

Missouri University of Science and Technology Scholars' Mine

CCFSS Library (1939 - present)

Wei-Wen Yu Cold-Formed Steel Library

01 Apr 1981

Web crippling and combined web crippling and bending of steel decks

Wei-Wen Yu Missouri University of Science and Technology, wwy4@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-library

Part of the Structural Engineering Commons

Recommended Citation

Yu, Wei-Wen, "Web crippling and combined web crippling and bending of steel decks" (1981). *CCFSS Library (1939 - present)*. 187. https://scholarsmine.mst.edu/ccfss-library/187

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in CCFSS Library (1939 - present) by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

CIVIL ENGINEERING STUDY 81-2

•

STRUCTURAL SERIES

WEB CRIPPLING AND COMBINED WEB CRIPPLING AND BENDING OF STEEL DECKS

by

Wei-Wen Yu Project Director

A Research Project Sponsored by American Iron and Steel Institute Steel Deck Institute and H. H. Robertson Company

April 1981

Department of Civil Engineering University of Missouri-Rolla

Rolla, Missouri

TABLE OF CONTENTS

LIST OF	TABL	ES	۷
LIST OF	ILLU	STRATIONSi	ix
Ι.	INT	RODUCTION	1
	Α.	General	۱
	Β.	Purpose of Investigation	2
	С.	Scope of Investigation	2
II.	EXP	ERIMENTAL STUDY OF WEB CRIPPLING STRENGTH OF STEEL	
	DEC	KS SUBJECTED TO INTERIOR ONE-FLANGE LOADING	4
	Α.	Preparation of Test Specimens	4
	Β.	Testing of Specimens	5
		a. Tensile Coupon Tests	5
		b. Testing of Deck Specimens	5
	С.	Results of Tests	6
	D.	Evaluation of Test Data	6
		a. Comparison of the Experimental Web Crippling	
		Loads and the Predicted Loads Determined on	
		the Basis of Addendum No. 2 of the 1968 AISI	
		Specification	7
		b. Comparison of the Experimental Web Crippling	
		Loads and the Predicted Loads Determined on	
		the Basis of the 1980 Edition of the AISI	
		Specification	9
		c. Effect of Intermittent, Longitudinal Emboss-	
		ments and Indentations on Web Crippling	
		Strength	12

ii

	Ε.	Summary 12
III.	EXF	ERIMENTAL STUDY OF WEB CRIPPLING STRENGTH OF STEEL
	DEC	KS SUBJECTED TO END ONE-FLANGE LOADING
	Α.	Preparation of Test Specimens
	B.	Testing of Deck Specimens15
		a. Test Setup
		b. Test Procedure
	С.	Results of Tests
	D.	Evaluation of Test Data 16
		a. Comparison of the Experimental Web Crippling
		Loads and the Predicted Loads Determined on
		the Basis of the 1968 AISI Specification 16
		b. Comparison of the Experimental Web Crippling
		Loads and the Predicted Loads Determined on
		the Basis of the 1980 Edition of the AISI
		Specification17
		c. Effect of Intermittent, Longitudinal Emboss-
		ments and Indentations on Web Crippling
		Strength
	Έ.	Summary 20
IV.	EXI	PERIMENTAL STUDY OF COMBINED WEB CRIPPLING AND BENDING:
	SII	MPLE BEAM TESTS (BC SERIES) 21
	Α.	Preparation of Test Specimens
	Β.	Testing of Specimens 22
		a. Tensile Coupon Tests 22
		b. Testing of Deck Specimens

		С.	Results of Tests	24
		D.	Evaluation of Test Data	25
			a. Comparison of the Experimental Data and the	
			Predictions on the Basis of Addendum No. 2 of	
			the 1968 AISI Specification	25
			b. Comparison of the Experimental Data and the	
			Predictions on the Basis of the 1980 Edition	
			of the AISI Specification	26
		Ε.	Summary	28
	۷.	EXPE	ERIMENTAL STUDY OF COMBINED WEB CRIPPLING AND BENDING:	
		CONT	TINUOUS BEAM TESTS (CB SERIES)	30
		Α.	Preparation of Test Specimens	30
		B.	Testing of Specimens	31
			a. Tensile Coupon Tests	31
			b. Testing of Deck Specimens	31
		C.	Results of Tests	32
		D.	Evaluation of Test Data	33
		Ε.	Summary	34
I	۷.	RECO	DMMENDATIONS FOR FUTURE RESEARCH	36
ACKNOW	LEDG	MENT	rs	38
BIBLIO	GRAP	РНΥ.		40
APPEND	IX	• • • •		132

LIST OF TABLES

Tab)le	e P	age
1 a	ì	Dimensions of Steel Deck Specimens Used for Web Crippling	
		Tests, Interior One-Flange Loading	43
1 t)	Dimensions of Steel Deck Specimens Used for Web Crippling	
		Tests, Interior One-Flange Loading	45
1 0	2	Dimensions of Steel Deck Specimens Used for Web Crippling	
		Tests, Interior One-Flange Loading	47
2		Design Parameters for Steel Deck Specimens, Interior	
		One-Flange Loading	49
3		Tested Mechanical Properties of Steels Used for Steel	
		Deck Specimens	52
4		Comparison of the Tested and Computed Results for Interior	
		One-Flange Loading Based on Addendum No.2 of the 1968	
		Edition of the AISI Specification	53
5		Comparison of the Tested and Computed Results for Interior	
		One-Flange Loading Based on the 1980 Edition of the	
		AISI Specification	56
6		Effect of Longitudinal Embossments on Web Crippling	
		Strength - Interior One-Flange Loading	5 9
7		Design Parameters for Steel Deck Specimens, End One-Flange	
		Loading	60
8		Comparison of the Tested and Computed Results for End	
		One-Flange Loading Based on the 1968 and 1980 Editions of	
		the AISI Specification	62
9		Design Parameters for Steel Deck Specimens, End One-Flange	
		Loading	65

10	Effect of Support Condition on End Failure, End One-Flange
	Loading
11	Effect of Longitudinal Embossments on Web Crippling
	66 Strength - End One-Flange Loading
12a	Dimensions of Steel Deck Specimens Used for Combined
	Bending-Web Crippling Tests, Simple Beam Tests Without
	End Connections 67
12b	Dimensions of Steel Deck Specimens Used for Combined
	Bending-Web Crippling Tests, Simple Beam Tests Without
	End Connections
12c	Dimensions of Steel Deck Specimens Used for Combined
	Bending-Web Crippling Tests, Simple Beam Tests Without
	End Connections
13a	Dimensions of Steel Deck Specimens Used for Combined
	Bending-Web Crippling Tests, Single Span Beam Tests With
	End Connections
13b	Dimensions of Steel Deck Specimens Used for Combined
	Bending-Web Crippling Tests, Single Span Beam Tests With
	End Connections
13c	Dimensions of Steel Deck Specimens Used for Combined
	Bending-Web Crippling Tests, Single Span Beam Tests With
	End Connections
14	Design Parameters for Steel Deck Specimens Used for
	Combined Bending-Web Crippling Tests, Simple Beam Tests
	Without End Connections
15	Design Parameters for Steel Deck Specimens Used for
	Combined Bending-Web Crippling Tests, Single Span Beam
	Tests With End Connections

٧i

16	Tested Mechanical Properties of Steels Used for Long
	Span Simple Beam Tests With End Connections and
	Continuous Beam Tests
17	Comparison of the Tested and Computed Results for
	Combined Bending-Web Crippling Based on Addendum No. 2
	of the 1968 Edition of the AISI Specification (Simple
	Beam Tests Without End Connections)76
18	Comparison of the Tested and Computed Results for
	Combined Bending-Web Crippling Based on Addendum No. 2
	of the 1968 Edition of the AISI Specification (Single
	Span Beam Tests With End Connections)77
19	Comparison of the Tested and Computed Results for
	Combined Bending-Web Crippling Based on the 1980
	Edition of the AISI Specification ⁽²³)Simple Beam
	Tests Without End Connections)78
20	Comparison of the Tested and Computed Results for
	Combined Bending-Web Crippling Based on the 1980
	Edition of the AISI Specification ⁽²³)Single Span Beam
	Tests With End Connections)79
21a	Dimensions of Steel Deck Specimens Used for Continuous
	Beam Tests
21Ь	Dimensions of Steel Deck Specimens Used for Continuous
	Beam Tests
21c	Dimensions of Steel Deck Specimens Used for Continuous
	Beam Tests
22	Design Parameters for Steel Deck Specimens Used for
	Combined Bending-Web Crippling Tests, Continuous Beam
	Tests

23	Comp	parison of the Tested and Computed Results for Combined
	Bend	ling-Web Crippling Based on the 1980 Edition of
	the	AISI Specification ⁽²³⁾ (Continuous Beam Tests)
Арре	endix	
	A1	Mid-Span Deflection of Steel Deck Specimens, Single
		Span Beams Used for Combined Bending-Web Crippling
		Tests
	A2	Mid-Span Deflection of Steel Deck Specimens, Two-
		Span Continuous Beam Tests 136
	A3	Mid-Span Deflection of Steel Deck Specimens, Three-
		Span Continuous Beam Tests 143
	A4	Strain Gage Readings for Steel Deck Specimens, Single
		Span Beams Used for Combined Bending-Web Crippling
		Tests
	A5	Strain Gage Readings for Steel Deck Specimens, Two-
		Span Continuous Beam Tests 147
	A6	Strain Gage Readings for Steel Deck Specimens, Three-
		Span Continuous Beam Tests

LIST OF ILLUSTRATIONS

Figu	re P	age
1	Simple Beam Test Used for Interior One-Flange Loading	90
2	Cross-Sectional Configurations of Steel Decks	91
3 a	Dimensions of Test Specimens	9 3
3 b	Types of Sidelaps	94
3 c	Additional Dimensions for Specimens Nos. 13, 14, 15,	
	and 16	95
4	Test Setup Used for Interior One-Flange Loading	96
5	Photograph Showing the Test Setup Used for Interior	
	One-Flange Loading	97
6	Photograph Showing the Test Setup Used for Interior	
	One-Flange Loading	97
7	Photograph Showing the Typical Failure Mode for Interior	
	One-Flange Loading	98
8	Photograph Showing the Typical Failure Mode for Interior	
	One-Flange Loading	9 8
9	Correlation Between the Test Results on Interior One-Flange	
	Loading and the Interaction Formula Used for Addendum No.2	
	of the 1968 AISI Specification (Shear Lag is considered)	99
10	Correlation Between the Test Results on Interior One-Flange	
	Loading and the Interaction Formula Used for the 1980	
	Edition of the AISI Specification (Shear Lag is considered)	100
11	Correlation Between the Test Results on Interior One-Flange	
	Loading and the Interaction Formula Used for the 1980	
	Edition of the AISI Specification (Shear Lag is neglected)	101

12	Arrangement of Embossments in the Webs of Specimens
	Nos. 9, 10, 11, and 12 102
13	Simple Beam Test Used for End One-Flange Loading 103
14	Test Setup Used for End One-Flange Loading 103
15	Photograph Showing the Test Setup Used for End One-Flange
	Loading 104
16	Photograph Showing the Test Setup Used for End One-Flange
	Loading
17	Photograph Showing the Typical Failure Mode for End
	One-Flange Loading 105
18	Photograph Showing the Typical Failure Mode for End
	One-Flange Loading 105
19	Relationship between the Computed C ₄ and R/t Ratio 106
20	Test Setup for End One-Flange Loading, EOF-5C and EOF-5D
	(Steel Panel is Supported by W Shapes at Both Ends Without
	Any Connection) 107
21	End Failure for Steel Panels Using the Test Setup Shown
	Above
22	Steel Panel is Welded to Bearing Plates at Both Ends
	(EOF-5E and EOF-5F) 108
23	Test Setup for End One-Flange Loading, EOF-5E and EOF-5F
	(Steel Panel is Welded to End Bearing Plates, Which are
	Connected to Support Beams by Using Bolts)
24	End Failure for Steel Panels Using the Test Setup Shown
	Above

X

25	Cross-Sectional Configurations of Steel Decks Used for	
	Long Span Simple Beam Tests (BC Series)	110
26	Arrangement of Strain Gages for Single Span Test Specimens	
	With End Connections	112
27	Test Setup Used for Long Span Simple Beams Without End	
	Connections,	113
28	Test Setup Used for Single Span Beams With End Connec-	
	tions	113
29a	Photograph Showing the Test Setup Used for Single Span	
	Beams With End Connections	114
29b	Photograph Showing the Test Setup Used for Single Span	
	Beams With End Connections	114
30a	Typical Failure Mode for Steel Decks Having Flat Webs	
	(BC Series)	115
30b	Typical Failure Mode for Steel Decks Having Flat Webs	
	(BC Series)	115
31a	Typical Failure Mode for Steel Decks Having Embossments	
	in Their Webs (BC Series)	116
31b	Typical Failure Mode for Steel Decks Having Embossments	
	in Their Webs (BC Series)	116.
32	Correlation Between the Test Results on Combined Bending	
	and Web Crippling (Simple Beam Tests Without End Connections)	
	and the Interaction Formula Used for the 1968 AISI	
	Specification	117
33	Correlation Between the Test Results on Combined Bending	
	and Web Crippling (Simple Beam Tests Without End Connec-	
	tions) and the Interaction Formula Used for the 1980 AISI	
	Specification	118

34	Correlation Between the Test Results on Combined Bending
	and Web Crippling (Single Span Beam Tests With End
	Connections) and the Interaction Formula Used for the
	1980 AISI Specification 119
35	Cross-Sectional Dimensions of Steel Decks Used for
	Continuous Beam Tests (CB Series) 120
36a	Location of Strain Gages and Deflection Measurements
	for Two-Span Continuous Beams 122
36b	Location of Strain Gages and Deflection Measurements
	for Three-Span Continuous Beams 122
37	Uniform Loading Apparatus Used for Continuous Beam Tests 123
38a	Test Setup for Two-Span Continuous Beam Tests
38b	Test Setup for Three-Span Continuous Beam Tests
39a	Photograph Showing the Test Setup for Three-Span Continuous
	Beam Tests
39t	p Photograph Showing the Test Setup for Two-Span Continuous
	Beam Tests 126
40a	a Typical Failure Mode at the Interior Support of Continuous
	Beams for Steel Decks Having Flat Webs 127
40	b Typical Failure Mode at the Interior Support of Continuous
	Beams for Steel Decks Having Flat Webs 127
41	a Typical Failure Mode at the Interior Support of Continuous
	Beams for Steel Decks Having Embossed Webs
41	b Typical Failure Mode at the Interior Support of Continuous
	Beams for Steel Decks Having Embossed Webs 128
42	a Photograph Showing the Test Setup for Inverted Steel Decks
	(Specimens Nos. 13, 14, 15, and 16) 129

xii

	42b	Typical Failure Mode at the Interior Support of Continuous
		Beams for Steel Decks Tested in an Inverted Position 129
	43a	Typical Failure Mode for Roof Deck
	43b	Typical Failure Mode for Roof Deck
	44	Correlation Between the Results of Continuous Beam Tests
		of Steel Decks and the Interaction Formula Used for the
		1980 Edition of the AISI Specification
Apper	ndix	
	Al	Mid-Span Deflection of Steel Deck Specimens Nos. BC-1A and BC-1B 159
	A2	Mid-Span Deflection of Steel Deck Specimens Nos. BC-2A, BC-2B,
		BC-2C, and BC-2D 160
	A3	Mid-Span Deflection of Steel Deck Specimens Nos. BC-9A and BC-9B 161
	A4	Mid-Span Deflection of Steel Deck Specimens Nos. BC-12A, BC-12B
		BC-12C, and BC-12D 162
	A5	Mid-Span Defelction of Steel Deck Specimens Nos. BC-13A and BC-13B. 163
	A6	Mid-Span Deflection of Steel Deck Specimens Nos. BC-16A, BC-16B,
		BC-16C, and BC-16D 164
	A7	Mid-Span Deflection of Steel Deck Specimens Nos. BC-17A and BC-17B. 165
	A 8	Mid-Span Deflection of Steel Deck Specimens Nos. BC-19A, BC-19B,
		BC-19C, and BC-19D 166
	A9	Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-1A. 167
	A10	Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-1B. 168
	A11	Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-2A. 169
	A12	Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-2B. 170
	A13	Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-5A. 171
	A14	Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-5B. 172
	A15	Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-6A. 173

Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-6B... 174 A16 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-9A... 175 A17 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-9B... 176 A18 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-10A. 177 A19 A20 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-10B. 178 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-11A.. 179 A21 A22 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-11B.. 180 A23 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-12A. 181 A24 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-12B. 182 A25 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-13A.. 183 A26 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-13B. 184 A27 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-14A.. 185 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-14B.. 186 A28 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-15A.. 187 A29 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-15B.. 188 A30 A31 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-16A.. 189 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-16B.. 190 A32 A33 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-19A.. 191 A34 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-19B.. 192 A35 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-20A.. 193 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-20B. 194 A36 A37 Mid-Span Deflection of Three-Span Continuous Beam Specimen No. CB-3A. 195 A38 Mid-Span Deflection of Three-Span Continuous Beam Specimen No. CB-3B. 196 A39 Mid-Span Deflection of Three-Span Continuous Beam Specimen No. CB-4A. 197 A40 Mid-Span Deflection of Three-Span Continuous Beam Specimen No. CB-4B. 198 Load vs Stress for Specimen No. BC-2C..... 199 A41 Load vs Stress for Specimen No. BC-2D..... A42 200 Load vs Stress for Specimen No. BC-12C..... 201 A43

A44	Load	vs	Stress	for	Specimen	No.	BC-12D	202
A45	Load	vs	Stress	for	Specimen	No.	BC-16C	203
A46	Load	vs	Stress	for	Specimen	No.	BC-16D	204
A47	Load	VS	Stress	for	Specimen	No.	BC-19C	205
A48	Load	vs	Stress	for	Specimen	No.	BC-19D	206
A49	Load	vs	Stress	for	Specimen	No.	CB-1A	207
A50	Load	vs	Stress	for	Specimen	No.	CB-1B	208
A51	Load	vs	Stress	for	Specimen	No.	CB-2A	209
A52	Load	vs	Stress	for	Specimen	No.	BC-2B	210
A53	Load	vs	Stress	for	Specimen	No.	СВ-ЗА	211
A54	Load	vs	Stress	for	Specimen	No.	СВ-ЗА	212
A55	Load	vs	Stress	for	Specimen	No.	CB-3B	213
A56	Load	vs	Stress	for	Specimen	No.	CB-3B	214
A57	Load	vs	Stress	for	Specimen	No.	CB-4A	215
A58	Load	vs	Stress	for	Specimen	No.	CB-4A	216
A59	Load	vs	Stress	for	Specimen	No.	CB-4B	217
A60	Load	vs	Stress	for	Specimen	No.	CB-4B	218
A61	Load	vs	Stress	for	Specimen	No.	CB-5A	219
A62	Load	vs	Stress	for	Specimen	No.	CB-5B	220
A63	Load	vs	Stress	for	Specimen	No.	CB-6A	221
A64	Load	vs	Stress	for	Specimen	No.	СВ-6В	222
A65	Load	vs	Stress	for	Specimen	No.	СВ-9А	223
A66	Load	vs	Stress	for	Specimen	No.	CB-9B	224
A67	Load	vs	Stress	for	Specimen	No.	CB-10A	225
A6 8	Load	vs	Stress	for	Specimen	No.	CB-10B	226
A69	Load	vs	Stress	for	Specimen	No.	СВ-11А	227
A70	Load	vs	Stress	for	Specimen	No.	СВ-11В	228

A71	Load	vs	Stress	for	Specimen	No.	CB-12A	229
A72	Load	vs	Stress	for	Specimen	No.	CB-12B	230
A73	Load	vs	Stress	for	Specimen	No.	BC-13A	231
A74	Load	vs	Stress	for	Specimen	No.	CB-14A	232
A75	Load	٧s	Stress	for	Specimen	No.	CB-15A	233
A76	Load	vs	Stress	for	Specimen	No.	CB-15B	234
A77	Load	vs	Stress	for	Specimen	No.	CB-16A	235
A78	Load	vs	Stress	fọr	Specimen	No.	CB-16B	236
A79	Load	vs	Stress	for	Specimen	No.	CB-19B	237
A80	Load	vs	Stress	for	Specimen	No.	СВ-20В	238

xvi

I. INTRODUCTION

A. <u>General</u>

During the period of October 1968 through September 1980, the 1968 Edition of the AISI Specification was used for the design of steel deck webs that could withstand web crippling and combined web crippling and bending.⁽¹⁾ The design formulas used to prevent web crippling were developed primarily on the basis of tests conducted in the 1940's and 1950's at Cornell University.⁽²⁻⁴⁾

Recently, new types of cold-formed steel sections have been developed and used in building construction. The use of unusual geometric configurations has complicated the design of such members. In order to develop new design criteria, additional studies of the crippling strength of beam webs have been made in several countries.⁽⁵⁻²²⁾

Since 1973, a research project on a study of beam webs has been carried out at the University of Missouri-Rolla (UMR) under the sponsorship of American Iron and Steel Institute. Based on the available test data obtained from research at Cornell and tests recently conducted at UMR, modified AISI design formulas for web crippling have been proposed in Ref. 21. Because these modified formulas are based on the test data of channels, I-beams, and hat sections having vertical webs with relatively small R/t and N/t ratios, these proposed design provisions may or may not be fully suitable for the design of steel decks when they have inclined webs with large R/t and/or large N/t ratios. In addition, various types of embossments and indentations are usually formed in the webs of the steel decks to be used for composite slabs. These deformations may affect the web crippling strength

of steel decks. For this reason, a research project was initiated in 1979 at the University of Missouri-Rolla to study the web crippling strength of steel decks. This project was cosponsored by Steel Deck Institute, American Iron and Steel Institute, and H. H. Robertson Company.

B. Purpose of Investigation

The objectives of the investigation were (1) to establish experimentally the web crippling strength of a selected group of steel decks, (2) to determine the effect of bending on web crippling load, and (3) to demonstrate the validity of the proposed design formulas for preventing web crippling of steel decks.

C. Scope of Investigation

In order to achieve the first objective mentioned above, a total of 84 web crippling tests of steel decks were conducted at the University of Missouri-Rolla during the period of September 1979 through March 1980. During these tests, 40 specimens were subjected to interior one-flange loading, and the remaining 44 specimens were subjected to end one-flange loading. Details of the first phase of the experimental study are presented in Articles II and III of this report. Comparisons between the test data and predicted web crippling loads are also included in these two articles.

In the second phase of the study, 56 specimens having relatively long spans were tested as simple beams and continuous beams to determine the effect of bending on the web crippling strength of steel decks. The test data have been used to determine the validity of the AISI interaction formulas that are used for the design of steel beams subjected to combined web crippling and bending. Details of the second phase of the study are presented in Articles IV and V.

Finally, the recommendations for future research are discussed in Article VI.

II. EXPERIMENTAL STUDY OF WEB CRIPPLING STRENGTH OF STEEL DECKS SUBJECTED TO INTERIOR ONE-FLANGE LOADING (IOF SERIES)

Since September 1979, 40 web crippling tests have been conducted for interior one-flange loading. The test specimens used in this experimental study were fabricated from steel decks received from five manufacturing companies. Figure 1 shows the type of test used in this part of the investigation.

The following discussions deal with the preparation of the test specimens, the tesing of the specimens, the results of the tests, and evaluation of the test data.

A. Preparation of Test Specimens

Nine different types of steel decks were used in the tests of web crippling strength for interior one-flange loading. Figure 2 shows the cross-sectional configurations of the steel decks used. The actually measured dimensions of the test specimens are presented in Table 1. All symbols used in this table are defined in Fig. 3. Table 2 lists the following design parameters for the steel deck specimens:

Design Parameter	Range
Web inclination angle, Θ	48.1 - 90.0 degrees
R/t ratio	3.05 - 7.24
h/t ratio	46.65 - 107.43
N/t ratio	63.40 - 208.80
N/h ratio	0 .94 - 3.17
Yield point, F _y	39.3 - 49.9 ksi

Prior to testing, the tension flange of the steel decks was braced by two 1/8x3/4 inch rectangular bars along the inside edge of the end bearing plates. Self-tapping screws (#12 x 14 x 3/4 Tek Screws) were used for connectors.

B. Testing of Specimens

(a) Tensile Coupon Tests

The mechanical properties of the steels used for the test specimens were established by standard tensile coupon tests. All the coupons were tested in a 150,000-1b Tinius Olsen universal testing machine. Table 3 lists the test data on yield point, ultimate tensile strength, and elongation measured from 2-inch gage length. Each value is the average of four coupon tests.

(b) Testing of Deck Specimens

For the 40 web crippling tests of interior one-flange loading, 38 specimens were tested in the 150,000-lb Tinius Olsen universal testing machine. Only two wide specimens (IOF-19A and IOF-19B) were tested in the 8-foot wide, 9-foot high, and 21-foot long loading frame located in UMR's Engineering Research Laboratory.

(i) Test Setup

Each specimen was tested as a simply supported beam by using two large bearing plates (N_2) at both ends and a small bearing plate (N_1) under the concentrated load applied at midspan as shown in Fig. 4. The clear distance between the bearing plates was equal to approximately 1.5h, where h is the width measured along the plane of the web. The minimum distance of 1.5h between bearing plates was chosen to eliminate the effect of a two-flange loading action. The same criteria were used previously for the Cornell and UMR tests.^(3,21)

Figures 5 and 6 show the test setup used in this phase of the experimental study.

(ii) Test Procedure

During the tests, the specimens were loaded continuously to the estimated allowable design load, beyond which an increment of 20% of the estimated allowable design load was added to each specimen following a waiting period of five minutes. All specimens were tested to failure. The maximum load at failure was recorded for evaluation of the test data.

C. <u>Results of Tests</u>

The results of 40 web crippling tests of steel decks subjected to interior one-flange loading are presented in Tables 4 and 5. In these two tables, $(P)_{test}$ is the total failure load for web crippling under the concentrated load, and $(M)_{test}$ is the bending moment computed from the load $(P)_{test}$ and the actual span length.

Typical failure modes for web crippling of steel decks subjected to interior one-flange loading are shown in Figs. 7 and 8.

D. Evaluation of Test Data

The results of the 40 steel deck tests have been carefully evaluated and compared with the predicted ultimate web crippling loads and the ultimate bending moments determined on the basis of the 1968 Edition of the AISI Specification⁽¹⁾ and the 1980 Edition of the AISI Specification.⁽²³⁾ Details of these comparisons are given below. (a) Comparison of the Experimental Web Crippling Loads and the Predicted Loads Determined on the Basis of Addendum No.2 of the 1968 AISI Specification

In Table 4, the predicted ultimate web crippling loads,(P_u)_{comp}, for interior one-flange loading were calculated from the following equations:

(i)
$$R/t \le 1$$

 $(P_u)_{comp/web} = 1.85 \{t^2 [305 + 2.30(N/t) - 0.009(N/t)(h/t) - 0.5(h/t)]x[1.22 - 0.22(F_y/33)] (F_y/33)\}sin\Theta$
(ii) $1 < R/t \le 4$ (1)
 $(P_u)_{comp/web} = Eq.(1) x [1.06 - 0.06(R/t)]$ (2)

where

t = web thickness, in. N = actual length of bearing, except that in the above formulas the value of N is not to be taken for a value greated than h, in. h = clear distance between flanges measured along the plane of the web, in. F_y = yield point, ksi R = inside bend radius, in.

 θ = web inclination angle, degree.

It should be noted that in Eqs. (1) and (2), $\begin{pmatrix} P \\ u \end{pmatrix} comp/web$ is the predicted ultimate load per web in kips. For this reason, the predicted ultimate web crippling load per specimen is computed as follows:

 $(P_u)_{comp}/specimen = (Number of Webs)(P_u)_{comp/web}$ With regard to the predicted ultimate bending moments, the following considerations were given to the computations of $(M_u)_{comp}$:

- (1) The value (M_{ul})_{comp} was calculated from the yield point of steel and the section modulus based on the effective width of the compression flange determined in accordance with Section 2.3.1.1 of the AISI Specification and the full area of the tension flange and webs.
- (2) The value $(M_{u2})_{comp}$ was calculated from the yield point of steel and the section modulus based on shear lag consideration (i.e., the section modulus was based on the effective widths of both compression and tension flanges in accordance with Section 2.3.5 of the AISI Specification) and the full area of the webs.
- (3) The value $(M_{u3})_{comp}$ was calculated from the section modulus based on the full area of the tension flange and webs combined with the effective width of the compression flange determined on the basis of Section 2.3.1.1 of the AISI Specification with $f = F_{bw}$ or 0.60 F_y , whichever was smaller. The stress used for computing the ultimate bending moment was either $1.67F_{bw}$ or F_y , whichever was less, where F_{bw} is the allowable stress for webs subject to bending stress. It was computed by using Eq. (3):

$$F_{bw} = \frac{520,000}{(h/t)^2}$$
(3)

Also included in Table 4 are the $(M)_{test}/(M_u)_{comp}$ and $(P)_{test}/(P_u)_{comp}$ ratios, in which $(M_u)_{comp}$ is the smallest value of $(M_{u1})_{comp}$, $(M_{u2})_{comp}$, and $(M_{u3})_{comp}$. The correlation between the test results and the following interaction formula⁽¹⁾ is shown graphically in Fig. 9.

$$\frac{(P)_{\text{test}}}{(P_u)_{\text{comp}}} + \frac{(M)_{\text{test}}}{(M_u)_{\text{comp}}} = 1.3$$
(4)

It should be noted that only four test points are shown in Fig. 9 because for other specimens, the R/t ratio exceeds the AISI limit of 4. As listed in Table 4, the mean value of A/1.3 ratios is 1.707. This high mean value and Fig. 9 indicate that the design provisions included in the 1968 Edition of the AISI Specification are very conservative for the design of these four test specimens. This possibly is because in calculating the predicted web crippling load acccording to the 1968 AISI Specification the bearing length, N, was taken to be not more than h. In addition, the test specimens exhibited a considerable postbuckling strength.

(b) Comparison of the Experimental Web Crippling Loads and the Predicted Loads Determined on the Basis of the 1980 Edition of the AISI Specification⁽²³⁾

In comparing the experimental and the predicted loads determined on the basis of the 1980 Edition of the AISI Specification, the predicted ultimate web crippling loads for interior one-flange loading, $(P_u')_{comp}$, as given in Table 5, were computed from the following equations (Equation 3.5.1-3 of Ref. 23):

(i) N/t
$$\leq 60$$

(P_u')_{comp/web} = 1.85 {t²kC₁C₂C₀[291 - 0.40(h/t)]
x [1 + 0.007 (N/t)]} (5)

(ii) N/t > 60

$$(P_{u}')_{comp/web} = 1.85 \{t^{2}kC_{1}C_{2}C_{\theta}[291 - 0.40(h/t)] \\ x[0.75 + 0.011(N/t)]\}$$
(6)

where k = $F_y/33$ $C_1 = (1.22 - 0.22k)$ $C_2 = [1.06 - 0.06(R/t)] \le 1.0$ $C_{\theta} = 0.7 + 0.3(\theta/90)^2$ θ = angle between web and bearing surface, degree N = actual length of bearing, in., except that the N/t ratio shall not exceed 210 and the N/h ratio shall not exceed 3.5 R = inside bend radius, in., except that R shall not be greater than 7t for steel decks.

As far as the predicted ultimate bending moments are concerned, the values of $(M_{u1})_{comp}$ and $(M_{u2})_{comp}$ are the same as those listed in Table 4. The value $(M_{u3}')_{comp}$ was computed from the section modulus based on the full area of the tension flange and webs combined with the effective width of the compression flange. The latter was determined on the basis of Section 2.3.1.1 of the AISI Specification with $f = 0.60 F_y$ or F_{bw} , whichever was smaller. In the calculation, the value of F_{bw} was determined by using Eq. 3.4.2-1 of Ref. 23:

$$F_{bw} = [1.21 - 0.00034 (h/t) \sqrt{F_y}](0.60F_y) \le 0.60 F_y$$
 (7)

The ratios of $(M)_{test}/(M_u')_{comp}$ and $(P)_{test}/(P_u')_{comp}$ are presented in Table 5. The correlation between the test results and the interaction formula given in Eq. (8) is shown graphically in Fig. 10.

$$1.07 \frac{(P)_{\text{test}}}{(P_{u}')_{\text{comp}}} + \frac{(M)_{\text{test}}}{(M_{u}')_{\text{comp}}} = 1.42$$
(8)

It should be noted that Eq. (8) is the basic interaction formula used to develop the AISI design formula (Eq. 3.5.2-1 of Ref. 23) for beams having single, unreinforced webs subjected to combined bending and web crippling.⁽²¹⁾ Therefore, Fig. 10 indicates the validity of the AISI design formulas for single span steel decks subjected to combined bending and web crippling.

Unlike Fig. 9, a total of 40 test points are shown in Fig. 10.* This is because in the 1980 Edition of the AISI Specification, the limit of the R/t ratio was extended from 4 to 7. The mean value of the B/1.42 ratios is 1.188 as given in Table 5. This mean value and Fig. 10 indicate the improvement of the AISI design equations for web crippling and combined web crippling and bending as compared with the 1968 Edition of the AISI Specification.

If the shear lag consideration is neglected (i.e., the value of $(M'_u)_{comp}$ is either $(M_{ul})_{comp}$ or $(M'_{u3})_{comp}$, whichever is less), the correlation between the test results and the interaction formula can be shown as in Fig. 11. It can be seen that Eq. 8 may be used for the combined web crippling and bending of steel decks used for single span tests having relatively short span lengths. It should be noted that this equation is conservative for steel decks with flat webs.

^{*}For Specimens IOF-2A, 2B, 9A, 9B, 10A, and 10B, the R/t ratios are slightly larger than 7. See Table 2.

(c) Effect of Intermittent, Longitudinal Embossments and Indentations on Web Crippling Strength

The effect of intermittent, longitudinal embossments and indentations on web crippling strength can be observed by comparing the test results of several specimens. As listed in Tables 1 and 2, the material properties and dimensions of Specimens Nos. 1,2,5, and 6 are practically identical with Specimens Nos. 9,10,11, and 12, except that for the composite decks (Specimens Nos. 9,10,11, and 12) the embossments and indentations as shown in Fig. 12 were used in the inclined webs. These deformations may reduce the web crippling strength of steel decks according to the size and arrangement of the embossments. Table 6 presents a comparison of the test results for eight different specimens subjected to interior one-flange loading. It seems to indicate that for the type and arrangement of embossments used in this comparison, the reduction of web crippling strength occasioned by the longitudinal embossments is within 10%,

E. Summary

A total of 40 web crippling tests were conducted for interior one-flange loading. Even though short span lengths were used in the tests, a considerable amount of bending moment was developed for most of the specimens.

The test results were carefully reviewed and evaluated. Comparisons between a limited number of test data and the equations used for combined bending and web crippling indicate that the R/t ratios of most of the steel decks used in this study exceeded the AISI limit included in the 1968 Edition of the Specification and that the 1980 Edition of the AISI Specification can be used for the design of steel decks. It has been noted that the AISI design provisions are conservative for steel decks having flat webs.

A comparison of the test data obtained for several specimens indicates that for the panels used in the tests, the web crippling load is slightly affected by the intermittent, longitudinal embossments and indentations formed in the webs. More tests should be conducted in this area for a detailed study.

.

.

III. EXPERIMENTAL STUDY OF WEB CRIPPLING STRENGTH OF STEEL DECKS SUBJECTED TO END ONE-FLANGE LOADING (EOF SERIES)

During the period of September 1979 through March 1980, 44 web crippling tests were conducted for steel decks subjected to end one-flange loading. Figure 13 illustrates the type of tests used in this phase of investigation. The test specimens used in the experimental study were fabricated from the same steel decks used in the web crippling study for interior one-flange loading that were reported on in Article II.

The preparation of test specimens, the testing of the specimens, the results of the tests, and evaluation of the test data are discussed in the following sections.

A. <u>Preparation of Test Specimens</u>

As in the tests for interior one-flange loading, nine different types of steel decks were used in the web crippling tests for the end one-flange loading condition. The cross-sectional configurations of the steel decks are the same as those shown in Fig. 2, except that specimens Nos. EOF-13, EOF-14, EOF-15, and EOF-16 were tested in an inverted position. This test setup was used to eliminate the effect of continuous longitudinal stiffeners on the web crippling strength at both ends.

The actually measured dimensions of the test specimens are presented in Table 7. All symbols used in Table 7 are defined in Fig. 3. Table 7 presents the design parameters for the steel decks used for end one-flange loading. The ranges of design parameters are similar to those listed on page 4.

Prior to testing, the tension flange of the steel deck specimens was braced by two 1/8 x 3/4 inch rectangular bars along the inside edge of the end bearing plates. In addition, a short piece of the same steel deck was attached to the central portion of the specimen to prevent premature failure of the deck at the location of the applied concentrated loads. This type of reinforcement was used for all tests, except for specimens EOF-13, EOF-14, EOF-15, and EOF-16 with continuous longitudinal stiffeners.

B. Testing of Deck Specimens

All specimens were tested in the 150,000-1b Tinius Olsen universal testing machine. The test setup and procedure are described in the subsequent sections.

(a) Test Setup

Each specimen was tested as a simple beam as shown in Fig. 14. Two large bearing plates were used under the applied concentrated loads, and two small bearing plates were placed under the specimen at both end supports. The clear distance between the bearing plates was approximately 1.5h. Figures 15 and 16 show the test setup used for the experimental study of end failure.

(b) Test Procedure

The procedure used for the web crippling tests of steel decks subjected to end one-flange loading is the same as that used for the interior one-flange loading. For details, see Article II.B.b.ii.

C. Results of Tests

The results of 40 web crippling tests of steel decks subjected to end one-flange loading are presented in Table 8. The value of the $(P_u)_{test}$ is the total load applied to the specimen at failure, in kips. Typical failure modes for the web crippling of steel decks subjected to end one-flange loading are shown in Figs. 17 and 18.

D. Evaluation of Test Data

The results of **44** steel deck tests have been carefully evaluated and compared with the ultimate web crippling loads computed on the basis of the 1968 Edition of the AISI Specification (1) and the 1980 Edition of the AISI Specification, (23) The equations used to determine the predicted ultimate web crippling loads are given in the following sections.

 (a) Comparison of the Experimental Web Crippling Loads and the Predicted Loads Determined on the Basis of the 1968 AISI Specification

In Table 8, the predicted ultimate web loads for end one-flange loading were calculated from the following equations, whichever was applicable:

(i)
$$R/t \le 1$$

 $({}^{P}_{u})_{comp/web} = 1.85 \{t^{2}[98 + 4.20(N/t) - 0.022(N/t)(h/t) - 0.011(h/t)] \times [1.33 - 0.33(F_{y}/33)]$
 $(F_{y}/33)\}_{sin\Theta}$ (9)
(ii) $1 < R/t \le 4$

 (P_u) comp/web = Eq. (9) x [1.15 - 0.15(R/t)] (10) All the symbols have been defined previously.

In view of the fact that Eqs. (9) and (10) deal with the predicted ultimate web crippling load for one web at each end support, the predicted total ultimate load applied to **an entire specimen was computed** as follows: (P_u)_{comp}/specimen = 2(Number of Webs)(P_u)_{comp/web}

Also listed in Table 8 are the ratios of $(P_u)_{test}/(P_u)_{comp}$. Because most of the steel decks had R/t ratios larger than 4, only six test results could be used for this comparison.

(b) Comparison of the Experimental Web Crippling Loads and the Predicted Loads Determined on the Basis of the 1980 Edition of the AISI Specification.⁽²³⁾

In comparing the experimental data and the predicted loads determined on the basis of the 1980 Edition of the AISI Specification, the predicted ultimate web crippling loads for end one-flange loading were computed from the following equations:

(i) Beams with Stiffened Flanges (AISI Eq. 3.5.1-1)

$$(P_u')_{comp}/web = 1.85 \{t^2 k C_3 C_4 C_{\theta} [179 - 0.33(h/t)] x [1 + 0.01(N/t)]\}$$
 (11)

(ii) Beams with Unstiffened Flanges (AISI Eq. 3.5.1-2)

$$N/t \le 60$$
,
 $(P_u')_{comp}/web = 1.85 \{t^2 k C_3 C_4 C_9 [117 - 0.15(h/t)]$
 $x [1 + 0.01(N/t)]\}$ (12)
 $N/t > 60$,

$$(P_u')_{comp}$$
/web = 1.85 {t²kC₃C₄C₀[117 - 0.15(h/t)]
x [0.71 + 0.015(N/t)]} (13)

where k = $F_y/33$ $C_3 = (1.33 - 0.33k)$ $C_4 = [1.15 - 0.15(R/t)] \le 1.0$ but not less than 0.5 $C_{\theta} = 0.7 + 0.3(\theta/90)^2$

 θ = angle between web and bearing surface, degree
N = actual length of bearing, in., except that the N/t ratio shall not exceed 210 and the N/h ratio shall not exceed 3.5 R = inside bend radius, in., except that R shall not be greater than 7t for steel decks.

Consequently, the predicted total ultimate load applied to each specimen was determined as:

(Pu')_{comp}/specimen = 2(Number of Webs)(Pu')_{comp/web}*

The ratios of $(P_u)_{test}/(P_u')_{comp}$ for 36 specimens were calculated and are listed in Table 8. For two specimens, the R/t ratios slightly exceeded the revised limiting value of 7. Figure 19 shows the relationship between the computed C_4 and the R/t ratio. It can be seen that the lower limit of 0.5 for C_4 is justified. The larger scatter is due to the fact that many parameters concerning the deformed webs are not included in the design formulas.

A study of the ratios of $(P_u)_{test}/(P_u)_{comp}$ indicates that the 1968 AISI Specification is slightly conservative for the design of steel deck webs as far as the web crippling at end support is concerned. This is possibly due to the available postbuckling strength of steel deck webs. The 1980 Edition of the AISI Specification based on a previous study of channels and hat sections gives a conservative design except for Specimens EOF-13 and EOF-14. The low failure loads for these specimens were probably caused by the use of intermittent, longitudinal embossments in the webs.

In order to study the effect of support conditions on end failure,

^{*}Specimens Nos. 1 through 16 had 4 webs all connected to stiffened flanges; Specimens Nos. 17 and 18 had 2 webs connected to unstiffened flanges; Specimens Nos. 19 and 20 had 6 webs connected to stiffened flanges and 2 webs connected to unstiffened flanges.

Specimens EOF-5C and EOF-5D were supported by two W shapes as shown in Fig. 20. No connections were used at the ends of the specimens. Figure 21 shows the failure mode of the steel decks tested. The total failure load per specimen is given in Table 10. In addition, Specimens EOF-5E and EOF-5F were spot welded to two end bearing plates by Mac-Fab Products, Inc. (Fig. 22). Three bolts were used to connect these bearing plates to support beams as shown in Fig. 23. For this case, the failure mode of the steel decks is shown in Fig. 24 under the failure load given in Table 10.

A comparison of the total failure load given in Table 10 indicates that when the steel decks are placed on support beams with or without connections, the steel deck webs can actually resist a larger load than that obtained from simple beam tests for which the bearing plate is allowed to rotate. For design parameters see Table 9.

(c) Effect of Intermittent, Longitudinal Embossments and Indentations on Web Crippling Strength

In order to determine the effect of intermittent, longitudinal embossments on the web crippling strength of the steel decks subjected to end one-flange loading, the test results of Specimen Nos. 1, 2, 5, 6, 9, 10, 11, and 12 were compared and are presented in Table 11. This comparison seems to indicate that for the case of end one-flange loading, the effect of longitudinal embossments on the web crippling strength is slightly larger than that for the case of interior one-flange loading. However, the reductions of failure loads for most of the test specimens are within 10%.

E. Summary

A total of 44 web crippling tests were conducted for the end one-flange loading condition. The test results were compared with the predicted loads computed by using the 1968 AISI Specification and the 1980 Edition of the Specification. The effect of a support condition on end failure was also studied briefly.

Several pilot tests showed that usually end web crippling is not a problem, because without any web reinforcement, steel deck specimens failed prematurely in the central portion of the specimens rather than at the end support even though the span length was kept very short and the bearing plate under the load was much wider than the end bearing plate.

IV. EXPERIMENTAL STUDY OF COMBINED WEB CRIPPLING AND BENDING: SIMPLE BEAM TESTS (BC SERIES)

Simple beam and continuous beam tests have been conducted for the purpose of studying the interaction between web crippling and bending of steel decks. Since March 1980, 24 long span steel decks have been tested as simple beams, and 32 long span steel decks have been tested as continuous beams. This Article deals only with the simple beam tests. The continuous beam tests are described in Article V.

The following discussions cover the preparation of test specimens, the testing of the specimens, the results of the tests, and evaluation of the test data obtained from the simple beam tests.

A. Preparation of Test Specimens

Seven different types of steel decks were used in the study of combined web crippling and bending. Figure 25 shows the crosssectional configurations of the steel decks used in the long span simple beam tests. The measured dimensions of the test specimens are given in Tables 12 and 13. It should be noted that the steel decks listed in Table 12 were used without end connections in 16 simple beam tests, and those listed in Table 13 were used with end connections in eight simple beam tests. The symbols used in both tables are defined in Fig. 3.

The design parameters for the steel decks are presented in Tables 14 and 15. The following summary covers the ranges of design parameters employed in this investigation.

Design Parameter	Range
Web inclination angle, θ	48.9 - 90 degrees
R/t ratio	3.20 - 7.12
h/t ratio	54.15 - 107.85
N/t ratio	85.39 - 202.39
N/h ratio	1.00 - 2.68
Yield point, F _y	39.3 - 51.0 ksi

Before the steel decks without end connections were tested, the tension flange of the deck was braced by $1/8 \times 3/4$ inch rectangular bars along the inside edge of the end bearing plates. For the simple beams with end connections, a rectangular bar was fastened at the midspan of each specimen to brace the tension flange. Self-tapping screws (#12 x 14 x 3/4 Tek Screws) were used for connectors.

For the specimens with end connections, four foil strain gages were placed on the bottom face of the tension and compression flanges at the midspan. The arrangement of strain gages is shown in Fig. 26.

B. <u>Testing of Specimens</u>

(a) Tensile Coupon Tests

The mechanical properties of the steels used for the test specimens were determined by standard tensile coupon tests. All the coupons were tested in a 150,000-1b Tinius Olsen universal testing machine. Table 16 is a list of the test data on yield point, ultimate tensile strength, and elongation measured from a 2-in. gage length. Each value is the average of four coupon tests. The listed mechanical properties were used for the long span simple beams with end connections and the continuous beams. The mechanical properties listed in Table 3 were used for the simple beams without end connections.

(b) Testing of Deck Specimens

The test setup and test procedure used for the long span simple beam tests are the same as those used for the interior one-flange loading described in Article II.

(i) Test Setup

Each specimen was tested in a 150,000-1b Tinius Olsen testing machine on which two wide flange sections and tubular members were used as support beams. Before a specimen was tested, large bearing plates (N_2) were placed at both ends of the specimen, and a small bearing plate (N_1) was placed under the concentrated load applied at the midspan of the deck. Figure 27 shows the test setup used for long span simple beams without end connections. For this case, both ends of the specimen were free to rotate. Prior to testing, a dial gage was placed under the specimen at the midspan for measuring the deflection.

The test setup used for single span beams with end connections is shown in Fig. 28. At both ends of each two-foot wide test specimen, three 1/4-in. diameter bolts with 1/2-in. diameter washers were used to connect the steel deck to the bearing plates and the tubular members, which were fastened to support beams through three 7/8-in. diameter bolts. For the one-foot wide steel deck, only two bolts were used at each end of the test specimen. This type of end connection simulates the actual field conditions. Prior to testing, a dial gage was placed under the specimen at the midspan for measuring the deflection. Strain gages were connected to a data acquisition system for recording the test data. Figures 29(a) and 29(b) show the actual test setup used for single span beams with end connections.

(ii) Test Procedure

During the tests, the specimens were loaded continuously to the estimated allowable design load. Beyond this, an increment of approximate 20% of the estimated allowable design load was added to each specimen after a waiting period of five minutes. All the specimens were tested to failure. The ultimate failure load was recorded for each test.

During the tests of the single span beams with end connections, strain gage readings were usually taken at every 20% of the estimated design loads. In addition, the deflection at the midspan was recorded for every load increment.

C. <u>Results of Tests</u>

The results of 24 single span beam tests of steel decks subjected to combined bending and web crippling are presented in Tables 17 to 20. In these four tables, $(P)_{test}$ is the total ultimate load at failure. The value of $(M)_{test}$ is the bending moment computed from the load $(P)_{test}$ and the actual span length, i.e.,

 $(M)_{test} = 1/4 (P)_{test} (L)$

Typical failure modes at the midspage of the specimen are shown in Figs. 30 and 31.

The midspan deflections and strain gage readings are presented in Tables Al and A4 respectively of the Appendix. Figures Al to A8 of the Appendix show the load-deflection curves for single span beam tests. The tensile and compressive stresses developed under various loads are shown in Figs. A41 to A48.

D. Evaluation of Test Data

The results of the 24 steel deck tests have been carefully evaluated and compared with the predictions on the basis of the 1968 AISI Specification with Addendum No. $2^{(1)}$ and the 1980 Edition of the AISI Specification.⁽²³⁾ Details of these comparisons are given below.

(a) Comparison of the Experimental Data and the Predictions on the Basis of Addendum No. 2 of the 1968 AISI Specification⁽¹⁾

The predicted ultimate web crippling loads, $(P_u)_{comp}$, for interior one-flange loading presented in Tables 17 and 18 were calculated from either Eq. (1) or (2) whichever was applicable.

It should be noted that in Eqs. (1) and (2), $(P_u)_{comp/web}$ is the predicted ultimate load per web in kips. For this reason, the predicted ultimate web crippling load per specimen as given in Tables 17 and 18 was computed by multiplying the number of webs by $(P_u)_{comp/web}$.

With regard to the predicted ultimate bending moments, the same considerations used in Article II for the IOF series were applied to the computation of $(M_{\mu})_{comp}$.

Also included in Tables 17 and 18 are the $(M)_{test}/(M_u)_{comp}$ and $(P)_{test}/(P_u)_{comp}$ ratios in which $(M_u)_{comp}$ is the smallest value of $(M_{u1})_{comp}$, $(M_{u2})_{comp}$, and $(M_{u3})_{comp}$. The correlation between the test results and Eq. (4) is shown graphically in Fig. 32. It should be noted that only two test points are shown in this figure, because for other specimens, the R/t ratio exceeds the AISI limit of 4. In Table 17, the mean value of A/1.3 ratios is 1.365 with a coefficient of variation of 0.020. This indicates that the 1968 AISI design provisions are conservative for the design of these two test specimens, because the test

specimens exhibited a considerable postbuckling strength. However, it should also be noted that these two specimens are specially made hat sections. They are not the normally used steel decks.

(b) Comparison of the Experimental Data and the Predictions on the Basis of the 1980 Edition of the AISI Specification (23)

In comparing the experimental data and the predicted loads determined on the basis of the 1980 Edition of the AISI Specification,⁽²³⁾ the predicted ultimate web crippling loads for interior one-flange loading, $(P_u')_{comp}$, as given in Tables 19 and 20, were computed from either Eq. (5) or Eq. (6), whichever was applicable.

As far as the predicted ultimate bending moments are concerned, the values of $(M_{u1})_{comp}$ and $(M_{u2})_{comp}$ are the same as those listed in Tables 17 and 18. The value $(M_{u3}')_{comp}$ was computed from the section modulus based on the full width of the tension flange and the effective width of the compression flange determined on the basis of Section 2.3.1.1 of the 1980 AISI Specification with $f = 0.60 F_y$ or F_{bw} , whichever was smaller. In the calculation, the value of F_{bw} was determined by using Eq. (7).

The ratios of $(M)_{test}/(M_u')_{comp}$ and $(P)_{test}/(P_u')_{comp}$ are presented in Tables 19 and 20. The correlations between the test results and the interaction formula given in Eq. (8) are shown graphically in Figs. 33 and 34.

Figure 33 shows that for the simple beams without end connections, only the results of five tests (BC-1A,1B,13A,17A, and 17B) can be used for a comparison with the interaction formula included in the 1980 Edition of the AISI Specification. The mean value of the B/1.42 ratios given in Table 19 for these five tests is 1.076 with a coefficient of variation of 0.112. For other tests, the interaction formula is not applicable because the $(P)_{test}/(P_u')_{comp}$ ratio is less than 0.393, which is the lower limit of $(P)_{test}/(P_u')_{comp}$ when Eq. (8) is used. This figure also shows that for four test specimens having embossments in their webs (BC-9A, 9B, 12A, and 12B), the margin of safety is considerably lower than that for other specimens having flat webs. The ratios of $(M)_{test}/(M_u')_{comp}$ and $(P)_{test}/(P_u')_{comp}$ for these tests are presented in Table 19.

Because the cross-sectional configurations of the test specimens, the mechanical properties of the steels, and the test procedure used for the short span tests for interior one-flange loading discussed previously in Article II are practically the same as those used for the relatively long span simple beam tests reported herein, a comparison of Fig. 11 and Fig. 33 is in order. From these two figures, it can be seen that, in general, the relatively long span simple beam tests give a lower safety factor than the corresponding tests in which the short span specimens were used. This is apparently attributed to the large deflection of the long span specimens that causes an uneven distribution of pressure under the bearing plate at midspan.

In order to determine the effect of end connections on the load carrying capacity of the steel decks, eight additional tests were conducted. The setup for these tests is shown in Fig. 28. For these tests, 1/4-in. diameter bolts with 1/2-in. diameter washers were installed at both ends of each specimen to connect the deck to the bearing plates. The test results and the computed data are given in Table 20 and shown graphically in Fig. 34. Because the $(P)_{test}/(P_u')_{comp}$ ratio was less than 0.393 for

these eight tests, the interaction formula for the combination of bending and web crippling could not be used for the purpose of comparison. On the basis of the $(M)_{test}/(M_u')_{comp}$ ratios listed in Tables 19 and 20 for specimen Nos. 2, 12, 16, and 19, it can be seen that the end restraints usually improved the load carrying capacities of steel decks from about 7 to 12%. However, the increases of the moment ratios for specimen No. 16 are more than 20%. The low $(M)_{test}/(M_u')_{comp}$ ratios for specimen Nos. 12C and 12D seem to confirm the need for a refined design formula for predicting the ultimate bending moment for composite decks. Of course, this is not an easy task because of the unlimited variations in dimensions and arrangements of embossments in webs.

E. Summary

A total of 24 single span beam tests were conducted on steel decks having flat webs and webs with embossments to study the interaction between bending and web crippling. Among these tests, 16 specimens were tested without end connections, and the remaining eight decks were tested with bolted connections fastened at both ends of each specimen. The purpose of this phase of the investigation was to determine the validity of the 1968 AISI design criteria and the 1980 Edition of the AISI Specification for steel decks subjected to combined bending and web crippling.

The test results were carefully reviewed and evaluated. A comparison between the test data and the equations used for combined bending and web crippling indicates that the R/t ratios of most of the steel decks used in this experimental study exceeded the previous AISI limit of 4.0. As a result, it is not possible to use these data for determining the validity of the 1968 AISI design criteria for combined bending and web crippling. As far as the 1980 Edition of the AISI Specification is concerned, a comparison between the tested and the computed data indicates that the newly revised equations are adequate for steel decks having flat webs provided that the decks are properly connected to support beams. For steel decks having embossments in their webs, refined design formulas are needed for bending, web crippling, and a combination thereof.

V. EXPERIMENTAL STUDY OF COMBINED WEB CRIPPLING AND BENDING: CONTINUOUS BEAM TESTS (CB SERIES)

Steel decks are often used as multispan continuous beams to support uniform loads. The interaction between bending and web crippling at interior supports and the ultimate strength of continuous beams were investigated in this phase of the study.

A total of 32 continuous beam tests of steel decks were conducted in UMR's Engineering Research Laboratory during the period of May through July 1980.

A. <u>Preparation of Test Specimens</u>

Seven different types of steel decks were used for the continuous beam tests. Figure 35 shows the cross-sectional configurations of the steel decks used in this program. The measured dimensions of the 32 test specimens are given in Table 21. All symbols are defined in Fig. 3.

The design parameters for the steel decks are presented in Table 22. The ranges of the design parameters are listed below:

Design Parameter	Range
Web inclination angle, $\boldsymbol{\theta}$	46.7 - 74.6 degrees
R/t ratio	4.38 - 6.99
h/t ratio	47.06 - 109.69
N/t ratio	64.50 - 210.28
N/h ratio	0.95 - 3.09
Yield point, F	44.2 - 51.0 ksi

At the interior support, which is the location of maximum negative moment, four foil strain gages were mounted on the top surface of the tension and compression flanges of each specimen. See Fig. 36 for the arrangement of strain gages. For a few specimens, additional strain gages were mounted on the top and bottom flanges of the specimens at the end support and/or at the location of maximum positive moment,

B. <u>Testing of Specimens</u>

(a) Tensile Coupon Tests

The mechanical properties of the steels used in the continuous beam tests were established by standard tensile coupon tests. The test data are listed in Table 16.

(b) Testing of Deck Specimens

The steel deck specimens were tested in a vacuum loading apparatus, which consists of a 9-foot wide, 2-foot high, and 30-foot long chamber connected to a pump and a data acquisition system. Figure 37a is a photograph of the loading system. For the plan and side view of the uniform loading apparatus, see Fig. 37b. Of the 32 specimens tested, 28 were tested as two-span continuous beams, and the remaining four (CB-3A, CB-3B, CB-4A, and CB-4B) were tested as three-span continuous beams.

(i) Test Setup

The test setup for the continuous beam tests is shown in Fig. 38. Figures 39a and 39b show the top views for the three-span and two-span continuous beam tests respectively. Under each specimen, two large bearing plates (N_2) were used at both end supports, and a small bearing plate (N_1) was used at the interior support as shown in Fig. 38.

Each specimen was connected to all the bearing plates by 1/4-in. diameter bolts with 1/2-in. diameter washers at an approximate transverse spacing of 12 inches. Before being tested, the chamber was covered by a 0.006-in. thick natural polyethylene film, which was tightly sealed along all the edges.

Specimen Nos. 1 through 6, 9 through 12, 19, and 20 were tested in a normal position. In order to eliminate the effect of a continuous longitudinal stiffener on the interaction between bending and web crippling, Specimen Nos. 13 through 16 were tested in an inverted position. For these specimens, two rectangular strips were used to connect the top flanges over the interior support. See Figs. 35 and 42.

(ii) Test Procedure

During the tests, the specimens were loaded continuously with a uniform load up to the estimated allowable design load. Beyond this, an increment of approximately 10 to 20% of the estimated design load was added to the specimen after a waiting period of five minutes. The pressure and the corresponding strain gage readings were shown on the screen of a data acquisition system. At every 20% of the estimated design load, the midspan deflection was measured with a level. In addition, the applied uniform load and strain gage readings were recorded.

All the specimens were tested to failure. The ultimate failure load was recorded for each test.

C. <u>Results of Tests</u>

The results of 32 continuous beam tests are presented in Table 23. In this table, $(w)_{test}$ is the ultimate uniform load per specimen in kips per linear foot measured along the span length, and $(P)_{test}$ is the maximum load in kips computed from the following equations:

(a) For two-span continuous beams

$$(P)_{test} = 1.25(w)_{test}(L), kips$$
 (14)

(b) For three-span continuous beams

$$(P)_{test} = 1.1 (w)_{test}(L), kips$$
 (15)

in which L is the span length in feet.

The values of $(M)_{test}$ were computed from the ultimate load by using the following equations:

(a) For two-span continuous beams

$$(M)_{test} = 0.125 (w)_{test} (L)^2 (12), in-kips (16)$$

(b) For three-span continuous beams,

The failure modes for the different types of steel decks are shown in Figs. 40 through 43. During the tests, the bottom flange and the inclined web usually buckled within a small precentage of the failure load. However, the postbuckling strength of the specimen over the interior support permitted a moment redistribution for the continuous beam. Consequently, it was possible to develop a considerable positive bending moment in the middle portion of the span. Figures 40 through 43 show a different type of failure pattern as compared with the simple beam tests.

D. Evaluation of Test Data

The results of the 32 continuous beam tests have been evaluated and compared with the 1980 Edition of the AISI Specification. No attempt has been made to compare the test data with the 1968 AISI design criteria, because the R/t ratios exceeded 4.0. The predicted ultimate web crippling load per specimen given in Table 23 was computed by using the following equation:

 $(P_u')_{comp/specimen} = (Number of webs) (P_u')_{comp/web}$ where $(P_u')_{comp/web}$ is the predicted ultimate web crippling load per web, in kips. It was computed by using either Eq. (5) or (6), whichever was applicable. The predicted moments, $(M_{ul})_{comp}$ and $(M_{u3}')_{comp}$, are the same as those described in Article II. It should be noted that the requirement for shear lag is not applicable for the continuous beam tests because of the uniform loading.

The ratios of $(M)_{test}/(M_u')_{comp}$ and $(P)_{test}/(P_u')_{comp}$ are given in Table 23. All the B/1.42 ratios exceed 1.0 and range from 1.029 to 2.337. These high B/1.42 ratios indicate that the interaction formula (Eq. (8)) for combined bending and web crippling is very conservative for multiweb steel decks having inclined webs when they are used as continuous beams.

A comparison between the test data and the predicted moments and web crippling loads is shown graphically in Fig. 44.

The midspan deflections and the strain gage readings are listed in Tables A2, A3, A5, and A6 of the Appendix. Also included in the Appendix are Figs. A9 to A40 for load-deflection curves and Figs. A49 to A80 for the stresses computed from the strain gage readings.

E. Summary

A total of 28 steel deck specimens were tested as two-span continuous beams, and four specimens were tested as three-span continuous beams. A comparison of the limited test data and the interaction formula (Eq. 8) for combined bending and web crippling indicates that Eq.(8) is very conservative for the multiweb steel decks used as continuous beams. This can be attributed to the different postbuckling behavior of the steel decks over the interior support and the moment redistribution that occured in the continuous beams.

In view of the fact that the above preliminary conclusion is based on the results of a limited number of tests, additional study is necessary in order to develop a refined design method for multiweb sections that are to be used as continuous beams. The future program should include a study of the ultimate strength of steel decks as affected by the inclination angle of the web, the dimensions and arrangement of the embossments, and other design parameters. The development of an exact design method for this particular case is beyond the scope of this phase of the investigation.

VI. RECOMMENDATIONS FOR FUTURE RESEARCH

Since September 1979, web crippling and combined web crippling and bending of steel decks have been studied at the University of Missouri-Rolla. This study has dealt with (a) the web crippling strength of a selected group of steel decks, (b) the effect of bending on web crippling load, and (c) the validity of the 1968 AISI design formulas and the 1980 Edition of the AISI Specification. Research results based on the testing of 84 short span steel decks and 56 long span specimens are presented in this report.

This study has been limited to the scope of the investigation outlined in the research proposal submitted to the sponsors. Even though some of the research findings have been used to develop the revised design provisions included in the 1980 Edition of the AISI Specification, many questions on web crippling and combined bending and web crippling have not been answered by the results of the present investigation.⁽²⁴⁾ This is particularly true for steel decks used as continuous beams.

It is therefore suggested that this research project be continued in the future. The future research may include the following activities:

- Determining the bending strength of steel decks having embossed webs.
- Using the multispan condition to study further the combined bending and web crippling of steel decks having embossed webs.
- Determining the ultimate load carrying capacity of rectangular decks, hat sections, tubular members, channels, and Z-sections that are to be used as continuous beams.

- 4. Analyzing continuous beams by considering the interaction between web crippling and bending over the interior support with a moment redistribution in the beam.
- 5. Developing design criteria.

ACKNOWLEDGMENTS

The research work reported herein was conducted at the Department of Civil Engineering of the University of Missouri-Rolla under the cosponsorship of Steel Deck Institute, American Iron and Steel Institute, and H. H. Robertson Company.

The financial assistance granted by the sponsors and the technical guidance provided by the members of the Joint AISI/SDI/HHR Task Group on Bending and Web Crippling and Subcommittee 12 of the AISI Advisory Group on the Specification for the Design of Cold-Formed Steel Structural Members (Messrs. R. E. Albrecht, E. D. Branson, D. S. Ellifritt, R. W. Haussler, R. B. Heagler, L. W. Ife, A. L. Johnson, D. L. Johnson, T. J. McCabe, W. E. Mueller, T. B. Pekoz, G. D. Ratliff,Jr., T. G. Ryan, and R. M. Schuster) are gratefully acknowledged.

The test specimens used in this experimental study were donated by Consolidated Systems Inc., Epic Metals Corporation, Mac-Fab Products Co., H. H. Robertson, and United Steel Deck. Appreciation is expressed to Mac-Fab Products Company for preparing some of the test specimens.

Thanks are extended to Messrs. K. Haas, D. L. Foster, and J. A. Tucker, staff of the Department of Civil Engineering, for their help in developing the vacuum loading system and in preparing the test specimens. Appreciation is expressed to Messrs. J. A. Volker, M. A. Herr, P. Sritalapat, S. Sucharit, A. Z. Soudani, and Y. Z. Huang for testing the specimens. Thanks are also due to Messrs. B. Supornsilaphachai, P. Sritalapat, Y. Z. Huang, and W. A. Chambers for their assistance in evaluating the test data. Messrs. J. Shelby and J. Franklin have also helped in some of the experimental work.

Special thanks are extended to Mrs. DeAnne Larson and Mrs. Catherine McLaughlin for typing this final report and progress reports.

BIBLIOGRAPHY

- American Iron and Steel Institute, "Specification for the Design of Cold-Formed Steel Structural Members," 1968 Edition with Addendum No. 1, 1970 and Addendum No. 2, 1977.
- Winter, G., "Commentary on the 1968 Edition of the Specification for the Design of Cold-Formed Steel Structural Members," American Iron and Steel Institute, 1970.
- Winter, G., and Pian, R.H.J., "Crushing Strength of Thin Steel Webs," Cornell Bulletin No. 35, Part I, 1946.
- Zetlin, Lev, "Elastic Instability of Flat Plates Subjected to Partial Edge Loads," <u>Journal of the Structural Division</u>, ASCE Proceedings, Vol. 81, September 1955.
- 5. White, R.N., and Cottingham, W.S., "Stability of Plates Under Partial Edge Loadings," <u>Journal of Engineering Mechanics Division</u>, ASCE Proceedings, Vol. 88, No. EM5, October 1962.
- Bagchi, D.K., and Rockey, K.C., "A Note on the Buckling of a Plate Girder Web Due to Partial Edge Loadings," International Association for Bridge and Structural Engineering, <u>Final Report</u>, September 1968.
- 7. Rockey, K.C., and Bagchi, D.K., "Buckling of Plate Girder Webs Under Partial Edge Loadings," <u>International Journal of Mechanical</u> <u>Science</u>, Pergamon Press, Vol. 12, 1970.
- Rockey, K.C., and El-gaaly, M.A., "Ultimate Strength of Plates when Subjected to In-Plane Patch Loading," International Association for Bridge and Structural Engineering, <u>Proceedings</u> of the Seminar on Design of Plate and Box Girders for Ultimate <u>Strength</u>, 1971.
- 9. Rockey, K.C., El-gaaly, M.A., and Bagchi, D.K., "Failure of Thin Walled Members Under Patch Loading," <u>Journal of Structural</u> <u>Division</u>, ASCE Proceedings, Vol 98, No. ST12, December 1972.
- Rockey. K.C., and El-gaaly, M.A., "Stability of Load Bearing Trapezoidal Diaphragms," International Association for Bridge and Structural Engineering, <u>Publications</u>, Vol. 32-II, 1972.
- 11. El-gaaly, M.A., and Rockey, K.C., "Ultimate Strength of Thin-Walled Members Under Patch Loading and Bending," Current Research and Design Trends, <u>Proceedings of the Second Specialty Conference</u> <u>on Cold-Formed Steel Structures</u>, University of Missouri-Rolla, October 1973.

- 12. Rockey, K. C. and El-gaaly, M.A., "Ultimate Strength of Plates when Subjected to In-Plane Patch Loading," International Association for Bridge and Structural Engineering, <u>Colloquium</u> on Design of Plate and Box Girders for Ultimate Strength, held in London, England, in March 1971, published July 1972.
- Baehre, R., "Sheet Metal Panels for Use in Building Construction-Recent Research Projects in Sweden," <u>Proceedings of the Third</u> <u>International Specialty Conference on Cold-Formed Steel Structures</u>, University of Missouri-Rolla, Nov. 24-25, 1975.
- 14. European Convention for Constructional Steel Work Committee 17-Cold-Formed Thin-Walled Sheet Steel in Building, "Stressed Skin Design," Draft of European Recommendation, May 1975, (Rolf Baehre, Chairman of Committee 17).
- Bergfelt, A., and Hovik, J., "Shear Failure and Local Web Crippling in Thin-Walled Plate Girders," Chalmers University of Technology, Sweden, 1970.
- 16. Bergfelt, A., "Patch Loading on a Slender Web," Chalmers University of Technology, Sweden, 1979.
- 17. Hoglund, T., "Design of Trapezoidal Sheeting Provided with Stiffeners in the Flanges and Webs," Stockholm, 1978.
- 18. NAHB Research Foundations, Inc., "Tests of United States Steel Super-C Steel Joists for Interaction of Bending and Web Crippling," CR-785B, 1972.
- 19. Ratliff, G. D., "Interaction of Concentrated Loads and Bending in C-Shaped Beams," <u>Proceedings of the Third Specialty Conference on</u> <u>Cold-Formed Steel Structures</u>, University of Missouri-Rolla, <u>November 24-25</u>, 1975.
- 20. Khan, M.Z., Johns, K.C., and Hayman, B., "Buckling of Plates with Partially Loaded Edges," <u>Journal of the Structural Division</u>, ASCE Proceedings, Vol. 103, No. ST3, March 1973.
- 21. Hetrakul, N., and Yu, W.W., "Webs for Cold-Formed Steel Flexural Members--Structural Behavior of Beam Webs Subjected to Web Crippling and a Combination of Web Crippling and Bending," <u>Final Report</u>, University of Missouri-Rolla, June 1978.
- 22. Hetrakul, N., and Yu, W.W., "Cold-Formed Steel I-Beams Subjected to Combined Bending and Web Crippling," Thin-Walled Structures (J. Rhodes and A.C. Walker, editors), International Conference on Thin-Walled Structures, University of Strathclyde, Glasgow, Scotland, April 1979.

- 23. American Iron and Steel Institute, "Specification for the Design of Cold-Formed Steel Structural Members," 1980 Edition.
- Ryan, T.G., "Considerations for Evaluating Web Crippling and Combined Web Crippling and Bending of Cold-Formed Steel Members," April 2, 1980 (Committee Correspondence).

TABLE la Dimensions of Steel Deck Specimens used for Web Crippling Tests Interior One-Flange Loading

	No. of	No. of	No. of	No. of	Туре	Type Cross-Section Dimensions (in.)						
Specimen No.	Ribs per Specimen	Webs per Specimen	Top Stiffener	Bottom Stiffener	of Sidelap	Т	D	Ď _T	D _B	D _E	۳	W2
IOF-1A	2	4	1	1	1	0.0299	1.990	0.305	0.300	_	0.670	1.350
IOF-1B	2	4	1	1	1	0.0294	1.985	0.290	0.305	-	0.660	1.370
IOF-2A	2	4	1	1	1	0.0290	2.025	0.310	0.280	-	0.760	1.315
IOF-2B	2	4	1	1	1	0.0294	2.025	0.315	0.290	-	0.840	1.285
IOF-3A	2	4	1	1	1	0.0463	2.010	0.310	0.320	-	0.790	1.290
IOF-3B	2	4	1	1	1	0.0441	2.010	0.315	0.330	-	0.910	1.290
IOF-4A	2	4	1	1	1	0.0452	2.055	0.375	0.330	-	0.970	1.300
IOF-4B	2	4	1	1	1	0.0451	2.050	0.350	0.330	-	0.760	1.320
IOF-5A	2	4	1	1	1	0.0302	3.015	0.310	0.300	-	0.890	1.435
IOF-5B	2	4	1	1	1	0.0303	3.030	0.305	0.295	-	0.980	1.265
IOF-6A	2	4	I	I	1	0.0302	3.040	0.305	0.290	-	1.050	1.295
IOF-6B	2	4	1	1	1	0.0296	3.060	0.310	0.300		0.900	1.355
IOF-7A	2	4	1	1	1	0.0463	3.080	0.330	0.350	-	0.950	1.325
IOF-7B	2	4	1	1	1	0.0470	3.080	0.330	0.350	-	0.950	1.325
IOF-8A	2	4	1	1	1	0.0470	3.010	0.350	0.315	-	0.910	1.350
IOF-8B	2	4	1	1	1	0.0469	3.010	0.305	0.315	-	0.950	1.410
IOF-9A	2	4	1	1	1	0.0298	2.035	0.320	0.305	-	0.820	1.290
IOF-9B	2	4	1	1	1	0.0297	1.990	0.315	0.300	-	0.870	1.305
IOF-10A	2	4	1	1	1	0.0299	2.030	0.315	0.305	-	0.810	1.270
IOF-10B	2	4	1	1	1	0.0296	1.985	0.315	0.310	-	0.850	1.300

TABLE la (Cont'd) Dimensions of Steel Deck Specimens used for Web Crippling Tests

Interior One-Flange Loading

	No. of	No. of	No. of	No. of	.)							
Specimen No.	Ribs per Specimen	Webs per Specimen	Top Stiffener	Bottom Stiffener	of Sidelap	T	D	DT	DB	DE	W ₁	W ₂
10F-11A	2	4	1	1	1	0.0309	2.970	0.305	0.300	-	0.970	1.410
10 F-1 1B	2	4	1	1	1	0.0313	3.060	0.295	0.300	-	0.970	1.270
IOF-12A	2	4	1	1	1	0.0305	3.090	0.295	0.290	-	0,990	1.270
IOF-128	2	4	1	1	1	0.0311	3.040	0.300	0.290	-	1.000	1.310
10F-13A	2	4	2	1	1	0.0337	2.003	0.305	0.310	-	0.850	1.400
IOF-13B	2	4	2	1	١	0.0333	2.020	0.315	0.300	-	0.660	1.420
IOF-14A	2	4	2	1	1	0.0336	2.010	0.300	0.310	-	0.840	1.460
IOF-14B	2	4	2	1	1	0.0334	2.020	0.290	0.300	-	0.830	1.350
IOF-15A	2	4	1	-	1	0.0352	3.070	0.300	-	-	0.830	1.400
IOF-15B	2	4	1	-	1	0.0349	3.090	0.300	-	- '	0.760	1.380
IOF-16A	2	4	1	-	1	0.0353	3.040	0.301	-	-	0.720	1.410
IOF-16B	2	4	1	-	1	0.0351	3.030	0.300	-	-	0.800	1.360
IOF-17A	1	2	-	-	1	0.0293	3.030	-	-	-	1.880	0.219
IOF-17B	1	2	-	-	1	0.0292	3.020	-	-	-	1.860	0.219
[OF-18A	1	2	. –	-	1	0.0288	3.030	-	-	-	1.900	0.213
IOF-18 B	1	2	-	-	1	0.0295	3.020	-	-	-	1.910	0.210
0F-1 9A	5	10	-	-	2	0.0286	1.890	-	-	-	0.600	0.7 9 3
0F-19B	5	10	-	-	2	0.0285	1.890	-	-	-	0.600	0.793
0F-20A	4	8	-	-	1	0.0284	1.890	-	-	-	0.590	0.760
OF-20B	4	8	-	-	1	0.0286	1.890	-	-	-	0.590	0.760

Note: For definitions of symbols, see Figs. 3 and 4.

TABLE 1b

Dimensions of Steel Deck Specimens used for Web Crippling Tests

Interior One-Flange Loading

.

		Cross-Section Dimensions (in.)													
Specimen No.	W ₃	W ₄	W ₅	^W 6	₩7	W ₈	W ₉	٥٢ [₩]	۳	W12	s ₁	s ₂			
IOF-1A	1.670	0.520	0.260	-	1.700	0.520	0.280	0.920		_	-	-			
IOF-1B	1.690	0.490	0.310	-	1.655	0.530	0.290	0.920	-	-	_	-			
IOF-2A	1.700	0.505	0.280	-	1.660	0.530	0.280	0.880	-	-	-	-			
IOF-2B	1.685	0.530	0.300	-	1.665	0.525	0.300	0.870	-	· -	-	-			
IOF-3A	1.675	0.510	0.320		1.715	0.480	0.320	0.850	-	-	-	-			
IOF-3B	1.675	0.520	0.330	-	1.720	0.480	0.330	0.850	-	-	-	-			
IOF-4A	1.690	0.520	0.310	-	1.680	0.520	0.300	0.940	-	-	-	-			
IOF-4B	1.670	0.490	0.310	-	1.695	0.535	0.270	0.880	-	-	-	-			
IOF-5A	1.680	0.490	0.320	-	1.635	0.510	0.320	1.030	-	-	-	-			
IOF-5B	1.755	0.470	0.290	-	1.630	0.475	0.350	1.000	-	-	-	-			
IOF-6A	1.680	0.500	0.320	-	1.685	0.500	0.290	1.040	-	-	-	-			
IOF-6B	1.700	0.510	0.300	-	1.685	0.475	0.350	1.040	-	-	-	-			
IOF-7A	1.690	0.500	0.320	-	1.655	0.525	0.300	1.120	-	-	-	-			
IOF-7B	1.690	0.500	0.320	-	1.655	0.525	0.300	1.120	-	•	-	-			
IOF-8A	1.730	0.495	0.290	-	1.650	0.485	0.370	1.050	-	-	-	-			
IOF-8B	1.715	0.475	0.310	-	1.680	0.505	0.290	0.960	-	-	-	-			
IOF-9A	1.680	0.475	0.390	-	1.750	0.455	0.340	1.020	-	-	-	-			
IOF-9B	1.710	0.455	0.350	_	1.735	0.470	0.320	0.910	-	-	_	-			
IOF-10A	1.705	0.525	0.300	-	1.675	0.530	0.280	0.910	-	-	_	-			
IOF-10B	1.680	0.505	0.330	-	1.675	0.515	0.320	0.840	-	-	-	-			

			T/	ABLE 16 (Co	ont'd)			
Dimensions	of	Steel	Deck	Specimens	used	for	Web	Crippling	Tests
		Ţ	nterio	or One-Flam	nae La	badir	na		

	Cross-Section Dimensions (in.)													
Specimen No.	W ₃	W ₄	W ₅	W ₆	W ₇	W ₈	W ₉	W ₁₀	W ₁₁	W12	s ₁	^S 2		
IOF-11A	1.680	0.490	0.320	_	1.635	0.510	0.350	1.010	-	-	-	-		
IOF-11B	1.680	0.500	0.310	-	1.640	0.500	0.310	1.010	-	-	-	-		
Iof-12A	1.680	0,515	0.290	-	1.700	0.480	0.360	1.020	-	-	-	-		
10F-12B	1.675	0.510	0.320	-	1.670	0.475	0.370	1.010	-	-	- ,	-		
10F-13A	0.990	0.430	-	0.930	1.8 90	0.420	-	0.850	-	-	-	-		
IOF-13B	1.050	0.430	-	1.020	1.750	0.400	-	0.700	-	-	-	-		
IOF-14A	0.990	0.410	-	0.975	1.910	0.405	-	0.800	-	-	-	-		
IOF-14B	1.050	0.410	-	1.060	1.900	0.390	-	0.850	-	-	-	-		
IOF-15A	1.855	0.410	-	-	4.650	-	-	0.800	-	-	-	-		
IOF-15B	1.850	0.410	-	-	4.620	-	-	0.900	-	-	-	-		
LOF-16A	1.830	0.410	-	-	4.680	-	-	0.750	-	-	-	-		
[OF-16B	1.840	0.410	-	-	4.680	-	-	0.820	-	-	-	-		
OF-17A	7.940	-	-	-	-	-	-	1.950	-	-	-	-		
OF-17B	7.790	-	-	-	-	-	-	1.900	-	-	-	-		
0F-18A	7.910	_	-	-	-	-	-	1.970	-	-	-	-		
OF-18B	7.930	-	-	-	-	-	-	1.900	-	-	-	-		
0F-19A	3.240	-	-	-	1.210	-	-	1.200	-	-	-	0.350		
0F-19B	3.240	-	-	_	1.210	-	-	1.200	-	-	-	0.350		
0F-20A	3 275	_	_	-	1.300	-	-	0.600	-	-	-	-		
0F-20B	3.275	-	-	-	1.300	_	-	0.600	-	-	-	-		

46

Note: For definitions of symbols, see Figs. 3 and 4.

					Interio	r One-Flan	ge Loadiı	ng				
			Cr	oss-Secti	on Dimens	ions (in.)				Web	Overal1	Overal1
Specimen No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	h	Inclination (degree)	Width (in.)	Length (in.)
IOF-1A	0.200	0.200	0.210	0.280	0.210	0.250	-	-	2.21	60.7	20.99	28.44
IOF-1B	0.200	0.200	0.210	0.280	0.210	0.250	-	-	2.22	60.2	21.06	28.44
IOF-2A	0.210	0.210	0.220	0.280	0.220	0.280	-	-	2.22	62.4	20.94	35.44
IOF-2B	0.210	0.210	0.220	0.280	0.220	0.280	-	-	2.20	63.2	20.99	35.44
IOF-3A	0.210	0.200	0.210	0.230	0.200	0.240	-	-	2.16	62.7	20.89	28.44
IOF-3B	0.210	0.200	0.210	0.230	0.200	0.240	-	-	2.16	62.7	21.09	28.44
IOF-4A	0.210	0.210	0.220	0.250	0.210	0.250	-	-	2.20	63.2	21.27	35.44
IOF-4B	0.210	0.210	0.220	0.250	0.210	0.250	-	-	2.21	62.7	20.91	35.44
IOF-5A	0.220	0.200	0.210	0.250	0.210	0.240	-	-	3.16	69.4	21.59	33.96
IOF-5B	0.200	0.200	0.210	0.250	0.210	0.230	-	· -	3.11	72.4	21.08	33.96
IOF-6A	0.200	0.200	0.200	0.260	0.210	0.260	-	-	3.13	71.9	21.29	40.96
IOF-6B	0.200	0.200	0.200	0.260	0.210	0.260	-	-	3.18	70.9	21.47	40.96
IOF-7A	0.210	0.190	0.200	0.260	0.210	0.230	-	-	3.15	71.7	21.43	33.96
IOF-7B	0.210	0.190	0.200	0.260	0.210	0.230	-	-	3.14	71.7	21.43	33 .96
IOF-8A	0.200	0.210	0.220	0.250	0.210	0.240	_	-	3.09	70.9	21.48	40.96
IOF-8B	0.200	0.210	0.220	0.250	0.210	0.240	-	-	3.11	69.8	21.59	40.96
IOF-9A	0.200	0.210	0.210	0.260	0.220	0.230	-	-	2.22	63.0	21.15	28.44
IOF-9B	0.200	0.210	0.210	0.260	0.220	0.230	-	-	2.19	62.0	21.09	28.44
IOF-10A	0.210	0.210	0.220	0.260	0.210	0.250	-	-	2.20	63.7	21.01	35.44
IOF-10B	0.210	0.210	0.220	0.260	0.210	0.250	-	-	2.18	62.3	20.99	35.44

TABLE IC										
Dimensions	of	Stee1	Deck	Specimens	used	for	Web	Crippling	Tests	
			Inter	ior One-Fl	lange	Load	ling			

					Intern	or one-FI	ange Loadi	ng		_		
			С	ross-Sect	ion Dimen	sions (in	.)			Web	Overal1	Overall Length (in.)
Specimen No.	R	R ₂	R ₃	R ₄	R_{5}	^R 6	R ₇	R ₈	h	Inclination (degree)	Width (in.)	
IOF-11A	0.210	0.200	0.210	0.250	0.210	0.230	-	-	3.10	70.5	21.49	34.05
10F-11B	0.210	0.200	0.210	0.250	0.210	0.240	· _	-	3.13	74.3	21.02	33. 98
10F-12A	0.200	0.200	0.200	0.260	0.210	0.260	-	-	3.11	70.5	21.30	41.12
IOF-12B	0.200	0.200	0.200	0.260	0.210	0.260	-	-	3.13	75.0	21.25	40.87
IOF-13A	0.130	0.170	0.190	0.190	0.190	0.190	-	-	1.93	50.3	21.52	30.24
IOF-13B	0.130	0.180	0.190	0.190	0.1 9 0	0.190	-	-	1.92	49.1	21.58	30.24
IOF-14A	0.130	0.17 0	0.190	0.190	0.190	0.190	-	-	1.94	48.1	21.49	37.24
IOF-14B	0.130	0.1 90	0.190	0.190	0.190	0.190	-	-	1.83	50.4	21.51	37.24
IOF-15A	0.130	0.190	0.190	0.190	-	-	-	-	2.78	65.4	21.22	34.86
IOF-15B	0.130	0.188	0.190	0.190	-	-	-	-	2.79	66.0	21.10	34.86
IOF-16A	0.130	0.198	0.190	0.190	-	-	-	-	2.78	65.3	21.30	41.86
IOF-16B	0.130	0.190	0.190	0.190	-	-	-	-	2.70	65.1	21.21	41.8 6
[OF-17A	0.095	0.095	-	-	-	-	-	-	2.97	90.0	12.21	33.00
OF-17B	0.095	0.095	-	-	-	-	-	-	2.96	90.0	11.99	33.00
0F-18A	0.092	0.092	-	-	-	-	-	-	2.97	90.0	12.21	40.00
0F-18B	0.090	0.090	-	-	-	-	-	-	2.96	90.0	12.16	40.00
0F-19A	0.135	0.135	-	-	-	-	0.135	-	1.92	72.9	30.17	27.78
OF-19B	0.135	0.135	-	-	-	-	0.135	-	1.92	72.9	30.17	27.78
0F-20A	0.126	0.126	-	-	-	-	-	-	1.91	73.5	24.27	34.78
0F-20B	0.126	0.126	-	-	-	-	-	-	1.91	73.5	24.27	34.78

TABLE 1c (Cont'd) Dimensions of Steel Deck Specimens used for Web Crippling Tests

Notes: For definitions of symbols, see Figs.3 and 4. For most of the test specimens, sidelaps were cut from the steel panels. Therefore, the overall width of test specimens may differ considerably from the nominal width shown in Fig. 2. 48

TABLE 2 Design Parameters for Steel Deck Specimens Interior One-Flange Loading

Specimen No.	Thickness t (in.)	Inside Bend Radius R ₂ (in.)	Web Width h (in.)	Bearing Length UnderLoad ^N l (in.)	Bearing Length at Support ^N 2 (in.)	Web Inclination θ (degree)	R ₂ /t	h/t	N ₁ ∕t	N _j /h	Yield Point Fy (ksi)	Span Length (in.)
IOF-1A	0.0299	0.20	2.21	2.98	5.93	60.7	6.69	73.91	99.67	1.35	43.3	15.66
IOF-1B	0.0294	0.20	2.22	2.98	5.93	60.2	6.80	75.51	101.36	1.34	43.3	15.66
IOF-2A	0.0290	0.21	2.22	5.93	7.86	62.4	7.24	76.55	204.48	2.67	43.3	20.75
IOF-2B	0.0294	0.21	2.20	5.93	7.86	63.2	7.14	74.83	201.70	2.70	43.3	20.75
IOF-3A	0.0463	0.20	2.16	2.98	5.93	62.7	4.32	46.65	64.36	1.38	42.9	15.66
IOF-3B	0.0441	0.20	2.16	2.98	5.93	62.7	4.54	48.98	67.57	1.38	42.9	15.66
IOF-4A	0.0452	0.21	2.20	5.93	7.86	63.2	4.65	48.67	131.20	2.70	42.9	20.75
IOF-4B	0.0451	0.21	2.21	5.93	7.86	62.7	4.66	49.00	131.49	2.68	42.9	20.75
IOF-5A	0.0302	0.20	3.16	2.98	5.93	69.4	6.62	104.64	98.68	0.94	48.1	18.45
IOF-5B	0.0303	0.20	3.11	2.98	5.93	72.4	6.60	102.64	98.35	0.96	48.1	18.45
IOF-6A	0.0302	0.20	3.13	5.93	7.86	71.9	6.62	103.64	196.36	1.89	48.1	23.42
IOF-6B	0.0296	0.20	3.18	5.93	7.86	70.9	6.76	107.43	200.34	1.86	48.1	23.42
IOF-7A	0.0463	0.19	3.15	2.98	5.93	71.7	4.10	68.03	64.36	0.95	41.2	18.42
IOF-7B	0.0470	0.19	3.14	2.98	5.93	71.7	4.04	66.81	63.40	0.95	41.2	18.42
IOF-8A	0.0470	0.21	3.09	5.93	7.86	70.9	4.47	65.74	126.17	1.92	41.2	23.42
IOF-8B	0.0469	0.21	3.11	5.93	7.86	69.8	4.48	66.31	126.44	1.91	41.2	23.42
IOF-9A	0.0298	0.21	2.22	2.98	5.93	63.0	7.05	74.50	100.00	1.34	42.9	15.66
IOF-9B	0.0297	0.21	2.19	2.98	5.93	62.0	7.07	73.74	100.34	1.36	42.9	15.66 4

	TABLE	Ξ2	(Cont'o	d)	
Design	Parameters	for	Stee1	Deck	Specimens
	Interior ()ne-l	Flange	Load	ing

Specimen No.	Thickness t (in.)	Inside Bend Radius ^R 2 (in.)	Web Width h (in.)	Bearing Length Under Load ^N l (in.)	Bearing Length at Support N ₂ (in.)	Web Inclination 0 (degree)	R ₂ /t	h/t	N _l /t	N ₁ /h	Yield Point Fy (ksi)	Span Length (in.)
10F-10A	0.0299	0.210	2.20	5.93	7.86	63.6	7.02	73.58	198.33	2.70	42.9	20.69
IOF-10B	0.0296	0.210	2.18	5.93	7.86	62.3	7.10	73.65	200.34	2.72	42.9	20.69
10F-11A	0.0309	0.200	3.10	2.98	5.93	70.5	6.47	100.32	9 6.44	0.96	46.1	18 .15
IOF-118	0.0313	0.200	3.13	2 .9 8	5.93	74.3	6 .39	100.00	95.2 1	0.95	46.1	18 .30
10F-12A	0.0305	0.200	3.11	5.93	7.86	70.5	6.56	101.97	194.43	1.91	46.1	23 .12
IOF-12B	0.0311	0.200	3.13	5.93	7.86	75.0	6.43	100.64	190.68	1.89	46.1	23.18
10F-13A	0.0337	0.170	1.89	2.98	5.93	50.3	4.93	56.08	88.43	1.58	39.3	14.85
IOF-13B	0.0333	0.180	1.92	2.98	5.93	49.1	5.50	57.66	89.49	1.55	39.3	14.85
OF-14A	0.0336	0.170	1.94	5.93	7.86	48.1	5.12	57.74	176.49	3.06	39.3	19.85
OF-14B	0.0334	0.190	1.87	5.93	7.86	50.4	5.54	55 .9 9	177.55	3.17	39.3	19.85
0F-15A	0.0352	0.190	2.78	2.98	5.93	65.4	5.40	78.98	84.66	1.07	42.1	17.25
OF-15B	0.0349	0.188	2.79	2. 9 8	5.93	66.0	5.39	79.94	85.39	1.07	42.1	17.25
0F-16A	0.0353	0.198	2.78	5.93	7.86	65.3	5.61	78.75	167.99	2.13	42.1	22.55
0F-16B	0.0351	0.190	2.70	5.93	7.86	65.1	5.41	76.92	168.95	2.20	42.1	22.55
0F-17A	0.0293	0.095	2.97	2.98	5 .9 3	90.0	3.24	101.37	101.71	1.00	49.9	17.88
0F-17B	0.0292	0.095	2.96	2.98	5.93	90.0	3.25	101.37	102.06	1.01	49.9	17.88
0F-18A	0.0288	0.092	2.97	5.93	7.86	90.0	3.19	103 . 13 [.]	205.90	2.00	49. 9	22.85
0F-18B	0.0295	0.090	2.96	5.93	7.86	90.0	3.05	100.34	201.02	2.00	49.9	22.85

T

				Incer		ange Loading						
Specimen No.	Thickness t (in.)	Inside Bend Radius ^R 2 (in.)	Web Width h (in.)	Bearing Length Under Load ^N l (in.)	Bearing Length at Support ^N 2 (in.)	Web Inclination θ (degree)	R ₂ /t	h/t	N _] ∕t	N ₁ /h	Yield Point Fy (ksi)	Span Length (in.)
IOF-19A	0.0286	0.135	1.92	2.98	5.93	72.9	4.72	67.13	104.20	1.55	41.2	14.70
IOF-19B	0.0285	0.135	1.92	2.98	5.93	/2.9	4.74	67.37	10 4 .56	1.55	41.2	14.70
IOF-20A	0.0284	0.126	1.91	5.93	7.86	73.5	4.44	67.25	208.80	3.10	41.2	19.76
IOF-20B	0.0286	0.126	1.91	5.93	7.86	73.5	4.41	66.78	207.34	3.10	41.2	19.76

TABLE 2 (Cont'd) Design Parameters for Steel Deck Specimens Interior One-Elange Loading

Notes: 1. For definitions of symbols, see Figs. 3 and 4.

2. For specimens Nos. IOF-13, IOF-14, IOF-15, and IOF-16, the h value is measured as shown in Fig. 3c.

used for steer beck specimens							
Elongation* (percent)							
31.0							
34.0							
34.3							
34.5							
29.5							
42.7							
39.0							
27.0							
34.3							
35.0							

TABLE 3 Tested Mechanical Properties of Steels Used for Steel Deck Specimens

* 2-inch gage length.

TABLE 4

Comparison of the Tested and Computed Results for Interior One-Flange Loading

Based on Addendum No. 2 of the 1968 Edition of the AISI Specification (1)

Specimen	Test per Sp	Data ecimen	·	Compute per Spe	ed Data ecimen	(M) _{test}	(P) _{test}	Δ*	
No.	(P) (kips)	(M) (in-kips)	(Pu)comp (kips)	(M _{ul}) _{comp} (in_kips)	(M _{u2})comp (in-kips)	(M _{u3}) _{comp} (in_kips)	(M _u) _{comp}	(Pu) comp	1.3
IOF-1A	2.050	8.026	N/A**	20.011	13.938	20.011	0.576	N/A**	N/A**
IOF-1B	2.020	7.908	N/A	19.458	13.633	19.458	0.580	N/A	N/A
IOF-2A	2.352	12.201	N/A	19.796	15.433	19.796	0.791	N/A	N/A
IOF-2B	2.304	11.952	N/A	20.243	15.673	20.243 ·	0.763	N/A	N/A
IOF-3A	5.250	20.554	N/A	31.550	21.395	31.550	0.961	N/A	N/A
IOF-3B	4.975	19.477	N/A	30.547	20.583	30.547	0.946	N/A	N/A
IOF-4A	5.6 9 0	29.517	N/A	32.457	24.254	32.457	1.217	N/A	N/A
IOF-4B	5.520	28.635	N/A	31.508	23.625	31.508	1.212	N/A	N/A
IOF-5A	2.545	11.739	N/A	38,822	29.701	38.822	0.395	N/A	N/A
IOF-5B	2.543	11.730	N/A	39.019	30.046	39.019	0.390	N/A	N/A
IOF-6A	3.125	18.297	N/A	39.826	33.027	39.826	0.554	N/A	N/A
IOF-6B	3.060	17.916	N/A	38.906	32.368	38.906	0.554	N/A	N/A
IOF-7A	5.825	26.824	N/A	54.216	39.884	54.216	0.673	N/A	N/A
IOF-7B	5.900	27.170	N/A	55.054	40.470	55.054	0.671	N/A	N/A
IOF-8A	7.225	42.302	N/A	52,781	42.507	52.781	0.995	N/A	N/A
IOF-8B	7.180	42.039	N/A	52.655	42.467	52.655	0.990	N/A	N/A
IOF-9A	2.000	7.830	N/A	20.913	14.479	20.912	0.541	N/A	N/A
IOF-9B	1.973	7.724	N/A	20.101	13.988	20.101	0.552	N/A	N/A
TABLE 4 (Cont'd)

Comparison of the Tested and Computed Results for Interior One-Flange Loading Based on Addendum No. 2 of the 1968 Edition of the AISI Specification (1)

Snecimen	Test Data per Specimen			Compute per Spe	ed Data ecimen		(M) _{test}	(P) _{test}	Δ*
No.	(P) (kips)	^(M) test (in-kips)	(Pu)comp (kips)	(M _{ul}) _{comp} (in-kips)	(M _{u2}) _{comp} (in-kips)	(M _{u3}) _{comp} (in-kips)	(M _u) _{comp}	$(P_u)_{comp}$	1.3
IOF-10A	2.392	12.373	N/A**	20.520	15.817	20.520	0.782	N/A**	N/A**
IOF-10B	2.420	12.517	N/A	19.692	15.158	19.692	0.826	N/A	N/A
IOF-11A	2.342	10.627	N/A	37.647	28.445	37.647	0.374	N/A	N/A
IOF-118	2.460	11.255	N/A	39.476	29.990	39.476	0.375	N/A	N/A
IOF-12A	2.900	16.762	N/A	39.357	32.456	39.357	0.517	N/A	N/A
IOF-12B	2.920	16.921	N/A	39.168	32.302	39.168	0.524	N/A	N/A
10F-13A	2.655	9.857	N/A	21.565	14.773	21.565	0.667	N/A	N/A
IOF-13B	2.660	9.875	N/A	20.239	14.235	20.239	0.694	N/A	N/A
10F-14A	3.025	15.012	N/A	21.561	16.423	21.561	0.914	N/A	N/A
10 F-14B	3.100	15.384	N/A	21.666	16.523	21.666	0.931	N/A	N/A
IOF-15A	3.000	12.938	N/A	41.337	32.388	41.337	0.400	N/A	N/A
IOF-15B	3.085	13.304	N/A	41.287	32.419	41.387	0.410	N/A	N/A
IOF-16A	3.875	21.845	N/A	40.985	34.740	40.985	0.629	N/A	N/A
IOF-16B	3.750	21.141	N/A	39.993	33.845	39.993	0.625	N/A	N/A
IOF-17A	2.158	9.646	1.457	12.149	17.083	12.149	0.794	1.481	1.750
IOF-17B	2.120	9.476	1.446	12.002	16.829	12.002	0.790	1.466	1.735
[0F-18A	2.223	12.699	1.917	11.868	18.155	11.868	1.070	1.160	1.715
IOF-18B	2.210	12.625	2.030	12.172	18.396	12.172	1.037	1,089	1.635

TABLE 4 (Cont'd)	
Comparison of the Tested and Computed Results for Interior One-Flange Loading	
Based on Addendum No. 2 of the 1968 Edition of the AISI Specification $^{(1)}$	

Specimen	Test per Sp	Data ecimen		Comput per Sp	mputed Data r Specimen (M) _{test} (P) _{test}				
No.	(P) (kips)	$ \begin{array}{c} (M) \\ (M) \\ test \\ (in-kips) \end{array} \begin{array}{c} (M_{u1}) \\ (M_{u1}) \\ (m_{u2}) \\ (m_{u2}) \\ (m_{u3}) \\ $	(P _u) _{comp}	1.3					
10F-1 9A	4.392	16.141	N/A	22.888	23.074	22.888	0.705	N/A	N/A
IOF-1 9 B	4.392	16.141	N/A	22.775	22.996	22.775	0.709	N/A	N/A
10F-20A	` 4.250	20.995	N/A	17.794	18.956	17.794	1.180	N/A	N/A
IOF-20B	4.440	21.736	N/A	17 .9 33	19.086	17.933	1.212	N/A	N/A
* A = (P	$(P_{})$	+ (M) _{+oct} /(M.))		Mean Va	alue		1,707
* R/t > 4	iesi uro 1	Louih	teşt u	COMP		Coeffic	cient of V	ariation	0.030

TABLE 5										
Comparison of	the	Tested	and	Computed	Results	for	Interior	One-Flange	Loading	
Based	on t	the 1980	Edi	tion of t	he AISI	Spec	ification	(23)		

Specimen	Test Data per Specimen			Compute per Spe	ed Data ecimen		(M) _{test}	(P) _{test}	
No.	(P) (kips)	^(M) test (in-kips)	(P') u'comp (kips)	(M _{ul}) (in-kips)	(M _{u2}) _{comp} (in-kips)	(M') u3 ⁾ comp (in-kips)	(M') _{comp}	(Pu) comp	1.42
IOF-1A	2.050	8.026	2.160	20.011	13.938	20.011	0.576	0.949	1.121
IOF-1B	2.020	7.908	2.076	19.458	13.633	19.458	0.580	0.973	1.142
IOF-2A	2.352	12.201	3.157***	19.796	15.433	19.796	0.791	0.745	1.118
IOF-2B	2.304	11.952	3.263**	20.243	15.673	20.243	0.763	0.706	1.069
IOF-3A	5.250	20.554	5.198	31.550	21.395	31.550	0.961	1.010	1.438
IOF-3B	4.975	19.477	4.735	30.547	20.583	30.547	0.946	1.051	1.458
IOF-4A	5.690	29.517	7.281	32.45 7	24.254	32.457	1.217	0.782	1.446
IOF-4B	5.520	28.635	7.228	31.508	23.625	31.508	1.212	0.764	1.429
IOF-5A	2.545	11.739	2.366	38.822	29.701	38.822	0.395	1.076	1.089
IOF-5B	2.543	11.730	2.432	39.019	30.046	39.019	0.390	1.046	1.063
IOF-6A	3.125	18.2 97	3.818	39.826	33.027	39.826	0.554	0.818	1.007
10F -6 B	3.060	17.916	3.636	38.90 6	32.368	38.906	0.554	0.842	1.024
IOF-7A	5.825	26.824	5.236	54.216	39.884	54.216	0.673	1.113	1.312
IOF-7B	5.900	27.170	5.389	55.054	40.470	55.054	0.671	1.095	1.298
IOF-8A	7.225	42.302	7.704	52.781	42.507	52.781	0.995	0.938	1.408
IOF-8B	7.180	42.039	7.618	52.655	42.467	52.655	0.990	0.943	1.407
IOF-9A	2.000	7.830	2.091***	20.912	14.479	20.912	0.541	0.956	1.102
IOF-9B	1.973	7.724	2.068**	20.101	13.988	20.101	0.552	0.954	1.108

TABLE 5 (Cont'd)

Comparison of the Tested and Computed Results for Interior One-Flange Loading Based on the 1980 Edition of the AISI Specification⁽²³⁾

	Test per Sp	Data ecimen		Compute per Spe	ed Data ecimen		(M)	(P)	
Specimen No.	(P) _{test} (kips)	^(M) test (in-ki ps)	(P _u) _{comp} (M _{ul}) _{comp} (kips) (in-kips)		(M _{u2}) (in_kips)	(M') u3 ^{comp} (in-kips)	(M'test (M') u'comp	(P') test (P') comp	<u>B*</u> 1.42
IOF-10A	2.392	12.373	3.365**	20.520	15.817	20.520	0.782	0.711	1.087
10F-10B	2.420	12.517	3.275**	19.692	15.158	19.692	0.826	0.739	1.138
10F-11A	2.342	10.627	.2.424	37.647	28.445	37.647	0.374	0.966	0.991
1 0F -11B	2.460	11.255	2.537	39.476	29.990	39.476	0.375	0.970	0.995
IOF-12A	2.900	16.762	3.799	39.357	32.456	39.357	0.517	0.763	0.939
IOF-12B	2.920	16.921	3.932	39.168	32.303	39.168	0.524	0.743	0.929
IOF-13A	2.655	9.857	2.666	21.565	14.773	21.565	0.667	0.996	1.220
IOF-13B	2.660	9.875	2.538	20.239	14.235	20.239	0.694	1.048	1.278
IOF-14A	3.025	15.012	4.110	21.561	16.423	21.561	0.914	0.736	1.198
IOF-148	3.100	15 .384	3 .93 8	21.6 66	16.523	21.666	0.931	0.787	1.2 49
IOF-15A	3.000	12.938	3.041	41.337	32.388	41.337	0.400	0.987	1.025
IOF-15B	3.085	13.304	3.011	41.287	32.419	41.287	0.410	1.024	1.061
IOF-16A	3.875	21.845	4.652	40.985	34.740	40.985	0.629	0.833	1.071
IOF-16B	3.750	21.141	4.701	39.993	33.845	39. 993	0.625	0.798	1.041
IOF-17A	2.158	9.646	1.734	12.149	17.083	11.840	0.815	1.244	1.511
IOF-17B	2.120	9.476	1.725	12.002	16.829	11.697	0.810	1.229	1.497
IOF-18A	2.223	12.699	2.709	11.868	18.155	11,524	1.102	0.821	1.394
IOF-18B	2.210	12.625	2.832	12.172	18.396	11.887	1.062	0.78 0	1.336

57

• .

	Test per Sp	: Data Decimen		Comput per Sp	ed Data ecimen	(M)	(P)		
Specimen No.	(P) (kips)	(M) test (in=kips)	^{(P} ')comp (kips)	(M _{ul}) (in_kips)	^{(M} u2 ⁾ comp (in_kips)	(Mu3)comp (in_kips)	(M'test (M') u'comp	(P') comp	<u>B*</u> 1.42
10F-19A	4.392	16.141	6.262	22.888	23.074	22.888	0.705	0.701	1.025
10F-19B	4.392	16.141	6.221	22.775	22.996	22.775	0.709	0.706	1.031
[0F-20A	4.250	20.995	8.152	17.794	18.956	17.794	1.180	0.521	1.224
[OF-20B	4.400	21.736	8.249	17.933	19.086	17.933	1.212	0.533	1.256
B = 1.07((P) tost/ $(I$	P') + ($M)_{+oc+}/(M)$	() () ()		Mean	Value		1.188
The P/t r	ratio exce	eds 7 sliah	tlv.	n. comb		Coef	ficient of	Variation	0.144

TABLE 5 (Cont'd) Comparison of the Tested and Computed Results for Interior One-Flange Loading Based on the 1980 Edition of the AISI Specification⁽²³⁾

Effect of Longitudinal Embossments on Web Crippling Strength, Interior One-Flange Loading

Specimens	Having Fla	t Webs	Specimen	s Having Defor	(7)	(8)	
(1)	(2)	(3)	(4)	(5)	(6)		
Specimen No.	^(P) test [*] (kips)	B/1.42 [*]	Specimen No.	^(P) test [*] (kips)	B/1.42 [*]	<u>Col.5</u> Col.2	<u>Col.6</u> Col.3
IOF - 1	2.035	1.132	IOF - 9	1.987	1.105	0.98	0.98
IOF - 2	2.328	1.094	10F -10	2.406	1.113	1.03	1.02
IOF - 5	2.544	1.076	IOF -11	2.401	0.993	0.94	0.92
IOF - 6	3.093	1.016	IOF -12	2.910	0.934	0.94	0.92

* The individual value given in this table is the average of Tests A and B

	End One-Flange Loading											
Specimen No.	Thickness t (in.)	Inside Bend Radius ^R 1 (in.)	Web Width h (in.)	Bearing Length atSupport N ₁ (in.)	Bearing Length Under Load N ₂ (in.)	Web JInclinati (degree)	ion R _l /t	h/t	N _l ∕t	N _ן /h	Yield Point Fy (ksi)	Span Length (in.)
EOF-1A	0.0292	0.20	2.23	2.98	5.93	62.4	6.85	76.37	102.06	1.34	43.3	26.02
EOF-1B	0.0293	0.20	2.22	2.98	5.93	61.6	6.83	75.77	101.71	1.34	43.3	26.02
EOF-2A	0.0301	0.21	2.21	5.93	7.86	62.1	6.98	73.42	197.01	2.68	43.3	33.27
EOF-2B	0.0296	0.21	2.23	5.93	7.86	62.7	7.09	75.34	200.34	·2.66	43.3	33.27
EOF-3A	0.0442	0.20	2.18	2.98	5.93	63.7	4.52	49.32	67.42	1.37	42.9	26.02
EOF-3B	0.0447	0.20	2.18	2.98	5.93	63.0	4.47	48.77	66.67	1.37	42.9	26.02
EOF-4A	0.0472	0.21	2.22	5 .9 3	7.86	64.4	4.45	47.03	125.64	2.67	42.9	33.07
EOF-4B	0.0471	0.21	2.21	5.93	7.86	64.5	4.46	46.92	125.90	2.68	42.9	33.07
EOF-5A	0.0311	0.20	3.16	2.98	5.93	69.5	6.43	101.61	95.82	0.94	48.1	30.77
EOF-5B	0.0317	0.20	3.17	2.98	5.93	70.0	6.31	100.00	94.01	0.94	48.1	30.77
E0F-6A	0.0293	0.20	3.10	5.93	7.86	70.5	6.83	105.80	202.39	1.91	48.1	37.82
EOF-6B	0.0294	0.20	3.15	5.93	7.86	70.0	6.80	107.14	201.70	1.88	48.1	37.82
EOF-7A	0.0488	0.19	3.10	2.98	5.93	71.3	3.89	63.52	61.07	0.96	41.2	30.82
EOF-7B	0.0479	0.19	3.12	2.98	5.93	72.2	3.97	65.14	62.21	0.96	41.2	30.82
E0F-8A	0.0460	0.21	3.09	5.93	7.86	71.3	4.57	67.17	128.91	1.92	41.2	37.87
EOF-8B	0.0480	0.21	3.05	5.93	7.86	71.3	4.38	63.54	123.54	1.94	41.2	37.87
EOF-9A	0.0310	0.21	2.20	2.98	5.93	74.5	6.77	70.97	96.13	1.35	42.9	26.02
OF-98	0.0310	0.21	2.20	2.98	5.93	73.7	6.77	70.97	96.13	1.35	42.9	26.02
OF-10 A	0.0295	0.21	2.22	5.93	7.86	64.0	7.12	75.25	201.02	2.67	42.9	33.07
ECF-10B	0.0303	0.21	2.20	5.93	7.86	62.6	6.93	72.61	195.71	2.70	42.9	33.07
EOF-11A	0.0307	0.20	3.14	2.98	5.93	70.5	6.51	102.28	97.07	0.95	46.1	30.7 5
EOF-11B	0.0308	0.20	3.14	2.98	5.93	70.8	6.49	101.95	96.75	0.95	46.1	30.78

ŝÔ

TABLE 7

Design Parameters for Steel Deck Specimens

TABLE 7 (Cont'd) Design Parameters for Steel Deck Specimens

End One-Flange Loading

Specimen No.	Thickness t (in.)	Inside Bend Radius ^R 1 (in.)	Web Width h (in.)	Bearing Length atSupport ^N l (in.)	Bearing Length UnderLoa ^N 2 (in.)	Web d ^{Inclinatio} (degree)	n R _l /t	h/t	N _l ∕t	N _ا /h	Yield Point F _y (ksi)	Span Length (in.)
E0F-12A	0.0305	0.20	3.13	5.93	7.86	70.0	6.56	102.62	194.43	1.89	46.1	37.80
EOF-12B	0.0311	0.20	3.10	5.93	7.86	70.2	6.43	99.68	1 90.68	1.91	46.1	37.7 9
E0F-13A	0.0351	0.1 7	1.92	2.98	5 .9 3	50.3	4.84	54.70	84.90	1.55	39.3	27.72
EOF-13B	0.0343	0.18	1 .90	2.98	5 .93	49.1	5 .25	55.39	86.88	1.57	39.3	27.72
E0F-14A	0.0350	0.17	1.93	5.93	7.86	48.1	4.86	55.14 /	169.43	3.07	39.3	34.77
EOF-14B	0.0345	0 .19	1.81	5.93	7.86	50.4	5.51	52 .46	171.88	3 .28	39.3	34.77
EOF-15A	0 .03 69	0.19	2.78	2.98	5.93	65.4	5.15	75.34	80.76	1.07	42.1	31.57
EOF-15B	0.0363	0.19	2.79	2.98	5.93	66.0	5.23	76.86	82.09	1.07	42.1	31.57
EOF-16A	0.0361	0.20	2.78	5.93	7.86	65.3	5.54	77.01	164.27	2.13	42.1	38.62
EOF-16B	0.0365	0.19	2.70	5.93	7.86	65.1	5.21	73.97	162.47	2.20	42.1	38.62
EOF-17A	0.0293	0.10	3.01	2.98	5.93	92.0	3.41	102.73	101.71	0.99	49.9	30.02
EOF-17B	0.0296	0.10	3.02	2.98	5.93	91.3	3.38	102.03	100.68	0.99	49.9	30.02
EOF-18A	0.0286	0.09	3.02	5.93	7.86	90.8	3.15	105.59	207.34	1.96	49.9	37.07
EOF-18B	0.0288	0.09	2.98	5.93	7.86	90.1	3.13	103.47	205.90	1.99	49.9	37.07
E OF-1 ,9A	0.0288	0.14	1.94	2.98	5.93	75.9	4.86	67.36	103.47	1.54	41.2	25.52
EOF-19B	0.0287	0.14	1.90	2.98	5.93	75.1	4.88	66.20	103.83	1.57	41.2	25.52
EOF-20A	0.0286	0.13	1.88	5.93	7.86	74.3	4.54	65.73	207.34	3.15	41.2	32.57
EOF-20B	0.0284	0.13	1.94	5.93	7.86	75.1	4.58	68.31	208.80	3.06	41.2	32.57

Note: For Specimens Nos. EOF-13, EOF-14, EOF-15, and EOF-16, the inside bend radius R₂ was used for computing the R/t ratio because the specimens were tested in inverted position.

6]

Comparison of	the	Tested and Computed Results for End One-Fla	inge Loading
Based on	the	1968 and 1980 Editions of the AISI Specific	cation

Specimen	Test Data per Specimen	Compu per S	ted Data pecimen	(P _u) _{test}	(P _u) _{test}
No.	(P _u) _{test} (kips)	1968 AISISpec (P _u) _{comp}	1980 AISI Spec. (P _u ') _{comp}	(P _u) _{comp}	(Pu')comp
EOF-1A	3.807	N/A*	1.964	N/A*	1.938
EOF-1B	3.845	N/A	1.968	N/A	1.954
EOF-2A	4.705	N/A	3.092	N/A	1.522
EOF-2B	4.625	N/A	N/A**	N/A	N/A**
EOF-3A	9.500	N/A	3.947	N/A	2.407
EOF-3B	9.605	N/A	4.007	N/A	2.397
EOF-4A	9.950	N/A	6.137	N/A	1.621
EOF-4B	9.788	N/A	6.123	N/A	1.599
EOF-5A	3.180	N/A	2.235	N/A	1.423
EOF-5B	3.265	N/A	2.315	N/A	1.410
EOF-6A	4.825	N/A	3.062	N/A	1.576
EOF-6B	4.850	N/A	3.058	N/A	1.586
EOF-7A	8.018	5.819	5.204	1.378	1.541
EOF-7B	8.025	5.536	4.952	1.450	1.620
EOF-8A	11.463	N/A	5.776	N/A	1.984
EOF-8B	11.260	N/A	6.188	N/A	1.820
EOF-9A	3.530	N/A	2.320	N/A	1.522
EOF-9B	3.815	N/A	2.308	N/A	1.653
* R/t > 4	** R/t > 7				

	Based on the 196	8 and 1980 Editi	ons of the AISI S	Specificatio	n
Specimen	Test Data per Specimen	Compute per Sp	d Data ecimen	(P _u) _{test}	(P _u) _{test}
No.	(P _u) _{test} (kips)	1968 AISI Spec (P _u) _{comp}	1980 AISI Spec. (P _u ') _{comp}	(Pu)comp	(Pu') _{comp}
EOF-10A	4.325	N/A*	N/A**	N/A*	N/A**
EOF-10B	4.470	N/A	3.118	N/A	1.434
EOF-11A	2.925	N/A	2.159	N/A	1.355
EOF-11B	2.925	N/A	2.175	N/A	1.345
EOF-12A	3.910	N/A	3.183	N/A	1.228
EOF-12B	4.150	N/A	3.293	N/A	1.260
E0F-13 A	2.275	N/A	2.421	N/A	0.940
EOF-13B	2.410	N/A	2.320	N/A	1.039
EOF-14A	2.745	N/A	3.480	N/A	0.789
EOF-14B	2.475	N/A	3.468	N/A	0.714
EOF-15A	3.280	N/A	2.814	N/A	1.166
EOF-15B	3.075	N/A	2.744	N/A	1.121
EOF-16A	4.000	N/A	3.935	N/A	1.017
EOF-16B	4.150	N/A	4.017	N/A	1.033
EOF-17A	1 .98 8	1.500	1.524	1.326	1.304
EOF-17B	2.135	1.539	1.553	1.387	1.374
EOF-18A	2.735	2.504	2.321	1.092	1.178
E OF- 18B	2.725	2.587	2.354	1.053	1.158

TABLE 8 (Cont'd) Comparison of the Tested and Computed Results for End One-Flange Loading

TABLE 8 (Cont'd)

Comparison of the Tested and Computed Results for End One-Flange Loading Based on the 1968 and 1980 Editions of the AISI Specification

Specimen No.	Test Data per Specimen	Compute per Sp	ed Data Decimen	(P _u) _{test}	$(P_u)_{test}$	
	(P _u) _{test} (kips)	1968 AISI Spec ^{(P} u ⁾ comp	1980 AISI Spec. (P _u ') _{comp}	(P _u) _{comp}	(Pu') _{comp}	
EOF-19A	6.575	N/A	3.869	N/A	1.699	
EOF-19B	6.055	N/A	3.840	N/A	1.577	
E OF- 20A	7.875	Failure oc	curred under int	erior bearing	g plates,	
E OF- 20B	7.105	not at end	supports.			

.

neuri fatue		
Coefficient	of Variation	

-

1.281	1.453
0.130	0.266

TABLE **9** Design Parameters for Steel Deck Specimens End One-Flange Loading

Specimen No.	Thickness t (in.)	Inside Bend Radius R ₁ (in.)	Web Width h (in.)	Bearing Length atSupport N ₁ (in.)	Bearing Length UnderLoa N ₂ (in.)	Web d Inclination θ (degree)	R _l /t	h/t	N _l /t	N _l /h	Yield Point Fy (ksi)	Span Length (in.)
EOF-5A	0.0311	0.20	3.16	2.98	5.93	69.5	6.43	101.61	95.82	0.94	48.1	30.77
EOF-5B	0.0317	0.20	3.17	2.98	5.93	70.0	6.31	100.00	94.01	0.94	48.1	30.77
EOF-5C	0.0300	0.20	3.15	2.98	5.93	71.5	6.67	105.00	99.33	0.95	48.1	30.77
EOF-5D	0.0300	0.20	3.15	2.98	5.93	70.3	6.67	105.00	99.33	0.95	48.1	30.77
EOF-5E	0.0303	0.20	3.13	2.98	5.93	71.3	6.60	103.30	98.35	0.95	48.1	30.77
EOF-5F	0.0301	0.20	3.15	2.98	5.93	72.0	6.64	104.65	99.00	0.95	48.1	30.77

TABLE 10 Effect of Support Condition on End Failure

End	0ne-F	lange	Loading
-----	-------	-------	---------

٠

Specimen	Support	Connection	Total Failure Load	Remarks
No.	Condition	Condition	per Specimen (kips)	
EOF-5A	Rotation of end bearing	No connections are used at ends of specimen	3.180	See Figs.15
EOF-5B	plate is not prevented		3.265	and 16
EOF-5C	Rotation of end bearing	No connections are used at ends of specimen	4.250	See Figs.20
EOF-5D	plate is prevented		4.250	and 21
EOF-5E	Rotation of end bearing plate is prevented	Specimens are welded to	4.275	See Figs.23
EOF-5F		end bearing plates	4.125	and 24

Effect of Lo	ongitudinal	Embossments	on Web	Crippling	Strength,	End	One-Flange	Loading
--------------	-------------	-------------	--------	-----------	-----------	-----	------------	---------

Specimens H	laving Flat Webs	Specimens Having	Co1. 4	
(1) Specimen No.	(2) ^{(P} u ⁾ test [*] (kips)	(3) Specimen No.	(4) ^{(P} u ⁾ test [*] (kips)	Col. 2
EOF - 1	3.826	EOF - 9	3.673	0.96
EOF - 2	4.665	EOF - 10	4.398	0.94
EOF - 5	3.223	EOF - 11	2.925	0.91
EOF - 6	4.838	EOF - 12	4.030	0.83
				,

.

 $\boldsymbol{\star}$ The individual value given in this table is the average of Tests A and B

•

TABLE 12a

Dimensions of Steel Deck Specimens Used for Combined Bending-Web Crippling Tests

Simple Beam Tests Without End Connections

Specimen	No. of Ribs per	No. of Webs per	No. of Top	No. of Bottom Stiffener	Type of Sidelap	Cross-Section Dimensions (in.)						
No.	Specimen	Specim e n	Stiffener			Т	D	D _T	DB	D _E	۳	[₩] 2
BC - 1A	2	4	1	1	1	0.0297	2.000	0.303	0.300	-	0.670	1.350
BC - 1B	2	4	1	1	1	0.0298	1.993	0.295	0.305	-	0.660	1.370
BC - 2A	2	4	1	1	1	0.0300	2.013	0.305	0.280	-	0.760	1.315
BC - 2B	2	4	1	1	1	0.0299	2.013	0.308	0.290	-	0.840	1.285
BC - 9A	2	4	1	1	1	0.0295	2.018	0.310	0.305	-	0.820	1.290
BC - 9B	2	4	1	1	1	0.0297	1.970	0.318	0.300	-	0.870	1.305
BC - 12A	2	4	1	1	1	0.0308	3.070	0.283	0.290	-	0.990	1.270
BC - 12B	2	4	1	1	1	0.0305	3.005	0.280	0.290	-	1.000	1.310
BC - 13A	2	4	2	1	1	0.0349	2.002	0.303	0.310	-	0.850	1.413
BC - 13B	2	4	2	1	1	0.0348	2.005	0.303	0.300	-	0.660	1.441
BC - 16A	2	4	1		1	0.0356	3.020	0.296	-	-	0.720	1.410
BC - 16B	2	4	1	-	1	0.0357	3.015	0.295	-	-	0.800	1.360
BC - 17A	1	2	-	-	1	0.0297	3.020	-	-	-	1.880	0.219
BC - 17B	1	2	-	-	1	0.0292	3.000	-	-	-	1.860	0.219
BC - 19A	4	8	-	-	1	0.0290	1.920	-	-	-	0.600	0.793
BC - 19B	4	8	-	-	1 ,	0.0284	1.935	-	-	-	0.600	0.793

Notes: 1. For definitions of symbols, see Fig. 3.

2. Specimens Nos. 1, 2, 17 and 19 have flat webs. Other specimens have embossments in their webs. 5

	[Cro	ss-Sectior) Dimensic	ons (in.)	- i	· •				
No.	W ₃	W4	W ₅	^w 6	W ₇	W ₈	Wg	۳ ₁₀	W ₁₁	W ₁₂	s ₁	s ₂		
BC - 1A	1.670	0.520	0.260	-	1.700	0.520	0.280	0.920	-	-	-	-		
BC - 1B	1.690	0.490	0.310	-	1.655	0.530	0.290	0.920	-	-	-	-		
BC - 2A	1.700	0.505	0.280	-	1.660	0.530	0.280	0.880	-	-	-	-		
BC - 2B	1.685	0.530	0.300	-	1.665	0.525	0.300	0.870	-	-	-	-		
BC - 9A	1.680	0.475	0.390	-	1.750	0.455	0.340	1.020	-	-	-	-		
BC - 9B	1.710	0.455	0.350	-	1.735	0.470	0.320	0.910	-	-	-	-		
BC - 12A	1.680	0.515	0.290	-	1.700	0.480	0.360	1.020	-	-	-	-		
BC - 12B	1.675	0.510	0.320	-	1.670	0.475	0.370	1.010	-	-	-	-		
BC - 13A	0.977	0.430	-	0.930	1.890	0.420	-	0.850	-	-	-	-		
BC – 13B	1.029	0.430	-	1.020	1.750	0.400	-	0.700	-	-	-	-		
BC - 16A	1.830	0.410	-	-	4.680	-	-	0.750	-	-	-	-		
BC - 16B	1.840	0.410	-	-	4.680	-	-	0.820	-	-	-	-		
BC - 17A	7.940	-	-	-	-	-	-	1.950	-	-	-	-		
BC - 17B	7.790	-	-	-	-	-	-	1.900	-	-	-	-		
BC - 19A	3.240	-	-	-	1.210	-	-	1.200	-	-	-	0.350		
BC - 19B	3.240	-	-	-	1.210	-	-	1.200	-	-	-	0.350		

TABLE 12b

Dimensions of Steel Deck Specimens Used for Combined Bending-Web Crippling Tests Simple Beam Tests Without End Connections

TABLE 12c									
	Dimensions of	Stee1	Deck Specimens	; Used fo	r Combined	Bending-Web	Crippling	Tests	
			Simple Beam Te	ests With	out End Co	nnections			

Specimen -			C	cross-Sect	ion Dimens	sions (in.)			Hob	0.000011	0402211
No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	h	Inclination (degree)	Width (in.)	Length (in.)
BC - 1A	0.200	0.200	0.210	0.280	0.210	0.250	-	-	2.21	60.9	20.990	77.88
BC - 1B	0.200	0.200	0.210	0.280	0.210	0.250	-	-	2.22	60.3	21.060	77.88
BC - 2A	0.210	0.210	0.220	0.280	0.220	0.280	-	-	2.22	62.3	20.940	80.00
BC - 2B	0.210	0.210	0.220	0.280	0.220	0.280	-	-	2.20	63.0	20.990	80.00
BC - 9A	0.200	0.210	0.210	0.260	0.220	0.230	-	-	2.22	62.8	21.150	78.00
BC - 9B	0.200	0.210	0.210	0.260	0.220	0.230	-	-	2.19	61.8	21.090	78.00
BC - 12A	0.200	0.200	0.200	0.260	0.210	0.260	-	-	3.11	72.6	23.810	92.00
BC - 12B	0.200	0.200	0.200	0.260	0.210	0.260	-	-	3.13	71.4	23.970	92.00
BC - 13A	0.130	0.170	0.190	0.190	0.190	0.190	_		1.89	49.4	19.460	72.00
BC - 13B	0.130	0.180	0.190	0.190	0.190	0.190	-	-	1.92	48.9	19.300	71.63
BC - 16A	0.130	0.198	0.190	0.190	-	-	-	-	2.78	64.6	20.750	92.00
BC - 16B	0.130	0.190	0.190	0.190	-	-	-	-	2.70	65.5	20.740	92.00
BC - 17A	0.095	0.095	·	-	-	-	-	-	2.97	90.0	12.208	59.63
BC - 17B	0.095	0.095	-	-	-	-	-	-	2.96	90.0	11.988	60.00
BC - 19A	0.135	0.135	-	-	-	-	0.135	-	1.92	73.2	24.734	72.50
BC - 19B	0.135	0.135	-	-	-	-	0.135	-	1.92	73.3	24.734	72.00
			1			1						

TABLE 13a

Dimensions of Steel Deck Specimens Used for Combined Bending-Web Crippling Tests

Specimen	No. of Ribs per	No. of Webs per	No. of Top	No. of Bottom	Type of	C	ross -	Section	Dimens	<u>ions</u>	(in.)	
No.	Specimen	Specimen	Stiffener	Stiffener	Sidelap	Т	D	DT	DB	D _E	۳	W2
BC- 2C	2	4	1	1	٦	0.0310	2.030	0.300	0.300	-	0.730	1.300
BC- 2D	2	4	- 1	1	1	0.0303	2.030	0.300	0.300	-	0.660	1.300
BC- 12C	2	4	1	1	ו	0.0293	3.020	0.300	0.280	-	1.000	1.280
BC- 12D	2	4	1	1	1.	0.0294	3.020	0.300	0.280	-	0.940	1.280
BC- 16C	1	2	1	-	1	0.0354	3.040	0.310	-	-	0.800	1.390
BC- 16D	1	2	1	-	1	0.0360	3.040	0.310	-	-	0.800	1.390
BC- 19C	4	8	-	-	1	0.0290	1.910	-	-	~	0.640	0.740
BC- 19D	4	8	-	-	1	0.0280	1.910	-	-	-	0.540	0.740

Single Span Beam Tests With End Connections

Notes: 1. For definitions of symbols, see Figs. 3.

2. Specimens Nos. 2 and 19 have flat webs. Other specimens have embossments in their webs.

Spacimon		Cross - Section Dimensions (in.)														
No.	W ₃	W ₄	W ₅	W ₆	W ₇	W ₈	W ₉ .	^W 10	W ₁₁	W ₁₂	s ₁	s ₂				
BC - 2C	1.690	0.510	0.310	-	1.670	0.525	0.290	0.720	_	-	-	-				
BC - 2D	1.690	0.510	0.310	-	1.670	0.525	0.290	0.660	-	-	-	-				
BC - 12C	1.700	0.520	0.310	-	1.700	0.520	0.310	1.000	-	-	-	-				
BC - 12D	1.700	0.520	0.310	-	1.700	0.520	0.310	0.940	-	-	-	-				
BC - 16C	1.830	0.410	-	-	-	-		0.880	-	-	-	- ·				
BC - 16D	1.830	0.410	-	-	-		-	0.880	-	-	-	-				
BC - 19C	3.210	-	-	-	1.300	-	-	0.640	-	-	-	-				
BC - 19D	3.210	-	-	-	1.300	-	-	0.550	-	-	-	-				

.

TABLE 13b

Dimensions of Steel Deck Specimens Used for Combined Bending-Web Crippling Tests

Single Span Beam Tests With End Connections

TABLE 13c

Dimensions of Steel Deck Specimens Used for Combined Bending-Web Crippling Tests

	Cro	ss-Sec	tion D	imensi	ons (i		Web	Overall Width	Overall		
R	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	h	(degree)	(in.)	(in.)
0.205	0.205	0.215	0.280	0.215	0.265	-	-	2.18	62.7	20.75	79.94
0.205	0.205	0.215	0.280	0.215	0.265	-	-	2.18	62.7	20.62	79.81
0.200	0.200	0.210	0.250	0.220	0.250	-	-	3.11	69.7	21.37	91.88
0.200	0.200	0.210	0.250	0.220	0.250	-	-	3.11	69.7	21.25	92.00
0.130	0.195	0.190	0.190	-	-	-	-	2.80	65.2	9.63	91.75
0.130	0.195	0.190	0.190	-	-	-	-	2.80	65.2	9.25	91.75
0.130	0.130	-	-	-	-	-	-	1.91	74.5	23.94	71.88
0.130	0.130	-	-	-	-	-	-	1.91	74.5	23.75	71.75
	R ₁ 0.205 0.205 0.200 0.200 0.130 0.130 0.130 0.130	Cro R ₁ R ₂ 0.205 0.205 0.205 0.205 0.200 0.200 0.200 0.200 0.130 0.195 0.130 0.130 0.130 0.130	R1R2R30.2050.2050.2150.2050.2050.2150.2050.2050.2100.2000.2000.2100.2000.2000.2100.1300.1950.1900.1300.1950.1900.1300.130-0.1300.130-	$\begin{array}{c c} \mbox{Cross-Section D} \\ \hline R_1 & R_2 & R_3 & R_4 \\ \hline 0.205 & 0.205 & 0.215 & 0.280 \\ 0.205 & 0.205 & 0.215 & 0.280 \\ 0.200 & 0.200 & 0.210 & 0.250 \\ 0.200 & 0.200 & 0.210 & 0.250 \\ 0.130 & 0.195 & 0.190 & 0.190 \\ 0.130 & 0.195 & 0.190 & 0.190 \\ 0.130 & 0.130 & - & - \\ 0.130 & 0.130 & - & - \\ \end{array}$	Cross-Section Dimension R_1 R_2 R_3 R_4 R_5 0.2050.2050.2150.2800.2150.2050.2050.2150.2800.2150.2000.2000.2100.2500.2200.2000.2000.2100.2500.2200.1300.1950.1900.190-0.1300.1300.1300.130	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cross-Section Dimensions (in.) R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8 0.2050.2050.2150.2800.2150.2650.2050.2050.2150.2800.2150.2650.2000.2000.2100.2500.2200.2500.2000.2000.2100.2500.2200.2500.1300.1950.1900.1900.1300.1300.1300.1300.1300.130	Cross-Section Dimensions (in.) R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8 h0.2050.2050.2150.2800.2150.2652.180.2050.2050.2150.2800.2150.2652.180.2000.2000.2100.2500.2200.2503.110.2000.2000.2100.2500.2200.2503.110.1300.1950.1900.1902.800.1300.1950.1900.1902.800.1300.1301.910.1300.1301.91	Cross-Section Dimensions (in.)Web Inclination (degree) R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8 hWeb Inclination (degree)0.2050.2050.2150.2800.2150.2652.1862.70.2050.2050.2150.2800.2150.2652.1862.70.2000.2000.2100.2500.2200.2503.1169.70.2000.2000.2100.2500.2200.2503.1169.70.1300.1950.1900.1902.8065.20.1300.1301.9174.50.1300.1301.9174.5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

.

Single Span Beam Tests With End Connections

	Des	iyn Paralle	Si	mple Beam T	pecimens use ests Without	ed for Combi End Connec	ned Be tions	nding-We	b Crippl	ing Te	ests	
Specimen No.	Thickness t (in.)	Insîđe Bend Radius ^R 2 (in.)	Computed Web Width h (in.)	Bearing Length Under Load ^N 1 (in.)	Bearing Length at Support N ₂ (in.)	Computed Web Inclination θ (degree)	R ₂ /t	h/t	N _l /t	N ₁ /h	Yield Point F _y (ksi)	Span Length (in.)
BC - 1A	0,0297	0.200	2.22	2.98	5.93	60.9	6.73	74.75	100.34	1.35	43.3	71.95
BC - 1B	0.0298	0.200	2.23	2.98	5,93	60,3	6.71	74,83	100,00	1,34	43.3	71.95
BC - 2A	0.0300	0.210	2.21	5.93	7,86	62,3	7,00	73,67	197.67	2.67	43.3	72,14
BC - 2B	0.0299	0.210	2.19	5.93	7.86	63,0	7.02	73,24	198.33	2.70	43.3	72.14
BC - 9A	0.0295	0.210	2,20	2,98	5.93	62.8	7.12	74.58	101.02	1.34	42,9	72.07
BC - 9B	0.0297	0.210	2,17	2.98	5.93	61.8	7.07	73.06	100.34	1.36	42,9	72.07
BC - 12A	0.0308	0.200	3.15	5.93	7,86	72.6	6.49	102.27	192.53	1.91	46.1	84.14
BC - 12B	0.0305	0.200	3,11	5.93	7.86	71.4	6,56	101,97	194.43	1.89	46.1	85.09
BC - 13A	0.0349	0,170	1,89	2.98	5.93	49.4	4.87	54.15	85.39	1.58	39.3	66.07
BC - 13B	0,0348	0.180	1.91	2.98	5.93	48.9	5.17	54.89	85,63	1.55	39,3	65.70
BC - 16A	0,0356	0.198	2.71	5.93	7,86	64.6	5.56	76.12	166.57	2.13	42.1	85.09
BC - 16B	0,0357	0.190	2.69	5.93	7.86	65.5	5,32	75.35	166.11	2.20	42.1	85.09
BC - 17A	0,0297	0.095	2,96	2.98	5,93	90.0	3,20	99,66	100.34	1.00	49.9	53.70
BC - 17B	0.0292	0.095	2,94	2,98	5,93	90.0	3.25	100.68	102.05	1.01	49.9	54.07
BC - 19A	0.0290	0.135	1.95	2.98	5,93	73.2	4.66	67.24	102.76	1.55	41.2	66.57
BC - 19B	0,0284	0.135	1.96	2,98	5.93	73.3	4,75	69.01	104.93	1.55	41.2	66.07

. . Doci David

TABLE 14

Design Parameters for Steel Deck Specimens used for Combined Bending-Web Crippling Tests Single Span Beam Tests With End Connections

Specimen No.	Thickness t (in.)	Inside Bend Radius ^R 2 (in.)	Computed Web Width h (in.)	Bearing Length Under Load ^N l (in.)	Bearing Length at Support ^N 2 (in.)	Computed Web Inclination θ (degree)	R ₂ /t	h/t	N _l ∕t	N ₁ ∕h	Yield Point F _y (ksi)	Span Length (in.)
BC - 2C	0.0310	0.205	2.21	5.93	7.86	62.7	6.61	71.29	191.29	2.68	48.2	72.08
BC - 2D	0.0303	0.205	2.22	5.93	7.86	62.7	6.77	73.27	195.71	2.67	48.2	71.95
BC - 12C	0.0293	0.200	3.16	5.93	7.86	69.7	6.83	107.85	202.39	1.88	51.0	84.02
BC - 12D	0.0294	0.200	3.16	5.93	7.86	69.7	6.80	107.48	201.70	1.88	51.0	84.14
BC - 16C	0.0354	0.195	2.72	5.93	7.86	65.2	5.51	76.84	167.51	2.18	45.5	83.89
BC - 16D	0.0360	0.195	2.72	5.93	7.86	65.2	5.42	75.56	164.72	2.18	45.5	83.89
BC - 19C	0.0290	0.130	1.92	2.98	5.93	74.5	4.48	66.21	102.76	1.55	44.2	65.95
BC - 19D	0.0280	0.130	1.92	2.98	5.93	74.5	4.64	68.57	106.43	1.55	44.2	65.82

.

Tested Mechanical Properties of Steels Used for Long Span Simple Beam Tests with End Connections and Continuous Beam Tests

Tensile Coupon No.	Fy (ksi)	F _u (ksi)	Elongation* (percent)
11	48.2	61.7	20.3
12	44.9	50.7	33.3
13	50.4	59.0	28.4
14	51.0	58.3	29.8
15	46.4	50.6	38.4
16	45.5	51.6	37.2
17	44.2	53.0	32.0

* 2-in. gage length

		·	· · · · · · · · · · · · · · · · · · ·				, 		
Specimen	Tes per S	st Data Specimen		Compu per S	ted Data pecimen		(M) _{test}	(P) _{test}	<u>A*</u>
No .	(P) (kips)	(^{M)} test (in-kips)	(P _u) _{comp} (kips)	(M _{ul}) (in-kips)	(M _{u2}) (in~kips)	(M _{u3}) (in-kips)	(M _u) _{comp}	(P _u) _{comp}	1.3
BC - 1A	0.973	17.502	N/A**	19.999	20.059	19.999	0.875	N/A**	N/A**
BC - 1B	0.975	17.538	N/A	19.828	19.916	19.828	0.885	N/A	N/A
BC - 2A	1.020	18.396	· N/A	20.365	20.464	20.365	0.903	N/A	N/A
BC - 2B	1.017	18.342	N/A	20.460	20.528	20.460	0.897	N/A	N/A
BC - 9A	0.795	14.324	N/A	20.489	20.559	20.489	0.699	N/A	N/A
BC - 9B	0.790	14.234	N/A	19.846	19.942	19.846	0.717	N/A	N/A
BC - 12A	1.218	25.621	N/A	40.647	41.018	40.647	0.630	N/A	N/A
BC - 12B	1.219	25.931	N/A	38.983	39.401	38.983	0.665	N/A	N/A
BC - 13A	1.250	20.647	N/A	21.953	21.437	21.953	0.963	N/A	N/A
BC - 13B	1.073	17.624	N/A	20.629	20.246	20.629	0.870	N/A	N/A
BC - 16A	1.646	35.015	N/A	39.978	40.876	39.978	0.876	N/A	N/A
BC - 16B	1.690	35.951	N/A	40.524	41.457	40.524	0.887	N/A	N/A
BC - 17A	0.995	13.358	1.502	12.317	22.536	12.317	1.085	0.663	1.344
BC - 17B	0.985	13.315	1.446	11.887	21.772	11.887	1.120	0.681	1.386
BC - 19A	1.072	17.841	N/A	19.118	21.442	19.118	0.933	N/A	N/A
BC - 19B	1.083	17.888	N/A	18.754	21.231	18.754	0.954	N/A	N/A

TABLE 17 Comparison of the Tested and Computed Results for Combined Bending-Web Crippling Based on Addendum No.2 of the 1968 Edition of the AISI Specification (Simple Beam Tests Without End Connections)

* A = $(P)_{test}/(P_u)_{comp}$ + $(M)_{test}/(M_u)_{comp}$

** The design formula for web crippling is not applicable because the R/t ratio exceeds 4.0. Mean Value 1.365

Coefficient of Variation 0.020

Comparison of the Tested and Computed Results for Combined Bending-Web Crippling Based on Addendum No. 2 of the 1968 Edition of the AISI Specification (Single Span Beam Tests With End Connections)

Specimen	Test Data Specimen Per Specimen			Comput Per S	ed Data Specimen		(M) _{test}	(P) _{test}	A*
No.	(^{P)} test	(M) _{test}	(P _u) _{comp}	(M _{ul}) _{comp}	(M _{u2}) _{comp}	(M _{u3}) _{comp}	(M _u) _{comp}	(P _u) _{comp}	1.3
	(kips)	(in-kips	(kips)	(in-kips)	(in-kips)	(in-kips)			
BC - 2C	1.170	21.083	N/A*	23.168	23.256	23.168	0.910	N/A**	N/A**
BC - 2D	1.202	21.621	N/A	22.312	22.415	22.312	0.969	N/A	N/A
BC - 12C	1.400	29.407	N/A	39.247	40.580	39.247	0.749	N/A	N/A
BC - 12D	1.405	29.554	N/A	38.957	40.262	38.957	0.759	N/A	N/A
BC - 16C	0.867	18.183	N/A	16.162	16.454	16.162	1.125	N/A	N/A
BC - 16D	0.872	18.288	N/A	16.455	16.730	16.455	1.111	N/A	N/A
BC - 190	1.200	19.785	N/A	19.851	22.211	19.851	0.997	N/A	N/A
BC - 19D	1.180	19.417	N/A	18.807	21.083	18.807	1.032	N/A	N/A

* A = (P)_{test}/(P_u)_{comp} + (M)_{test}/(M_u)_{comp}

** The design formula is not applicable beacuse the R/t ratio exceeds 4.

Comparison of the Tested and Computed Results for Combined Bending-Web Crippling Based on the 1980 Edition of the AISI Specification ⁽²³⁾ (Simple Beam Tests Without End Connections)

Specimen	Test per Sp	Data ecimen		Compute per Spe	ed Data ecimen		(M) _{test}	(P) _{test}	B*
No.	(P) test (kips)	(^{M)} test (in-kips)	(P') u'comp (kips)	(Mul)comp (in-kips)	(Mu2)comp (in-kips)	(M') u3'comp (in-kips)	(M')comp	(P')comp	1.42
BC-1A	0.973	17.502	2.130	19.999	20.059	19.999	0.875	0.457	0.961
BC-1B	0.975	17.538	2.138	19.828	19.917	19.828	0.885	0.456	0.967
BC-2A	1.020	18.396	3.382	20.365	20.464	20.365	0.903	0.302	N/A**
BC-2B	1.017	18.342	3.376	20.460	20.528	20.460	0.897	0.301	N/A
BC-9A	0.795	14.324	2.044	20.489	20.559	20.489	0.699	0.389	N/A
BC - 9B	0.790	14.234	2.067	19.846	19.942	19.846	0.717	0.382	N/A
BC-12A	1.218	25.621	3.876	40.647	41.018	40.647	0.630	0.314	N/A
BC-12B	1.219	25.931	3.783	38.983	39.401	38.983	0.665	0.322	N/A
BC-13A	1.250	20.647	2.851	21.953	21.437	21.953	0.963	0.439	1.009
BC-13B	1.073	17.624	2.763	20.629	20.246	20.629	0.870	0.388	N/A
BC-16A	1.646	35.015	4.721	39.978	40.876	39.978	0.876	0.349	N/A
BC-16B	1.690	35.951	4.862	40.524	41.457	40.524	0.887	0.348	N/A
BC-17A	0.995	13.358	1.778	12.317	22.536	12.045	1.109	0.560	1.203
BC-17B	0.985	13.315	1.727	11.887	21.772	11.600	1.148	0.571	1.238
BC-19A	1.072	17.841	5.142	19.118	21.442	19.118	0.933	0.209	N/A
BC-19B	1.083	17.888	4.946	18.754	21.231	18.754	0.954	0.219	N/A

** The interaction formula is not applicable because the $(P)_{test}/(P'_u)_{comp}$ ratio is less than 0.393.

Mean Value 1.076

Coefficient of Variation 0.112

Comparison of the Tested and Computed Results for Combined Bending-Web Crippling Based on the 1980 Edition of the AISI Specification (23)

Specimen	Tes per	st Data Specimen		Comput per sp	ed Data ecimen		(M) _{test}	(P) _{test}	в*
No.	(P) _{test} (kips)	^(M) test (inkips)	(Pu) _{comp} (kips)	(M _{ul}) _{comp} (inkips)	(M _{u2}) _{comp} (inkips)	(Mu3) _{comp} (inkips)	(M') _{comp}	(P'u) _{comp}	1.42
BC - 2C	1.170	21.083	3.946	23.168	23.256	23.168	0.910	0.297	N/A**
BC - 2D	1.202	21.621	3.771	22.312	22.415	22.312	0.969	0.319	N/A
BC - 12C	1.400	29.407	3.672	39.247	40.580	39.247	0.749	0.381	N/A
BC - 12D	1.405	29.554	3.697	38.957	40.262	38.957	0.759	0.380	N/A
BC - 16C	0.867	18.183	2.487	16.162	16.454	16.162	1.125	0.349	N/A
BC - 16D	0.872	18.288	2.566	16.455	16.730	16.455	1.111	0.340	N/A
BC - 19C	1.200	19.785	5.523	19.851	22.211	19.851	0.997	0.217	N/A
BC - 19D	1.180	19.417	5.176	18.807	21.083	18.807	1.032	0.228	N/A

(Single Span Beam Tests With End Connections)

* B = 1.07 (P)_{test}/(P'_u)_{comp} + (M)_{test}/(M_u)_{comp}

** The interaction formula is not applicable because the $(P)_{test}/(P'_u)_{comp}$ ratio is less than 0.393.

TA	BL	E	21	a
		_		

Dimensions of Steel Deck Specimens used for Continuous Beam Tests

Spec	imen	No. of Spans	No. of Webs per	No. of Top	No. of Bottom	Type of		Cr	oss - Sec	tion Dim	ensions	(in.)	I
N	0.	-	Sp eci men	Stiffener	Stiffener	Sidelap	Т	D	D _T	D _B	D _E	۳	W ₂
CB -	1A	2	4	1	1	3	0.0297	2.020	0.300	0.300	1.020	2.090	1.300
CB -	1B	2	4	1	1	3	0.0301	2.020	0.300	0.300	1.020	2.090	1.300
CB -	2Å	2	4	1	1	3	0.0300	2.020	0.300	0.300	1.020	2.090	1.300
CB -	2B	2	4	1	1	3	0.0295	2.020	0.300	0.300	1.020	2.090	1.300
CB -	ЗA	3	4	1	1	3	0.0462	2.070	0.310	0.300	1.050	2.090	1.280
CB -	3B	3	4	1	1	3	0.0461	2.050	0.310	0.300	1.020	2.100	1.300
CB -	4A	3	4	1	1	3	0.0461	2.060	0.310	0.300	1.040	2.100	1.290
CB –	4B	3	4	1	1	3	0.0459	2.040	0.300	0.300	1.060	2.100	1.240
CB –	5A	2	4	1	1	3	0.0297	3.060	0.300	0.300	0.970	2.100	1.220
CB –	5B	2	4	1	1	3	0.0300	3.050	0.300	0.300	1.000	2.100	1.260
CB –	6A	2	4	1	1	3	0.0286	2.970	0.280	0.280	0.970	2.100	1.280
CB –	6B	2	4	1	1	3	0.0303	3.050	0.270	0.270	0.970	2.100	1.280
CB -	9A	2	4	1	1	3	0.0304	2.000	0.300	0.317	-	2.100	1.230
CB –	9B	2	4	1	1	3	0.0304	1.970	0.300	0.317	- '	2.070	1.330
CB –	10A	2	4	1	1	3	0.0303	2.060	0.300	0.317	-	2.030	1.200
CB –	10B	2	4	1	1	3	0.0294	2.080	0.300	0.310	-	2.120	1.280
CB -	ITA	2	4	1	1	3	0.0289	3.080	0.270	0.270	1.000	2.100	1.280
CB –	1 1B	2	4	1	.1	3	0.0290	3.060	0.270	0.280	1.000	2.100	1.280

TABLE 21a (cont'd)

Dimensions of Steel Deck Specimens used for continuous Beam Tests

		No. of	No. of	No. of	No. of Bottom	Type		C	ro <u>ss</u> – S	e <u>ction D</u> i	mension	s (in.)	
Spe	ecimen No.	Spuns	Specimen	Stiffener	Stiffener	Sidelap	Т	D	D _T	D _B	D _E	W ₁	W2
CB -	12A	2	4	1	1	3	0.0287	3.050	0.270	0.270	1.000	2.100	1.280
CB -	12B	2	4	1	1	3	0.0303	3.050	0.270	0.270	1.000	2.100	1.280
CB -	13A	2	4	2	1	3	0.0358	2.000	0.305	0.310	0.330	1.640	1.500
CB -	13B	2	4	2	1	3	0.0359	2.000	0.305	0.310	0.330	1.640	1.500
CB -	14A	2	4	2	1	3	0.0360	1.970	0.315	0.320	0.310	1.640	1.500
CB -	14B	2	4	2	1	3	0.0359	1.970	0.315	0.320	0.310	1.640	1.500
CB -	15A	2	4	1	-	3	0.0358	3.020	0.300	_	0.430	3.500	1.390
CB -	15B	2	4	1	-	3	0.0356	3.020	0.300	-	0.430	3.500	1.390
CB –	16A	2	4	1	-	3	0.0358	3.020	0.300	· —	0.430	3.500	1.390
CB –	16B	2	4	1	-	3	0.0358	3.020	0.300	· ·	0.430	3.500	1.390
CB –	19A	2	8	-	-	1	0.0297	1.910	-	-	-	0.520	0.740
CB –	19B	2	8	-	-	1.	0.0285	1.910	-	-	· -	0.470	0.740
CB –	20A	2	8	-	-	1	0.0286	1.910	-	-	-	0.420	0.740
CB -	20B	2	8	-	-	ו	0.0282	1.910	-	-	: . .	0.470	0.740
							}						

Notes: 1. For definitions of symbols, see Figs. 3 and 38.

2. Specimens 1, 2, 3, 4, 5, 6, 19 and 20 have flat webs. Other specimens have embossments in their webs.

[8

Specimen		Cross - Section Dimensions (in.)													
No.	W ₃	W ₄	W ₅	^W 6	W ₇	W ₈	W ₉	^W 10	^W וו	W ₁₂	s ₁	s ₂			
CB - 1A	1.690	0.510	0.310	-	1.670	0.525	0.290	2.080	0.470	-	0.600	0.900			
CB - 1B	1.690	0.510	0.310	-	1.670	0.525	0.290	2.080	0.470	-	0.600	0.900			
CB - 2A	1.690	0.510	0.310	-	1.670	0.525	0.290	2.080	0.470	-	0.600	0.900			
CB - 2B	1.690	0.510	0.310	-	1.670	0.525	0.290	2.080	0.470	-	0.600	0.900			
CB - 3A	1.700	0.510	0.310	-	1.720	0.500	0.300	2.060	0.400	-	0.550	0.900			
CB - 3B	1.720	0.510	0.310	-	1.710	0.510	0.300	2.120	0.420	-	0.650	0.900			
CB – 4A	1.710	0.510	0.310	-	1.720	0.510	0.300	2.090	0.410	-	0.550	0.900			
CB – 4B	1.710	0.510	0.310	-	1.710	0.510	0.300	2.120	0.460	-	0.520	1.150			
CB – 5A	1.680	0.520	0.310	-	1.680	0.520	0.310	2.150	0.400	-	0.800	0.900			
CB - 5B	1.680	0.520	0.310	-	1.680	0.520	0.310	2.190	0.400	-	0.600	0.900			
CB – 6A	1.700	0.520	0.310	-	1.700	0.520	0.310	2.180	0.400	-	0.600	0.900			
CB – 6B	1.700	0.520	0.310	-	1.700	0.520	0.310	2.180	0.400	-	0.600	0.900			
CB – 9A	1.710	0.460	0.380	-	1.725	0.480	0.380	2.080	0.500	-	0.683	0.670			
CB – 9B	1.730	0.450	0.380	-	1.680	0.480	0.380	2.000	0.500	-	0.680	0.680			
CB - 10A	1.730	0.470	0.350	-	1.720	0.480	0.350	2.100	0.500	-	0.725	0.750			
CB - 10B	1.710	0.475	0.350	-	1.720	0.480	0.350	2.100	0.500	-	0.725	0.750			
CB - 11A	1.700	0.520	0.310	-	1.700	0.520	0.310	2.180	0.400	-	0.600	0.900			
CB - 11B	1.700	0.520	0.310	-	1.700	0.520	0.310	2.180	0.400	-	0.600	0.900			

TABLE	21b
-------	-----

Dimensions of Steel Deck Specimens used for Continuous Beam Tests

TABLE 21b (cont'd)

Dimensions of Steel Deck Specimens used for Continuous Beam Tests

				Cri	oss - Sec	tion Dim	ensions	(in.)				
Specimen No.	W ₃	W ₄	₩ ₅	[₩] 6	W ₇	W ₈	W ₉	W ₁₀	۳	W ₁₂	s ₁	s ₂
CB - 12A	1.700	0.520	0.310	-	1.700	0.520	0.310	2.180	0.400	-	0.600	0.900
CB - 12B	1.700	0.520	0.310	-	1.700	0.520	0.310	2.180	0.400	-	0.600	0.900
.CB - 13A	1.020	0.420	-	1.000	1.890	0.405	-	1.900	0.400	-	0.375	0.300
CB - 13B	1.020	0.420	-	1.000	1.890	0.405	-	1.900	0.400	-	0.375	0.300
CB - 14A	1.020	0.420	-	1.000	1.890	0.405	-	1.900	0.400	-	0.375	0.300
CB - 14B	1.020	0.420	- 1	1.000	1.890	0.405	-	1.900	0.400	-	0.375	0.300
CB - 15A	1.850	0.410	-	-	4.650	-	-	1.640	0.200	-	0.450	0.400
CB - 15B	1.850	0.410	-	-	4.650	-	-	1.640	0.200	-	0.450	0.400
CB - 16A	1.835	0.410	-	-	4.650	-	-	1.640	0.200	_	0.450	0.400
CB - 16B	1.835	0.410	-	-	4.650	-	-	1.640	0.200	-	0.450	0.400
CB - 19A	3.210	-	-	-	1.300	-	-	0.520	-	-	-	-
CB - 19B	3.210	-	-	-	1.300	-	-	0.470	-	-	-	-
CB - 20A	3.210	-	-	-	1.300	-	-	0.420	-	-	-	-
CB - 20B	3.210	-	-	-	1.300	-	-	0.470	-	-	-	-
	}											

		n			s - Sec	tion Di	mension	s (in.)			Web	Overal1	Overal1
Spe	cimen			1						1	Inclination	Width	Length
· · · · ·	No.	۳ı	. R ₂	R ₃	R ₄	^R 5	R ₆	R ₇	R ₈	h	(degree)	(in.)	(in.)
CB -	- 1A	0.205	0.205	0.215	0.280	0.215	0.265	0.200	0.120	2.21	62.6	24.63	144.0
CB -	· 1B	0.205	0.205	0.215	0.280	0.215	0.265	0.200	0.120	2.21	62.6	24.50	144.0
CB -	2A	0.205	0.205	0.215	0.280	0.215	0.265	0.200	0.120	2.21	62.6	24.50	144.0
CB -	2B	0.205	0.205	0.215	0.280	0.215	0.265	0.200	0.120	2.21	62.6	24.50	144.0
CB -	3A	0.210	0.200	0.210	0.280	0.200	0.265	0.180	0.120	2.16	63.8	24.75	288.0
CB -	3B	0.210	0.200	0.210	0.230	0.200	0.240	0.180	0.120	2.16	63.0	24.75	288.0
CB -	4A	0.210	0.200	0.210	0.230	0.200	0.240	0.180	0.120	2.22	63.4	24.75	288.0
CB -	4B	0.210	0.200	0.210	0.230	0.200	0.240	0.180	0.120	2.22	64.5	24.75	288.0
CB -	5A	0.200	0.200	0.220	0.230	0.220	0.240	0.150	0.120	3.12	73.5	25.00	192.0
CB –	5B	0.200	0.200	0.220	0.250	0.220	0.250	0.150	0.120	3.15	72.6	25.00	192.0
CB -	6A	0.200	0.200	0.220	0.250	0.220	0.250	0.150	0.120	3.12	71.7	25.00	192.0
CB -	6B	0.200	0.200	0.220	0.250	0.220	0.250	0.150	0.120	3.12	72.3	25.00	192.0
CB –	9A	0.190	0.210	0.220	0.250	0.235	0.220	0.233	0.167	2.07	-	24.63	144.0
CB -	9B	0,230	0.220	0.240	0.220	0.230	0.220	0.230	0.167	2.02	-	24.50	144.0
CB –	10A	0.200	0.210	0.230	0.240	0.230	0.220	0.220	0.167	2.06	-	24.63	144.0
CB -	10B	0.208	0.210	0.220	0.220	0.220	0.210	0.200	0.167	2.02	-	24.63	143.9
CB –	11A	0.200	0.200	0.220	0.250	0.220	0.250	0.150	0.120	3.11	72.4	25.00	192.0
CB -	11B	0.200	0.200	0.220	0.250	0.220	0.250	0.150	0.120	3.12	72.4	25.00	192.0

TABLE 21c

Dimensions of Steel Deck Specimens used for Continuous Beam Tests

84,

TABLE 21c (cont'd)

Dimensions of Steel Deck Specimens used for Continuous Beam Tests

Specimen			Cross -	Section	Dimensio	ons (in.)				Web Inclination	Overall Width	Overall Length
No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	h	(degree)	(in.)	(in.)
CB - 12A	0.200	0.200	0.220	0.250	0.220	0.250	0.150	0.120	3.14	72.3	25.00	192.0
CB - 12B	0.200	0.200	0.200	0.250	0.220	0.250	0.150	0.120	3.15	72.3	25.00	192.0
CB - 13A	0.130	0.180	0.190	0.190	0.190	0.190	0.180	0.180	1.95	47.4	24.30	144.0
CB - 13B	0.130	0.180	0.190	0.190	0.190	0.190	0.180	0.180	1.95	47.4	24.30	144.0
CB - 14A	0.130	0.180	0.190	0.190	0.190	0.190	0.180	0.180	1.95	46.7	24.3	144.0
CB - 14B	0.130	0.180	0.190	0.190	0.190	0.190	0.180	0.180	1.95	46.7	24.3	144.0
CB - 15A	0.130	0.190	0.190	0.190	-	-	0.180	0.180	2.78	64.9	24.6	168.0
CB - 15B	0.130	0.190	0.190	0.190	-	-	0.180	0.180	2.78	64.9	24.5	168.0
CB - 16A	0.130	0.190	0.190	0.190	-	-	0.180	0.180	2.78	64.9	24.4	168.0
CB - 16B	0.130	0.190	0.190	0.190	-	-	0.180	0.180	2.78	64.9	24.5	168.0
CB - 19A	0.130	0.130	-	-	-	-	-	-	1.91	74.6	23.7	144.3
CB - 19B	0.130	0.130	-	-	-	-	-	-	1.91	74.6	23.6	144.3
CB - 20A	0.130	0.130	-	-	-	-	-	-	1.91	74.6	23.5	144.3
CB - 20B	0.130	0.130	-	-	-	-	-	-	1.91	74.6	23.6	144.3

	Design Pa	arameters	for Steel	Deck Specimen	s used for Co	ombined Bend	ing-W	eb Crippl	ling Tes	ts		
				Continuous	Beam Tests							
		Inside*	Computed	Bearing	Bearing	Computed					Yield	
	Thickness	Bend	Web	Length	Length	Web					Point	Span
Specimen	t	Radius	Width	Inter Support	End Support	Inclination	Ry/t	h/t	N _l /t	N ₁ /h	· F	Length
No.	(in.)	R	h	N ₁	N ₂	θ					(kši)	(in.)
		(in.)	(in.)	(in.)	(in.)	(degrees						
CB - 1A	0.0297	0.205	2.21	2.98	5.93	62.6	6.90	74.41	100.34	1.35	48.2	69.04
CB - 1B	0.0301	0.205	2.21	2.98	5.93	62.6	6.81	73.42	99.00	1.35	48.2	69.04
CB - 2A	0.0300	0.205	2. 21	5.93	7.86	62.6	6.83	73.67	197.67	2 .6 8	48.2	68.07
CB - 2B	0.0295	0.205	2.21	5.93	7.86	62.6	6.95	74.92	201.02	2.68	48.2	68.07
CB - 3A**	0.0462	0.210	2.20	2.98	5.93	63.8	4.55	47.62	64.50	1.35	44.9	94.02
CB - 38**	0. 0461	0.210	2.20	2.98	5.93	63.0	4.56	47.72	64.64	1.35	44.9	94.02
CB - 4A**	0.0461	0.210	2.20	5.93	7.86	63.4	4.56	47.72	128.63	2.70	44.9	93.38
CB - 48**	0.0459	0.210	2.16	5.93	7.86	64.5	4.58	47.06	129.19	2.75	44.9	93.38
CB - 5A	0.0297	0.200	3.13	2.98	5.93	73.5	6.73	105.39	100.34	0.95	50.4	93.04
CB - 5B	0.0300	0.200	3.1 3	2.98	5.93	72.6	6.67	104.33	99.33	0.95	50.4	93.04
CB - 6A	0.0286	0.200	3.07	5.93	7.86	71.7	6.99	107.34	207.34	1.93	50.4	92.07
CB - 6B	0.0303	0.200	3.14	5 .9 3	7.86	72.3	6.60	103.63	195.71	1.89	50.4	92.07
CB - 9A	0.0304	0.190	2.16	2,98	5.93	64.0	6.25	71.05	98.03	1.38	46.0	68.00
CB - 9B	0.0304	0.230	2.17	2.98	5.93	61.7	7.57	71.38	9 8.03	1.37	46.0	68.00
CB - 10A	0.03 03	0.200	2.19	5.93	7.86	65.7	6.60	72.28	195.71	2.71	46.0	68.00
CB - 10B	0.0294	0.208	2.25	5.93	7.86	64.0	7.07	76.53	201.70	2.64	46.0	68.00
CB - 11A	0.0289	0.200	3.17	2.98	5.93	72.4	6.92	109.69	103.11	0.94	51.0	93.04
CB - 11B	0.0290	0.200	3.15	2.98	5.93	72.3	6.90	109.57	102.76	0.95	51.0	93.04

TABLE 22 (cont'd)

Design Parameters for Steel Deck Specimens used for Combined Bending-Web Crippling Tests Continuous Beam Tests

Specimen N <u>o</u> .	Thickness t (in.)	Inside* Bend Radius ^R 1 (in.)	Computed Web Width h (in.)	Bearing Length Inter.Support ^N l (in.)	Bearing Length End Support ^N 2 (in.)	Computed Web Inclination θ (degree)	R _j /t	h/t	N _l /t	N _l /h	Yield Point Fy (ksi)	Span Length (in.)
CB - 12A	0.0287	0.200	3.14	5.93	7.86	72.3	6.97	1 09.4 1	206.62	1 .89	51.0	92.07
CB - 12B	0.0303	0.200	3.14	5.93	7.86	72.3	6.60	103.63	195.71	1.89	51.0	92.07
CB - 13A	0.0358	0.180	1.94	2.98	5.93	47.4	5.03	54. 19	83.24	1.54	46.4	69.04
CB - 13B	0.0359	0.180	1.94	2.98	5.93	47.4	5.01	54.04	83.01	1.54	46.4	69.04
CB - 14A	0.0360	0.180	1.92	5.93	7.86	46.7	5.00	5 3. 33	164.72	3.09	46.4	68.07
CB - 14B	0.0359	0.190	1.92	5.93	7.86	46.7	5.01	53.48	165.18	3.09	46.4	68.07
CB - 15A	0.0358	0.190	2.70	2.98	5.93	64.9	5.31	75.42	83.24	1.10	45.5	81.04
CB - 15B	0.0356	0.190	2.70	2.98	5.93	64.9	5.34	75.84	83.71	1.10	45.5	81.04
CB - 16A	0.0358	0.190	2.70	5.93	7.86	64.9	5.31	75.42	165.64	2.20	45.5	80.07
CB - 16B	0.0358	0.190	2.70	5.93	7.86	64.9	5.31	75.42	165.64	2.20	45.5	80.07
CB - 19A	0.0297	0.130	1.92	2.98	5.93	74.6	4.38	64.65	100.34	1.55	44.2	69.19
CB - 19B	0.0285	0.130	1.92	2.98	5.93	74.5	4.56	67.37	104.56	1.55	44.2	69.19
CB - 20A	0.0286	0.130	1.92	5.93	7.86	74.5	4.55	67.13	207.34	3.09	44.2	68.22
CB - 20B	0.0282	0.130	1.92	5.93	7.86	74.5	4.61	68.09	210.28	3.09	44.2	68.22

* Use R_2 for CB-13, 14, 15 and 16.

** Specimen Nos. 3A, 3B, 4A and 4B were tested as three-span continuous beams. Other specimens were tested as two-span continuous beams.

Comparison of the Tested and Computed Results for Combined Bending-Web Crippling Based on the 1980 Edition of the AISI Specification⁽²³⁾

Continuous Beam Tests

	Те	st Data			Computed Dat	a			
	pe	r Specime	n		per Specimen		(M) _{test}	(P) _{test}	B*
Specimen No.	^(w) test (kips/ft)	(^{P)} test (kips)	^(M) test (inkips)	(P') comp (kips)	(^M ul ⁾ comp (inkips)	(Mu3) _{comp} (inkips)	(M'u) _{comp}	(P'u) _{comp}	1.42
CB - 1A	0.564	4.056	28.00	2.275	26.00	26.00	1.077	1.783	2.102
CB – 1B	0.582	4.186	28.90	2.341	26.46	26.46	1.092	1.788	2.116
CB – 2A	0.613	4.347	29.59	3.696	26.34	26.34	1.123	1.176	1.677
CB - 2B	0.637	4.517	30.75	3.573	25.77	25.77	1.193	1.264	1.793
CB - 3A	0.619	5.335	45.60	5.276	44.14	44.14	1.033	1.011	1.489
CB - 3B	0.639	5.507	47.07	5.233	43.78	43.78	1.075	1.052	1.550
CB - 4A	0.722	6.180	52.46	7.785	43.94	43.94	1.194	0.794	1.439
CB – 4B	0.720	6.163	52.32	7.782	43.38	43.38	1.206	0.792	1.446
CB - 5A	0.479	4.642	43.19	2.411	46.99	45.30	0.953	1.926	2.122
CB - 5B	0.460	4.458	41.48	2.452	47.16	45.56	0.910	1.818	2.011
CB - 6A	0.498	4.776	43.97	3.528	42.98	41.27	1.065	1.354	1.770
CB - 6B	0.515	4.939	45.47	3.967	47.97	46.42	0.980	1.245	1.628
CB - 9A	0.620	4.390	29.85	2.308	24.87	24.87	1.200	1.902	2.278
CB - 9B	0.613	4.361	29.65	2.209	24.36	24.56	1.207	1.974	2.337
CB - 10A	0.679	4.811	32.72	3.668	25.85	25.85	1.266	1.312	1.880
CB - 10B	0.657	4.651	31.63	3.407	25.06	25.06	1.262	1.365	1.917
CB - 11A	0.396	3.838	35.71	2.268	46.12	44.00	0.812	1.693	1.848
СВ – 11В	0.413	4.003	37.24	2.286	45.93	43.92	0.848	1.751	1.917 🕉

TABLE 23

TABLE 23 (cont'd)

Comparison of the Tested and Computed Results for Combined Bending-Web Crippling Based on the 3980 Edition of the AISI Specification⁽²³⁾

Continuous Beam Tests

	Ti Pi	est Data er Specimen			Computed Dat per Specimen	a	(M)	(P) _{test}	
Specimen No.	(w) _{test} (kips/ft)	(P) _{test} (kips)	^(M) test (inkips)	(P') comp (kips)	(M _{ul}) _{comp} (inkips)	(M' _{u3}) _{comp} (inkips)	(M'test (M'u) _{comp}	(P'u) _{comp}	<u>B*</u> 1.42
CB - 12A	0.438	4.201	38.68	3.575	45.12	43.06	0.898	1.175	1.518
CB - 12B	0.431	4.134	38.06	3.996	48.38	46.76	0.814	1.035	1.353
CB - 13A	0.490	3.524	24.33	3.248	35.53	35.53	0.685	1.085	1.300
CB - 13B	0.462	3.323	22.94	3.265	35.63	35.63	0.644	1.018	1.221
CB - 14A	0.508	3.602	24.52	5.064	35.01	35.01	0.700	0.711	1.029
CB - 14B	0.571	4.049	27.56	5.039	34.91	34.91	0.789	0.804	1.161
CB - 15A	0.482	4.069	32.97	3.319	49.50	49.50	0.666	1.226	1.393
CB - 15B	0.492	4.153	33.66	3.282	49.14	49.14	0.685	1.266	1.436
CB - 16A	0.490	4.087	32.72	5.134	49.50	49.50	0.661	0.756	1.035
CB - 16B	0.533	4.446	35.60	5.134	49.50	49.50	0.719	0.866	1.159
CB - 19A	0.508	3.661	25.33	5.770	20.95	20.95	1.209	0.634	1.329
CB = 19B	0.494	3.560	24.63	5.348	19.73	19.73	1.248	0.666	1.381
CB - 20A	0.544	3.866	26.37	8.619	19.61	19.61	1.345	0.449	1.286
CB - 20B	0.570	4.051	27.63	8.415	19.48	19.48	1.418	0.481	1.361
+ R = 1.07	(D) //D') + (M)	/(M1)	<u></u>		Mean	Value		1.603
~ R = 1.0/	(^{P)} test ^{/ (P} u	comp + (").	test'\"u'comp)		Cooff	icient of Va	riation	0.228 🕃

Coefficient of Variation

2 (Nominal Depth) 24" (Nominal Width) Specimens 1A, 1B, 2A, 2B (Nominal t = 0.0295 in.) (a) Specimens 3A, 3B, 4A, 4B (Nominal t = 0.0474 in.) 3 (Nominal Depth) 24" (Nominal Width Specimens 5A, 5B, 6A, 6B (Nominal t = 0.0295 in.) Specimens 7A, 7B, 8A, 8B (Nominal t = 0.0474 in.) (b) 2"(Nominal Depth) 24 (Nominal Width (c) Specimens 9A, 9B, 10A, 10B (Nominal t = 0.0295 in.) 3" (Nominal Depth) 24"(Nominal Width) Specimens 11A, 11B, 12A, 12B (Nominal t = 0.0295 in.) (d) Fig. 2 Cross-Sectional Configurations of Steel Decks (IOF Series)

(e) Specimens 13A, 13B, 14A, 14B (Nominal t = 0.0358 in.)

(f) Specimens 15A, 15B, 16A, 16B (Nominal t = 0.0358 in.)

(g) Specimens 17A, 17B, 18A, 18B (Nominal t = 0.0295 in.)

(h) Specimens 20A, 20B (Nominal t = 0.0295 in.) (cut from the 30 in. wide panels)

(i) Specimens 19A, 19B (Nominal t = 0.0295 in.)

Fig. 2 Cross-Sectional Configurations of Steel Decks (Continued)

Type 1

Туре 2

Туре З

Fig. 3b Types of Sidelaps

Fig. 4 Test Setup used for Interior One-Flange Loading

Fig. 5 Photograph Showing the Test Setup Used for Interior One-Flange Loading

Fig. 6 Photograph Showing the Test Setup Used for Interior One-Flange Loading

Fig. 7 Photgraph Showing the Typical Failure Mode for Interior One-Flange Loading

Fig. 8 Photgraph Showing the Typical Failure Mode for Interior One-Flange Loading

is considered)

Fig. 10 Correlation Between the Test Results on Interior One-Flange Loading and the Interaction Formula Used for the 1980 Edition of the AISI Specification (Shear Lag is considered)

Fig. 10 Correlation Between the Test Results on Interior One-Flange Loading and the Interaction Formula Used for the 1980 Edition of the AISI Specification (Shear Lag is considered)

Fig. 11 Correlation Between the Test Results on Interior One-Flange Loading and the Interaction Formula Used for the 1980 Edition of the AISI Specification (Shear Lag is neglected)

Fig. 12 Arrangement of Embossments in the Webs of Specimens Nos. 9, 10, 11, and 12

Fig. 14 Test Setup Used for End One-Flange Loading

Fig. 15. Photograph Showing the Test Setup Used for End Qne-Flange Loading

Fig. 16 Photgraph Showing the Test Setup Used for End One-Flange Loading

Fig.17 Photograph Showing the Typical Failure Mode for End One-Flange Loading

Fig. 18 Photgraph Showing the Typical Failure Mode for End One-Flange Loading

Fig. 19 Relationship Between the Computed C_4 and R/t Ratio

Fig. 20 Test Setup for End One-Flange Loading, EOF-5C and EOF-5D (Steel Panel is Supported by W Shapes at Both Ends Without Any Connection)

Fig. 21 End Failure for Steel Panels Using the Test Setup Shown Above

Fig. 22 Steel Panel is Welded to Bearing Plates at Both Ends (EOF-5E and EOF-5F)

Fig. 23 Test Setup for End One-Flange Loading, EOF-5E and EOF-5F (Steel Panel is Welded to End Bearing Plates, Which are Connected to Support Beams by Using Bolts)

Fig. 24 End Failure for Steel Panels Using the Test Setup Shown Above

(c) Specimens 12A, 12B, 12C, 12D (Nominal t = 0.0295 in.)

Fig. 25 Cross-Sectional Configurations of Steel Decks Used for Long Span Simple Beam Tests (BC Series)

Fig.25 Cross-Sectional Configurations of Steel Decks Used for Long Span Simple Beam Tests (BC Series) (Continued)

Fig. 26 Arrangement of Strain Gages Used for Single Span Test Specimens with End Connections (Specimens Nos. 2C, 2D, 12C, 12D, 16C, 16D, 19C and 19D)

Fig.28 Test Setup Used for Single Span Beams With End Connections

Fig. 29a Photograph Showing the Test Setup Used for Single Span Beams With End Connections

Fig. 29b Photograph Showing the Test Setup Used for Single Span Beams With End Connections

Fig. 30a Typical Failure Mode for Steel Decks Having Flat Webs (BC Series)

Fig. 30b Typical Failure Mode for Steel Decks Having Flat Webs (BC Series)

Fig. 31a Typical Failure Mode for Steel Decks Having Embossments in Their Webs (BC Series)

Fig. 31b Typical Failure Mode for Steel Decks Having Embossments in Their Webs (BC Series)

Fig. 32 Correlation Between the Test Results on Combined Bending and Web Crippling (Simple Beam Tests without End Connections) and the Interaction Formula Used for the 1968 AISI Specification

Fig. 33 Correlation Between the Test Results on Combined Bending and Web Crippling (Simple Beam Tests Without End Connections) and the Interaction Formula Used for the 1980 Edition of the AISI Specification

Fig. 34 Corrleation Between the Test Results on Combined Bending and Web Crippling (Single Span Beam Tests With End Connections) and the Interaction Formula Used for the 1980 Edition of the AISI Specification

2 (Nominal Depth) 24" (Nominal Width)

(a) Specimens 1A, 1B, 2A, 2B (Nominal t = 0.0295 in.) Specimens 3A, 3B, 4A, 4B (Nominal t = 0.0474 in.)

3 (Nominal Depth) 24" (Nominal Width

(b) Specimens 5A, 5B, 6A, 6B (Nominal t = 0.0295 in.)

2"(Nominal Depth) 24 (Nominal Widti

(c) Specimens 9A, 9B, 10A, 10B (Nominal t = 0.0295 in.)

3" (Nominal Depth) (Nominal 24 Width

(d) Specimens 11A, 11B, 12A, 12B (Nominal t = 0.0295 in.)

Fig. 35 Cross-Sectional Dimensions of Steel Decks used for Continuous Beam Tests (CB - Series)

(e) Specimens 13A, 13B, 14A, 14B (Nominal t = 0.0358 in.)

(1) Specimens 15A, 15B, 16A, 16B (Nominal t = 0.0358 in.)

(g) Specimens 19A, 19B, 20A, 20B(Nominal t = 0.0295. in.) (cut from the 30 in. wide panels)

Fig. 35 Cross-Sectional Dimensions of Steel Decks used for Continuous Beam Tests (CB - Series) (cont'd)

Fig. 36a Location of Strain Gages and Deflection Measurements for Two-Span Continuous Beams

Fig. 36b Location of Strain Gages and Deflection Measurements for Three-Span Continuous Beams

Fig. 37a Uniform Loading Apparatus Used for Continuous Beam Tests

Fig. 38a Test Setup for Two-Span Continuous Beam Tests

Fig. 38b Test Setup for Three-Span Continuous Beam Tests (Specimen Nos. 3 and 4)

Fig. 39a Photograph Showing the Test Setup for Three-Span Continuous Beam Tests

Fig. 39b Photograph Showing the Test Setup for Two-Span Continuous Beam Tests

Fig. 40a Typical Failure Mode at the Interior Support of Continuous Beams for Steel Decks Having Flat Webs.

Fig. 40b Typical Failure Mode at the Interior Support of Continuous Beams for Steel Decks Having Flat Webs.

Fig. 41a Typical Failure Mode at the Interior Support of Continuous Beams for Steel Decks Having Embossed Webs

Fig. 41b Typical Failure Mode at the Interior Support of Continuous Beams for Steel Decks Having Embossed Webs

Fig. 42a Photograph Showing the Test Setup for Inverted Steel Decks (Specimens Nos. 13, 14, 15, and 16).

Fig. 42b Typical Failure Mode at the Interior Support of Continuous Beams for Steel Decks Tested in an Inverted Position.

129

Fig. 43a Typical Failure Mode for Roof Deck

APPENDIX

132

				· ·	-
Specimen No.	Applied Load (kips)	Mid-Span Deflection (in)	Specimen No.	Applied Load (kips)	Mid-Span Deflection (in_)
BC - 1A BC - 1B	0.250 0.500 0.750 0.973 0.125	0.155 0.300 0.445 0.625 0,080	BC - 2D (cont'd)	0.720 0.840 0.960 1.080 1.200 1.202	0.287 0.333 0.386 0.440 0.514 0.554
	0.250 0.375 0.500 0.600 0.700 0.800 0.900 0.975	0.154 0.225 0.299 0.355 0.415 0.474 0.542 0.663	BC - 9A	0.113 0.225 0.338 0.450 0.540 0.630 0.720 0.795	0.149 0.241 0.335 0.418 0.481 0.552 0.627 0.797
BC – 2A	0.150 0.300 0.450 0.600 0.720 0.840	0.095 0.180 0.264 0.348 0.417 0.488	BC - 9B	0.200 0.400 0.600 0.790	0.201 0.355 0.501 0.810
BC - 2B	0.960 1.020 0.150 0.300 0.450 0.600	0.578 0.698 0.090 0.176 0.260 0.342	BC - 12A	0.200 0.400 0.600 0.800 0.960 1.120 1.218	0.085 0.171 0.256 0.339 0.408 0.486 0.602
BC - 2C	0.720 0.840 0.960 1.017 0.150 0.300	0.413 0.484 0.571 0.672 0.065 0.129	BC - 12B	0.200 0.400 0.600 0.800 0.960 1.120	0.085 0.169 0.250 0.331 0.400 0.474
	0.450 0.600 0.720 0.840 0.960 1.080 1.170	0.191 0.252 0.303 0.354 0.408 0.468 0.577	BC - 12C	1.219 0.200 0.400 0.600 0.800 0.960 1.120	0.558 0.069 0.135 0.203 0.272 0.327 0.385
BC - 2D	0.150 0.300 0.450 0.600	0.063 0.122 0.182 0.239		1.230 1.400	0.450 0.541

Mid-Span Deflection of Steel Deck Specimens Single Span Beams Used for Combined Bending-Web Crippling Tests

TABLE A1

Mid-Span Deflection of Steel Deck Specimens Single Span Beams Used for Combined Bending-Web Crippling Tests					
Specimen No.	Applied Load (kips)	Mid-Span Deflection (in)	Specimen No.	Applied Load (kips)	Mid-Span Deflection (in)
BC - 12D	0.200 0.400 0.600 0.800 0.960 1.120 1.280 1.405	0.064 0.129 0.195 0.263 0.318 0.373 0.437 0.585	BC - 16C	0.115 0.230 0.345 0.460 0.550 0.640 0.730 0.820 0.867	0.075 0.135 0.202 0.279 0.332 0.398 0.470 0.558 0.689
BC - 13A	0.150 0.300 0.450 0.600 0.720 0.840 0.960 1.080 1.200 1.250	0.072 0.130 0.187 0.241 0.290 0.332 0.383 0.442 0.512 0.630	BC - 16D	0.115 0.230 0.345 0.460 0.550 0.640 0.730 0.820 0.872	0.068 0.133 0.199 0.275 0.331 0.398 0.470 0.563 0.673
BC - 13B	0.150 0.300 0.450 0.600 0.720 0.840 0.960 1.080 1.200	0.096 0.152 0.205 0.258 0.306 0.346 0.397 0.449 0.500	BC - 17A	0.150 0.300 0.450 0.600 0.720 0.840 0.960 0.995	0.095 0.170 0.241 0.311 0.367 0.425 0.495 0.562
BC - 16A	1.350 0.300 0.600 0.900 1.200 1.440 1.646	0.670 0.118 0.218 0.318 0.418 0.502 0.608	BC - 17B	0.150 0.300 0.450 0.600 0.720 0.840 0.960 0.985	0.099 0.177 0.249 0.322 0.382 0.440 0.510 0.550
BC - 16B	0.225 0.450 0.675 0.900 1.080 1.260 1.440 1.620 1.690	0.087 0.167 0.243 0.319 0.383 0.441 0.504 0.579 0.630	BC - 19A	0.230 0.460 0.690 0.920 1.072	0.107 0.219 0.342 0.503 0.816

TABLE Al (Cont'd)

Single	Mid-Span Span Beams	Deflection of Used for Comb	Steel Deck Sp ined Bending-W	ecimens leb Crippling	g Tests
Specimen No.	Applied Load (kips)	Mid-Span Deflection (in)	Specimen No.	Applied Load (kips)	Mid-Span Deflection (in)
BC - 19B BC - 19C	0.150 0.300 0.450 0.600 0.720 0.840 0.960 1.080 1.083 0.150 0.300 0.450 0.600 0.720	0.068 0.138 0.209 0.284 0.353 0.430 0.521 0.714 0.791 0.054 0.109 0.165 0.221 0.271	BC - 19C (cont'd) BC - 19D	0.840 0.960 1.080 1.200 1.200 0.150 0.300 0.450 0.600 0.720 0.840 0.960 1.080 1.180	0.324 0.382 0.454 0.583 0.690 0.058 0.114 0.171 0.230 0.280 0.335 0.393 0.465 0.614

TABLE AT~(Cont'd)

	٨٥
TABLE	AZ

Specimen	Applied	Mi	d-Span	Deflection	(in.)
No.	(psf)	#1	#2	#3	#4
CB – 1A	25 50 75 100 125 150 175 200 225 235 245 255	0.13 0.17 0.19 0.22 0.23 0.27 0.29 0.33 0.43 0.52 0.56 0.60	0.18 0.22 0.25 0.28 0.32 0.35 0.38 0.42 0.56 0.63 0.66 0.72	0.15 0.17 0.21 0.25 0.26 0.29 0.32 0.36 0.50 0.57 0.63 0.65	0.19 0.23 0.27 0.29 0.33 0.37 0.39 0.44 0.57 0.64 0.69 0.75
CB - 1B	25 50 75 100 125 150 175 200 225	0.12 0.16 0.18 0.22 0.23 0.27 0.29 0.33 0.39	0.19 0.20 0.24 0.27 0.30 0.33 0.36 0.40 0.48	0.12 0.15 0.19 0.23 0.25 0.27 0.31 0.34 0.39	0.16 0.20 0.23 0.26 0.30 0.33 0.37 0.39 0.48
CB - 2A	25 50 75 100 125 150 175 200 225 250 255 260 265 270 265 270 275 280 285 290 295	0.07 0.13 0.15 0.24 0.26 0.30 0.34 0.39 0.43 0.44 0.41 0.48 0.44 0.41 0.48 0.50 0.53 0.55 0.55 0.59	$\begin{array}{c} 0.09\\ 0.14\\ 0.19\\ 0.24\\ 0.27\\ 0.32\\ 0.36\\ 0.40\\ 0.45\\ 0.54\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.66\\ 0.61\\ 0.70\\ 0.65\\ 0.66\\ \end{array}$	0.12 0.13 0.19 0.22 0.25 0.30 0.37 0.38 0.42 0.46 0.50 0.47 0.48 0.47 0.48 0.51 0.51 0.51 0.53 0.58 0.59	0.10 0.15 0.19 0.23 0.29 0.33 0.36 0.40 0.48 0.49 0.54 0.59 0.56 0.56 0.56 0.56 0.56 0.58 0.61 0.66 0.76

Mid-Span Deflection of Steel Deck Specimens Two-Span Continuous Beam Tests

-

TABLE A2 (Cont'd)

Specimen	Applied Uniform Load	Mid-Sp	Mid-Span		Deflection (in.)	
No.	(psf)	#1	#2	#3	#4	
CB - 2B	25 50 75 100 125 150 175 200 225 250 255 260 265 270 275 280 285	0.11 0.12 0.16 0.21 0.22 0.25 0.28 0.31 0.32 0.35 0.35 0.35 0.36 0.36 0.37 0.38 0.38 0.39	$\begin{array}{c} 0.14\\ 0.18\\ 0.23\\ 0.26\\ 0.29\\ 0.33\\ 0.36\\ 0.39\\ 0.42\\ 0.46\\ 0.47\\ 0.48\\ 0.49\\ 0.50\\ 0.51\\ 0.53\\ 0.54 \end{array}$	$\begin{array}{c} 0.10\\ 0.14\\ 0.16\\ 0.19\\ 0.20\\ 0.24\\ 0.26\\ 0.29\\ 0.31\\ 0.34\\ 0.34\\ 0.35\\ 0.35\\ 0.35\\ 0.35\\ 0.36\\ 0.37\\ 0.37\\ 0.39\end{array}$	0.14 0.18 0.21 0.25 0.28 0.31 0.34 0.36 0.40 0.44 0.45 0.46 0.45 0.46 0.46 0.47 0.48 0.49 0.50	
CB - 5A	25	0.05	0.06	0.07	0.06	
	50	0.10	0.09	0.10	0.10	
	75	0.15	0.13	0.15	0.15	
	100	0.21	0.19	0.20	0.22	
	125	0.41	0.40	0.40	0.45	
	140	0.48	0.48	0.48	0.52	
	150	0.53	0.52	0.53	0.57	
	160	0.58	0.57	0.57	0.62	
CB - 5B	25	0.06	0.05	0.07	0.07	
	50	0.10	0.10	0.12	0.11	
	75	0.15	0.15	0.17	0.16	
	100	0.20	0.23	0.22	0.22	
	125	0.39	0.35	0.39	0.39	
	140	0.50	0.50	0.49	0.50	
	150	0.54	0.55	0.54	0.56	
	160	0.59	0.60	0.59	0.60	
	170	0.66	0.63	0.64	0.64	
	180	0.69	0.67	0.69	0.70	
CB - 6A	25	0.05	0.05	0.05	0.06	
	50	0.10	0.11	0.11	0.10	
	75	0.13	0.14	0.14	0.12	
	100	0.18	0.19	0.18	0.16	
	125	0.23	0.24	0.23	0.22	
	150	0.39	0.43	0.39	0.39	
	160	0.44	0.49	0.45	0.46	
	170	0.51	0.55	0.51	0.52	
	180	0.55	0.58	0.56	0.57	

TABLE A2 (Gont'd)

Spacimon	Applied	Mid-	Span	Deflection (in)	
No.	(psf)	#1	#2	#3	#4
CB - 6B	25	0.07	0.07	0.06	0.06
	50	0.11	0.11	0.11	0.11
	75	0.16	0.16	0.16	0.15
	100	0.20	0.19	0.20	0.19
	125	0.24	0.24	0.25	0.24
	150	0.32	0.31	0.30	0.32
	160	0.46	0.46	0.42	0.47
	170	0.53	0.51	0.49	0.54
	180	0.57	0.54	0.53	0.57
	190	0.62	0.60	0.58	0.63
	200	0.67	0.64	0.62	0.67
CB - 9A	25	0.11	0.04	0.10	0.03
	50	0.15	0.08	0.15	0.11
	75	0.20	0.09	0.19	0.11
	100	0.23	0.10	0.23	0.11
	125	0.25	0.18	0.23	0.15
	150	0.29	0.20	0.25	0.20
	175	0.33	0.24	0.27	0.23
CB - 9B	25 50 75 100 125 150 175 200 210 220 230 240 250 260 270 280	$\begin{array}{c} 0.13\\ 0.16\\ 0.20\\ 0.23\\ 0.31\\ 0.32\\ 0.36\\ 0.40\\ 0.44\\ 0.46\\ 0.48\\ 0.50\\ 0.53\\ 0.55\\ 0.58\\ 0.63\\ \end{array}$	$\begin{array}{c} 0.06\\ 0.11\\ 0.14\\ 0.17\\ 0.20\\ 0.24\\ 0.27\\ 0.34\\ 0.39\\ 0.44\\ 0.50\\ 0.54\\ 0.57\\ 0.61\\ 0.64\\ 0.68 \end{array}$	0.08 0.13 0.17 0.19 0.21 0.23 0.26 0.30 0.32 0.34 0.41 0.45 0.48 0.53 0.55 0.61	$\begin{array}{c} 0.03\\ 0.08\\ 0.10\\ 0.14\\ 0.16\\ 0.20\\ 0.22\\ 0.31\\ 0.34\\ 0.39\\ 0.46\\ 0.48\\ 0.52\\ 0.56\\ 0.59\\ 0.63\\ \end{array}$
CD - IUA	25	0.17	0.11	0.15	0.09
	50	0.22	0.15	0.23	0.10
	75	0.29	0.17	0.26	0.12
	100	0.30	0.22	0.30	0.15
	125	0.33	0.25	0.31	0.20
	140	0.35	0.28	0.33	0.23
	150	0.38	0.30	0.34	0.24
	160	0.39	0.31	0.37	0.27
	170	0.42	0.33	0.38	0.29

TABLE A2 (Cont'd)

Specimen	Applied Uniform Load	Mid	Mid-Span		(in,)
No.	(psf)	#1	#2	#3	#4
CB - 10B	25 50 75 100 125 150 175 200	0.19 0.25 0.25 0.27 0.29 0.37 0.41 0.46	0.11 0.16 0.18 0.19 0.24 0.30 0.32 0.36	0.18 0.22 0.26 0.30 0.35 0.36 0.38 0.41	0.09 0.14 0.21 0.22 0.28 0.29 0.29 0.29 0.30
CB - 11A	25	0.05	0.04	0.07	0.09
	50	0.11	0.09	0.12	0.12
	75	0.16	0.14	0.18	0.18
	100	0.21	0.19	0.23	0.24
	125	0.44	0.40	0.42	0.42
	140	0.49	0.50	0.51	0.50
	150	0.58	0.51	0.55	0.55
	160	0.61	0.63	0.61	0.61
	170	0.67	0.63	0.63	0.66
CB - 11B	25	0.03	0.04	0.06	0.05
	50	0.07	0.08	0.12	0.11
	75	0.13	0.12	0.17	0.17
	100	0.19	0.18	0.23	0.22
	125	0.33	0.34	0.37	0.36
	140	0.44	0.44	0.49	0.48
	150	0.51	0.50	0.55	0.52
	160	0.54	0.55	0.59	0.58
CB - 12A	25	0.06	0.08	0.06	0.07
	50	0.11	0.13	0.10	0.12
	75	0.16	0.16	0.15	0.16
	100	0.19	0.20	0.19	0.20
	125	0.24	0.25	0.23	0.25
	140	0.28	0.28	0.27	0.29
	150	0.31	0.30	0.29	0.31
	160	0.40	0.46	0.39	0.46
	170	0.50	0.54	0.48	0.56
	180	0.58	0.60	0.56	0.62
CB - 12B	25	0.07	0.08	0.08	0.09
	50	0.12	0.13	0.14	0.16
	75	0.17	0.18	0.19	0.20
	100	0.23	0.24	0.25	0.25
	125	0.27	0.28	0.30	0.30
	140	0.31	0.32	0.33	0.35
	150	0.37	0.39	0.38	0.40

TABLE A2(Cont'd)

Specimen	Applied	Mic	l-Span	Deflection (in)	
No.	(psf)	#1	#2	#3	#4
	160	0.44	0.48	0.45	0.49
	170	0.52	0.55	0.52	0.57
	180	0.59	0.61	0.58	0.64
CB - 13A	30	0.08	0.07	0.06	0.10
	60	0.12	0.09	0.12	0.11
	90	0.14	0.13	0.14	0.14
	120	0.15	0.16	0.18	0.17
	150	0.21	0.23	0.23	0.21
	180	0.26	0.28	0.28	0.26
	210	0.38	0.40	0.41	0.37
CB – 13B	30	0.08	0.07	0.10	0.06
	60	0.12	0.11	0.10	0.12
	90	0.14	0.13	0.15	0.14
	120	0.17	0.15	0.18	0.17
	150	0.19	0.19	0.20	0.20
	180	0.22	0.25	0.24	0.23
	210	0.28	0.30	0.30	0.29
CB - 14A	30	0.10	0.13	0.07	0.07
	60	0.15	0.18	0.11	0.12
	90	0.17	0.21	0.16	0.16
	120	0.20	0.24	0.17	0.18
	150	0.23	0.27	0.20	0.20
	180	0.26	0.30	0.25	0.23
	210	0.29	0.34	0.32	0.29
	230	0.32	0.37	0.32	0.32
	250	0.35	0.39	0.35	0.36
CB - 14B	30	0.10	0.08	0.08	0.10
	60	0.14	0.11	0.10	0.11
	90	0.17	0.15	0.13	0.15
	120	0.18	0.18	0.18	0.16
	150	0.22	0.20	0.20	0.20
	180	0.24	0.24	0.23	0.22
	210	0.28	0.29	0.29	0.27
	230	0.31	0.31	0.31	0.30
	240	0.32	0.32	0.32	0.31
	250	0.33	0.33	0.33	0.33
CB - 15A	30	0.01	0.03	0.05	0.07
	60	0.05	0.06	0.10	0.09
	90	0.07	0.10	0.13	0.10
	120	0.09	0.13	0.17	0.12
	150	0.11	0.21	0.26	0.18

TABLE A2 (Cont'd)

Applied		Mid-Span		Deflection	(in.)	
No.	(psf)	#1	#2	#3	#4	
CB - 15B	30	0.04	0.04	0.06	0.05	
	60	0.07	0.07	0.09	0.09	
	90	0.10	0.10	0.12	0.11	
	120	0.11	0.12	0.14	0.14	
	150	0.12	0.15	0.15	0.17	
	180	0.29	0.35	0.32	0.38	
CB - 16A	30	0.07	0.07	0.07	0.06	
	60	0.11	0.12	0.09	0.08	
	90	0.13	0.15	0.11	0.11	
	120	0.16	0.19	0.14	0.13	
	150	0.17	0.22	0.17	0.17	
	180	0.21	0.25	0.18	0.20	
	210	0.27	0.42	0.28	0.36	
CB – 16B	30	0.05	0.03	0.09	0.06	
	60	0.09	0.08	0.12	0.12	
	90	0.12	0.10	0.15	0.16	
	120	0.13	0.13	0.18	0.19	
	150	0.14	0.14	0.20	0.22	
	180	0.15	0.17	0.22	0.24	
	210	0.20	0.21	0.25	0.28	
CB - 19A	20	0.09	0.09	0.09	0.09	
	40	0.14	0.12	0.13	0.13	
	60	0.17	0.17	0.16	0.17	
	80	0.19	0.19	0.19	0.20	
	100	0.22	0.20	0.21	0.22	
	120	0.25	0.23	0.25	0.26	
	140	0.27	0.27	0.29	0.29	
	160	0.29	0.29	0.31	0.31	
	180	0.34	0.31	0.33	0.34	
	200	0.37	0.36	0.39	0.39	
	220	0.42	0.39	0.43	0.42	
CB - 19B	20	0.11	0.10	0.10	0.11	
	40	0.15	0.14	0.14	0.15	
	60	0.18	0.17	0.19	0.20	
	80	0.21	0.20	0.22	0.22	
	100	0.24	0.22	0.25	0.26	
	120	0.26	0.25	0.28	0.29	
	140	0.28	0.27	0.31	0.31	
	160	0.30	0.30	0.34	0.34	
	180	0.34	0.31	0.39	0.39	
	200	0.37	0.34	0.42	0.42	
	220	0.42	0.40	0.47	0.46	

TABLE A2 (Cont'd)

Specimen	Applied Uniform Load	1	Mid-Span	Deflect	Deflection (in)	
No.	(psf)	#1	#2	#3	#4	
CB - 20A	20 40 60 80 100 120 140 160 180 200	0.07 0.12 0.16 0.19 0.22 0.26 0.28 0.31 0.36 0.38	0.08 0.12 0.15 0.19 0.21 0.25 0.28 0.31 0.34 0.38	0.08 0.10 0.13 0.16 0.18 0.21 0.24 0.27 0.30 0.31	0.09 0.10 0.13 0.17 0.19 0.22 0.25 0.25 0.27 0.30 0.32	
CB - 20B	20 40 60 80 100 120 140 160 180 200 220 230 240 250	0.04 0.08 0.11 0.15 0.18 0.22 0.24 0.27 0.29 0.32 0.32 0.34 0.35 0.37 0.40	0.06 0.10 0.14 0.16 0.21 0.23 0.25 0.27 0.29 0.34 0.36 0.37 0.38 0.41	0.06 0.09 0.12 0.15 0.18 0.19 0.23 0.26 0.28 0.31 0.35 0.37 0.38 0.40	0.06 0.09 0.12 0.15 0.18 0.22 0.26 0.29 0.30 0.36 0.39 0.40 0.41 0.42	

Mid-Span Deflection of Steel Deck Specimens Two-Span Continuous Beam Tests

Note: See Fig. 36a for the location of deflection measurements.

TABLE	A3

Specimen	Applied			Mid-Span	Deflec	ction (in)
No.	(psf)	#1	#2	#3	#4	#5	#6
CB - 3A	20 40 60 80 100 120 140 160 180 200 220 240 260	0.11 0.18 0.24 0.29 0.35 0.41 0.46 0.51 0.54 0.59 0.65 0.68 1.03	0.08 0.15 0.21 0.26 0.31 0.35 0.41 0.46 0.50 0.56 0.62 0.70 1.09	0.05 0.08 0.10 0.11 0.14 0.16 0.18 0.20 0.22 0.22 0.24 0.25 0.28 0.77	0.04 0.06 0.08 0.10 0.12 0.14 0.15 0.16 0.17 0.19 0.19 0.21 0.65	0.08 0.15 0.21 0.27 0.33 0.37 0.43 0.48 0.54 0.58 0.65 0.71 1.02	0.07 0.14 0.20 0.26 0.31 0.36 0.41 0.45 0.48 0.54 0.59 0.66 0.97
CB - 3B	20 40 60 80 100 120 140 160 180 200 220 240 260	0.10 0.19 0.26 0.30 0.35 0.40 0.45 0.49 0.54 0.57 0.63 0.67 0.74	0.09 0.16 0.23 0.28 0.31 0.37 0.42 0.46 0.50 0.56 0.60 0.67 0.77	0.10 0.15 0.17 0.19 0.20 0.22 0.25 0.27 0.29 0.30 0.32 0.37 0.41	0.06 0.10 0.11 0.12 0.13 0.14 0.16 0.18 0.18 0.20 0.22 0.23 0.25	0.12 0.18 0.29 0.36 0.40 0.46 0.49 0.55 0.58 0.64 0.69 0.75	0.10 0.16 0.22 0.27 0.32 0.35 0.40 0.45 0.50 0.56 0.62 0.67 0.77
CB - 4A	20 40 60 80 100 120 140 160 180 200 220 240 260 280 300	0.12 0.16 0.24 0.29 0.35 0.40 0.45 0.51 0.54 0.58 0.62 0.67 0.73 0.78 0.85	0.09 0.17 0.24 0.29 0.35 0.39 0.41 0.47 0.51 0.56 0.59 0.66 0.68 0.71 0.78	$\begin{array}{c} 0.09\\ 0.12\\ 0.15\\ 0.16\\ 0.17\\ 0.20\\ 0.21\\ 0.23\\ 0.25\\ 0.27\\ 0.28\\ 0.31\\ 0.33\\ 0.36\\ 0.38\end{array}$	0.05 0.09 0.11 0.12 0.13 0.14 0.15 0.17 0.19 0.20 0.22 0.24 0.25 0.29 0.30	0.10 0.18 0.29 0.35 0.39 0.44 0.49 0.55 0.58 0.63 0.63 0.68 0.73 0.79 0.84	0.09 0.16 0.22 0.26 0.31 0.36 0.40 0.40 0.40 0.51 0.56 0.60 0.64 0.71 0.76 0.82
CB - 4B	20 40 60	0.10 0.17 0.23	0.10 0.18 0.25	0.07 0.10 0.12	0.10 0.14 0.16	0.10 0.15 0.20	0.11 0.17 0.23

TABLE A3 (Cont'd)

Creatman	Applied	Mid-Span Deflection (in)						
No	(psf)	#1	#2	#3	#4	#5	#6	
CB - 4B	80	0.28	0.30	0.15	0.18	0.25	0.27	
(cont'd)	100	0.34	0.37	0.16	0.20	0.29	0.32	
- •	120	0.38	0.40	0.17	0.22	0.32	0.36	
	140	0.43	0.45	0.20	0.25	0.36	0.41	
	160	0.47	0.50	0.22	0.27	0.41	0.44	
	180	0.51	0.54	0.24	0.28	0.44	0.47	
	200	0.54	0.58	0.25	0.31	0.48	0.51	
	220	0.58	0.62	0.27	0.34	0.51	0.54	
	240	0.62	0.67	0.30	0.37	0.56	0.58	
	260	0.68	0.72	0.32	0.39	0.59	0.63	

Mid-Span Deflection of Steel Deck Specimens Three-Span Continuous Beam Tests

Note: See Fig. 36b for the location of deflection measurements.

TABLE A4

Specimen	Applied Load	Strain	Gage Reading	(micro	in./in.)*
No.	(kips)	#1	#2	#3	#4
BC - 2C	0.150 0.300 0.450 0.600 0.720 0.840 0.960 1.080 1.170 Failure Load	-164 -328 -500 -687 -850 -1015 -1195 -1461 -2590	170 343 510 681 821 970 1124 1308 1555	139 285 441 602 737 882 1035 1221 1526	-132 -277 -437 -591 -731 -873 -1027 -1191 -1376
BC - 2D	0.150 0.300 0.450 0.600 0.720 0.840 0.960 1.080 1.200 1.202 Failure Load	-152 -290 -437 -593 -725 -870 -1030 -1220 -1413 -1383	151 300 458 612 742 879 1022 1180 1393 1421	133 274 420 569 696 832 971 1130 1360 1389	-130 -269 -415 -564 -690 -824 -962 -1123 -1375 -1375
BC - 12C	0.200 0.400 0.600 0.800 0.960 1.120 1.280 1.400 Failure Load	-157 -320 -492 -682 -859 -1050 -1242 -1428	158 317 478 642 771 910 1074 1254	151 300 457 625 762 911 1079 1335	-145 -283 -429 -586 -711 -840 -965 -891
BC - 12D	0.200 0.400 0.600 0.800 0.960 1.120 1.280 1.405 Failure Load	-74 -200 -337 -482 -610 -742 -889 -1225	94 228 377 532 666 801 955 1272	209 374 554 738 890 1038 1201 1381	-197 -341 -496 -650 -773 -835 -951 -744

Strain Gage Rendings for Steel Deck Specimens Single Span Beams Used for Combined Bending-Web Crippling Tests

* Negative sign indicates compressive strain. See page 112 for the location of strain gages.

TABLE A4 (Cont'd)

Specimen	Applied Load	Strain	Gage Reading	(micro i	n./in.)*
No.	(kips)	#1	#2	#3	#4
BC - 16C	0.115 0.230 0.345 0.460 0.550 0.640 0.730 0.820 0.867 Failure Load	127 286 474 702 847 1030 1225 1449 1681	-68 -193 -274 -416 -504 -582 -687 -899 -1130	-227 -350 -481 -622 -720 -836 -960 -1075 -1070	260 419 598 808 940 1091 1253 1438 1431
BC - 16D	0.115 0.230 0.345 0.460 0.550 0.640 0.730 0.820 0.872 Failure Load	176 354 530 733 891 1048 1216 1389 1406	-127 -247 -366 -505 -613 -734 -862 -1007 -1133	-122 -250 -382 -537 -656 -783 -913 -1062 -1303	177 357 536 741 887 1034 1188 1418 1662
BC - 19C	0.150 0.300 0.450 0.600 0.720 0.840 0.960 1.080 1.200 1.200 Failure Load	-124 -264 -421 -572 -715 -874 -1026 -1195 -1431 -1532	159 331 515 688 842 1025 1259 1606 2505 2729	154 324 506 677 826 990 1202 1500 2420 2583	-107 -278 -469 -623 -786 -961 -1149 -1414 -1960 -2193
BC - 19D	0.150 0.300 0.450 0.600 0.720 0.840 0.960 1.080 1.180 Failure Load	-116 -261 -406 -562 -688 -822 -981 -1191 -1581	151 326 505 686 825 1006 1257 1654 2613	167 348 540 734 889 1095 1351 1721 2947	-48 -162 -305 -469 -645 -817 -1019 -1281 -1755

Strain Gage Rendings for Steel Deck Specimens Single Span Beams Used for Combined Bending-Web Crippling Tests

* Negative sign indicates compressive strain. See page 112 for the location of strain gages.

TABLE A 5

Specimen	Uniform Load	Stra	in Gage Readin	Gage Reading (micro in./in.)*		
NO.	(µsi)	#1	#2	#3	#4	
CB - 1A	25 50 75 100 125 150 175 200 225 235 245 255 265 275 285	57 196 348 487 634 779 938 1136 1548 1647 1797 1938 2107 2280 Failure Lo	56 -107 -245 -396 -569 -744 -940 -1208 -3794 -3279 -3158 -3110 -3043 -3001	98 -113 -303 -477 -676 -892 -1093 -1306 -869 -457 -347 -338 -300 -277	-138 15 189 329 504 681 855 1068 1532 1718 1833 1958 2124 2312	
CB - 1B	25 50 75 100 125 150 175 200 225 235 245 255 265 275 285	-110 +41 +192 +347 +504 +663 +829 +1018 +1304 +1469 +1633 +1738 +1848 +1972 Failure Loa	+80 -99 -269 -500 -735 -949 -1187 -1508 -1669 -1241 -932 -864 -820 -794	+176 -44 -229 -437 -669 -923 -1232 -1657 -3116 -3541 -2645 -2443 -2307 -2219	+55 +186 +325 +466 +607 +753 +911 +1099 +1431 +1686 +1810 +1915 +2014 +2127	
CB - 2A	25 50 75 100 125 150 175 200	-33 -139 -63 -57 81 207 302 433	96 -56 -200 -350 -500 -647 -815 -980	20 -112 -250 -400 -555 -712 -883 -1051	7 133 269 394 531 671 810 958	

Strain Gage Readings for Steel Deck Specimens Two-Span Continuous Beam Tests

 * Negative sign indicates compressive strain See page 122 for the location of strain gages.

TABLE A5 (Cont'd)

Specimen	Uniform Load	Strain	Strain Gage Reading (micro in./in.)*			
No.	(psf)	#1	#2	#3	#4	
CB - 2A (cont'd)	225 250 260 270 280 290 300 300	567 719 826 882 969 1080 1152 Failure Load	-1198 -1490 -1824 -1990 -2328 -2870 -6732	-1270 -1497 -1607 -1679 -1786 -2207 -1384	1130 1307 1415 1479 1574 1695 1440	
CB - 2B	+25 +50 +75 +100 +125 +150 +175 +200 +225 +250 +260 +270 +280 +290 +300 +310 +312	-87 +58 +194 +323 +459 +602 +742 +890 +1044 +1212 +1285 +1368 +1455 +1368 +1455 +1576 +1688 +1562 Failure Load	+79 -103 -238 -369 -504 -649 -783 -925 -1079 -1223 -1276 -1347 -1408 -1480 -1761 -950	+73 -61 -179 -312 -449 -595 -734 -887 -1052 -1205 -1275 -1275 -1374 -1499 -1701 -2197 -4574	+73 +203 +328 +449 +571 +696 +820 +950 +1076 +1215 +1278 +1278 +1352 +1447 +1531 +1659 +1749	
CB - 5A	25 50 75 100 125 140 150 160 170 180 190 200 210	172 307 431 514 877 1081 1210 1382 1530 1682 1827 1989 2187	-285 -597 -1060 -1990 -4793 -4525 -4428 -4248 -4248 -4132 -3974 -3846 -3716 -3569	-194 -413 -733 -1175 -186 -51 5 54 78 101 111 118 122	155 281 400 497 692 929 1057 1220 1374 1522 1657 1809 1952	

Strain Gage Readings for Steel Deck Specimens Two-Span Continuous Beam Tests

* Negative sign indicates compressive strain. See page 122 for the location of strain gages.

.

TABLE A5 (Cont'd)

Strain Gage Readings for Steel Deck Specimens Two-Span Continuous Beam Tests

Specimen	Uniform Load	Strain Gage Reading (micro in./in.)*				
No.	(psf)	#1	#2	#3	#4	
CB - 5A (cont'd)	220 230 230	2419 2736 Failure Load	-3477 -3380	121 125	2103 2281	
CB - 5B	25 50 75 100 125 140 150 160 170 180 190 200 210 220 221	159 278 386 492 723 980 1088 1237 1392 1513 1671 1797 1919 Failure Load	-230 -470 -749 -1189 -449 -359 -328 -280 -231 -209 -188 -163 -134 286	-57 -361 -699 -1349 -4345 -4240 -4164 -4025 -3816 -3696 -3516 -3516 -3393 -3259 -4564	182 335 466 565 779 923 1021 1169 1303 1415 1554 1671 1780	
CB ~ 6A	25 50 75 100 125 150 160 170 180 190 200 210 220 230 239	145 287 420 550 665 770 587 589 623 698 809 889 964 1038 Failure Load	-259 -523 -783 -1087 -1587 -2452 -3549 -3502 -3606 -3612 -3623 -3625 -3609 -3619	-147 -280 -444 -615 -896 -1474 -794 -763 -769 -804 -764 -772 -654 -626	98 195 281 369 440 469 274 307 349 403 459 515 577 641	
CB - 6B	25 50 75 100 125	159 294 427 560 678	-375 -616 -863 -1051 -1273	-95 -271 -433 -616 -837	135 263 386 509 616	

Negative sign indicates compressive strain.
See page 122 for the location of strain gages.

TABLE A5. (Cont'd)

Specimen	Uniform Load	Strain	Gage Reading	(micro in./i	n.)*
	(psr)	#1	#2	#3	#4
CB - 6B (cont'd)	150 160 170 180 190 200 210 220 230 240 247	775 611 602 632 697 757 830 903 992 1077 Failure Load	-1826 -2827 -2904 -2949 -2982 -2984 -2978 -2978 -2988 -2987 -2967	-1336 -783 -699 -682 -583 -512 -441 -401 -347 -295	711 568 597 627 690 753 823 898 976 1041
CB - 9A	25 50 75 100 125 150 175 200 210 220 230 240 250 260 250 260 270 280 290 300 302	-70 22 154 278 412 528 651 794 883 979 1059 1112 1169 1209 1238 1281 1318 1366 Failure Load	+56 -75 -272 -444 -581 -695 -784 -947 -1020 -866 -735 -728 -696 -683 -683 -687 -731 -782	+33 -27 -225 -517 -825 -1041 -1432 -1787 	-3 -3 -
CB - 9B	25 50 75 100 125 150 175 200 210 220	-60 20 149 270 390 508 622 757 834 930	20 -144 -312 -392 -508 -637 -787 -1035 -1061 -1024	68 -90 -244 -385 -519 -679 -933 -1899 -1752	157 307 453 598 744 881 1052 1317 1446 1525

Strain Gage Readings for Steel Deck Specimens Two-Span Continuous Beam Tests

Negative sign indicates compressive strain.
See page 122 for the location of strain gages.

TADLE AS ICONE OF	TAB	LE	A5	(Cont'd)	
-------------------	-----	----	----	----------	--

Strain Gage Readings for Steel Deck Specimens Two-Span Continuous Beam Tests

Specimen No.	Uniform Load	Strain Gage Reading (micro in,/in.)*				
No.	(psf)	<i>#</i> 1	#2	#3	<i>#</i> 4	
CB - 9B (cont'd)	230 240 250 260 270 280 290 300 300	1001 1074 1124 1162 1209 1260 1326 8111 Failure Load	-1001 -945 -940 -906 -809 -788 -810 -353		1592 1716 1862 2016 2193 2359 2603 13794	
CB - 10A	25 50 75 100 125 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 250 260 270 280 290 300 310 320 330 331	-83 7 123 236 346 416 456 501 541 585 626 670 711 749 800 840 887 933 982 1034 1085 1144 1133 929 834 Failure Load	77 4 -83 -207 -342 -415 -468 -530 -578 -642 -699 -761 -820 -882 -968 -1029 -1119 -1227 -1356 -1477 -1559 -1471 -1559 -1774 -2002		126 262 393 517 640 720 763 817 872 931 978 1035 1087 1136 1211 1266 1336 1409 1487 1584 1696 1874 1979 2009 1912	
CB - 10B	25 50 75 100	-20 115 238 360	-9 -143 -308 -444	18 -124 -2 9 6 -454	108 243 374 509	

Negative sign indicates compressive strain
See page 122 for the location of strain gages.

TABLE A5 (Cont'd)

Strain Gage Readings for Steel Deck Specimens Two-Span Continuous Beam Tests

Specimen	Uniform Load	!	Strain Gage Reading	(micro	in./in.)*
No.	(psf)	#1	#2	#3	#4
CB - 10B (cont'd)	125 150 175 200 210 220 230 240 250 260 270 280 290 300 310 320	482 594 710 820 871 917 967 1015 1065 1120 1174 1203 1138 1042 916 Failure	-617 -785 -957 -1115 -1177 -1244 -1316 -1379 -1441 -1510 -1626 -1844 -2001 -2054 -2019 Load	-588 -725 -900 -1067 -1172 -1299 -1503 -1708 -1965 -2303 -2508 -2861 -3017 -3315 	643 775 913 1037 1109 1172 1247 1323 1407 1501 1600 1681 1731 1757 1711
CB - 11A	25 50 75 100 125 140 150 160 170 180 190	178 339 493 660 972 1003 1042 1108 1168 1250 1346 Failure	-170 -657 -1291 -2290 -5117 -4837 -4710 -4612 -4488 -4440 -4363 Load	-192 -313 -415 -651 -566 -442 -377 -308 -243 -243 -207 -145	141 297 437 596 1086 1333 1495 1650 1770 1893 1983
CB - 11B	25 50 75 100 125 140 150 160 170 180 190 198	167 332 497 669 928 897 950 1021 1107 1192 1277 Failure	-279 -158 -273 -990 -3148 -3244 -3123 -2979 -2816 -2694 -2583 Load	-207 -432 -569 -765 -24 252 356 446 502 535 557	169 326 492 664 948 1160 1294 1408 1536 1653 1751

* Negative sign indicates compressive strain. See page 122 for the location of strain gages.

Specimen	Uniform Load	Strai	in Gage Readin	ng (micro in.	/in.)*
No.	(psf)	#1	#2	#3	#4
CB - 12A	25	144	-194	-139	141
	50	285	-387	-251	283
	75	421	-679	-392	407
	100	555	-1011	-564	537
	125	688	-1502	-786	675
	140	757	-1946	-992	/68
	150	810	-2402	-1546	848
	160	/94	- 3909	-4/24	/93
	170	598	-4088	-1040	809
	180	403	-41/9	-1297	1012
	190	399	-4229	-103	1127
	200	204 204	-4235	-8080	1259
	210	Esilura la:	-4205 ad	-0000	1233
	210	Failure Loo	au		
CB - 12B	25	204	-309	-106	147
	50	361	-552	-275	306
	75	517	-798	-442	465
	100	669	-1103	-600	609
	125	826	-1564	-783	748
	140	937	-2051	-929	827
	150	1042	-2525	-1218	893
	160	1109	-3893	-833	002
	170	1071	-4138	-000	950
	180	1014	-4214	-523	1052
	190	990	-4200	-380	1115
	200		-4301	-300	1115
	207	Failure Load	u .		
CB – 13A	30	+72	-23	132	-270
	60	-60	32	265	-490
	90	-217	184	393	-697
	120	-382	289	521	-945
	150	-790	395	6/2 750	-1515
	180	-1156	506	/58	-2329
	210	-3048	3/8	381	-2009
	230	-1267	-1/8	72	-150/
	240	-888	-252	12	-1094
	242	Failure Load			

TABLE A5 (Cont'd) Strain Gage Readings for Steel Deck Specimens Two-Span Continuous Beam Tests

* Negative sign indicates compressive strain. See page 122 for the location of strain gages.

TABLE A5 (Cont'd)

Strain	Gage Re	adings	for :	Steel	Deck	Specimens
	Two-Spa	n Cont	inuou	s Beam	Test	ts

Specimen	Uniform Load	Strain Gage Reading (micro in./in.)* _						
NO.	(pst)	#1	#2	#3	#4			
CB – 14A	30 60 90 120 150 180 210 230 250 251	-111 -187 -278 -385 -495 -606 -783 -827 -977 Failure Load	109 223 329 436 552 664 840 919 1029	0 102 196 278 372 471 587 663 758	-34 -127 -219 -305 -403 -510 -1042 -1235 -1626			
CB – 15A	30 60 90 120 150 180 235	-191 -365 -554 -728 -1031 +434 Failure Load	166 289 422 544 674 282	105 181 263 334 422	-152 -291 -454 -586 -1069			
CB - 15B	30 60 90 120 150 180 210 220 230 240 241	-136 -249 -383 -524 -677 -295 -5 -24 -51 -59 Failure Load	89 180 268 349 430 272 -83 -129 -210 -239	152 271 387 500 591 491 197 175 134 127	-211 -364 -505 -621 -778 965 1602 1663 1656 1626			
CB - 16A	30 60 90 120 150 180	-45 -153 -247 -342 -442 -558	56 157 250 344 424 514	135 248 358 471 576 679	-128 -250 -343 -435 -523 -632			

.

Negative sign indicates compressive strain.
See page 122 for the location of strain gages.

TABLE A5 (Cont'd)

Strain Gage Readings for Steel Deck Specimens Two-Span Continuous Beam Tests

Specimen	Uniform Load	Strain Gage REading (micro in./in.)*					
NO •	(pst) -	#1	#2	#3	#4		
CB - 16A (cont'd)	210 230 240 241	-1179 97 227 Failure	585 -291 -348 Load	361 -52 -85	-407 461 506		
CB - 16B	30 60 90 120 150 180 210 230 240 250 261	-5 -132 -249 -354 -444 -558 -681 -640 -428 -114 Failure	1 82 169 254 337 417 489 -68 -162 -320 Load	153 254 364 473 582 701 808 150 103 5	-142 -257 -373 -496 -626 -781 -948 226 312 430		
CB - 19B	20 40 60 90 100 120 140 160 180 200 220 230 240 251	19 109 177 249 318 395 475 572 691 806 973 1273 1526 Failure	-19 -149 -267 -402 -504 -605 -703 -863 -1081 -1288 -1447 -1443 -1381 Load	-2 -147 -246 -579 -762 -888 -965 -1042 -1137 -1309 -1505 -1296 -1199	31 104 183 275 357 435 512 598 691 784 903 1151 1407		
CB - 20B	+20 +40 +60 +80 +100 +120 +140 +160	+61 +132 +196 +258 +317 +385 +455 +525	-52 -126 -222 -332 -443 -547 -657 -759	+66 +142 +233 +315 +390 +468 +545 +618	 		

Negative sign indicates compressive strain.
See page 122 for the location of strain gages.

	Two-Sp	an Continu	ious Beam Tests	pecimens				
Specimen	Uniform Load	Strain Gage Reading (micro in./in.)*						
NO .	(pst)	#1	#2	#3	#4			
CB - 20B	+180	+599	-877	+706				
(cont'd)	+200 +220	+670 +743	-988 -1150	+782 +870				
	+230	+780	-1230	+917				
	+250	+848	-1446	+1024				
	+260	+870 +891	-1555 -1676	+1068 +1104				
	+280	+903	-1754	+1106				

Failure Load

TABLE A5 (Cont'd)

Posdings for Stool Dock Specin C+ma +m

* Negative sign indicates compressive strain. See page 122 for the location of strain gages.

+290

TABLE A 6

Specimen	Uniform Load	Strain Gage Reading (micro in./in.)*							
No.	(psf)	#1	#2	#3	#4	#5	#6	#7	#8
CB - 3A	20 40 60 80 100 120 140 160 180 200 220 240 260 270 280 290 300	127 233 343 442 551 662 770 879 993 1107 1238 1385 1648 2858 2942 3115 Failure	-160 -276 -397 -515 -603 -715 -819 -934 -1098 -1260 -1432 -1616 -1877 -1298 -1286 -1163 Load	112 59 -35 -132 -241 -354 -459 -569 -658 -772 -910 -1095 -1490 -2583 -4661 -4770	87 171 271 369 474 574 658 748 816 890 960 1067 1222 1724 1815 1870	51 155 282 386 498 604 694 790 900 987 1075 1145 1286 2750 2855 3044	-72 -218 -376 -456 -541 -635 -715 -818 -947 -1073 -1213 -1353 -1572 -1981 -1981 -1821	-67 -219 -376 -510 -656 -812 -946 -1096 -1266 -1444 -1681 -2020 -2628 -6888 -7019 -7149	137 230 329 422 528 629 711 797 903 998 1108 1227 1553 5546 5801 6945
CB - 3B	20 40 60 80 100 120 140 160 180 200 220 240 260 270 280 290 300 310	5 90 190 289 386 482 582 681 783 880 985 1097 1286 1369 1534 3004 3234 Failure	13 -79 -204 -326 -445 -570 -692 -774 -848 -930 -1038 -1208 -1536 -1536 -1654 -1943 -1426 -1366 Load	-214 -252 -320 -406 -502 -621 -775 -934 -1116 -1285 -1507 -1828 -2738 -3181 -4390 -10894 -11399		19 71 179 278 371 462 565 654 739 823 911 1005 1148 1210 1332 2541 2756	-20 -88 -231 -377 -493 -617 -747 -866 -992 -1115 -1256 -1415 -1677 -1785 -2010 -2005 -1963	- 334 - 441 - 487 - 542 - 699 - 811 - 933 - 1056 - 1196 - 1335 - 1513 - 1764 - 2439 - 2763 - 3887 - 15640 - 16095	190 323 445 539 627 716 818 900 978 1064 1161 1263 1441 1525 1761 4155 4580
CB - 4A	20 40 60	17 61 150	-2 -62 -189	-206 -299 -418	162 282 3 92	18 103 18 9	-18 -122 -229	-154 -244 -354	125 186 262

•

Strain Gage Readings for Steel Deck Specimens Three-Span Continuous Beam Tests

* Negative sign indicates compressive strain. See page 122 for the location of strain gages.

TABLE A6 (Cont'd)

Specimen	Uniform Load (nsf)	Strain Gage Reading (micro in./in.)*								
	(µ31)	#1	#2	#3	#4	#5	#6	#7	#8	
CB - 4A (cont'd)	80 100 120 140 160 180 200 220 240 260 280 300 320 330 340 350 350	242 338 435 524 620 716 806 901 987 1075 1173 1272 1410 1558 1129 1334 Failure	-304 -443 -592 -713 -835 -947 -1065 -1185 -1322 -1476 -1656 -1816 -2051 -2234 -1961 -1879 Load	-524 -662 -800 -906 -1010 -1107 -1211 -1321 -1433 -1561 -1716 -1886 -2230 -3096 -3997 -4543	481 584 690 772 883 987 1084 1190 1285 1393 1521 1638 1809 1916 1787 1713	259 340 424 490 573 659 734 823 899 985 1088 1193 1342 1548 1509 1456	- 314 - 414 - 516 - 604 - 709 - 814 - 918 - 1038 - 1156 - 1295 - 1456 - 1625 - 1456 - 1625 - 1714 - 1828 - 1694 - 1596	- 442 - 551 - 661 - 753 - 865 - 981 - 1083 - 1221 - 1347 - 1503 - 1724 - 2001 - 2656 - 4526 - 5348 - 5469	324 400 472 527 600 676 744 825 888 956 1039 1126 1238 1365 1304 1233	
CB - 4B	20 40 60 80 100 120 140 160* 180 200 220 240 260 270 280 290 300 310 320 330 340 349	4 96 179 256 336 412 490 567 648 723 800 869 952 1001 1051 1115 1195 1236 1166 1094 1047 Failure	1 -102 -202 -303 -410 -513 -622 -733 -863 -998 -1130 -1278 -1494 -1616 -1726 -1912 -2110 -2460 -2367 -2293 -2242 Load	-108 -204 -292 -385 -480 -571 -664 -761 -879 -995 -1121 -1279 -1797 -2223 -2532 -2832 -3216 -4349 -4499 -4466 -4427	144 216 283 350 421 485 549 607 670 727 801 865 954 1006 1058 1139 1225 1255 1142 1075 1037	5 21 96 176 262 338 413 484 558 625 702 764 825 861 897 950 1004 1136 1233 1060 975	1 -29 -139 -264 -402 -519 -630 -741 -874 -1005 -1149 -1297 -1481 -1579 -1666 -1812 -1992 -2397 -2514 -2290 -2090	154 -246 -400 -520 -641 -757 -874 -986 -1118 -1242 -1383 -1548 -1820 -2005 -2163 -2429 -2772 -3695 -5571 -5698 -5756	146 268 366 455 548 636 715 789 870 942 1026 1100 1176 1222 1268 1344 1415 1594 1662 1487 1416	

Strain Gage Readings for Steel Deck Specimens Three-Span Continuous Beam Tests

Negative sign indicates compression strian.
See page 122 for the location of strain gages.

Fig. Al Mid-Span Deflection of Steel Deck Specimens Nos. BC-1A and BC-1B

Fig. A2 Mid-Span Deflection of Steel Deck Specimens Nos. BC-2A, BC-2B, BC-2C, and BC-2D

Eig. A3 Mid-Span Deflection of Steel Deck Specimens Nos. BC-9A and BC-9B

Fig. A5 Mid-Span Deflection of Steel Deck Specimens Nos. BC-13A and BC-13B

Fig. A6 Mid-Span Deflection of Steel Deck Specimens Nos. BC-16A, BC-16B, BC-16C, and BC-16D

Fig. A7 Mid-Span Deflection of Steel Deck Specimens Nos. BC-17A and BC-17B

Mid-Span Deflections (in.)

.

Fig. A9 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-1A

Fig. AlO Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-1B

Fig. All Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-2A

Fig. A12 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-2B

Fig. A13 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-5A

Fig. Al4 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-5B

Fig. A15 Mid-Span Delfection of Two-Span Continuous Beam Specimen No. CB-6A

Fig. Al6 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-6B

Fig. Al7 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-9A

Fig. A18 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-9B

Fig. A19 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-10A

Load (psf)

Fig. A20 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-10B

Fig. A21 Mid-Span Deflection of Two-Span Continuous Béam Specimen No. CB-11A

Fig. A25 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-13A

Fig. A27 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-14A

Fig. A28 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-14B

Fig. A29 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-15A

Fig. A30 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-15B

Fig. A31 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-16A

Fig. A32 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-16B

Fig. A33 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-19A

Fig. A34 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-19B

Deflection (in.) Fig. A35 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-20A

Fig. A36 Mid-Span Deflection of Two-Span Continuous Beam Specimen No. CB-20B

Fig. A37 Mid-Span Deflection of Three-Span Continuous Beam Specimen No. CB-3A

Fig. A39 Mid-Span Deflection of Three-Span Continuous Beam Specimen No. CB-4A

Fig. A40 Mid-Span Deflection of Three-Span Continuous Beam Specimen No. CB-4B

Fig. A44 Load vs Stress for Specimen No. BC - 12D

Fig. A46 Load vs Stress for Specimen No. BC - 16D

Fig. A47 Load vs Stress for Specimen No. BC - 19C

Load (psf)

Load (psf)

Load (psf)

235

Fig. A77 Load vs Stress for Specimen No. CB - 16A

