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Abstract—Power system stabilizers are widely used to 

generate supplementary control signals for the excitation 
system in order to damp out the low frequency oscillations. In 
power system control literature, the performances of the 
proposed controllers were mostly demonstrated using 
simulation results without any rigorous stability analysis. This 
paper proposes a stabilizing neural network (NN) controller 
based on a sixth order single machine infinite bus power system 
model. The NN is used to approximate the complex nonlinear 
dynamics of power system. Unlike the other indirect adaptive 
NN control schemes, there is no offline training process and the 
NN can be directly used online and learn through time. 
Magnitude constraint of the activators is modeled as saturation 
nonlinearities and is included in the Lyapunov stability 
analysis. The new NN controller design is compared with 
conventional power system stabilizers (CPSS) whose 
parameters are fine tuned by particle swarm optimization 
(PSO). Simulation results demonstrate that the proposed NN 
controller design can successfully damp out power system 
oscillations. The control algorithms of this paper can also be 
applied to other similar nonlinear control problems. 

Key works—stabilizing control, power systems, neural 
networks, and particle swarm optimization. 

I. INTRODUCTION 

ENERATORS in power systems are equipped with voltage 
regulators to control the terminal voltage. It is known 
that the voltage regulator has a detrimental impact upon 

the dynamic stability of the power systems. During a change 
in operating condition, oscillations of small magnitude and 
low frequency often persist for long periods of time and in 
some cases even present limitations on power transfer 
capability. The issue of power system stabilizing control has 
received a great deal of attention since 1960's. Power system 
stabilizers (PSSs) are designed to generate supplementary 
control signal in the excitation system to damp out low 
frequency oscillations [1].  

Previous works on stabilizing control are based on 
linearized models. For example, the widely used 
conventional power system stabilizer (CPSS) is designed 
using the theory of phase compensation and introduced as a 
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lead-lag compensator. To have the CPSS provide good 
damping over wide operating conditions, its parameters need 
to be fine tuned in response to all kinds of oscillations, which 
is a time-consuming job. To simplify this process, intelligent 
optimization algorithms (such as simulated annealing [2], 
genetic algorithm [3], and tabu search [4]) are applied to 
offline determining the "optimal parameters" of CPSS by 
optimizing an eigenvalue based cost function. In the past 
decade, fuzzy logic and NN were applied online to adjust the 
parameters of CPSS based on the knowledge gained by 
offline training. Since power systems are highly nonlinear 
systems, with configurations and parameters changing with 
time, the designs based on linearized model cannot guarantee 
their performances in practical operating environment. Thus, 
adaptive controller designs based on nonlinear models are 
required for the power system [5]. 

In recent years, stabilizing control schemes using NN and 
fuzzy logic have been proposed. Most of the papers only 
demonstrated the effectiveness of the controller design via 
simulation but the stability analyses were not carried out. 
The reason for the lack of stability analysis is partly due to 
the complexity of the power systems. Anyway, industry will 
still prefer a controller designs that are designed through 
rigorous stability analysis. To address this problem, certain 
controller designs have appeared based on feedback 
linearization or differential geometric theory [6-8]. Some of 
these papers are based on simplified models, which overlook 
the complex dynamics of practical system. Furthermore, 
feedback linearization requires the system model to be 
known exactly, imprecise model will greatly degrade the 
performance. While practical power system models are very 
difficult to be known exactly, this requirement can seldom be 
satisfied. Since the stabilizing and voltage controllers are all 
implemented in the excitation system, there is the possibility 
for these two kinds of controls to interact with each other. 
But few papers show the performance of voltage control 
under stabilizing controls 

The paper tries to overcome the above mentioned 
problems by designing a stable adaptive neural network 
controller. The controller design is based on a sixth-order 
single machine infinite bus power system. Since the complex 
nonlinearity can be approximated using a neural network, the 
requirement on precise model is released. The weight 
updating rule of the NN is an unsupervised version of 
backpropagation through time and the initial weights of NN 
can be directly set to zero to avoid the time consuming 
offline training process. Since practical operating conditions 
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require the magnitude of control signal to be within certain 
limit, this paper also investigate the stability of the closed 
loop system when the magnitude of the ideal control signal 
overshoot the limit.  

To test the performance of the proposed NN controller, it 
is compared with an “optimal” CPSS under different 
operating conditions. Here, “optimal” means that the 
parameters of the CPSS are optimized by particle swarm 
optimization (PSO). Simulations with different kinds of 
operating conditions show that the proposed NN controller 
can perform better than the optimal CPSS although the 
design parameters remain the same. 

The paper is organized as follows. Section II presents a 
brief background on universal approximation property of 
neural networks and stability of nonlinear system. Section III 
introduces the single machine infinite bus power system 
model. The neural network controller design is described in 
section IV. The determination of the optimal CPSS 
parameters using PSO is explained in section V. Simulation 
results are provided in section VI, and finally, the conclusion 
in Section VII. 

II. BACKGROUND 

The following mathematical notions are required for 
system approximation using NNs and system stability in the 
design of an adaptive NN controller.  

A. Approximation Property of NN 
The commonly used property of neural networks for 

control is its function approximation and adaptability 
capacities [9]. Let f(x) be a smooth function from Rn → Rm, 
then it can be shown that, as long as x is restricted to  a 
compact set nRS ∈ , for some sufficiently large number of 
hidden-layer neurons, there exist weights and thresholds 
such that 

)()()( xxWxf T εϕ +=        (1) 
where x is the input vector, φ(.) is the activation function, W 
is the weight matrix of the output layer and ε(x) is the 
approximation error. Equation (1) means a neural network 
can approximate any continuous function in a compact set. 
In fact, for any choice of a positive number εN, one can find a 
neural network such that Nx εε ≤)(  for all Sx ∈ . For 
suitable function approximation, φ(x) must form a basis [10]. 

For two layer neural networks, φ(x) is defined as 
φ(x)=σ(VTx), where V is the weight matrix of the first layer 
and σ(x) is the sigmoid function. If V is fixed, then the only 
design parameter in the NN is W and this NN becomes a 
simple version of function link network (one layer neural 
network) which is easier to train. It has been shown in [11] 
that φ(x) can form a basis if V is chosen randomly. The larger 
the number of the hidden layer neurons Nh, the smaller the 
approximation error ε(x). Baron shows that the neural 
network approximation error ε(x) for one-layer NN is 
fundamentally bounded by a term of the order (1/n)2/d, where 
n is the number of fixed basis functions and d is the 

dimension of the input to the NN [9]. The structure of the 
function link neural network is shown in Fig. 1.  

)(xf

x W

)(xϕ

V

)(xf

x W

)(xϕ

V

 
 

Fig. 1. Structure of function link neural network. 

B. Stability of Systems 
In the design of the controller, the following stability 

notion is needed. Consider the nonlinear system given by 

)(
),(

xhy
uxfx

=
=&          (2) 

where x(t) is a state vector, u(t) is the input vector and y(t) is 
the output vector [12]. The solution to (2) is uniformly 
ultimately bounded (UUB) if for any U, a compact subset of 
Rn, and all Uxtx ∈= 00 )(  there exists an ε > 0 and a number 
T (ε,x0) such that ||x(t)|| < ε for all t  ≥  t0 + T. 

III. MODEL OF SINGLE MACHINE POWER SYSTEM 

Fig. 2 shows the configuration of the single machine 
infinite bus power system. The system consists of a 
synchronous generator, an exciter, an automatic voltage 
regulator (AVR) and a transmission line which connects the 
generator to the infinite bus. 
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Fig. 2: Single machine infinite bus power system. 

In above figure, Tm is the mechanical torque, Efd is the field 
voltage, Vr is the output of the automatic voltage regulator 
(AVR), θ∠ tV  is the terminal voltage at the generator bus, 
Vref is the reference signal applied to the AVR, Re and Xep 
form the impedance of the transmission line between the 
generator and infinite bus, vssV θ∠  is the infinite bus 
voltage, and Vpss is the stabilizing control signal.  

The dynamics of the single machine power system are 
expressed using a two axis model [13] as in (3). The first four 
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equations represent the dynamics of the synchronous 
generator, the fifth and sixth equations represent the 
dynamics of the exciter and AVR respectively.  
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    (3) 

where, Id, Iq and Vt are subjected to the constraints of (4) and 
(5) respectively: 
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22
qdt VVV +=          (5) 

with 
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⎧
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VIXIRV
VIXIRV

θδ
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    (6) 

In above equations, besides the variables appeared in Fig. 
2, δ is the rotor angle in radian, ω is the speed in radian per 
second, '

dE  and '
qE  are the internal transient voltage in per 

units. Table I shows the value of the parameters in above 
model. 

TABLE I 
SYSTEM PARAMETERS 

H=3.01 Xd=1.3125 Xq=1.2578 Xd
’=0.1813 

Xq
’=0.25 Td0

’=5.89 Tq0
’=0.6 Te=0.314 

Ka=20 Ta=0.2 Re=0.025 Xep=0.085 

 
The control objective is to stabilize the speed ω to ωs=2πf 

for different operating conditions and disturbances. The 
system can be linearized via input-output feedback [14]. 
Since the control objective is speed ω , this is a single input 
single output control problem. Define the speed deviation as 

se ωωω −=Δ= , then the control objective is to regulate e  to 
zero. In order to get the expression of the speed deviation 
with respect to the control signal, we need to differentiate e  
several times until the control signal appears. The process is 
shown as below: 
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with, 

fdqdq

qdd

EkkkEkEkE

kkEkEkE
&&&&&&&

&&&&&&

252423
'

22
'

21
'

2019
'

18
'

17
'

sincos

sincos

+−++=

−++=

δδδδ

δδδδ  (10) 

pssVxgxfe )()()4()5( +== ω      (11) 

where the definition of 251 ~ kk  can be found in the 
Appendix, )(xf  and )(xg  are both functions of system 
states and their different orders of derivatives, and )(xg  is 
defined in (12).  

)cossin2()( 1211
'

8
'

72625 δδ kkEkEkkkxg dq +++=   (12) 

where x  stands for the original state variables δ , ω , '
dE , 

'
qE , fdE , and rV .  

The expression of )(xf is not given here because both 
)(xf  and )(xg  will be approximated using one NN in the 

following controller design, but the expression of )(xg  is 
necessary because it has to satisfy the two assumptions in 
Section IV. 

Since ω  is chosen as the control objective and the 
control signal pssV  appears at the fourth order of ω . The 

transformed control system model is of fourth-order rather 
than the original sixth-order. Since the uncontrolled state δ  
satisfies sωωδ −=& , δ  is bounded when ω  is stabilized to 

sω . So even if δ  is not considered in the transformed 
control system model, the system is still stable.  

If the new state variables are defined as 
TTeeeee ],,,[],,,[ 4321 ωωωω &&&&&&Δ==     (13) 

Then the error dynamics of the system can be expressed 
into the Brunovsky Canonical Form as 
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where u stands for the control signal and d stands for a 
bounded disturbance with |d| ≤ dM, x  stands for δ, ω, Eq

', 
Efd, Vr.  

IV. STABILIZING CONTROLLER DESIGN 

A. Assumptions 

Assumption 1: )(xg  is bounded and the sign is known to 
be either positive or negative. Without losing generality, 

0)( >xg  is assumed. Furthermore, there exists two positive 
constants mg  and Mg , such that 0)( >>> mM gxgg .  

Assumption 2: The derivative of )(xg  is bounded, which 
means there exist a positive constant dMg , such that 

dMgxg ≤)(& . 

Remark: Based on the definitions of (12) and the constants in 
the Appendix, the above two assumptions hold for this single 
machine power system. These assumptions are future 
investigated by simulate the system under different kinds of 
operating conditions.  

B. Neural Network Controller Design 
Defining the filtered error r as 

er T ]1[Λ=         (15) 

where Λ=[λ1 λ2 λ3]T is an appropriately chosen coefficient 
vector such that e→0 as r→0, (i.e. s3+λ3s2+λ2s+λ1 is 
Hurwitz).  

Differentiating (15) and substituting (14) to get 

duxgxfer T +++Λ= )()(]0[&      (16) 

According to the theory of feedback linearization [15], the 
desired control signal can be chosen as 

)]0[)((
)(

1 exf
xg

rKu T
v Λ+−−=∗     (17) 

where Kv is a selected positive constant.  
According to the NN approximation theory, there exists a 

NN that can approximate the second term of (17) within 
designated precision, such that  

ε+Λ+−=Φ exf
xg

exW TT ]0[)([
)(

1),(    (18) 

where W is a constant weight, ε is the approximation error 
that is bounded by |ε| ≤ εN. 

Defining the ideal control signal u  (without magnitude 
constraint) as 

),(ˆ exWrKu T
v Φ+−=       (19) 

where the design parameter Kv is a positive constant. 
The actual stabilizing control signal pssV applied to the 

power system is given by: 

⎩
⎨
⎧

>
≤

=
maxmax

max

)( uuwhileusignu
uuwhileu

Vpss     (20) 

where maxu  is the maximum allowed control signal 
magnitude. The structure of the controller is shown in Fig. 3. 
It has multi-loop structure with an inner nonlinear adaptive 
NN loop used to estimate the nonlinear dynamics of the 
single machine power system and an outer PD tracking loop.  
The next step is to determine an appropriate weight updating 
rule so that the closed-loop stability of the control system can 
be guaranteed. The performance of the proposed adaptive 
neural network controller is described by theorem I. 

dx

x

+ ]1[ TΛ
e r

vK + x

+

_ _ +
Single Machine
Power System

pssVu

Fig. 3. Neural network feedback linearizing controller 

 
Assume W is bounded by Wmax, that is, maxWW ≤ .  

Rearranging (18) as an expression of )(xf  and substitute 
which into (16) to get 

dxgexWxgrxgKr T
v ++Φ−−= ε)(),(~)()(&   (21) 

where W~  is the error in weight approximation  defined as: 

WWW ˆ~
−=          (22) 

Theorem 1: Assume the unknown disturbance d and the 
weight approximation error ε are bounded by some known 
constants such that Ndd ≤  and Nεε ≤  respectively. 
Selecting the weight updating rule as 

WrexrW ˆ),(ˆ Γ−ΦΓ−= α&      (23) 

where α, Γ>0 are the adaptation gains and the Kv is given as 
follows 

22 m

dM
v g

gK >          (24) 

Then the filtered error r and the weight estimation error 
W~  are uniformly ultimately bounded.  

Proof: The proof is given for two cases. 
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Case 1: uVuu pss =≤ ,max  

� Filtered Error Bound 
Selecting the Lyapunov function candidate RV ∈  as 

given in [16] 

WW
xg

rV T ~~
2
1

)(2
1

2
−Γ+=       (25) 

Differentiating V  gives 

WW
xg
rxg

xg
rrV T &&&& ~~

)(2
)(

)(
1

2

2
−Γ+−=      (26) 

Substituting the error dynamics (21) into (26) gives 

)(
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)(2
)(( 12
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rdrexrWWr
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xgKV T

v ++Φ−Γ++−= − ε&&&

 (27) 

Substituting (23) into (27) gives 
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2
( 2

2 xg
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g
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m

dM
v ++−+−−= εα&  (28) 

Rewriting (28) as follows 
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(29) 

According to (24), the bound of the filtered error can be 
expressed as (30). Because if (30) is not satisfied, then V&  
will be negative, thus, the filter will remain in the bound 
given in (30).  

2

2
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++
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εα
      (30) 

� Weight Estimation Error Bound 

Choosing the Lyapunov function the same as (25), now 
reevaluate V&   

]~~[

)(
]~~~[

max
22

2

α

ε
α

εα

m

M
N

TT

g
d

WWWrKr

xg
rdrWWWWrKrV

+
−−−−≤

+−+−+−=&

   (31) 

It can be seen that 0<V&  as long as 

0~~
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2
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+
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α

ε
m

M
N g

d

WWW . Similar to (30), bound of 

the weights estimation error is given by 
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≤     (32) 

Case 2: )(, maxmax usignuVuu pss =>   

Defining uVu pss −=Δ  , with uΔ  satisfying 

maxuu Δ≤Δ . Substituting uuVpss Δ+=  into (16), 

similarly, gives 

uxgdxgexWxgrxgKr T
v Δ+++Φ−−= )()(),(~)()( ε&

   (33) 

� Filtered Error Bound 

Choosing the Lyapunov function candidate the same as 
(25) and substituting (33) into (27) results in 
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    (34) 

According to (24) and (34), the bound of the filtered error 
can be expressed as (35). 
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� Weight Estimation Error Bound 

Similar to case 1, the weight estimation bound is given by 

2

)(4
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2

maxmax α

ε u
g
d

WW
W

m

M
N Δ++

++
≤    (36) 

Remark 1: In the adaptive control literature, the 
unboundedness of parameter estimates when persistence of 
excitation (PE) fails to hold is known as "parameter drift". 
This phenomenon has been referred to as "weight 
overtraining" in the NN literature. The PE condition ensures 
that parameter drift does not occur. However, it is difficult to 
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verify or guarantee the PE condition. Hence this theorem 
relaxes the PE condition [12]. 

Remark 2: The weights of the hidden layer are randomly 
chosen initially between 0 and 1 and fixed, therefore, not 
adapted. The initial weights of the output layer are just set to 
zero and then adapted online according to (23). There is no 
preliminary off-line learning phase, and stability will be 
provided by the outer tracking loop until the NN learns. This 
is a significant improvement over other NN control 
techniques where one must find some initial stabilizing 
weights, generally a difficult task for complex nonlinear 
systems over a wide range of operating conditions. 

Remark 4: A single NN is used to approximate both 
nonlinearities of )(xf  and )(xg  with an expression shown 
in (18), avoiding the use of two neural networks to 
approximate )(xf  and )(xg  separately. This results in a 
well defined compact controller structure. 

Remark 5: According to (35) and (36), it can be seen that this 
is a local stability result because of the bounded control 
input. It can also be seen from these equations that the error 
bounds are proportional to ∆umax. Larger umax will result in a 
larger error bound. However, the tracking error bound can be 
made arbitrarily small by increasing Kv [17]. 

V. OPTIMAL CPSS PARAMETERS WITH PARTICLE SWARM 
OPTIMIZATION 

Fig. 4 shows the typical block diagram of a CPSS 
recommended by IEEE [18]. Usually the parameters of the 
two lead lag compensator blocks are the same (T1= T3, T2= 
T4), thus the tunable parameters of CPSS are T1, T2, T5, T6, 
and Kpss. To have the CPSS provide good damping over wide 
operating conditions, these parameters need to be fine tuned 
in response to different kinds of disturbances, which is a 
time-consuming job. To compare the proposed NN 
controller design with the best possible performance of 
CPSS, particle swarm optimization is used in this paper to find 
the best parameters for CPSS. 
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Fig. 4. Configuration of CPSS suggested by IEEE Std 421.5 

PSO is one of the recent evolutionary computation techniques. 
Like the other evolutionary computation techniques, PSO is a 
population-based search algorithm and is initialized with a 
population of random solutions, called particles. Unlike in the 
other evolutionary computation techniques, each particle in the 
PSO is also associated with a velocity. Particles fly through the 
search space with velocities which are dynamically adjusted 
according to their historical behaviors. Therefore, the particles 
have a tendency to fly towards better and better solutions over 
the course of search process [19].  

The PSO algorithm is simple in concept, easy to implement 

and computational efficient. The PSO algorithm used in this 
paper is described as below: 

The velocity of a particle in the dimension d is updated is as 
follows: 

)xp(.)(randc)xp(.)(randcwvv idgd22idid11idid −+−+=  (37) 

The position of a particle in the dimension d is updated as 
follows: 

ididid vxx +=         (38) 
where w, c1, and c2 are the inertia weight, cognitive acceleration 
and social acceleration constants respectively, and rand1(.) and 
rand2(.) are two random functions in the range of [0, 1]; xi=(xi1, 
xi1,…, xid) represents the ith particle; pi=(pi1, pi2,…,pid) 
represents the best previous position (the position giving the best 
fitness value - pbest) of the ith particle; pg represents the best 
particle among all the particles in the population (gbest); vi=(vi1, 
vi2,…, viD) represents the velocity of the particle i [19]. 

Equation (37) consists of three parts. The first part is the 
momentum part. The velocity can’t be changed abruptly. It is 
changed from the current velocity. The second part is the 
“cognitive” part which is learned from its own experience. The 
third part is the “social” part which is learned from group 
experience [19]. 

For the optimization of CPSS, there are five parameters, 
thus the dimension of xi is 5. The range of the five parameters 
are as follows, ]11.0[1 ∈T , ]1.001.0[2 ∈T , ]101[5 ∈T , 

]01.0100.0[6 ∈T , and ]1.010.0[∈PSSK . the population 
size is chosen to be 10. The values for the positive constant w, 
c1, and c2 are 0.8, 2, and 2 respectively. 

To evaluate a particle (a vector of CPSS parameters), the 
system is simulated using the set of parameters for some kind 
of fault, and then the cost is calculated based on the sampled 
speed deviation of the generator. The cost function (fitness 
function) is defined as (39).  

∑
=

Δ⋅=
n

i

iitt
1

)()(cos ω        (39) 

where n is the number of samples, t(i) is the time of the ith 
sample data, and 

sii ωωω −=Δ )()(  is the speed deviation at 
time t(i). The multiplication of t(i) and )(iωΔ  will give 

faster damping a lower cost. 
The procedure for implementing the above PSO is as 

follows: 

1. Initialize a population of particles with random positions 
and velocities in d dimensions of the problem space. 

2. For each particle, evaluate the fitness/cost function. 
3. Compare particle’s fitness evaluation with its pbest. If 

current value is better than pbest, then set pbest equal to 
the current value, and pi equals to the current location xi 
in d-dimensional space. 

4. Identify the particle in the neighborhood with the best 
success so far, and assign its index to the variable pg.  

5. Update the velocity and position of the particle according 
to (37) and (38). 

6. Repeat step 2 until a maximum number of iterations, 100 
here. 
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In the following section, the PSO-optimized CPSS is 
compared with the new NN controller design under three 
kinds of operating conditions, which are  

Case 1, a 200ms 3-phase short circuit fault at the infinite 
bus happens at 0.5s and cleared at 0.7s. 

Case 2, the operating point changes from Pg=0.5p.u. and 
Qg=0.1p.u. to Pg=0.7p.u. and Qg=0.2p.u. at 0.5s. 

Case 3, the impedance of the transmission line between the 
generator and infinite buses changes from Re=0.025 
and Xep=0.085 to Re=0.05 and Xep=0.17 at 0.5s. 

Fig. 5 shows an example of the PSO optimization process 
for Case 1. Table II shows the costs before and after 
optimization, and Table III shows the obtained optimal sets 
of CPSS parameters. In TABLE II and III, “Cases 1~3” 
stands for the optimizations corresponding to the above three 
Cases, and “Case All” means the optimization considers all 
of the three cases and the cost function is defined as (40). 

∑
=

=
3

1
coscos

i
ii tkt         (40) 

where ki is a positive constant, in this paper, k1=k2=k3=1. 

 

 
Fig. 5. Optimization process of the CPSS parameters 

TABLE II 
COMPARISON OF INITIAL COST AND OPTIMIZED COST 

 Case 1 Case 2 Case 3 Case All 

Initial cost 160.0311 20.7818 28.6531 209.4660 
Final cost 73.8930 4.4444 5.8595 95.8161 

TABLE III 
OPTIMAL CPSS PARAMETERS TUNED BY PSO 

 KPSS T1 T2 T3 T4 T5 T6 
Case 1 0.0403 0.7827 0.0651 0.7827 0.0651 5.7049 0.0069
Case 2 0.0396 0.5226 0.0590 0.5226 0.0590 2.8453 0.0048
Case 3 0.0418 0.5047 0.0592 0.5047 0.0592 6.9329 0.0024

Case All 0.0541 0.5005 0.0521 0.5005 0.0521 5.5811 0.0080

From Table III, it can be seen that the three set of CPSS 
parameters optimized for three different operating conditions 
are different. Simulation studies also show that a CPSS 
optimized for some operating conditions may not work very 
well for other operating conditions. This is the reason why 
the tuning of CPSS parameters is so difficult. Because the 

definition of its cost function, “Case All” can provide good 
performance for all of the three operating conditions. But the 
performance for some specific operating condition will not 
be the best. This fact can be observed in Section VI. 

VI. SIMULATION RESULTS 

The neural network has 10 inputs corresponding to the 
systems states, error dynamics and bias respectively. 

T
rfdqd VEEE ]1,,,,,,,,,[ '' ωωωωδ &&&&&& ΔΔΔ     (41) 

The number of hidden neurons is empirically selected to 
be 10 based on controller performance. The weights of the 
input layers are initially set to random numbers between 0 
and 1 and held fixed thereafter. The activation function of 
the hidden layer is hyperbolic tangent function. The initial 
weight of the output layer W is set to zero and updated over 
time. Other parameters used are as follows: Kv=0.1, 
Λ=[10000, 4000, 600, 40]T, umax=0.5, Γ=5, and α=5.  

The comparisons of simulation results for the three cases 
are shown in Figs 6~8, Figs 9~11, and Figs 12~14 
respectively. In these figure, the “magenta dotted line” 
represents the simulation results without stabilizing control – 
“no cpss”, the “blue dash-dot line” represents the simulation 
results for CPSS optimized only for one of the three cases – 
“cpss i”, the “red dashed line” represents the simulations 
results for CPSS optimized for all of the three cases – “cpss 
all”, and “black solid line” for the proposed NN based power 
system stabilizer – “nn pss”. 

A. Comparison of system response for Case 1 

 
Fig. 6. Rotor angle response to 200ms 3-phase short circuit fault (P=0.5pu, 
Q=0.1pu) 
 

 
Fig. 7. Speed deviation response to 200ms 3-phase short circuit fault 
(P=0.5pu, Q=0.1pu) 
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Fig. 8. Terminal voltage responses to 200ms 3-phase short circuit fault 
(P=0.5pu, Q=0.1pu) 

B. Comparison of system response for Case 2 

 
Fig. 9. Rotor angle responses to a change of operating points (P=0.5pu, 
Q=0.1pu to P=0.7pu, Q=0.2pu). 

 

 
Fig. 10. Speed deviation responses to a change of operating points 
(P=0.5pu, Q=0.1pu to P=0.7pu, Q=0.2pu). 

 
Fig. 11. Terminal voltage responses to a change of operating points 
(P=0.5pu, Q=0.1pu to P=0.7pu, Q=0.2pu). 

C. Comparison of system response for Case 3 

 
Fig. 12. Rotor angle responses to a change in line impedance connected to 
the infinite bus from Re=0.025, Xep=0.085 to Re=0.05, Xep=0.17. 

 

 
Fig. 13. Speed deviation response to a change in the line impedance 
connected to the infinite bus from Re=0.025, Xep=0.085toRe=0.05,Xep=0.17. 

 

 

Fig. 14. Terminal voltage response to a change in line impedance connected 
to the infinite bus from Re=0.025, Xep=0.085 to Re=0.05, Xep=0.17. 

From the simulation results, it can be seen that the 
proposed controller damps out the oscillations very well. It 
also can be seen that the neural network controller can adapt 
to changes in the operating condition in a fast manner despite 
no offline training was carried out. 

VII. CONCLUSION 

The design of stabilizing controller is a necessary for 
power systems. This paper proposed a stabilizing neural 
network controller for a single machine infinite bus power 
system. The weight updating rule does not require the 
persistently excitation condition and can guarantee the 
stability of the closed loop system when the control signal is 
subject to magnitude constraints. The proposed NN 
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controller performance is compared with that PSO optimized 
CPSS. Simulations under different operating conditions and 
disturbances demonstrate the effectiveness of the proposed 
controller. The proposed control scheme can also be applied 
to control similar class of nonlinear systems. Future research 
will include the design of stable decentralized controllers for 
multi-machine power systems. 
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APPENDIX 

A. Definition of the constants in Equations (7) ~ (12): 
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