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ABSTRACT 

In this paper, a hierarchial neural network architecture for forecasting time series is presented. 7he architecture 
is ampmd of two hierarchial CGVclr using a maximum likelihood competitive learning algorithm. lhefirsr Lcvd of 
the systan hpr thtcc cqwrts eiach using ba&"gation and a gating network to partition the input space in order 
to map the input wctors to the output wctors. llhc second lewl of the hiearchial network has an expert using Fuuy 
ARTfot producing the comct trend d n g j b m  thefirst level. ?%e experiments show that the resulting network 
is qmbk offmcmting the changes in the input and identifling the t r e h  correctly, 

INTRODUCTION 

FOfWStUl ' g, an industrial activity and an inherent part of business has been done mainly by intuitive 
methods until the past few decades. An attempt to use scientific methods as an aid to make business decisions is 
an essential part of the present revolution in this field. The four steps involved in applying scientitic methods to 
forecasting problems, data collection, data reduction, model construction and model extrapolation[ 11 are the building 
blocks for statistical forecastiog. 

Thm am many problems associated with the construction of models to be used in forecasting. Most of the 
time, it is not easy, if not impossible, to find a model which can fit to the situation with a minimum error. 
Generally, the model will have a form of 

x , = a  + p t + E t  (1) 

where a and p are constants, fl  being the slope of the line and a the intercept with the x-axis, and e, is a random 
variable generally having a normal probability distribution. This is a standard regression model with time series 
data. The unpredicted behavior of the input data might bring the problem of model fitting, forcing the model to 
contain nonlinearity. Also in the extrapolation step, it is assumed that the situation is stable. The chances of a 
structure remaining stable decmase with the consideration of longer periods. Another problem is that even there is 
a very good model for the data which has given excellent forecasts, there is no guarantee that this model will 
continue to give good fomxuts in the future. 

The model described above is essentially deterministic in the sense that the extrapolation follows a linear 
trend for a given input. It has a deterministic part which describes the linear relation without variance and a 
stochastic part having some random variation. In a more realistic case, we will have 

Such a model is an example of a s t o h t i c  model. This is still a linear model. Problems of estimating parameters 
and f o d g  tend to be simple for linear models. When nonlinear models are used, there will be extrapolation 
problems, so it will be difficult to make estimation and forecasting. 

Another problem is the occurance of the unpredictable changes in the input pattem, which makes it  
impossible for a simple model to follow. In this case, a local model, rather than a global model, can be used for 
the system. There is no difference in the mathematical or statistical formulation of these two types of model, global 
or local. But often it is the case that, using models as local approximations leads to better forecasts than are obtained 
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from their global use. 
Previous research in the area of neural networks for curve fitting(21, simulating a stochastic function for 

multiple linear regreasion[3], forecasting power system peak loads[4] and approximation of polynomials[5] indicate 
the uses of artificial neural networks in this field. 

In this paper, situations with one time series variable to be forecasted (denoted YJ, and one or more time 
series variables (denoted X,,,,Xz,,...) that might help to forecast the future movements or explain the past movements 
of Y, are considered. So Y, will be called the output, and Xi,,'s will be called the inputs. Inputs can be stochastic 
or deterministic. It is also assumed that observations of the various series occur at equally spaced time intervals, 
and while the output may be affected by the inputs, the inputs are not affected by the output. This type of structure 
is deiined by single-equarion models[6]. 

Due to the potential problems in estimating a simple regression model with time series data, a new approach 
using artificial neural networks is presented. In this case, instead of using a simple model between input and output, 
a hierarchial neural network architecture is used for the forecasting and the trend analysis. The details of the 
proposed architecture and the algorithms used are explained in the following sections. 

Hierarchial Neural Networks 
Hierarchial Neural Networks (presented by 

Jacobs, Jordan, Nowlan & Hinton, 1991)[7] is a 
modular neural network architecture in which a 
number of "expm networks" compete to learn a set of 
training data. As a result of this competition, the 
architecture adaptively divides the input space into 
regions, and learns separate associate mappings within 
each region[8]. The appropriate internal structure of 
the expert modules consist of a neural network 
architecture such as backpropagation and a gating 
network to classify the experts which model the input- 
output functions within their respective regions. The 
overall architecture with two experts for one 
hierarchial level is shown in Figure 1. 

As seen from Figure 1, the inputs for the 
expert networks, and the gating network are the same. 
Inside the experts, the inputs are passed through a 
backpropagation network, thereby producing an output 
vector yi, where i denotes the expert number. Then 
these outputs are crossed with the gating network 

Network1 Network2 m m  

Y = 2  giy* 
ill 

'igure 1 A simple hierarchial neural network 

outputs, &d summed forming the final network output. The scenario can be described by the following equatiorl. 
where 
y = output vector of the architecture 

g, = activation of i* output unit of gating network 
n = number of expert networks 

n 

Y = g,Yi ( 3 )  y, = output vector of i* expert network i=l 

Expert and gating networks are trained simultaneously using the backpropagation algorithm to maximize 
the cost function 

where 
y* = target output vector 
yi = output vector of i* expert network 
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g1 = activation of P output unit of gating network 
n = number of expert networks 

The gating nehvork, itself is composed of a simple three layer backpropagation algorithm, but in the output 
layer a sopmaX function is used in the nodes (Bridle, 1989)[9]. 

The softmpx function is normalized in the sense that 

In the hidden layer of the gating network, and in the hidden and output layer of expert networks, sigmoidal 
output function is used. The choice of the functions and the number of layers in the system depends on the particular 
application used. 

. .  . . & 
The cost function J in equation (4) is a log mixture density. Therefore maximization of J is a maximum 

likelihood estimation. When the training patterns are generated by different regressive processes, the output is 
selected with probability g, where g, is the conditional priori probability that the i"' expert network generated the 
current training pattern. 

The posterior probability associated with the i"' expert network is defined as 

Differentiating the cost function J equation (4) with respect to yi gives 

a? - = h,@* -YJ ay, 
This is used inside the error term in the expert network outputs, so the resulting error is backpropagated to the 
hidden layers, and the weights are updated according to that. Equation (8) implies that expert network's weights 
is updated in proportion to the posterior probability that it generated the current training pattem. 

Differentiating the cost with respect to Si, where Si is the weighted sum of the inputs to the gating 
network's iq output unit, gives 

This implies that, during training the prior gi moves toward the posterior probability that the i"' expert network 
generated the current training pattern. 

This type of training results in a maximum likelihood competitive leaming[lO]. All output nodes are 
competing to win the pattern, but in addition to the winner, all of the losers are also updated in this type of laming. 
This will be a "sofr" competition, all competitors are updated but the amount of update is proportional to each 
competitor's performance. The training finishes when the sum of the errors in the output of the networks is reduced 

3186 



to an acceptable level. 

Fuzw ART 
Fuzzy ART model (introduced by Carpenter, Grossberg and Rosen)[ 111 is a modification of ART neural 

network families which can categorize input patterns. ART1 (Carpenter and Grossberg, 1987) categorizes binary 
inputs, whereas ART2 (Carpenter and Grossberg, 1987) can categorize both binary and analog input patterns. 

Fuzzy ART can classify both analog and binary input patterns, and it is different from ART 2 in the sense 
that it replaces of the intersection operator (n) in ART 2 by the min operator (A) used in the fuzzy set theory. Due 
to the fuzziness in the systems, the output categories will overlap, and the amount of overlapping can be controlled 
by a dimensionless parameter called vigilance (p). The general algorithm for a Fuzzy ART network is as follows. 

Input for the Fuzzy ART is an Mdimensional vector (II, ... ,IM), where each component Ii is in the interval 
[0,1]. At a preprocessing stage the input vectors are normalized. A normalization procedure called conrplmcvir 
coding is generally used in Fuzzy ART networks. Complement coding creates a complement of the input vector, 
and doubles the input vector size by adding the complement vector right after the input vector. It is complemented 
in such a way that the summation of any element in the input vector and it's complement is M. 

If there are N categories and each category j corresponds to a vector yj = (Wjl, ..., WjM) of adaptive 
weights, the Fuzzy ART Long Term Memory (LTM) weight matrix will be an (NxM) matrix, which is initially 

w,l = ... = = 1 

When a category j is selected, the corresponding row in the LTM matrix (Wj) will be updated according to the input 
vector. 

The category j is selected according to the choice function Tj which is defined by 

where 
I is the complement coded input vector of size 2M 
Wj is thej, row of the LTM weight matrix 
a is the choice parameter 
A is the fuzzy AND operator which is 

and I x I is defined by 

M 

1x1 = c 1x11 
i=l 

When choice function is applied for all the categories, the Tj which has the maximum value is chosen. If more than 
one Tj is maximal, the category j with the smallest index is chosen. 

The chosen category is passed through the match function, and if the output is greater than the vigilance 
parameter p,  the resonunce occurs. This is shown below : 

In this case the weight matrix is updated. If the above criteria does not hold mismatch reset occurs, and the selected 
Tj is set to -1 and stays until there is an update in the weight matrix. A new maximum is chosen using y n  ( I .  13). 
The search continues until the chosen j satisfies equation (14). 
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Whea resonance occurs, the jth row of the weight matrix is updated as follows : 

where 
f l  is the lervning rate. 

will cover the fuzzy unit cube. 

For frst l h g  /3 is set to 1. 
According to the choices of vigilance parameter and the number of categories, the ouput category space 

IMPLEMENTATION 

The system used to forecast input trend is composed of a two level hierarchal network. In the tirst level, 
a three expert rad a gating network system is used. All of the four networks use backpropagation. The outputs of 
the experts are c d  with the gathg network outputs, then summed and the resulting vector is the output for the 
first layer. 

Each expert and the gating network has 5 input neurons, 50 hidden layer neurons, and 3 output neurons. 
The input to the system is coming from a file in which the trend graph is stored. The input is obtained by putting 
a 5x5 character size pichue on the graph and converting the picture into normalized input points. 5 input points are 
used for cathching the trend for the. particular time (window). The input points are normalized before being entered 
to the system. The second set of data points are obtained by moving the window one character size to the right 
(increase h time), and applying the process again. By this method, it is possible to convert any graph into input data 
for the system. 

In the expert networks sigmoidal function is used in the neurons. However, in the output layer of the gating 
ndwork, the softmax function is used. There are 3 ouput neurons in each expert. So each expert will product: an 
output vector having 3 elements. After crossed with gating network outputs and summed, the final output (y) for 
the first hierarchial level is found. It is a 3element vector. The first element in the output will be high when there 
is a decreasing tread, the second will be high when the trend is stable and the third element will be high when there 
is an increasing trend. 45 data sets are used for training the first level (backpropagation). The training is continued 

I 
X 

until the error is dropped below 0.02. 
After backpropagation is trained, the fuzzy 

ART categorization starts. The output vectors of the 45 
data training sets are first fuzzified and then inserted 
into the fuzzy ART network. The system generates 3 
categories, and puts the inputs into these categories. 
With trial and error, it is found that choosing a 
vigilance parameter of 0.5 results the correct choice 
for categories. The output is defuzzified again. The 
overall two layer system is shown in Figure 2. (The 
fuzzification and defuzzification sections are not shown 
explicitly in the figure. They are inside the Fuzzy Art 
network. 

When the training is finished, any test data 
can be sent to the system. A test data is crated for 
this purpose. A particular moment during the test is 
shown in Figure 3. The input graph, the data window 
for that particular time and the final output can be seen 
in the same figure. 

The results indicate that the implementation is 
capable of catching the trend at that moment, so i t  can 

guess the next data. When the input size gets bigger, or there are more than one time series, it will be necessary 
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to use more hidden neurons, another hidden layer or more 
experts. 

The reason for using fuzzy Art in connection with 
the backpropagation is to make it easier for the system to 
differentiate between similar inputs. Since backpropagation 
is a good generalizer, it is quite possible that when two 
similar input pattems are presented, they will generate the 
same output even if the desired outputs are different. 
However, when the first level output is feeded to the fuzzy 
Art, it will categorize them correctly. 

Most of the time, the gating network outputs 
choose one of the experts for producing the output. But 
when the trend is fluctuating or unpredictable at that 
moment, the gating network can choose two experts to 
produce the outputs, but still there is a difference in the 

x . :, .; . .r  .x .  . . . . 

. , . ._c,,..._ ' _ d .  1 . . . . . x .  . 

&os. This is because of the fact that the trend is generally closed to one end, so the expert producing this kind 
of trend will be given more chance by the gating network. 

CONCLUSION 

In this paper, a hierarchial neural network for time series forecasting is presented. The network is capable 
of recognizing different trends in the input data. The existing system can be modified to predict more than one series 
at a time, or more complex trends, or larger input data size. The architecture used can be extended for higher 
hierarchial levels. 

Hierarchial neural networks can be used in these type of areas where the input pattems are not certain and 
the input-output relation is not very easy to implement. By using both backpropagation and fuzzy Art in this 
implementation, specialization problem due to the similar inputs is solved without losing the generalization. 
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