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Numerous missions planned for the next decade are
likely to target a handful of small sites of interest on
the Moon’s surface, creating risks of crowding and
interference at these locations. The Moon presents
finite and scarce areas with rare topography or
concentrations of resources of special value. Locations
of interest to science, notably for astronomy, include
the Peaks of Eternal Light, the coldest of the cold
traps and smooth areas on the far side. Regions
richest in physical resources could also be uniquely
suited to settlement and commerce. Such sites of
interest are both few and small. Typically, there are
fewer than ten key sites of each type, each site
spanning a few kilometres across. We survey the
implications for different kinds of mission and find
that the diverse actors pursuing incompatible ends
at these sites could soon crowd and interfere with
each other, leaving almost all actors worse off. Without
proactive measures to prevent these outcomes, lunar
actors are likely to experience significant losses of
opportunity. We highlight the legal, policy and ethical
ramifications. Insights from research on comparable
sites on Earth present a path toward managing lunar
crowding and interference grounded in ethical and
practical near-term considerations.
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1. Introduction
The resources of space are vast, but they are far from uniformly distributed. As on Earth,
not every mountain is a gold mine. Strategically important resources are often concentrated.
Lunar resources are a case in point. There are, for example, just a few optimal sites for locating
astronomical telescopes on the Moon (see §2), and there are competing potential uses for these
sites. Hence, the concentration of resources on the Moon gives rise to a number of practical
and near-term issues that fall into the territory of ELSI, i.e. problems of Ethics, Law and Societal
Impact. This grouping of issues was first made in the context of the Human Genome Project in
1990 [1]. Since then, the terminology has been applied to other contexts, including the United
States Defense Advanced Research Projects Agency (DARPA) programs on direct machine–
human interfacing [2]. We adopt the terminology here for space resources. What follows will set
out a number of exemplary cases where ELSI issues are in play. The impact of resource disputes
on science, particularly astronomy, could be significant. This paper will also generalize our earlier
work on the Peaks of Eternal Light [3] to other concentrated lunar resources and will contribute to
the conceptualization of contested space resources more generally, e.g. near-Earth asteroids [4,5].

Over the past two decades, the lunar surface and sub-surface have been mapped in increasing
detail by a succession of lunar-orbiting spacecraft [6]. While it was once thought that ‘most
of the [lunar] resources are evenly distributed’ [7], we now know better. The Moon is far from
the undifferentiated ‘magnificent desolation’ so strikingly described by Buzz Aldrin during
the historic 1969 Apollo 11 moon landing. Some small areas are far more attractive mission
destinations than the rest of the lunar surface.

Over the next half decade, at least five sovereign nations have credible plans to land on the
Moon (China, India-Japan, Russia, USA). In addition, several commercial companies (including
PTScientists, Moon Express, Astrobotic, Masten, ispace), and the non-profit SpaceIL, have stated
intentions to do so. The US National Aeronautics and Space Administration (NASA) plans to use
one or more commercial companies to provide transport for its payloads to the lunar surface [8].
Table 1 lists recent and announced soft landing attempts. From this table, it can be seen that the
choice of landing sites is diversifying, moving away from the Apollo landing sites near to the
lunar equator. There is also some pooling together in the newer proposed landing sites, e.g. in
the South Polar region. Choices have been influenced by the possible presence of the strategic
resources detailed in the next section. Even though many of these efforts could be delayed or
could fail, either technically (like Beeresheet and Vikram), or financially (as PTScientists nearly
did; they were taken over by the Zeitfracht Group and are now Planetary Transportation Systems
[9]), there are enough attempts to make it likely that some will succeed. Indeed, at the time of
writing, Chang’e 4 has already done so. In the absence of comprehensive failure or cancellation,
and within a short period of time, projected landing sites will become actual landing sites with a
pattern of preference for some areas over others.

2. Concentrated lunar resources
A wave of lunar exploration missions since NASA’s 1994 Clementine mission has significantly
improved our overall understanding of lunar resources. Detailed maps, mostly at 1 km–100 km
resolution, of the varying lunar composition, gravity field and temperature have been produced
by Clementine (launched 1994), Lunar Prospector (1998), Lunar Reconnaissance Orbiter (LRO, 2009 -
present), Chandrayaan-1 (2008–2009), Kaguya (2009), Gravity Recovery and Interior Laboratory
(GRAIL, 2011–2012), and other missions. However, the sites on the Moon likely to attract the
most attention for future missions are confined to a number of areas on scales of mere kilometres.
These account for a tiny fraction of the Moon’s total surface area of 38 million sq. km. They are
small concentrations within a total area that is equivalent to around 1.5 times the size of North
America. These sites of interest can be organized into three main types, each presenting distinct
implications for crowding and interference (table 2). The various sites also present different
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Table 1. Recent and Imminent Lunar Lander Missions.

organization primary country Lander name earliest landing landing site; URL

CNSA China Chang’e 4

Chang’e 5

Chang’e 7

2019, landed Jan 3

2020

2024

Von Karman crater, on Far side near S. Pole; https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?
id=2018--103A

Mons Rumker, Oceanus Procellarum https://nssdc.gsfc.nasa.gov/planetary/lunar/cnsa_moon_future.
html

S. Pole. https://spacenews.com/china-is-moving-ahead-with-lunar-south-pole-and-near-earth-
asteroid-missions/



ISRO India Chandrayaan-2 2019, failed Sep 6 S. Pole region, near crater Manzinus C. https://www.isro.gov.in/gslv-f10-chandrayaan-2-mission


JAXA Japan Selene 2 cancelled https://www.asianscientist.com/2012/07/topnews/japan-announces-selene-2-lunar-mission-2017/


Roscosmos & ESA Russia Luna 25

Luna 27

2021

2023

Near S. Pole at Boguslavsky crater; http://www.russianspaceweb.com/luna_glob_lander.html
S. Pole-Aitken Basin; https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/

Exploration/Luna


NASA USA Astrobotic, IntuitiveMachines,
Orbit Beyond.

2021 Various; https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-
for-artemis-program



Planetary Transportation
Systems

Germany ALINA TBA Near Apollo 17?; https://ptscientists.com



ispace Japan HAKUTO-R 2022 Near Lacus Mortis pit?; https://ispace-inc.com


Moon Express USA Lunar Scout http://www.moonexpress.com/expeditions/


Astrobotic USA Peregrine Griffin 2021 Lacus Mortis; then user driven; https://www.astrobotic.com; https://www.nasa.gov/press-release/
nasa-selects-first-commercial-moon-landing-services-for-artemis-program



Masten USA XL-1 2021 TBA; https://www.masten.aero/lunar-vehicles


SpaceIL Israel Beeresheet 2019, failed Apr 11 Mare Serenitatis; https://www.timesofisrael.com/in-first-israeli-spacecraft-set-for-trip-to-the-moon/


Intuitive Machines USA TBA 2021 Oceanus Procellarum; https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-
landing-services-for-artemis-program



Orbit Beyond USA TBA 2020 Mare Imbrium; https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-
services-for-artemis-program



https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2018{--}103A
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2018{--}103A
https://nssdc.gsfc.nasa.gov/planetary/lunar/cnsa_moon_future.html
https://nssdc.gsfc.nasa.gov/planetary/lunar/cnsa_moon_future.html
https://spacenews.com/china-is-moving-ahead-with-lunar-south-pole-and-near-earth-asteroid-missions/
https://spacenews.com/china-is-moving-ahead-with-lunar-south-pole-and-near-earth-asteroid-missions/
https://www.isro.gov.in/gslv-f10-chandrayaan-2-mission
https://www.asianscientist.com/2012/07/topnews/japan-announces-selene-2-lunar-mission-2017/
http://www.russianspaceweb.com/luna_glob_lander.html
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Luna
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Luna
https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-for-artemis-program
https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-for-artemis-program
https://ptscientists.com
https://ispace-inc.com
http://www.moonexpress.com/expeditions/
https://www.astrobotic.com
https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-for-artemis-program
https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-for-artemis-program
https://www.masten.aero/lunar-vehicles
https://www.timesofisrael.com/in-first-israeli-spacecraft-set-for-trip-to-the-moon/
https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-for-artemis-program
https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-for-artemis-program
https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-for-artemis-program
https://www.nasa.gov/press-release/nasa-selects-first-commercial-moon-landing-services-for-artemis-program
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Table 2. Typology of Concentrated Lunar Resources.

concentrated lunar resources

features materials cultural sites

topographical features special locations

Peaks of Eternal Light 33.1E, 0N thorium/uranium Apollo landing sites
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cold traps Sinus Medii water other historical sites
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coldest traps Lipskiy Crater rare earth elements (REEs)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

far-side smooth terrain areas helium-3 (3He)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pits iron
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

forms of value to lunar users pursuing distinct types of mission. We discuss their value and
implications for the main types of mission currently envisioned to the lunar surface: scientific,
human-exploration and commercial missions [5].

(a) Lunar features
The Peaks of Eternal Light are regions near the lunar poles, which are almost continuously
illuminated by the Sun (and so their informal name is somewhat inaccurate), and cover only
about a few sq. km [10–14]. From these peaks, the Sun is seen to move around the horizon,
bobbing up and down slightly over the course of a year. (Unlike the Earth, which is tilted by 23½
degrees to its solar orbit plane, the Moon is tilted by just 1½ degrees; hence there are no seasons
on the Moon.) From a sufficiently high peak, the horizon is low enough that the Sun is visible
even when it is at its lowest point. Local topography limits truly uninterrupted sunlight to a few
months at a time [13]. These Peaks are valuable for both the collection of almost continuous solar
power, and as locations where the approximately 300-degrees-Celsius day-to-night temperature
swings of the typical equatorial lunar surface location [15] are mostly avoided [14]. These features
make the Peaks attractive locations for a wide range of missions, including any requiring a stable
power source. Solar panels would have to rotate, or be made roughly cylindrical, but they could
collect power at all times (with the obvious exception of any eclipse). The Peaks also allow nearly
continuous observation of the Sun e.g. with a radio telescope [3]. Since the Sun is always within
a few degrees of the horizon at these Peaks then installing solar power-collecting towers would
cast long shadows that could prevent power being collected at other locations, especially if they
are tall. Such shadowing is an obvious source of potential disputes. Kilometre-high solar power
towers may be quite feasible on the Moon due to the low gravity, lack of atmosphere and seismic
quietude. In this case, more areas will provide ‘eternal light’ [14].

Cold traps in the permanently dark craters at the poles are thought to contain volatile materials
from the early solar system, including water [16]. The largest of these cold traps are about 50 km
in diameter (figure 1, [18]). The cold traps are the floors of craters whose rims may be Peaks of
Eternal Light. However, the traps cover considerably larger areas than the Peaks of Eternal Light.
The long shadows of these rims hit high on the crater walls and have left the floors in almost
total darkness for up to 3.5 billion years [18]. Illuminated only by starlight and reflections off the
nearby rims, the traps remain extremely cold (below −180 C, or no more than 90 degrees above
absolute zero). These are temperatures where oxygen liquifies. (Not that liquid oxygen would be
stable in these cold traps.) Surface ice is stable even in a vacuum below −163 C and is detected
[16]. Other water may be present below the surface [17]. Not all cold traps show signs of water
[17]. Surface ice appears to be patchy in the cold traps, as ice signatures are only seen in 3.5%
of cold traps [16,19]. Estimates suggest as much as a billion tons of water may be in these traps
[20], though this number is highly uncertain [21]. Higher resolution neutron mapping is really
needed to obtain an accurate estimate. From one point of view, this is a lot, enough to launch
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Figure 1. Lunar cold traps at the South pole [17]. The four white-circled regions contain the coldest terrain with average annual
near-surface temperatures of 25–50 K (i.e. above absolute zero). They are about 50 km across. Reproduced with the permission
of David Paige. (Online version in colour.)

the Shuttle over a million times or to supply a city of a million for a thousand years, so long as
they adopt recycling as efficiently as on the International Space Station. From another viewpoint,
a billion tons is a small amount; the Hoover Dam holds back about 35 times as much water in
Lake Mead [22].

The coldest of the cold traps reach down to temperatures less than 50 degrees and as low as
25 degrees above absolute zero. They are of order 1 km in diameter (figure 1, [18]). At such
temperatures, oxygen is a solid. (Again, not that we expect to find solid oxygen in the coldest cold
traps.) If there are volatiles that are only retained at such low temperatures then these coldest traps
will be of special interest to scientists and possibly to commercial actors. The coldest traps will
also present unique opportunities for a range of other scientific missions. They may be uniquely
well-suited sites for far-infrared telescopes, readily keeping the telescope structure so cold that it
does not radiate at the same wavelengths (approx. 100 µm) at which astronomers want to observe
the sky. They may even help with the building of interferometers using ultra-cold atoms to test
fundamental physics and the nature of Dark Matter [23]. While ultra-cold atom physics require
much lower micro-degree temperatures [23], most of the power required is needed for the initial
cooling from room temperature tens of degrees above absolute zero. The coldest traps just may
then be a preferred place to build ultra-cold atom facilities on a far larger scale than on Earth or
in laboratories in free space.

Large areas of smooth terrain on the Far Side for the emplacement of a cosmology telescope
[24–26]. The lunar far side is shielded from terrestrial radio emission and so is a natural ‘radio-
quiet zone’ for a sensitive cosmology telescope. While there are many location options for initial
approximately 15 km sized radio arrays that can do great astronomy by imaging the largest
cosmological structures on a few arcminute scales [27], structures (or multipoles) that are 10
times smaller carry much additional information [28]. To image these smaller structures would
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Figure2. ImageofMareMoscoviensis (grey scale) from the JPLmoon trek tool [trek.nasa.gov]. The yellowbar shows a length of
250 km, suitable for a full-scale far-side radio telescope array. The colour overlay shows the concentration of 3He from Kim et al.
(2019) [29]. Concentrations of 3He in ppb are given in white. Reproduced with the permission of Kyeong Kim. (Online version in
colour.)

require an array some 150 km across. (The resolution of a telescope is given by the ratio of the
wavelength being studied to the diameter of the telescope. For the multi-meter wavelengths being
studied for cosmology, this demands a diameter of some 150 km.) However, the far side does
not have the extensive smooth terrain of the lunar near-side Maria. As a result, there are only
six areas large enough to incorporate the roughly 200 km diameter area needed for the ultimate
resolution (Mare Moscoviensis, Mendeleev, Mare Ingenii, Korolev, Apollo, Hertzsprung). This
size requirement comes from the need to provide sufficiently detailed images that structure in the
neutral hydrogen at times before any stars that had formed can be mapped on fine enough scales
to test cosmological models. In addition, such telescopes could distinguish foreground galaxies
from the earliest, and most distant, signals from the time before there were stars or galaxies.
This goal would translate into a requirement for a resolution of a few arcseconds. With so few
suitable locations for the full-size telescope array, conflicts with other potential uses are likely.
As an example, figure 2 shows an image of one of the most promising sites, Mare Moscoviensis.
Overlain is a map of 3He concentration from Kim et al. [29], showing that one of the few far-side
concentrations of 3He occurs within Moscoviensis. A far-side mining location is likely to cause
fewer objections as no mining ‘scar’ will be visible from Earth. If the use of these few locations
were pre-empted by other users—virtually all of which are likely to produce electromagnetic
interference making them useless for radio astronomy—astronomers would be unable to push to
these limits for a long time.

Lunar pits potentially offer access to radiation- and meteorite-protected environments that are
at a moderate, constant temperature, making them particularly interesting to human-exploration
or settlement missions. There are 221 known in the survey of Wagner and Robinson from 2014
[30]. There may be more pits near to the lunar poles, where the almost horizontal illumination
makes them hard to spot, although the volcanic flows from which they form are largely absent
there. The most valuable pits will be those that have significant overhangs or that lead to intact
(uncollapsed) lava tubes that can provide ready-made radiation protection. The evidence does
support their presence (e.g. at the Marius Hills in Oceanus Procellarum) [31]. However, they seem
to be rare. And only the subset of those pits that are readily accessed can make for good early use.
Any of these qualifying pits that also lie near to other resources will be especially valuable and
are likely to be few in number.

There are also a number of special locations that may offer advantages for future technologies
(mass drivers and space elevators) by providing possible ways to reduce the costs of lifting
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lunar resources into space [32]. These may close the business case for profitable mining and for
space infrastructure construction. Their utilization may be decades in the future, but they are
not inherently infeasible. Although they have no role in current mission planning, their future
use cannot simply be discounted. If lunar mining becomes a reality, then they are likely to be
given serious consideration, with prospective sites targeted as strategic well before the actual
development of the technologies in question.

33.1E, 0N, on the lunar equator, just west of crater Maskelyne A, is the optimal place to locate
a mass driver to the Earth–Moon L2 point. This precise location is mountainous, but about 20 km
distant are two suitably flat areas a few kilometres across [33].

Sinus Medii being on the equator at the prime meridian (0E, 0N) is the only location at which
a lunar elevator to the Earth–Moon Lagrange L1 point could be sited [32]. It would also be a
convenient location to install an antenna to receive microwave power beamed from a solar power
station at the Earth–Moon Lagrange L1 point, should such a technology become viable. Sinus
Medii is quite flat and about 287 km in diameter [34].

Lipskiy Crater (179.38E, 2.15S) is only approximately 70 km from the antipode to Sinus Medii
and so is a prime location to site a lunar elevator to the Earth–Moon L2 point [32]. It is 91 km in
diameter [35]. A smaller flattish region closer to the equator is another candidate.

(b) Lunar materials
Thorium- and uranium-rich regions could in principle be mined for radioactive fuel, though even the
‘high’ concentrations of thorium (approx. 10 ppm) on the Moon are low by terrestrial standards
[36]. Thorium and uranium are found together [36]. The highest concentrations lie in 34 regions
that are certainly less than 80 km across [36] and may be much smaller. Iron oxide (FeO) is
anticorrelated with the presence of thorium and can be mapped in finer detail [36]. In these
maps, the strongest minima, representing the richest thorium deposits, are only a few kilometres
across. The anticorrelation may not be a reliable measure though; improved direct measurements
of thorium are really needed.

Rare earth elements (REEs) are not actually rare on Earth, but they are not highly concentrated,
and their extraction is difficult and highly polluting. Their new-found importance for technology
gives a political and strategic value to having reliable supplies. The Moon contains a region of
enhanced REE concentrations in the ‘KREEP’ zone of the Oceanus Procellarum [37] (the right eye
of the ‘Man in the Moon’). KREEP stands for ‘potassium (chemical symbol K), rare earth elements
and phosphorus (chemical symbol P)’. This KREEP Terrane province appears to have been among
the last regions of the lunar surface to solidify, leading to this unusual concentration. It is not clear
that REEs are sufficiently concentrated to be ore bearing [38]. More detailed mapping is needed.
KREEP is generally found where thorium is found and so thorium may be a guide to high REE
concentrations [37].

Helium-3 (3He) is often promoted as a unique lunar resource to fuel fusion reactors, as it
is captured by the lunar regolith from the solar wind. (However, we do not yet have fusion
reactors and any use of lunar 3He is decades away, at best [20].) Although widespread in the
Maria at low concentrations (10–15 ppb), indirect mapping now shows that there are about eight
regions with somewhat higher concentrations of 3He up to approximately 25 ppb [29,39]. All
eight are relatively small (less than 50 km across). One of these areas lies in Mare Moscoviensis, a
promising site for a cosmology telescope. It is notable that the study highlighting these enhanced
3He concentration regions [29] was not a purely scientific study, but a prospecting based one,
combining 3He concentration mapping with LRO terrain data to find the 3He-rich sites with easy
landing areas.

Iron-rich regions derived from asteroid impacts are also quite small (approx. 30–300 km across)
and are limited to 20 or so sites [40]. These will be quite easy to process being largely metallic
and macroscopic. Other sources of lunar iron, though widespread, will be harder to process both
energetically and because the iron comes in sub-micron-sized grains [20]. Asteroid iron also has
the advantage that it may also be rich in precious metals, including platinum and palladium.
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Figure 3. Thorium concentrationmaps, imaged by Lunar Prospector [36]. The (a) used data from 100 km altitude, while the (b)
has three times more resolution (approx. 50 km), being taken from 32 km altitude. The clumping up of thorium-rich sites into
smaller regions is apparent. Reproduced with the permission of Ben Bussey. (Online version in colour.)

Iron could be used to construct mass drivers to cheaply send mass to orbit or for settlement
infrastructure. Iron is detected by finding lunar magnetic anomalies. Converting the magnetic
field strengths to a mass of iron is uncertain at best.

The true sizes of the resource-rich regions may be smaller than we currently can measure. Most
of the maps are limited by the spatial resolution of the available instruments. If so, then the true
resource concentrations may be higher than now measured and would lie in smaller areas. As an
example, figure 3 shows how improving the mapping resolution by a factor of three for thorium
has revealed that the thorium-rich features are more concentrated than they appeared to be in the
lower resolution data [36]. There is a clear need for improved prospecting, particularly in neutron
and gamma-ray imaging.

(c) Cultural sites
Finally, there are the historical sites, notably the six Apollo mission landing sites. These have some
scientific value, but they are primarily ‘Lunar Heritage Sites’ [41], comparable to UNESCO World
Heritage Sites. They meet the first of the 10 qualifying UNESCO criteria ‘to represent a masterpiece of
human creative genius’ and may meet criterion (vi) which is best applied in conjunction with other
criteria: they are ‘directly or tangibly associated with events . . . of outstanding universal significance’
[42]. There is also scientific and engineering interest in these sites as they are natural experiments
in exposing microbes [43] and manufactured parts to space conditions for over 50 years. There
are other historical sites too, of both hard and soft landings, successful and not. In the longer
term, they could even become tourist sites. These sites present not only the question of how to
responsibly coordinate activities at them, but also, more fundamentally, the question of whether we
should exploit them in the first place. Meanwhile, some are working to ensure their preservation,
notably the non-profit organization For All Moonkind [44]. NASA has developed preservation
recommendations for these sites [45]. These recommendations are strictest for Apollo 11 (the first
landing) and Apollo 17 (the last landing). For these two sites, minimum approach distances for
rovers are 75 m and 225 m, respectively, reflecting the larger distances traversed by the astronauts
in the later mission. For the other Apollo sites (12, 14, 15, 16) NASA’s recommendations are for
rover buffer distances of just a few metres from the emplaced hardware, while maintaining 200 m
landing exclusion zones. (Apollo 12 landed, by design, just 183 m from Surveyor 3 [46]. A more
extensive zone there may be advisable.)
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3. Disputes over ‘potentially harmful interference’
If conflicts over lunar resources arise in the coming decade, as seems probable, they will
incentivize searches for creative interpretations of the only applicable treaty with broad
international recognition, the 1967 Outer Space Treaty (OST) [47]. More specifically, they may
invite creative interpretations of Article II’s explicit statement that ‘Outer space, including the
Moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty,
by means of use or occupation, or by any other means’. While the letter and the spirit of the
Treaty prohibit formal appropriation, some of its provisions may in fact enable unexpected forms
of de facto appropriation. In particular, Article IX introduces the principle of parties’ ‘due regard’
for the activities of other parties. The Treaty also states that, if a party’s activity could cause
‘potentially harmful interference with activities of other States’, parties can enter in consultations
to address the matter. These concepts have enduring relevance. A statement of principles for the
Artemis Accords, an architecture of bilateral agreements for lunar cooperation proposed by the
United States in 2020, reaffirms commitment to Article IX and emphasizes a duty for parties to
coordinate with and notify each in order to prevent interference [48].

These provisions in view, we recognize that parties could invoke their research activities to
seek the exclusion from nearby areas of others whose activities present interference risks. At
minimum, where significant resources are at stake, it seems likely that disputes over expectations
and the practical meaning of ‘due regard’ will arise and require resolution. No mechanism for
resolving such disputes currently exists. We argue here that our previous work on the Peaks
of Eternal Light [3], identifying the likelihood of competition for this limited resource, is not a
special case. Disputes over entitlements to access and entitlements to exclude, in order to prevent
‘potentially harmful interference,’ will apply in many cases, independent of the local resources
or the lack thereof. But they are especially likely to occur at, or near to, the strategically valuable
locations where lunar resources happen to be concentrated.

The small number and size of these sites, coupled with the significant number of missions
planned for within this decade, portends imminent crowding and interference between activities
at these locations, even while the vast majority of the lunar surface remains untouched. Without
raising any issues of overall lunar protection for science, or ethical concerns about lunar integrity
[49], the diverse actors targeting strategic resource sites may modify local areas of the lunar
surface in a range of ways that serve their own purposes but undermine other actors’ plans.
Even at this relatively early stage, we can already anticipate and prepare for several likely types
of interference.

Many scientific sensors are extremely sensitive to electrical signals, light, vibration, dust and
mechanical damage. This sensitivity is both deliberate and necessary, as the signals they are
typically seeking are miniscule. Astronomical telescopes are particularly clear cases as they must
be open to the sky, and their large mirrors must remain clean in order to carry out their function.
As a result, entirely legitimate experiments may require avoidance zones for any other nearby
activity. For instance, NASA’s statement of principles for the Artemis Accords explicitly provides
for ‘safety zones’ [48]. Such avoidance zones might need to be quite large, but their size could
in some cases be reduced by installing landing pads to reduce dust and other effects. Given this
potential, landing pads could be among the first forms of shared infrastructure that actors jointly
build or use near ‘high-traffic’ lunar features.

Two examples, that will apply anywhere on the Moon, illustrate the value of such measures:
landing and blast ellipses.

(a) The landing ellipse
If a spacecraft were to land on another, or sweep its rocket exhaust over it, that would likely
damage the already in-place spacecraft beyond use. So, planners of a new lander need to have
high confidence that they will not land too close to another. At the moment, the uncertainty in the
landing point for a lander is a few hundred metres, to have no more than a 1 in 10 chance that it
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will land somewhere in that zone [50]. Hence the exclusion zone for any lander already emplaced
needs to be about a kilometre in diameter. NASA recommends a more stringent 2 km minimum
distance (radius) based on a tougher 0.3% chance (3 sigma) of interference [42]. This region will
shrink as better navigation technology (e.g. terrain relative navigation [51]) becomes available.

(b) The blast ellipse
A larger exclusion zone is needed to avoid a new lander causing an already emplaced lander to be
hit with rocks and dust blasted up by its rocket plume when landing, or at take-off [52,53]. This
blast of lunar surface material would coat the surfaces of all instruments with dust and could
get into mechanical moving parts and make them stick. In contrast with the previous case, this
radius cannot be shrunk with new technology as the rocket must always have sufficient power to
slow its descent. As our rocket technology improves, larger and larger payloads will be brought
to the surface and their blast ellipses will grow, up to the point at which regolith (loose surface
material) will be removed down to larger scale rock that will not be ejected over large distances.
This layer is likely to be several metres down [7,53]. Studies of the Apollo 12 landing find that
several tons of regolith were removed by its rocket plume, and that small dust particles achieved
escape velocity from the Moon [54]. Slightly larger particles will travel large distances. It is thus
impossible to avoid all contamination of an emplaced lander by a later lander, however far away
it touches down. Determining a safe size for an exclusion zone will then depend on the details of
how much dust of what size travels what distance, and on what reasonable mitigation measures
the new and the already emplaced landers could have taken. At minimum, estimates calculated
from both physics and engineering perspectives should inform how these limits are set, although
a broader range of disciplines will need to be drawn upon in drafting recommendations.

There are at least two other cases: a far-infrared telescope such as the OWL-Moon described in
these proceedings [55] must necessarily have its mirror open to space to operate. The natural level
of dust lofted by meteor impacts [56] may be greatly enhanced by any nearby mining activity to
extract valuable water or volatiles. This mining must not kick up dust, as that would coat the
mirror and render it far less sensitive. An array of several telescopes could then be used to create
quasi-property applying to a whole cold trap, denying others access to its large resources of water.
As already noted, not all cold traps contain water [17,21], so it could be argued that the ‘dry’ ones
should be reserved for scientific experiments and telescopes, while the majority of the water-
bearing cold traps should be reserved for mining. Similarly, a powerful radio transmitter on a
new lander could interfere with instruments on a nearby, emplaced lander (as in our example of
the Peaks of Eternal Light [3]). In this case, the exclusion zone may be defined by the horizon,
which is about 2.5 km away for a typical human eye height (1.7 m) [57], but is farther away for
objects at higher elevations, particularly on a mountain peak or a crater rim.

Each of these cases would constitute harmful interference. It is important to notice that they
also apply on a scale comparable with many of the concentrated resources detailed in §2.

Exclusion zones for new landers do not preclude the exploitation of a resource within that zone
by another party. They only complicate the process. The new lander can deploy a rover to go over
to the prime site. In fact, PTScientists planned to do this for their first lunar lander mission. Their
rover had only a small fraction of the mass of the lander, and so would have carried far more
limited equipment. As this will likely be generally true of rovers, the ability to engage in resource
utilization by the later arrival will be significantly hampered.

The intention of PTScientists was to land a few kilometres from the Apollo 17 site in the Taurus-
Littrow valley. Their rover would then go over to the site and take pictures. PTScientists said
that they will treat the site ‘like a cathedral’ [58], and they worked with ‘For All Moonkind Inc.’
[44] and with NASA to preserve the site. (The post-reorganization PTS have not said if they are
continuing with a landing near to Apollo 17.) Moon Express and Astrobotic have also announced
that they will comply with the NASA recommendations regarding lunar heritage sites [41]. The
requirement for US Federal Aviation Authority approval for payloads adds pressure to comply
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[59,60]. However, there is currently nothing in international law to prevent them, or their less
scrupulous successors, from doing as they wish with the site.

Access by rovers could be countered by technologically justifiable means. A user could try to
create exclusive access to a small site with valuable resources, by putting up ‘fences’. Under the
OST they cannot be literal fences, which have only one purpose—to exclude others. Perhaps,
though, they could place the solar panels and batteries that they need in a ring and connect
them with cables strung on poles to avoid damage by the surface (figure 4). As it happens,
they create a closed loop around the resource that a rover can only breach by causing harmful
interference, giving the first arrival de facto exclusive control. In response, a rover with legs
instead of wheels might simply step over the cables. The possibility of an ‘arms race’ of such
measures and countermeasures is clearly present.

Given these forms of interference, attempts to exclude future actors from lunar features or
the effective appropriation of these features appear possible. Partial precedents from comparable
environments suggest that actors on the Moon would attempt to establish exclusion zones. For
example, the partners in the International Space Station (ISS) assert a 200 m ‘keep out zone’, [61].
More recently, the private company Bigelow Aerospace in 2013 successfully sought a review by
the US Federal Aviation Administration’s Office of Commercial Space Transportation of its plans
for a lunar habitat, which included a zone of operation that other US entities would be barred
from entering [62]. Given these conceptual precedents for exclusion zones, it is plausible that
actors modifying or building installations on or around lunar sites of interest would take similar
steps to limit others’ access to them. As noted, a NASA statement of principles for the Artemis
Accords provides for creating ‘safety zones’ that could entail such restrictions [48]. The potential
for disputes is aggravated by the fact that no forum exists for the ‘appropriate consultations’
between parties facing interference called for in Article XII of the OST. Efforts to address such
eventualities are more likely to succeed if they are pursued before new “facts on the ground” are
established.
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4. Policy considerations
Means of managing these challenges at lunar sites of interest are suggested by coordination and
governance mechanisms developed to address similar problems in other settings, most of them
terrestrial. From the perspective of policy studies, lunar sites of interest present analogues to
global ‘common-pool resources’ or ‘commons’ [63,64]. These are resources over ‘which no single
nation has a generally recognized exclusive jurisdiction’ [65]. In outer space, other comparable
environments of interest include orbits and other celestial bodies, such as asteroids and Mars [65].
On Earth, they include the resources of the deep seabed, the water column beyond territorial seas,
the electromagnetic frequency spectrum and Antarctica [65]. Comparisons between terrestrial
common-pool resources and space resources can be instructive, even if one rejects the legal or
practical status of space resources as ‘global commons.’

A large body of theoretical and empirical work on commons, both global and local, offers
insights applicable to crowded lunar sites. Much of this work aims to characterize and respond
to ‘the tragedy of the commons’ that results from the mismatch between a collective interest in
sustaining a finite-shared resource and individuals’ interests in maximizing their use of the shared
resource, which leads to its overexploitation [66]. This problem is illustrated in the example of a
pasture, held in common by a village, that ends up overgrazed. While it is in villagers’ collective
interest to limit their animals’ grazing of the pasture to levels that prevent its depletion, it is
in every individual villager’s best interest to allow their animals to graze the pasture as much
as possible. With no higher authority to enforce rules that limit overall grazing, the villagers’
individually rational choices will likely lead to overgrazing of the common pasture, leaving all
worse off.

Responses to the tragedy of the commons have been twofold. The first type has consisted in
models for privatizing the commons. For several reasons, including the OST, large-scale formal
privatization of lunar sites is not likely in the near term, so we set aside that approach for now
[65,67]. The second type of response has consisted of efforts to theorize and study institutions
to manage the problems of overuse and other failures of collective action that arise in the
commons, a tradition whose start is credited to Elinor Ostrom [68,69]. In this section, we distill
the findings from this second body of literature relevant to the circumstances of early movers
on the Moon, which we define as the twenty or so entities with credible plans to land there
before 2030. Scholarship on the management of the terrestrial commons presents at least seven
general findings that, we suggest, can inform how the early movers approach managing the lunar
commons.

(a) Iterate between principle and practice
The management of common resources is most likely to succeed if it emerges from a metaphorical
dialogue between evolving international principles and local experimentation with practical
mechanisms.

On the one hand, decades of work on international principles for resource activities
demonstrate that developing a common conceptual vocabulary is indispensable for governance
in new areas. In this vein, experts focused on space resource management have proposed and
given meaning to principles such as ‘common heritage’, ‘equitable sharing’ and ‘priority rights’
since the OST [48,67,70–74].

On the other hand, recent developments highlight the limits of approaches that prioritize
achieving broad-based international agreement on principles ahead of attempting practical local
steps1 . For instance, the fate of global climate treaties warns that the pursuit of a comprehensive

1An enduring debate in international space policy circles opposes those who advocate for the development of legally binding
international instruments to solve collective problems and those who advocate for voluntary, user-led arrangements, often
made robust through national legislation, to solve collective problems. We do not engage this debate here, since no widely
recognized draft of a binding international instrument or voluntary alternative exists or has a strong likelihood of being
adopted within the short- to medium-term timeframe we consider. Most efforts remain at the stage of principle articulation.
The closest approximation of a legally binding instrument for governing lunar resources under discussion is perhaps a
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agreement on a framework of principles and subsequent protocols is slow and vulnerable to
reversal. By contrast, recent efforts at governance building grounded in user-defined practices
or ‘norms of behaviour’ have shown promise or, at minimum, appeal to major spacefaring
states (for examples, see [75–77]). NASA’s proposed Artemis Accords, expected to consist of
bilateral agreements between the United States and other states contributing to the US-led
Artemis lunar program, reflect aspects of this trend [48]. These efforts indicate that governance
can start with small groups of prospective users focused on immediate solutions to pressing
problems, even in the absence of broad international agreement on fundamental principles.
Research on terrestrial resources similarly suggests that experimentation and iteration, anchored
in co-evolving principles and practices, are integral to the building of effective regimes [78]. By
implication, prospects for the governance of lunar resources are brighter if the deliberation of
general principles proceeds in tandem with local experimentation in mechanisms for managing
interference at particular sites. For example, proposals for an international registry conferring
‘priority rights’ could be prototyped on a small scale by actors at a lunar feature before such a
structure is formally established by international agreement [73].

(b) Identify shared interests
Agreement among diverse actors on a desirable long-term outcome for a given lunar site would
be conducive to governance, but difficult to achieve. More likely, in the first instance, actors will
at most agree on what outcomes they seek to avoid. Such suboptimal outcomes could include:
a scramble for resources that depletes them rapidly and in a wasteful manner; illegitimate or
deemed-unfair appropriation of high-value sites by some actors to the exclusion of others; or
irreversible damage to culturally significant sites and artefacts [67]. Because actors tend to share
an aversion to loss, framing cooperation as loss avoidance can encourage cooperative behaviour
more effectively than emphasizing long-term gains [79]. Clarifying what is at stake in preventing
the least desirable outcomes, through research and deliberation, may help to reframe actors’
understandings in a manner that facilitates collective action.

(c) Define the problem
Conceptually prior to the design of any governance framework for a lunar site is the definition of
the commons problem it is intended to solve. Problem definition breaks down into at least three
distinct aspects: the nature, production and distribution of the common good [63,80]. Defining
the nature of the commons at stake may entail distinguishing the ‘resource system’ from the flow
of ‘resource units’ it generates, or the pastureland from the grass [63]. For example, the Peaks
of Eternal Light might be defined as a surface area to be shared, or the solar energy generated
by a common facility there might be defined as a resource to be shared. By contrast, defining
the production aspect entails specifying the optimal level of exploitation of (or investment in)
the common good [80]. Agreement on this level is not straightforward [80], but even if it is
achieved, actors will often be tempted to defect from the deal. Finally, defining the distribution
scheme entails specifying how benefits from the exploitation of (or investment in) the good will
be allocated across actors [80]. Defining a distribution scheme is a negotiated process that is likely
to feed into deliberation of production-level questions [65,80].

(d) Lengthen the time horizon
Cooperation between actors is more likely when the future casts a long shadow, meaning that
actors expect to interact repeatedly [81; for qualifications see 82,83]. Different framings of the same
issue can also change how heavily actors discount the future and, therefore, how they decide to
act in the present [79,83]. Early movers may enhance the prospects for cooperation by deliberately

revived 1979 Moon Treaty process, but we consider the likelihood of this agreement attracting expanded support among
the major states planning near-term Moon missions to be low in the relevant timeframe.
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promulgating framings of lunar governance that orient participants’ reasoning past short-term
considerations and toward long-term outcomes. Helpful steps could include defining a common
long-term agenda for lunar activity and reducing the scope of uncertainty about anticipated
future technological change through discussion and analysis.

(e) Design accommodating platforms
The management of crowding and interference at lunar sites appears most likely to succeed if it is
performed through user-created institutions. Proposals for such arrangements on the Moon have
already been advanced. Examples include Karen Cramer’s proposed Lunar Users Union [67].
Promising institutions for such settings take the form of nested platforms designed for multiple
users with diverse goals [63,84,85]. Devised for the Moon, such an arrangement would allow
for the embedding of local governance mechanisms, designed to manage each specific site, into
larger regional groupings or lunar-level structures. These higher level structures, in turn, would
establish common governance principles to guide management across the local sites, enhancing
a degree of procedural and conceptual consistency across the various sites without prescribing
specific measures for any one of them. Like other ‘interorganizational systems,’ lunar governance
structures will be more effective if they are designed to accommodate the heterogeneity of
participating actors from the start [63,64,86]. Moreover, these governance arrangements are most
likely to last if they are designed, from the beginning, to evolve with changing circumstances,
new users and new technologies.

(f) Establish habits of cooperation
Historical considerations ‘play an extremely important part’ in accounting for successful
outcomes in the management of terrestrial commons [80]. Traditions of collective action can
increase its likelihood in the future, suggesting that ‘cooperation can be habit-forming’ [80].
Early movers’ choices about whether and how to cooperate on governing could have lasting
and disproportionate consequences. If the next wave of lunar missions encounters interference
challenges, actors’ responses will set precedents that guide expectations and define norms of
conduct in response to interference for later missions.

(g) Create withholdable carrots
Actors who are parties to a governance scheme that proscribes or constrains behaviour are
likely, sooner or later, to face the temptation to defect from the arrangement. The scheme is
therefore more likely to succeed if it establishes predetermined consequences to defection or
non-compliance. One possible means to fostering this accountability is the creation of new
public goods to which actors’ access is made conditional upon their adherence to agreements.
Examples include common infrastructure, such as waste management, communications or power
generation systems and dust-mitigating landing pads [67]. Offenses punishable by denial of full
or optimal access to these public goods might include extracting material in excess of an agreed
level. The goal would be to deter defection by making it at least as costly as compliance. To be
legitimate and equitable, such an enforcement system would need a mechanism through which
actors could appeal an adverse decision and should provide other channels through which actors
could seek to reform the arrangements or express dissent.

In sum, extensive experience with managing concentrated common resources on Earth
suggests lessons for how to manage such resources on the Moon. Effective management of
common resources is, in any setting, a complex process, often requiring actors to experiment
with imperfect institutional forms while trying to entrench habits of cooperation. The first steps
to developing governance solutions consist of characterizing the actors’ common and competing
interests, defining the problems they face and bringing long-term outcomes into actors’ common
view. With a working understanding of these aspects shared among them, actors are more likley to
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succeed at creating the accommodating institutions needed to deliberate and create management
rules for the resource. Governance is likely to be more effective if actors establish cooperative
behaviour as normal early on in this process and if they create common assets that can later be
withheld to deter violations. All of these steps toward creating governance for the commons are
best attempted before actors have begun significant activity on the lunar surface or investment
in specific mission designs, for reasons both practical and normative, as we explore in the next
section.

5. Issues of timeliness and justice
In a multi-player environment, such as is imminent on the Moon (table 1), and where there is
competition for limited resources, arriving at an effective solution requires building a framework
that can be a basis for consensus, or at least for widespread acceptance. As in 4.1 above, this is
not the same as arriving at an agreement that everyone actually prefers or regards as optimal.
Rather, it is a matter of arriving at an agreement that enough of the major parties can recognize
as reasonably just and can live with, irrespective of concessions made. Without such agreement,
any framework is liable to lack stability and to break down. We take it that stability is a desirable
feature of any account of governance in space, perhaps even a necessary feature. Stability need not
be ‘forever’ but should be ‘for long enough’ to limit the risks of the most damaging outcomes [87].
Such damaging outcomes may be thought of in terms of lunar development and lunar protection,
both of which could go well or badly.

For stability to be secured, standards of justice are required. Actors will not look favourably
upon arrangements that disadvantage them in ways that they regard as clearly unfair. This is
where policy and ethics meet, and where our argument draws upon considerations of a slightly
more abstract sort in order to support the claim that deliberation about is timely. It falls into the
‘goldilocks zone’ for deliberation. This is the period during which just outcomes are more likely
to be secured. Too early, and an approach is liable to be under-informed; too late and (as indicated
above) patterns of behaviour become almost impossible to change. The right time to deliberate
about these matters, from an ethical point of view, is when we know enough, but not everything
that we will eventually need to know, about lunar resources for lunar development to occur in a
stable way.

Several factors combine to suggest that we are already in this zone. As we outlined in table 2,
our current knowledge of lunar features and current mission plans, while still in development,
is advanced enough to suggest the likelihood of crowding problems, to suggest their overall
character, and to identify where they are most likely to occur. However, we are still in some
respects ‘epistemically disadvantaged’ in that we lack the knowledge of the Moon that those who
develop lunar resources will eventually have. Yet the limitation of our knowledge also has a clear
advantage in two respects:

(a) We do not need to deal with the histories of habitation and use by humans, which are
inseparable from detailed in situ knowledge. Certain kinds of knowledge come with
history, and a more complex set of requirements if justice is to be at all possible. At
present, deliberations can remain streamlined because no one can claim any special
relation to the Moon, or to strategic resources that others lack. The only special claims
relate to the relation between launch states, artefacts, landing sites and crash sites. These
are important, but far more limited than the claims of special entitlement, which will
rapidly emerge under conditions of lunar development.

(b) While self-interest and national interest may be expected to feed into any deliberations,
whenever they occur, the actual results of such deliberations may be less easily skewed if
the parties involved have only a provisional idea of which policies will tend to maximize
their own position. Even with regard to the strategic resources identified above, some
of these resources may eventually be downgraded or even bypassed during the course
of actual lunar development. Others, which currently appear less important to us, may
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play a surprising role. Lack of advance knowledge about these matters paves the way to
agreement when more precise knowledge could easily pose an obstacle. The Outer Space
Treaty is itself an example of this process at work: nations agreed to a deal (which they
have not done at any time since) not because they were aware of what would happen, but
because they were unsure about outcomes, and eager to avoid future harms. The Treaty
was driven as much by uncertainty as it was by predictable outcomes.

Because we can at least provisionally identify the most likely strategic resources, but not the
ways that they will be incorporated in any actual system of lunar development, we are behind a
genuine ‘veil of ignorance’ [88,89]. This is a state which is often desired in terrestrial accounts of
justice, but it is also a place where we can never truly be with regard to terrestrial resources
because we already have a clear idea of how terrestrial resource utilization operates [88]. In
the absence of such detailed knowledge about lunar conditions, interested actors may be more
motivated to tackle the risks of crowding and interference in reasonably just, opportunity sharing,
ways in order to safeguard future opportunities for themselves. In doing so, they will be more
likely to arrive at a stable framework for governance, one which can last ‘long enough’ to protect
future opportunities.

By contrast, a failure to proactively address the crowding and interference risks prior to
the emergence of actual patterns of use and behaviour increases the risk that the tragedy of
the commons will make itself felt: actors will tend to act against shared interests, and against
their own best long-term interests, out of a concern that if they do not act in unfair ways
now, others certainly will, while they are left behind. Without timely efforts geared towards
resource management and site protection, all but the earliest missions are likely to suffer
avoidable losses of opportunity. Such losses include the destruction or degradation of the lunar
environment, damage to historical sites and loss of opportunities for scientific research, as well
as the compromising of opportunities for a more stable, longer term, pattern of commercial
development.

6. Conclusion
Many of the useful and valuable resources on the Moon are concentrated into a modest number
(tens) of quite small regions (in the order of a few kilometres). Over the next decade, forms of
interference and related disputes and conflicts over these concentrated resources may arise, as
many actors, sovereign, philanthropic and commercial, descend onto just a handful of small, high-
value sites on the lunar surface. Responsibly coordinating these diverse actors’ activities requires
recognizing and accommodating their distinct interests and purposes. Any proposed governance
arrangement may have to contend with irreducible practical and conceptual tensions between
different actors’ designs: scientific, commercial and human-exploration activities may often be
incompatible with each other. Moreover, it is likely that these varied actors’ plans are best served
by different governance arrangements [5].

While this situation presents likely challenges, humankind’s extensive experience with
managing common resources on Earth suggests that some of these obstacles can be overcome,
while the impact of others may be contained with the help of effective institutions. The study of
commons on Earth suggests lessons applicable to efforts at governing lunar sites of interest. To
start, a promising pathway to building governance lies in the iterative pursuit of both guiding
principles by the international community and local experiments with site-specific institutional
forms by lunar users. Moreover, to be effective at any scale, governance arrangements must be
underpinned by actors’ shared understandings of the nature of the resource itself, their varying
interests in it, and the problems its shared use is likely to present. This shared understanding
is not straightforward to achieve, as lunar resources and features lend themselves to multiple
interpretations and valuations. Deliberation and additional research can help in this respect.
Governance institutions are also more likely to succeed if they direct actors’ attention to the worst-
case long-term outcomes that they may seek to avoid, in addition to the benefits they hope to reap.
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Efforts at governance are more likely to be effective if they take place within accommodating,
flexible institutions that allow diverse and evolving actors to participate in creating the rules
for use of the lunar sites. Finally, governance mechanisms have a greater chance of averting
worst-case outcomes if actors establish, by precedent, expectations of cooperative behaviour and
consider devising common ‘carrots’ that they can withhold to deter non-compliance.

Now is an appropriate time to begin developing a governance framework guided by these
lessons from Earth. Efforts at managing forthcoming disputes are most likely to succeed if
they are undertaken before vested interests gain too firm a foothold. We are in several respects
better placed to erect a just and effective framework for lunar resources at this time than we
will be during actual lunar development. We know enough to show that there is a need for a
framework, but not so much that the ‘veil of ignorance’ concerning resources is entirely lifted and
players are more fully aware of how they may benefit from any particular choice of framework.
As solutions that are globally seen to be just are also most likely to be robust and lasting, a
framework developed now has a better chance at legitimacy and stability than one shaped by
stakeholders who have an established presence, but strongly diverging goals. Lessons from the
management and mismanagement of terrestrial commons suggest that action should be taken
now rather than later, or at least now as well as later, to develop the governance structures
needed to prevent (and later on contain) avoidable and undesirable problems of crowding and
interference.

The need for action is perhaps most acutely felt by the astronomy community. The interference
inflicted on terrestrial telescopes by large new satellite constellations circling Earth presents a
cautionary tale. Astronomers have found their capacity to shape policy weakened in the face of
ambitious commercial projects that threaten both ordinary people’s view of the night sky and
humankind’s quest to understand its place in the Universe. Rather than proactive stewards of
these public goods, astronomers risk becoming passive bearers of the consequences of choices
made by commercial interests and government regulators without their meaningful input. The
result could be a substantial loss of observations from telescopes, astronomers’ most valuable
assets, in the present and a many-times-greater loss of scientific opportunity in the future.
The lesson for astronomers to heed is that they have important equities to defend in outer
space.

If astronomers do not take the initiative to identify and raise awareness of the scientific and
public interest in protecting unique lunar features now, they may find themselves unable to do so
once these features are under threat from interference and crowding. In this respect, astronomers
find common cause with other scientists, such as astrobiologists, and other researchers for
whom planetary protection measures are essential. The scientific community today faces both an
opportunity and a responsibility to help guard precious lunar sites from the irreversible damage
threatened by crowding and interference.
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