LSE submit their demand bids as well. 

Step 2:  The ISO solves the DC OPF with the given supply 
offers, demand bids, branch thermal limit constraints and nodal 
constraints.  The LMPs are calculated as a result of the DC 
OPF. 

Step 3:  Each genco calculates its profit from the market 
settlement at the end of day. 
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Step 4:  The propensity and choice probability for the supply 
offers are now updated in the action domain ADi of Genco i 
using the reinforcement learning algorithm. 

Step 5:  The genco chooses the best supply offer using the 
action choice probability for the next day.  ISO clears the 
market with the supply offers from the gencos and demand bids 
from the LSEs, going back to Step 2.  The procedure is 
repeated for every day. 

V. SIMULATIONS AND RESULTS 
For the above system [2], we run simulations for 30 days, 

with each genco containing six supply offers to choose and 
submit from.  Even though the simulation is done for 30 days, 
it should be noted that the hourly system load profile remains 
the same over these days.  This assumption is to evaluate how 
gencos adapt their strategies for the same load profile, and 
should be relaxed in future work.  For simplicity, we also 
assume that the gencos submit a single supply offer for one 
day (same offer for all 24 hours) and each genco has only one 
generator.  The gencos’ cost functions are shown in Table II.   

The hourly ramp rates of the generators are included 
when calculating the generator dispatch by the Independent 
System Operator (ISO) using DCOPF.  This means that each 
genco submits its ramp rates to the ISO along with its supply 
offer for the day.  The bid-based DC OPF solved by the 
system operator is simulated using MATPOWER [9].  The 
LMPs at different buses on Day 1 are shown in Fig. 4.  The 
profits that are settled at the end of Day 1 by the system 
operator are updated using the proposed alternative VRE 
reinforcement algorithm to submit new and better bids on Day 
2 and so on. 

 

 
Fig. 4. LMPs on Day 1 at different buses 

 

In this simulation, the gencos report strategic supply offers 
and their true production limits.  The gencos learn over time 
on what prices to offer in order to increase their net profits.  
For example, the peak load at Hour 17 (load input data from 
[1]) cannot be met even with the combined capacity of the 
smallest three Genco 1, 2, and 3.  In other words, this peak 
load cannot be met without Genco 4 and 5.  Hence, if these 
gencos have the information on the cleared bids and the profits 
secured at the end of day repeatedly, they can exercise market 
power if their highest reported supply offer within their action 
domains was still rewarded.   

At Hour 1, the LMPs of the system are the same. This is 
due to the ramp constraint of Genco 5. In the first hour, Genco 
5 can produce only 350 MW due to which there is no 
congestion in the system. Hence, Genco 4 has to produce 
power to meet the load at Hour 1.  After the first hour, Genco 
5’s production level increases and hence there is congestion in 
the system due to which the LMPs differ. Figs. 5 and 6 show 
the supply offers of Genco 4 and 5 during the simulation as a 
result of their learning.  There is a large difference between 
the true marginal costs and the supply offers.  It is obvious that 
when all the gencos submit higher bids, the LMPs at different 
buses will increase.  This is shown in Fig. 7.  The LMP values 
at different buses from Day 1 to Day 30 increase by an 
average of 29%. 

 

 
Fig. 5. Genco 4 learning 

 

 
Fig. 6. Genco 5 learning 

 

 
Fig. 7. LMPs on Day 30 at different buses 
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VI. CONCLUSION  
A bidding strategy of a genco in an hourly day-ahead 

market using VRE learning algorithm was proposed.  
Simulation on a test system [2] shows that the gencos learn to 
increase their profits over time.  This can be verified with the 
graph showing the comparison of their true cost function and 
their reported supply offer on different days.  An average 
increase of 29% is seen in the LMPs in the 5-bus test system 
case.   

This paper implemented a bidding strategy for an hourly 
day-head market where a single supply offer is submitted for 
the whole day.  We plan to find the effect of the learning 
algorithm on submitting hourly varying supply offers for the 
day ahead market with the inter-temporal constraints.  More 
rigorous analysis on the effects of ramp rates on hourly bids 
and on LMPs will be conducted.  Further research is also 
needed to explore how the strategies of a genco should adapt 
to ever-evolving daily system load profiles.  
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