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ABSTRACT 

Stress wave propagation and interaction in plain concrete leading 

up to spall fracture was investigated experimentally with a computer 

numerical analysis of the bar-geometry axial-impact loading. The cri­

tical normal fracture strain energy U and mechanical energy W criteria 

are proposed for the spatial and time dependence explanation of spal­

lation in concrete. The energy criteria are special cases of a more 

generalized cumulative damage model of the form: 

ZF 

~ f[o(Z)]dZ = 1 
0 

where Z is the space or time coordinate, ZF is the value of Z at frac­

ture initiation, and f[o(Z)] is a second order stress damage function 

in terms of the physical material properties (E and c), cross-sectional 

area A, and the constant energy transferred or stored (W or U). 

i i 

Finite-difference analyses of the wave propagation and interactions 

in the split Hopkinson bar showed that early failure in brittle materi­

als limits the application of the conventional method of analysis because 

equilibrium in the specimen is not reached before failure. The dynamic 

stress-strain-strain rate curves indicate that the failure strain is 

more a function of strain rate than is the ultimate stress, the latter 

case being observed by other investigators. Dynamic unloading stress­

strain curves in the post-failure region are shown to be generally 

similar to those obtained by servo-controlled testing machines at lower 

strain rates. 
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I. INTRODUCTION AND LITERATURE REVIEW 

A. INTRODUCTION 

Dynamic stresses of high magnitude arise in a number of mining, 

construction and military activities. The propagation of such stress 

waves through rock masses and their interactions with surface and 

underground structures are complex phenomena for which present pre­

dictive capabilities are generally only first approximations. Such 

situations also arise in connection with explosive blasting, rockbursts, 

percussive drilling in mining, earthquakes, comminution, hypervelocity 

impact, and explosions. Wave effects must be considered in many stages 

of the design when rock structures are located in seismically active 

areas. In the understanding and prediction of the response of rock to 

dynamic loading, the deformation behavior and fracture are of the most 

interest to the practicing engineers. 

Fracture in rock under high rate tensile and compressive loading 

conditions is more complex and considerably less well understood than 

fracture under quasi-static conditions. At present there is no accurate 

theoretical basis for predicting dynamic failure although the usefulness 

of such a basis would be great. 

Spalling, or scabbing, is the dynamic fracture of a material that 

is subjected to a tensile wave loading. It is also referred to as 

Hopkinson fracture in honor of the pioneer in this field, Hopkinson (1912). 

The section of the material that separates from the main body is referred 

to as spall or scab. Spalling may occur whenever an impact or force of 

an explosion acts on a solid having a free surface at which reflection 

can occur. 
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The hazard of spalling is an important consideration when rock faces 

are subjected to dynamic loading. In particular, spalling can be a con­

trolling factor in the design of underground and surface excavations. 

In fortifications, for instance, a bomb may impinge on one surface of a 

wall and without penetrating produce a spall at the opposite surface. 

This spall may fly off with considerable velocity and endanger personnel 

inside. Similar loadings may be produced by blasting or rockbursts too 

near a permanent mine opening. On the other hand spalling is a desirable 

phenomenon as in the breaking of rock by explosives in the mining industry. 

The deformation, failure, and post-failure behavior of rock under 

high rate compression loading conditions are of concern to engineers in 

the design of structure on or within a rock mass where safety, usability 

and economy are design parameters. If the nature of the dynamic loads 

on the structure are known and if the material characteristic of the 

component materials are known then the questions relating to its safety 

and usability can be answered, that is, providing the necessary computa­

tional techniques are available. 

The deformation behavior and strength of many materials depend on the 

dynamic-wave propagation properties of the material and they may be in­

fluenced significantly by the rate of loading or straining. Therefore, 

the application of static properties to dynamic phenomena may give grossly 

inaccurate predictions of the response, particularly for those materials 

exhibiting strong rate effects. 

A study of the post-failure process in rock may help in the investi­

gations of rockbursts in deep underground mines. Field investigations 

have shown that destressing by partially fracturing the rock by blasting 

can be used to prevent the explosive failure of rock structures. 
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B. REVIEW OF LITERATURE 

Since the first reported observations of spallation by Hopkinson 

(1912), the contributions to the field have consisted, for the most part, 

of the measurement of the stress necessary to produce spalls in metals. 

These measurements are generally not in agreement because of appreciable 

variation in the analyses used to determine the stress as well as in 

the experimental procedures employed. It must be realized that, even 

though a spall occurs in but a few microseconds, the sequence of events 

leading to spall is orderly. The sequence is initiated by subjecting 

the material to a compressive stress wave usually induced by explosive 

loading or by projectile impact. The stress waves and their subsequent 

interactions with material boundaries and with one another ultimately, 

under proper conditions, produce a tension wave. The stress waves 

influence the microstructure of the material and thereby condition the 

material. It follows that if a complete description of spall fracture 

is to be compiled each event in the sequence and the response of the 

material to these events must be considered. The description of spall­

ation in rock and metals is far from complete. However advances made 

in the disciplines which parallel the study of spall fracture, such as 

dislocation theory, crack propagation, and stress wave analysis, have 

permitted some insight into the mechanism of spallation. 

In a recent research Shockey, et al., (1972), based on fractographic 

observations of novaculite rock specimens, proposed for the fracture of 

rock under high rate tensile loading the following fracture spall 

mechanism. A number of pre-existing flaws in the rock sample are 

activated when a high rate tensile load is applied. The activated flaws 
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propagate rapidly as radially expanding brittle cracks during the loading 

phases and soon begin to join up with and run into one another. In 

advanced stages of crack coalescence a myriad of continuous fracture 

surfaces will be produced throughout the rock sample, isolating segments 

of unfractured rock. The individual segments no longer held in the 

aggregate of the rock sample separate from each other, reducing the 

sample to fragments. 

The failure of rock is therefore a function of the number of flaws 

that become running cracks, the distance that each crack propagates, the 

degree to which coalescence and branching occurs, the initial defect 

structure in the rock, the inherent fractur·e resistance of crack-free 

material, and the applied stress history. Eventually it is hoped that 

the above quantities will be related to each other in a dynamic fracture 

computational model. Ideally, the model would give a complete description 

of the dynamic response of rocks and rock-like materials to a stress 

pulse in various structural and stratigraphic configurations. 

Sophisticated computer codes to predict resultant fragment size dis­

tributions in material undergoing dynamic fracture will be needed. Crack 

acceleration, crack opening, stress histories, and spall criteria are among 

the features to be included in such codes. 

The literature on dynamic rock fracture is generally not concerned 

with the microscopic mechanism of deformation and fracture but rather 

with empirical criteria obtained from experimental observations. Hino 

(1966) pointed out that in the mechanics of spallation the tensile 

strength of the material will control the length of the spalls. Certainly, 

as slabbing in rock is a tensile failure information on the dynamic 
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tensile strength would be useful for the design of blasting geometries. 

Rinehart (1960) introduced the critical normal fracture stress as 

the minimum dynamic net tensional stress required to rupture the material. 

It has usually been assumed to be a constant value for a given material. 

While this assumption is convenient to apply, there is evidence which 

indicates that this critical strength value is not constant but instead 

is some function of the state of stress (static and dynamic) and strain 

rate that exist in the region of the fracture up to and at the time of 

its formation. 

Bacon {1962), Rinehart {1964), {1965), and Millinger and Birkimer 

(1966) have published data on the comparative static and dynamic 

strengths of rock and concretes. These data indicate that the dynamic 

tensile strengths of certain rocks and concrete are substantially higher 

than their corresponding static strengths. Therefore, static tensile 

strengths may be poor approximations for dynamic applications. 

Saluja (1967) demonstrated that in one-dimensional bars the first 

spall was the thickest, and the thickness of subsequent spalls was 

smaller. He further pointed out that the size of the different spalls 

depended on the dynamic tensile strength of the rock and the stress 

history. 

Birkimer (1970) presented the critical normal tensile fracture strain 

energy theory and suggested its potential for some rocks. He also 

stated that the dynamic tensile strength of a rock and concrete is not 

constant and varies with apparent straining rate. 

A number of investigators (Kumar, 1968; Stowe and Ainsworth, 1968; 

Green and Perkins, 1968; Wuerker, 1959; Atchley and Furr, 1967; Watstein, 

1953; among others) have reported that compressive strength and modulus 
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of elasticity of rock and rock-like materials increases with increasing 

rates of loading. They have used different techniques for studying the 

dynamic response of rock. Some are based on rigid mechanical considera­

tions and do not consider wave propagation and interaction aspects at 

high loading rates. 

Data on the effect of high strain rates on the deformation behavior 

and compressive strength of rock and rock-like materials is relatively 

sparse and incomplete. The main reason is that difficulties are en­

countered in both instrumentation and analysis when stress wave propaga­

tion experiments are used for brittle materials. This is also complicated 

by the statistical nature of rock properties. 

Watstein (1953) has investigated the effect of the rate of applica­

tion of load on the compressive strength and modulus of elasticity of 

two concretes having compressive strengths of approximately 2500 and 

6500 psi. The concrete was tested at strain rates ranging from lo-c to 

about 10 per second. The higher rates of loading were obtained by im­

pacting the concrete specimens with a drop hammer. He found that the 

compressive strength of each concrete increased with the rate of loading 

with the maximum ratio of dynamic to static compressive strengths being 

about 1.8 for the highest strain rate, 10 per second. The values of the 

secant moduli of elasticity increased significantly with the rate of 

application of load; the maximum ratio of dynamic to static modulus was 

1.47 and 1.33 for weak and strong concrete, respectively. He also 

pointed out that values of strain at failure for the highest rates of 

loading were materially greater than the corresponding values in the 

static tests. The work by Atchley and Furr (1967) showed that when 
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moderate strength concrete is stressed with increased loading rates, the 

longitudinal strain at fracture is increased. 

Attewe11 (1962), Kumar (1968), Green and Perkins (1968), Hakalehto 

(1969) and, Wu and Hustrulid (1971) have reported very high strain rate 

experiments on rocks by using the split Hopkinson pressure bar technique. 

C_ SUBJECT OF THESIS 

This dissertation considers wave propagation and spall fragmentation 

in terms of the governing factors: material compressive and tensile 

strength, dynamic stress-strain relationship, shape of incident pulse, 

and resultant stress history. Thus, the objective of this research is 

to increase the understanding of dynamic rock failure towards the develop­

ment of a criterion for spallation in rock and rock-like materials. This 

is accomplished with experiments and analysis involving simple bar­

geometry axial-impact loading and computer numerical analysis. This 

information is necessary for a computational model to predict failure 

under high rate tensile loading. 

The theoretical analyses in the tests described above are quite 

different because the properties of the materials were unknown at very 

high rates of loading and also, because rigorous mathematical solutions 

for most pulse shapes were not available. 

To complement the spallation study an attempt is made to analyze 

the compressional split Hopkinson bar high strain rate technique for 

brittle rock testing. Both conventional and wave propagation methods 

are analyzed and data on the dynamic compressive deformation and post 

failure of the concrete is presented. 
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II. LONG BAR IMPACT EXPERIMENTS 

A. INTRODUCTION 

A one dimensional finite difference computer code to simulate plane, 

longitudinal stress wave propagation, and interaction in the spallation 

of long bars was written for elastic materials (See Appendix A). This 

approach was attempted as a first step in studying the structural 

response of rock and rock-like materials; and could be modified to 

incorporate strain-rate dependence if it were found to be a significant 

factor in the real material constitutive equation. 

With the elastic constitutive equation of state governing the dynamic 

loading and unloading, the complete stress history at the spall plane 

and the stress state at the time of fracture were determined. This 

information was necessary to determine the criteria for fracture. Thus~ 

a phenomenological approach was developed to obtain information on the 

wave propagation and interaction, and on improving spallation criteria. 

The method involves theoretical fitting of experimental results to 

determine the governing parameters. 

B. SPECIMEN FABRICATION 

To conduct the wave propagation and dynamic fracture studies, it 

was necessary to develop a fabrication capability for long bar concrete 

specimens. Cylindrical bar specimens were cast having a diameter of 

approximately 1.5 inches and a length of approximately 28 inches. The 

mix was a plain Portland cement concrete with proportions shown in 

Table I. 



TABLE I - MIX PROPORTIONS 

Material 

Type III Portland Cement, C 

Fine sand - dry S 

Water , W 

TOTAL 

W/C (by weight) = 0.6479 

SIC (by weight) = 2.4744 

% by Weight 

24.26 

60.02 

15.72 

100.00 

9 

Atlas, high-early strength, Type III Portland Cement was used as the 

cementing agent. The high-early strength variety was chosen so that 

long curing time would not be required. Type III attains a strength in 

8 days roughly equivalent to the 28 day strength of standard cement 

(Type I). The fine aggregate was a screened product from the St. Peters 

sandstone at Pacific, Missouri and produced by Pioneer Silica Products 

Company. The sand is designated as fine grade and is classed as sub­

angular. 

A batch of concrete was mixed in sufficient quantity to manufacture 

four bar specimens. The concrete specimens were cast in Plexiglas 

cylindrical casting tubes (1.5 in. I.D. by 28 in. long and slit along 

one side) by means of an extended funnel. The funnel tube extended to 

the bottom of the casting tubes and was attached at its upper end to a 

heavy vibrator to minimize air entrapment and surface honeycombs in 

the specimens. The cylindrical casting tubes were moved vertically 

downward by a hand hoist during the casting process so that the previously 

cast mix was not vibrated excessively. The insides of the molds were 



coated with oil to prevent the concrete from sticking. After casting, 

the cylinders were held in vertical position for one day. The bars 

were then removed from the molds and immersed in limed water for six 

1 0 

days in a horizontal position. The rods were then removed from the water 

and cured at room temperature conditions for eight days until testing 

on the fifteenth day. Before testing, the ends were cut and ground 

plane and perpendicular to the axis of the rod so that the actual test 

specimens measured 1.5 in. x 24 in. 

Every possible effort was made to obtain identical compositions, 

uniformity of fabrication and processing of the specimens in order to 

secure maximum reproducibility of the test results. A summary of the 

average mechanical properties of the concrete specimens at room 

temperature, are given in Table II. 

TABLE II - AVERAGE MECHANICAL PROPERTIES OF PORTLAND CEMENT CONCRETE 

Curing conditions -

In casting tubes day 

Submersed in water 6 days 

Room temperature drying 8 days 

Total curing 15 days 

Average Physical properties of test specimens* -

Static uniaxial compressive strength, psi 

Static uniaxial direct tensile strength**, psi 

Static compressive Young's modulus, psi x 106 

Static tensile Young's modulus, psi x 10 6 

Poisson's ratio in compression 

Poisson's ratio in tension 

(22) 

( 2) 

(6) 

( 1 ) 

(5) 

( 1 ) 

4805 ± 

388 + 

2.37 ± 

2.72 

0.14 ± 

0.15 

500 

18 

0.03 

0.03 
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TABLE II - AVERAGE MECHANICAL PROPERTIES OF PORTLAND CEMENT CONCRETE 

CONTINUED 

Specific weight, lb./in. 3 x 10-4 ( 21 ) 723 ± 15 

Mass density, lb.-sec. 2 /in. 4 x lo-s ( 21 ) 18.71 ± 0.38 

Ultrasonic pulse velocity, in./sec. X 1 Q 5 (5) 1. 30 ± 0.03 

Bar wave velocityt, in./sec. X 1 as ( 1 0) 1. 31 ± a.o2 

Bar velocitytt, in./sec. X 1 as ( 1 ) 1 . 31 

Fundamental frequency (24 in. bar length) Hz ( 1 ) 2730 

Dynamic Young's modulus t psi X 1 QG ( 1 0) 3.21 ± 0.10 
' 

* The number appearing in parenthesis denotes the number of specimens 

tested 

** Fracture is near a glued specimen end 

t Values calculated from long bar spallation data 

tt Value determined from resonant frequency test 
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C. EQUIPMENT, INSTRUMENTATION, AND EXPERIMENTAL PROCEDURE 

The long bar specimens were instrumented using Micro-Measurements 

ED-DY-250~BG -350 foil-type resistance strain gages attached with Baldwin 

Lima Hamilton EPY-150 epoxy cement. The 0.250 in. gage length insured 

that strain gradients and statistical material variation would not 

present difficulties in interpreting the gage readings. 

The gages were mounted in pairs diametrically opposed at two gaging 

stations and positioned along the same two generators of the bar. At 

each station the strain gages were connected into opposite arms of a 

Wheastone-bridge circuit so that any bending strains would be cancelled 

out. The current through the gages was limited to 15 milliamps in order 

to minimize heating in the vicinity of the gage. The Wheastone-bridge 

circuit was connected to a strain gage conditioning unit which provided 

the desired DC supply voltage, balancing circuit, and shunt calibration 

network. 

The strain signals from the gages were displayed versus time on the 

screen of a Tektronix Type 549 storage oscilloscope with a Type lAl dual 

trace plug in unit. The stored displays were then photographed with a 

Polaroid oscilloscope camera. A trigger pulse was provided to the 

oscilloscopes when the projectile made electrical contact with a small 

wire attached to the input end of the specimen. The delayed trigger 

feature on the oscilloscope was used so that optimum time resolution of 

the strain gage signal could be achieved. 

Stress waves were initiated in the rods by impact with spherical­

nosed (3/4 in. radius) cylindrical aluminum striker bars of various 

lengths (4, 6, and 8 in.) and 1.497 inches in diameter propelled by the 

air gun shown in Figure 2.1. The experimental setup is similar to the 
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Figure 2.1 - Schematic of instrumentation for wave propagation and spallation experiments 
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Hopkinson-bar setup used by Davies (1948), Kolsky (1949), and described 

in a M.S. Thesis by Bai (1970). The instrumented bars, 24 inches long 

and 1.5 inches in diameter, were carefully aligned with the bore of the 

air gun. Spherical-nosed projectiles were used to improve the axial 

nature of the impact and thereby insure that misalignment would not 

significantly influence test results. The wave amplitude (strain) was 

governed by the nozzle velocity of the projectiles. The round nose also 

gives rise to longer rise times than if square-ended bars are used. The 

resulting lower stress gradients are desirable in the analysis. 

The velocity of the projectile immediately prior to impact was 

measured with two photoelectric sensors in the vented section of the 

barrel and a time-interval counter, Bai (1970). The velocity was deter­

mined from the counter readings and photocell spacing. For the present 

tests, the striker bars were propelled at velocities on the order of 

700 to 1350 in./sec. and strain amplitudes on the order of 800 to 1200 

u in./in. were produced. The test assembly is shown schematically in 

Figure 2.1 with typical oscilloscope records of strain vs. time at two 

gage locations shown in Figure 2.2. 

The mechanical properties and dynamic tests of specimens were run 

at approximately the same time so that aging effects in the concrete were 

minimized. 

D. ANALYSIS AND TEST RESULTS 

The impact apparatus (Section C) and the simple wave propagation 

numerical analysis (Appendix A) were used to obtain data on wave pro­

pagation and interaction including the stress, strain, and strain-rate 

histories at the spall plane and the dynamic fracture strength. This 

information was then used in determining a spall tensile fracture criteria. 
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A total of 10 instrumented long concrete specimens were subjected to 

dynamic loading. The strain waveforms at two gage stations were re­

corded as oscilloscope traces and later projected onto graph paper and 

digitized. The data were fed into a digital computer (IBM 360, Model 

16 

50) using a finite-difference code to compute stress (strain) at different 

locations x along the bar and at different times t. The density and bar 

velocity of the concrete bars and the incident waveform at the first 

gage location were inputs into the code. Note that the space and time 

distributions of stress differ from those of strain only by the constant 

E. The finite-difference values were input to a plotting code which 

graphically shows the strain(stress)-time, strain rate-time, and strain 

(stress)-distance relationships. 

A technique for digitizing the enlarged oscilloscope records with 

an X-Y recorder, a small digital computer, and a paper tape punch was 

developed and used. This device decreased greatly the amount of 

physical work and the possibility of human error in manually transcribing 

the data. 

The measured strains at the second strain gage were compared 

directly with those calculated with the computer code using the measured 

strain pulse at the first gage station as input and computed waveforms 

were compared by plots made with a Calcomp Model 750 magnetic tape 

plotter. 

Details of the computational techniques were outlined in Appendix 

A. Both time and space origins (x=t=O) were arbitrarily established at 

the position of gages station 1 at the time when the loading wave first 

reached station 1. The mesh size was 0.05 inches. 
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1. Wave Propagation and Interaction 

a. Bar Wave Velocity and Dynamic Modulus 

The bar wave velocities were determined directly from the long 

bar spallation tests from measurements of the travel time of the incident 

compression pulse between station 1 and station 2. The velocities so 

obtained were those of high amplitude (up to 3900 psi) one-dimensional 

stress waves propagating longitudinally in cylindrical concrete rods. 

The bar compressive wave velocities are shown in Table III along 

with other relevant properties for the concrete bars. An examination 

of the data indicates that the wave velocities did not vary much between 

batches of concrete used. 

The measured rod velocities and the density of the concrete were 

used to calculate the dynamic compressive Young's modulus from the 

relation Ed= pc 2 • The resulting values of Ed listed in Table III were 

inputs into the computer code for the numerical analysis. 

As the static modulus of elasticity in compression and tension were 

found to be approximately the same (Table II) the corresponding dynamic 

values were likewise assumed to be nearly equal. This assumption was 

verified as is discussed later. 

b. Comparison of Experimental and Theoretical Strains 

In order to compare the theoretically predicted strains with the 

experimental strains for each specimen, the governing equations for the 

wave problem were solved by the method of finite difference as presented 

in Appendix A. The longitudinal strain comparisons (typical Figure 2.3a, 

and Figures B.la to B.9a in Appendix B) of the ''elastic'' and experimental 

results, with a common time origin, for the concrete specimens indicate 



Bar 
No. 

CC-H-1-1 

CC-H-2-1 

CC-J-2-1 
CC-J-3-1 

CC-J-4-1 

CC-K-1 

CC-K-2 

CC-L-1 

CC-L-2 

CC-L-3 

Striker 
Velocity, 

ips 

702 

897 

1299 
1316 

1325 

866 

1351 

840 

1250 

1220 

TABLE I I I - SUI\1t~ARY OF RESUlTS FOR THE CONCRETE BARS* 

Striker 
Length, 

in. 

4 

6 

6 

6 

6 

8 

6 

4 

4 

8 

Bar Wave Dynamic Fracture 
Velocity, c** Modulus, Ed Locations*** 

105 . 1 Q6 . . , , 1ps ,ps1 1n. 

1.297(8,16) 

1. 2 97 ( 8 '16) 

1.280(8,16) 

1. 297(8,16) 

1.297(8,16) 

1.333(6,16) 

1.304(6,16) 

1.333(6,16) 

1.304(6,16) 

1.333(6,16) 

3.129 

3.151 

3.106 

3.191 

3.188 

3.329 

3.186 

3.329 

3.183 

3.329 

4-1/2, 7-3/4 

4-1/2, 7-3/4 

5-5/8, 7-3/16 
'1-3/8, 8 

3-3/4, 6-7/8 

4-7/8, 7-1/8 

5-3/16, 8-5/8 

5-1/4, 6-9/16 

6 ' 10-5/8 
4-5/8, 8-3/4 

Crushed 
Lenqth·r 

in. 

3 

3 

6 

3 

5 

4 

4 

2.5 

4.5 

4.5 

r1aximum Ex peri­
mental Strains, 

~ in./in. 
Sta.l Sta.2 

790 

912 

1195 

1105 

1140 

1151 

1209 

828 

1021 
948 

770 

918 

1161 

1080 

1090 

1042 

998 

836 

914 
1002tt 

* The bar lenath was 24 inches and the bar diameter was 1.47 inches. 
** The numbersJin parenthesis after the bar velocity indicate the gage station locations, in inches, from the 

free end of the bar between which the velocity was obtained. Station 2 is near free end of the bar. 
*** Distances from the free end of the bar for the first two spalls. 

t Lenoth of crushed zone in the vicinity of the impact end. 
tt Strain Gage 2 of specimen CC-L-3 was out of balance after test. 

ro 
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(b) - Strain rate history at spall plane for specimen CC-H-1-1 



that the "elastic" simple theory adequately predicts the magnitude and 

shape of the measured longitudinal pulses, except for the slight lag 

of the peak experimental strains for some tests. Also, the slight 

attenuation increases for an increasing pulse amplitude. 

Geometric dispersion is believed to be a negligible source of 

error in these measurements since the ratio of the radius of the 

specimen to the average wave-length is quite small (0.023). The high 

frequency oscillations ordinarily superposed on the main pulse usually 

present whenever geometric dispersion is active, were not found in the 

data. Therefore the dispersion and attenuation of the wave in its 

travel over the 6-8 in. distance from station 1 to station 2 was 

negligible. 

20 

The results in Figures 2.3a and B.la to B.9a indicate that the 

theoretically calculated tensile strains at station 2 were slightly 

higher than the experimentally measured ones. It is also particularly 

noteworthy that the wave arrival time and pulse shape resulting from 

wave interactions matched up very well with the experimentally observed 

wave after free end reflections. This is shown by the close agreement 

between the computed waves for gage 2 and the experimental values for 

gage 2 for times after the departure of the experimental curve for 

gage from the correponding curve for gage 2. This agreement also 

verifies the assumption that the compressive and tensile wave speeds 

are nearly the same. 

The theoretical calculated strains (stresses) are point values 

derived from average strains over a finite length. Such an average 

value will correspond more closely with the average strain measured by 

a strain gage. As an extrapolation of this reasoning, it is possible 
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to compare the experiment and analysis in terms of average strains over 

extremely large portions of the specimen in which widely different strain 

states exist within each portion. In these tests the gage length was 

small (0.25 in.) compared to the pulse length (30 in. to 35 in.) so 

that point and average values were essentially the same. 

The gage records for a specimen in which a spall fracture has 

occurred shows the entire strain history including the peak strain and 

reloading which occurs when the spall cracks form and gives an indication 

of the time and rate of fracture. The experimental strain profiles 

have a more complicated tensile structure than the computed profiles, 

probably because of a number of spall cracks are activated until complete 

spall fracture occurs. These ideas are discussed further in the section 

on dynamic tensile fracture. 

c. Stress, Strain, and Strain Rate History at Spall Plane 

The one-dimensional finite-difference code to solve the stress­

wave propagation and interaction problem, and the plotting code used for 

the analysis of the computer simulation results allowed the direct dis­

play of the theoretically predicted curves of stress (or strain) and 

strain rate at the spall plane vs. time (Figures 2.3 and B. 1 to 8.9). 

The spall occurred at the location of strain gage 2 for the specimen 

CC-J-3-1 and CC-L-2 so that the computed values at the spall plane are 

the same as those computed for gage 2 (see Figures B.3a and B.8a). The 

experimental values of strain rate at the spall plane were determined by 

numerically differentianting the strain-time curves for these same two 

specimens and are plotted in Figures B.3b and B.8b for comparison with 

the finite difference solution. 
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The complete description of the loading history at the spall plane 

and the state of stress along the bar at the time of fracture will be 

used later for determining a spall criteria. 

2. Dynamic Fracture and Spall Tensile Fracture Criteria 

a. Dynamic Compressive Strength 

When a strong compression pulse is introduced at the impact end 

of the bar a section may be crushed if the compressive stresses are 

higher than the dynamic compressive strength Sc of the material. As 

the pulse progresses along the specimen, it crushes more material until 

the peak stress falls to some value Sc (Figure 2.4) which is probably 

a function of the impact velocity and the shape of the projectile nose. 

As noted in the previous section, the wave propagation process is 

nearly linear after the pulse progresses beyond the crushing zone, and 

relatively little further losses occur. Hence it may be assumed withJut 

much error that the peak compressive stress in the pulse in the re­

mainder of the bar remains equal to Sc. 

Table IV and the graphs in Figures 2.5 to 2.7 show that the input 

to the intact bar zone is fairly linearly dependent on striker velocity; 

but apparently the mechanism of comminution of the vicinity of the impact 

end is not. That is, the extent of the crushed region varies greatly, 

even for approximately the same nozzle energy of the projectile. The 

momentum and kinetic energy of the projectile correlate with the dynamic 

compressive strength and crushed length in the same manner as the striker 

velocity thus with the strength and length. Slight differences in the 

dynamic compressive strength may produce big differences in the frag­

mentation process (crushing length) when the bar specimen is dynamically 

loaded with spherical-nosed cylindrical strikers. The dynamic compressive 
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TABLE IV - SUMMARY OF RESULTS FOR THE DYNAMIC COMPRESSIVE STRENGTH 

Striker 

Velocity ~ve i ght* Momentum Kinetic Energy Crushed Compressive 

ips Grs Slug - ft/sec Slug - ft 2/sec2 Length, Strength, 
in. kpsi 

702 305.10(4) 1.22 35.74 3.0 2.474 

840 305.10(4) 1.46 51.17 2.5 2.757 

1250 305.10(4) 2.18 113.30 4.5 3.251 

897 464.40(6) 2.38 88.82 3.0 2.874 

1299 464.40(6) 3.44 186.20 6.0 3,712 

1316 464.40(6) 3.49 191.10 3.0 3.525 

1325 464.40(6) 3.51 193.80 5.0 3.637 

1351 464.40(6) 3.58 201.40 4.0 3.854 

866 627.00(8) 3.10 111.70 4.0 3.832 

1220 627.00(8) 4.36 221.80 4.5 3.155 

* The number appearing in parenthesis after striker weight denotes its length in inches. 

N 
,J:::. 
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strength varied from 2474 to 3854 psi for the striker velocities range 

used. Stresses significantly higher than these could not be induced 

into the intact region by increasing the impact velocity. The higher 

energy of the striker would go mostly into additional comminution rather 

than stress wave energy into the intact portion of the bar. 

b. Spallation and Dynamic Tensile Fracture Strength 

On reaching the free end of the bar, the plane compressive 

elastic pulse· is reflected to eventually become a tensile pulse of the 

same shape traveling in the reverse direction. The incident compressive 

wave and its reflected tensile counterpart interfere with each other 

(Figure 2.8) until at some time and distance from the free surface the 

resulting stress becomes tensile and reaches the value ST' the dynamic 

tensile strength of the material. A piece then flies off from the 

main body of the bar, trapping part of the momentum of the wave. This 

phenomenon is referred to as spalling and the segment which breaks free 

is called a spall. If the pulse is sufficiently long, its tailing end 

will now suffer reflection at this newly fractured surface. A second 

spall will form in the same manner if the peak stress in the tail still 

exceeds ST. This process continues until the intensity of the reflected 

pulse drops below ST. 

The main factors governing the spallation process (number and size 

of the spalls) are: 

i. The dynamic compressive strength of the material, Sc' which 

determines the maximum compressive stress that can be trans-

mitted. 

ii. The dynamic tensile fracture strength of the crack free 

material. 
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iii. The initial defect structure in the rock. 

iv. The shape of the incident pulse and applied stress history. 

For spalls to form it is of course necessary that the initial peak 

stress in the input pulse be greater than the dynamic tensile strength, 
s 

ST, and, that Sc should be larger than ST. S~ > 1 is the case for 

most materials, including rocks and concretes. 

Before estimating the dynamic tensile fracture time and strength 

of concrete specimens, it is convenient to assume, as did Shockey, et al. 

(1972), that the tensile failure of rock and rock-like material occurs 

in four stages: 

i. Activation of a number of pre-existing structural or 

cracklike defects, 

ii. Propagation of activated cracks radially outward, 

iii. Coalescence and branching of propagation cracks, and 

iv. Isolation of individual rock fragments from one another 

(spall fragmentation). 

The gage record for a specimen in which the spall fracture occurred 

on the gage location (Figures 8.3 and 8.8) yields information on the 

spallation process in addition to the spall strain history. t·1icro­

seismic waves emitted as spall cracks form impinge on the gage and may 

result in a measured signal being superimposed on the main pulse. Also, 

the initiation and gradual extension of microcracks interferes with the 

normal wave propagation in the region which again may show up on the 

gage record just prior to complete spall separation. Furthermore, the 

changes in the slope of the resulting tensile pulse are an indication of 

the time and rate of fracture. 



Figures 2.3 and B.l to B.9 show the theoretical elastic wave 

profile predicted by the computer for the case where spall occurred 

at or near gage 2 located near the free end. The plots from gage 2 

show the agreement between predicted and experimental measured strains 

the difference in the strain profiles as the spall forms. The experi­

mental profiles have a different tensile structure than the computed 

profiles, probably because a number of spall cracks were activated 

before complete fragmentation and separation of spall segments. 

The dynamic tensile fracture time can be obtained from the plots 
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of strain and strain rates vs. time at gage 2 and the spall location. 

The experimental values at gage 2 depart abruptly from the computed 

values at gage 2 because of the commencement of unstable fracture pro­

pagation. The wave travel time from the spall location to gage 2 must be 

subtracted from the above departure time to give the fracture time. The 

time of spall and the spall location were used with the printed com-

puter output to obtain the stress, strain and strain rate-time history 

up to fracture at the spall plane. This information was necessary for 

determining the spallation tensile fracture mechanical energy criteria. 

The instantaneous critical spall stress o , fracture spall strain s 

£s' and fracture spall strain rate Es at the time of spall fracture ini-

tiation ts are presented in Table V. It is noted that the fracture 

stress, or strain, increases with increasing instantaneous strain rate 

and decreases with increasing tensile rise time to fracture (ts-t
0

). 

This was an indication of a time dependence of the spall strength in 

the bar impact experiments for concrete. A similar result was observed 

in plate impact experiments on metals, Butcher, et al., (1964). 



TABLE V - SUMMARY OF SPALLATION RESULTS FOR CONCRETE BARS 

Test No. xo xs t~x=x 5 -x 0 to ts Lt=t5-t 0 c*=Lx/Lt 
in . in. in. 10-6sec l0- 6sec I0- 6sec 105in./sec 

CC-H-1-1 3.38 8.25 4.87 147.90 179.10 31.20 1.56 

CC-L-1 5.14 10.75 5.61 114.10 142.00 27.85 2.01 

CC-H-2-1 4.37 8.25 3.88 146.00 174.00 27.93 1.38 

CC-L-3 6.39 11.38 4.99 107.50 130.50 23.03 2.16 

CC-L-2 6.17 10.00 3.83 119.40 140.6(1 21.19 1.80 

CC-K-2 7.20 10.80 3.60 117.20 136.20 18.97 1.89 

CC-K-1 6.62 11.10 4.48 110.70 129.30 18.55 2.41 

CC-J-3-1 4.81 8.00 3.19 149.10 170.60 21.58 1. 47 

CC-J-4-1 5.61 9.10 3.49 134.20 155.10 20.95 1.66 

CC-J-2-1 4.35 8.80 4.45 139.30 156.10 16.78 2.65 

t The wave interaction factor defined on p. 44 

I .1. a=c* C 1 

1.20 

1.51 

1 '06 
1.62 

1.38 

1.45 

1. 81 
1.13 

1.27 

2.07 

w 
0 



TABLE v (cont.) -SUMMARY OF SPALLATION RESULTS FOR CONCRETE BARS 

• t 4 • ~-- • : - .t..!_.) .. ) • 

Test ~Jo. as Es Es Es/IJt E
5
/Ax/c p o s/ fl.X I I , w c 

psi Io- 6 in./in. sec-1 sec- 1 sec- 1 psi psi/in. in.-lbs 

CC-H-1-1 1345 429.70 11.34 13.77 11.47 2457 276.10 1.53 

CC-L-1 1486 446.30 7.29 16.02 10.58 2755 264.80 1.88 

CC-H-2-1 1525 484.50 15.19 17.34 16.23 2R64 393.00 1.69 

CC-L-3 1628 489.00 15.42 21.23 13.03 3153 326.20 1.65 

CC-L-2 1710 537.00 22.05 25.34 18.23 3249 446.40 1.64 

CC-K-2 1769 555.10 22.66 29.26 20.04 3850 491.30 1.63 

CC- K -1 1798 540.00 24.36 29.11 16.03 3814 401.30 1.54 

CC-J-3-1 1807 566.20 24.86 26.24 23.08 3523 566.40 1.79 

CC-J-4-1 1865 584.80 27.95 27.91 21.78 3fi34 534.30 1.79 

CC-J-2-1 1962 631.50 32.54 37.63 18.16 3701 440.80 1. 67 

AVERAGE 1.613 

t.t. 
. I The derived strain rate ~ d defined by the thesis author on p. 47 

5 ' 

ttt The apparent strain rate ~a defined bv Birkir;er (1970) on p. 44 

tttt The derived tensile stress gradient defined by the thesis author on p. 42 

w 
--J 



TABLE V (cont.) -SUMMARY OF SPALLATION RESULTS FOR CONCRETE BARS 

Test No. U K w 
in.-lbs psi 2-sec 

CC-H-1-1 0.92 21.70 

CC-L-1 1.66 27.65 
CC-H-2-1 0.91 24.24 
CC-L-3 1. 54 24.20 

CC-L-2 1.18 23.56 

CC-K-2 1.31 23.56 
CC-K-1 1.57 22.67 

CC-J-3-1 1.03 26.00 

CC-J-4-1 1. 22 25.97 

CC-J-2-1 1.39 23.79 
AVERAGE 1.27 24.33 

* B =Nonlinearity factor K /(a 26t/3) w w s 

* B =Nonlinearity factor K /(o 26x/3) u u s 

6 * w 

1.154 
1.350 
1.120 

1.190 

1.141 
1.191 
1.134 
1.107 
1.070 
1.105 
1.156 

K u 

Kpsi 2-in. 

3.401 
6.535 
3.408 
6.046 
4.442 
4.927 
6.186 
3.890 

4.588 
5.079 
4.850 

B ** u 

1.158 
1.583 
1.133 
1.372 

1.190 
1. 312 
1.281 
1.120 

1.134 
0.890 
1.217 

w 
N 



It is also observed (Table V) that the spall stress o deoends 
s 

on the thickness of the tensile stressed zone (x -x ). A narrow zone 
s 0 
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requires a larger tension for fracture and indicates a spatial dependence 

on the tensile strength. 

c. Spallation Tensile Fracture Criteria 

There is a sufficient amount of experimental and theoretical ev­

idence to indicate that Rinehart's original spallation criterion of 

constant critical normal fracture stress should be modified. This cri-

terion states that a spall will form instantaneously when a unique mini-

mum value of normal net tensile stress is attained. This criterion has 

led to inaccurate predictions of spall in several instances. Disparities 

occur, in particular, in the thicknesses and number of spalls produced 

in multiple-spall experiments. 

Some investigators explained the previously discussed discrepancies 

by assuming a time(spatial)-dependent spall mechanism; but Rinehart and 

Ahlquist (1970) felt that the critical normal fracture stress of a mate-

rial depends on the transient compressive stress immediately preceding 

tension and on the state of stress at the time of fracture initiation. 

First, they believed that the action takes place very quickly in an ex­

ceedingly thin region so that statistically the probability is small 

of encountering one or more of the large flaws that contribute so signif­

icantly to the reduction of strength of most rocks under tension. They 

also conceived that the compressive wave that has just passed by the 

region of fracture (precompression) has strengthened the rock by collaps­

ing some of the larger flaws. Secondly, they favored the idea that the 

state of stress at the time of fracture is not the same as that existing 

when the material is fractured by static loading. Just before the rock 



spalls a state of plane strain exists along the incipient fracture plane. 

It therefore seems highly probable that lateral constraints imposed on 

the region of fracture could effectively increase the strength of the 

rock manifold. 

To help resolve some of the above controversy, an attempt was 

made to study the effects that the compression phase of the stress-time 

history has on the spall behavior of brittle materials. 

The following results (drawn from Table V and Figures 2.9 and 2.10) 

appear significant: 

(l) the stress-dependent fracture tensile delay time Lt decreases 

with increasing tensile strength os. 

(2) the tensile fracture strength os increases in an approximately 

linear manner with increasing peak compressive stress Pc. For 

example, the tensile stress required to form a spall increases 

by about 40 percent when the magnitude of the preceding com-

pressive pulse increases about 50 percent. 

(3) the tensile fracture stress as increases with increasing frac­

ture loading rate Es· 

(4) the fracture loading rate s also increases with increasing s 

precompression Pc. 

(5) the fracture time ~t decreases with increasing peak compres-

sive stress Pc. 

Since it is observed that the spall strength is also a function 

of rate of loading, the precompression explanation of the increased ten-
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sile strength may not be unique. If an increased precompression produced 

a greater amount of crack nucleation, one might expect a decrease in the 

tensile strength, which is contrary to the trend found. 
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It is thought that other parameters, in addition to the critical 

tensile strength at the spall plane, should be included in the spall 

criterion, such as the distribution of stresses in space and time. Para-

meters that have been found experimentally to influence the spall be­

havior of materials are the tensile pulse duration at the spall plane, 

the critical spall stress at which tensile fracture begins, the size of 

the critically stressed region, the precompression of the material at 

the spall plane, state of stress at time of fracture, ambient tempera­

ture, and the material surface energy. 

i. Critical Normal Fracture Strain Energy 

When an elastic body is under the action of external forces, 

the body deforms and work is done by these forces. If a strained, 

perfectly elastic body is allowed to recover slowly to its un-

strained state, it is capable of giving back all the work done 

by these external forces. For this reason the work done in 

straining such a body may be regarded as energy stored in the 

body and is called the "strain energy 11
• 

From the computer elastic wave propagation simulation the 

stress distribution along the bar was numerically known for 

different times, i.e., o(x,t). Therefore, at the time of fracture, 

the stress along the bar could be determined and represented by 

ab (x) = o(x, time of fracture). (See typical stress distribution ar 
in Figure 2. 11). 
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Static fracture criteria are sometimes stated in terms of stored 

strain energy. Therefore, it may be reasonable to describe a 

spatial dependent criterion in terms of the strain energy stored 

within the bar material in the tensile stressed region of the net 

stress pulse to the left of the spall, U (see Figure 2.11). 
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A spallation criterion based on this concept has the form 

( 2. 1 ) 

where 

0 bar(x) = the instantaneous net tensile stress along bar to 

the left of xs at time t s 

xs = the location of spa 11 plane. 

xo = the location of zero tensile stress. 

E = the Young's modulus of elasticity. 

A = the cross-sectional area of bar. 

Birkimer (1970) proposed the application of the critical frac­

utre strain energy theory, represented by Equation (2.1). He con-

eluded that for his tabulated 11 minimum" calculated strength values 

the 11 Critical" fracture strain energy can be considered relatively 

constant regardless of the 11 apparent 11 strain rate which he defined 

as the ratio of fracture strain Es to the rise time of the strain­

ing pulse to that fracture strain (ts - t
0

). 

Equation (2.1) was integrated numerically for the experimental 

and computed data at the first and second spall plane near the free 

bar end and the measured and calculated values of interest listed 

in Table V. From this tabulation, it is noted that the tensile 

fracture strain energy to the left of the spall U may be considered 

relatively constant regardless of the stress or deformation rates 

up to fracture and spall location. It is concluded that the use of 

minimum strength values (i.e., neglecting higher values) is not 

38 



39 

required as was done by Birkimer (1970). It may be true that there 

is a restriction in the method of experiment or analysis rather than 

true material behavior during spallation. Errors due to interfer­

ence of the incident compressional and reflected tensile pulses, 

which were not considered in Birkimer's analysis, may explain the 

necessity of using minimum strength values and also the difference 

in the value of average tensile fracture strain energy. The tensile 

fracture strain energy in this investigation was found to be 1.27 + 

0.38 in.-lbs. compared to 3.41 ± 0.48 in.-lbs. given by Birkimer 

(1968) for a similar concrete mix subjected to approximately the 

same apparent strain rates. This difference may also be due to the 

fact that the concrete used by Birkimer (1968) was stronger, having 

a static compressive strength of 6830 psi and an elastic modulus of 

4.61 x 106 psi as compared to corresponding values of 4805 psi and 

2.37 x 106 psi for the material used in this investigation. 

ii. Critical Normal Fracture Mechanical Energy 

Since fracture may also be considered basically a mechanism of 

energy transfer of mechanical energy to new surface energy, it may 

be more realistic to describe a time-dependent spall in terms of 

total mechanical energy passing through the spall plane up to the 

time of fracture. This energy W may be empirically constant for a 

given material. A spallation criterion based on this concept would 

have the form 

W =A is 
t 

0 

0 ll(t) v ll(t) dt spa spa ( 2. 2) 
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where 

0 spall = the instantaneous net tensile stress at the spa 11 plane 

V spa 11 = the instantaneous net particle velocity at the spall 

plane 

t = the length of time for which the spall plane has been 

in tension 

ts = the time at which spall fracture initiates 

t 0 = the time at which the spall plane first experiences a 

tensile stress 

A = the cross-sectional area of bar 

If the material is assumed to be linearly elastic, a = ocv, 

and Equation (2.2) becomes 

A w = 
pC 

where 

p = the mass density 

c = the bar wave speed 

As c = ~, then Equation (2.3) becomes 

a 2 
11 (t) dt spa 

( 2. 3) 

(2.4) 

The stress-time history at the spall plane (shown typically in Figure 

2. 12) is given directly by the strain gage readings when spall 

occurs at the gage location, or theoretically by the computer elastic 
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simulation as discussed in l.c. 

Equation (2.4) was also numerically integrated using the experi­

mental and theoretical data at the first two spall planes near the 

free end of the bar. The values of the tensile fracture mechanical 

energy W introduced into spall plane (Table V) are fairly constant 

regardless of the stress or strain rates up to fracture and spall 

location. The computed value of the tensile fracture mechanical 

energy was found to be 1.68 ± 0.18 in.-lbs. for concrete specimens. 

It is seen in this tabulation that W is more nearly constant than U, 

and the values of W are generally higher. 

The use of mechanical energy Win the spallation criterion rather 

than stored strain energy U has the advantage that the former can 

also be applied when the incident compression pulse has a short rise 

time while the latter cannot (x
5

-x
0
=0). This limitation on the 

latter quantity was pointed out by Rinehart and Ahlquist (1970). 

iii. Dependence of Strength on Stress Gradient and Rate 

The critical normal fracture strain energy criterion of Equation 

(2.1) can be simplified and stated in terms of the fracture tensile 

stress with the simplifying assumption that the stress obar(x) in 

the tensile strained portion to the left of spall increases linearly 

along the bar. That is: 

1 - a 2 (x -x ) 
3 s s 0 

( 2. 5) 
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Therefore, Equation (2.1) yields: 

"xc2 = 6EU C 
u s A= 1 (2.6) 

where 

6x = xs - x
0 

is the length of the tensile strained region to 

the left of fracture plane (Figure 2. 11). 

When the quantity on the left of Equation (2.6) becomes equal to 

or greater than C1 , fracture initiates. The space length criterion 

[Equation (2.6) or Equation (2.1)] has an undesirable property that 

it implies that for a very small space increment tox the fracture 

strength becomes infinite, and conversely for large space increments 

it becomes zero. 

The simplified fracture tensile strain energy criterion of Eq­

uation (2.6) can also be expressed equivalently as either a stress 

or strain gradient criterion 

1/3 
( 

0!._ )1/3 
= c2 6x (2.7) 

or 

= ( GU ) 1 I 3 ( ~ ) l I 3 = 
£s AE 2 6X 

' 
(

60 )1/3 c3 -6X 
(2.7a) 

0 

where 60 =~is the derived tensile stress gradient to the 1eft of 
6X 6X 

the spall plane in Figure 2.11. 

Birkimer (1970) made a second assumption to introduce his stress 

(strain) pulse duration criterion, namely that the phase related 



errors due to interference of the main compressional and reflected 

tensile pulse are negligible. That is: 
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(2.8) 

or 

(2.8a) 

where ~T is the apparent tensile duration. It should be noted that 

6T is an approximation for the tensile loading time from zero tension 

to fracture tension. 

Substituting Equation (2.8a) into Equation (2.6) one obtains 

(2.9) 

When the quantity on the left of Equation (2.9) becomes equal or 

greater than c4, fracture initiates. 

The impulse criterion of Equation (2.9) implies that for very 

long (or small) time durations of applied tensile stress the fracture 

strength approaches zero (or infinite). This is also an undesirable 

feature of the criterion. 

Birkimer's expression (1970) for the dynamic tensile strength 

[from Equation (2.9)] was 

(2.10) 
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or 

(2.10a) 

where 

ss - ..:i_ = sa = !1x/c - !1-r "apparent" strain rate 

oa = E£a = "apparent" stress rate. 

Therefore, the empirical relation between the spall stress and 

the cube root of the stress gradient or stress rate {Equation 2.7 or 

Equation 2.10) to describe time-dependent dynamic failure is in fact 

equivalent to the critical normal fracture strain energy, (Equation 

2.11). 

6X 

f 2EU = ~ = constant Ku (2.11) 

0 

This fracture criterion states that when the damage integral on some 

particular plane exceeds the critical energy value Ku, fracture 

initiates on that plane. 

It is concluded that the substitution of the true tensile loading 

time interval which considers wave interactions for the assumed 

interval l1T = 6X/c would result in more realistic rate values. Table 

V gives values for the apparent-time to true-time ratio, a. A better 



expression for os will be given by the stress (strain) gradient 

model rather than by the ''apparent 11 stress (strain) rate criterion. 

The assumption of a linear tensile stress-distance dependence 
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(or constant spatial stress gradient to the left of spall) at fracture 

time may be a poor approximation in certain cases, depending on the 

shape of the waveform. This is seen by comparing the values of f 
u 

in Table V, where s is the ratio of the true integral value, K , u u 

to the approximated integral value, os26x/3. 

The stress gradient model indicates that the fracture stress 

(strain) increases with increasing apparent tensile stress gradient 

at fracture, which is fairly true for the tabulated values in Table V. 

Certainly the experimental minimum strength values reported by 

Birkimer (1970) do not contradict his apparent strain-rate one­

third-power model. On the other hand Equation 2.10 in Table V and 

Figure 2.13 show that a poor correlation exists between spall stress 

as and cube root of the apparent strain rate Ea. It is concluded 

that the two main assumptions made in the analysis may reduce the 

applicability of this model as was the case in this investigation. 

A better simplified stress (or strain) rate dependence model for 

predicting the time dependent strength as is proposed using the 

constant tensile fracture mechanical energy W. For a linear tensile 

stress-time history at spall 

1 - o 2 (t -t ) 
3 s s 0 

(2.12) 
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Then, an impulse criterion is obtained from Equation (2.4), 

(2.13) 

where 

6t = ts - t
0 

is the finite tensile delay time required for fracture 

(crack) initiation. 

Equation (2.13) represents the time-to-failure as a function of 

stress at the spall plane. It also has the undesirable property of 

predicting as = 0 when 6t is very large. The results in Table V 

and Figure (2.9) show that the spall stress of the concrete is time 

dependent and increases with decreasing time of tensile loading. 

The derived strain rate, £sd' (Table V) is defined as the frac­

ture strain divided by the rise time to fracture in the tensile spall 

history. 

(2.14) 

From Equations (2.13) and (2.14) the following is obtained 

o =( 3E2W) 1/3 ~ l/3 = 1/3 
c csd (2.15) 

s Ac sd 8 

or 

=(}!!__ y/3 1/3 1/3 
E.: r:sd = c ssd (2.15a) 
s EAc g 



Therefore, a criterion relating fracture stress to the cube root of 

the stress (strain) rate has been shown to be equivalent to the 

critical normal fracture mechanical energy, 

21t 
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! o 2 ll(t)dt spa 
EW - constant K Ac - w (2.16) 

This fracture criterion imples that when the damage integral 

on some particular plane becomes equal ore greater than the critical 

energy value Kw' fracture initiates on that plane. 

Table V and Figure 2.13 show that in this experimental investi-

gation, the strength values cs correlate fairly well with the cube 

root of the ''derived'' strain rate. This is seen by comparing the 

values of s in Table V, where s is the ratio of the true integral 
w w 

value, Kw, to the approximate integral value, a~At/3. It is concluded 

from the above comparisons that the linear tensile stress-time 

assumption may not drastically limit the application of the simplified 

mechanical energy model [Equation (2.13) or (2.15)]. 

Also from Table V and Figure 2.13 it is noted that at fracture 

the derived strain rate s /Lt is a better approximation to the 
s 

instantaneous strain rate at the time of fracture c than is the s 

apparent strain rates /(Lx/c). s 
The several empirical spallation criteria discussed above are 

summarized in Table VI along with corresponding values of the various 

constants for the particular concrete. 



TABLE VI - EMPIRICAL SPALLATION CRITERIA FOR CONCRETE* 

Critical Normal Fracture Strain Energy Critical Normal Fracture Mechanical Energy 

Equation Equation 
Relation Number Relation Number 

6.X Lt 
1 J ab 2 (x)dx = 4.850 x 106 2.11 1 J c ll 2(t)dt = 24.33 2.16 ar 0 spa 

1 DXO 2 
s = 11.95 X 105 

2 t:.xc 2 
s 

= 14.55 X 106 2.6 

3 C:.10 2 = 111.0 2.9 2 ~tc: 2 = 73.01 2.13 s s 

1 Lto 2 = 63.16 
1/3 s 

1 0 = 228.7 (La) 
s ~X l/3 

2 a = 244.2 (~~) 2.7 
s 

3 = 4.810 ;al/3 = 710~al/ 3 2.10 2 OS = 616.5s
5
d l/3 2.15 as 

1 0 = 587.4~sd l/3 
s 

1 s s 
= 7.12 x lo-s (~~) 1 1 3 

2 t:s = 7.60 X lQ-5 (~~) 113 2.7a 

~ 
1..0 



TABLE VI (cont.) -EMPIRICAL SPALLATION CRITERIA FOR CONCRETE* 

Critical Normal Fracture Strain Energy Critical Normal Fracture Mechanical Energy 

3 €. = s 

Relation 

1.497 X lQ-6 ~ 1/3 = 
a 

2.209 X lQ-4 ~ 1/3 
a 

Equation 
Number 

2.10a 

3 ss = 2.060 x 10- 4 ~al/ 3 (Birkimer, 1968) 

2 

1 

E: = s 

€. = s 

* a in psi; s in in./in.; s in sec- 1 ; 6t in sec; and Lx in in. s s s 

Relation 

1.925 X l0-4 £ l/3 
sd 

1.830 X IQ-4 E 1/3 
sd 

1 Average value calculated from numerical integration of tensile stress pulse. 

2 Average value based on linear approximation of tensile stress pulse. 

3 Average value based on linear approximation of tensile stress pulse and assuming 0x = CtT. 

Equation 
Number 

2.15a 

U1 
0 



The expression for the fracture stress in terms of the fracture 

tensile delay time, 6ta~ = 73.014 (Equation 2.13 in Table VI) is 

the result of a linear approximation of the tensile spall stress 

pulse, while 6ta~ = 63.160 (Table VI) is the result of a numerical 

integration of the tensile spall stress pulse. The latter ex­

pression correlates well with the experimental values (Figure 2.9). 

The expression for the fracture stress in terms of the apparent 

strain rate, as= 710.0 sa 113 (Equation 2.10 in Table VI), is the 

result of a linear approximation of the net spatial tensile stress 
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and of the assumption 6x = C6T. The expression for the fracture 

stress in terms of the derived strain rate, as = 616.5 ~sd 113 

(Equation 2.15 in Table VI), is the result of a linear approximation 

of the tensile spall stress pulse. The approximated derived strain 

rate formula (as= 616.5 £sd113 ) correlates (Figure 2.13) much better 

with the instantaneous strain rate ss than does the apparent strain 

rate formula (as= 710.0 £a 113). The equation os = 587.4 €sd
113 

(Table VI) is the result of a numerical integration of the tensile 

spall stress pulse and correlates well with the derived strain rate 

Esd (Figure 2.13). 

One should keep in mind when interpreting Figures 2.9 and 2.13 

that different criteria, constant strain energy and constant mech-

anical energy as identified in Table VI, are employed in the de-

rivations of the various equations. 

iv. Cumulative Damage Criterion 

Both the tensile mechanical energy and strain energy approaches 

proposed here with their equivalent criteria are special cases of 

a more generalized formulation by Tuler and Butcher (1968) and 
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Gilman and Tuler (1970) for metals. 

They propose a cumulative damage model for fracture which assumes 

that fracture is not instantaneous, but rather that a finite time 

is required for crack (fracture) initiation. The model is of the 

form: 

tF 

~ f[o(t)]dt = 1 
0 

where tF is fracture time 

(2.17) 

The phenomenological 11 energy 11 criteria correlate with the 11 Cumulative 

damage .. criterion of Equation (2.17) if for Equation (2.16) 

f[cr(t)] = ~~ o 2 (t) and tF = 6t 

and if for Equations (2~8) and (2.11) 

f[cr(t)] = ~~U o2 (t) and tF 6T 

Thus, the 11 energy .. criteria employ precise physical definitions of 

function f[o(t)] in the general cumulative damage model of Equation 

(2.17) 



III. DYNAMIC COMPRESSION TESTS WITH THE SPLIT HOPKINSON BAR 

A. INTRODUCTION 

Experimental limitations prevent the direct measurement of stress 

and strain in a test specimen subjected to high rates of axial strain. 

The indirect method introduced by Kolsky (1949) and known as the split 

Hopkinson bar technique is commonly employed to determine the degree of 

rate sensitivity or constitutive law of the material at strain rates in 

the range from 50 to 104 in./in./sec. Basically, in this technique 

(Figure 3. 1) a short cylindrical specimen is sandwiched between two 
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long elastic bars in such a way that all center lines are collinear. 

Strain gages mounted on the bars are used to measure the strains generated 

by an impulsive force applied to one end of the bar-specimen-bar assembly. 

Measurements of the loading wave in the first bar, the wave reflected 

from the specimen, and the transmitted wave in the second bar are 

sufficient to determine the dynamic stress-strain-strain rate behavior 

of a material averaged over the length of the specimen when uniaxial 

stress loading is assumed. 

Criticism of Kolsky's analysis has been directed mainly at the 

neglect of wave propagation and interaction effects in the short specimens 

used in such experiments and at boundary-interaction effects. 

This chapter and Appendix C present the standard analysis and its 

restrictions as well as the complications which arise when brittle 

materials such as rocks are being tested. A computer wave propagation 

analysis is also presented to aid in solving the multiple-reflection 

problem in the specimen. 
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~--ELASTIC LOADING BAR ELASTIC TRANSMISSION BAR 

PROJECTIL SPECIMEN 

GAGE 

I 
!XIJ. 
II 

TRANSMISSION 

Figure 3.1 - Notation for stress analysis. x1 is displacement of Inter­
face I, x11 is displacement of Interface II, a 1 is incident 
stress, oR is reflected stress, aT is transmitted stress, 
d is distance from gage to specimen-bar interface, Ls is 
specimen length, and pcA is mechanical impedance 

Figure 3.2 - Multiple reflections and interactions in split-bar specimen 
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Figure 3.3 - Stress or strain time histories properly phased in time for 
standard analysis calculations 



B. STANDARD ANALYSIS OF THE SPLIT HOPKINSON BAR 

The experimental configuration of the split Hopkinson pressure 

bar as it used for determining dynamic-wave propagation properties 

and the notations used for analyzing a typical test are shown in 
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Figure 3.1. Upon impact of the projectile, a compressive stress r'I pro­

pagates along the incident (or 11 loading") bar and is partially reflected 

at the first interface. The reflected stress oR due to the impedance 

mismatch [Kolsky (1963, p.34)] at Interface I, propagates back into 

the loading rod. The resulting particle velocity at Interface pro­

duces strain in the specimen as soon as the input wave c 1 enters the 

first interface. 

The fraction of the loading stress which propagates as a trans­

mitted stress o~ (Figure 3.2) in turn in partially reflected at 
t 

Interface II as oR and the stress oT is transmitted into the transmission 
I 

bar. The reflected part of oT at Interface II is reflected back and 

forth within the specimen losing some of its energy to the incident 

and transmitter bars at each reflection, until the specimen finally 

reaches the equilibrium stress distribution and (oi+oR) ~ 0T. 

The strain gages on the loading bar measure the stress (o 1=EE 1) 

wave in the incident pressure bar. Upon partial reflection of the 

transient at the specimen and after a time delay proportional to the 

distance of the gages from the first interface dl' the loading gages 

record oR or (o 1+aR)' depending on whether overlapping of the incident 

and reflected waves occurs. The set of strain gages on the transmission 

pressure bar enables the determination of the transmitted compressive 

wave oT (Figure 3.1). 
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The strain gages mounted on the loading and transmission bar 

record the strain pulses which are analyzed to obtain a dynamic stress­

strain-strain rate curve for the material being tested. The derivations 

for the one-dimensional standard no-wave analysis method are presented 

in Appendix C. 

The standard method of analysis for the split Hopkinson pressure 

bar is subject to the following simplifying assumptions: 

1. One-dimensional stress in both bars with no radial inertia 

effect. 

2. One-dimensional stress in the specimen with no radial inertia 

effect. 

3. The stress, strain, and strain rate are uniform over the 

specimen length with no wave propagation and interaction effects. This 

assumption is equivalent to neglecting the effect of longitudinal 

inertia in the specimen. 

4. Frictionless interfaces. 

5. Axial forces and velocities are continuous at the bar-specimen 

interfaces. 

Though average stress, strain, and strain rate data are thus 

readily obtained, inertia effects are in reality negligible only if a 

very short specimen is used (Kolsky, 1949). On the other hand, radial 

frictional effects at the specimen-bar interfaces become more significant 

as the specimen length is decreased. This friction effect may mask 

the true dynamic behavior of the material under test since the stress 

state is not simply uniaxial. 

Davies and Hunter (1963) considered corrections for axial, radial 

and tangential inertia and for the effects of friction. They have 



discussed these errors as a function of specimen size for metals, and 

have shown that~ for an optimum specimen size, the length should be 

nearly the same as the diameter. 

57 

The assumptions made in the simple analysis may become very 

critical and the results may be of questionable validity when brittle 

materials such as rocks are being tested because the brittle specimen 

may not reach the stress equilibrium over its length (a few reflections 

have taken place within the thin wafer) before fracture occurs. In this 

case the loading wave length to specimen length ratio may be meaningless 

in its effect on the a - E curve of the rock specimen. Another factor 

influencing the high strain rate technique of rock testing is the 

statistical nature of flaws and inhomogeneities within the rock which 

may necessitate a greater specimen size for meaningful results. 

The author believes that one answer to the problem of determining 

true dynamic-wave propagation properties of brittle materials is in the 

computer wave-simulation approach. This can be done by assuming a con­

stitutive relation for the specimen material, and using a trial and 

error computer process. For each incident strain pulse the wave pro­

pagation and interaction detail may be computed at any point in the 

specimen, as well as the reflected and transmitted strain pulses in the 

elastic bars. These computed strain gage outputs are then compared with 

experimentally measured ones. If they agree, the assumed constitutive 

law is considered accurate; if not, another model-parameter combination 

can be made until there is satisfactory agreement between the constructed 

strain-time curves and the experimental strain gage data. The wave 

analysis information may then be used, if desired, with the standard 

method to separate the inertia effect from the strain rate effect in the 



averaged (derived) stress-strain-strain rate relation for brittle 

materials. 

The computer simulation method can also be used as a back up 

to the conventional method of analyzing split bar data. In the latter 

method one is always confronted with the question as to what part of 

the derived stress-strain-strain rate curves are valid. By inserting 

the derived constitutive relation into the wave simulation program, 

one can verify their validity. 

C. FINITE-DIFFERENCE ANALYSIS OF THE SPLIT HOPKINSON BAR 
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In order to determine the degree to which average stresses, strains, 

and strain rates (computed with the standard method) approximate actual 

stresses! strains, and strain rates in the material, a finite-difference 

computer code for the simulation of the elastic pulse propagation 

problem in the split Hopkinson pressure bar technique was developed. 

This simple wave analysis was used to (1) check the finite-differencing 

technique presented in Appendix A, (2) study bar- specimen-loading 

pulse parameters that may be important in the standard approach and so 

aid in the designing and planning of laboratory experiments, and in the 

interpretation of results, (3) perform an elastic wave analysis veri­

fication for experimental data without neglecting wave effects. 

The computer approach outlined in the last part of Section B was 

applied to an assumed linearly-elastic specimen to determine how the 

derived o -~ -E curves depart from the assumed rate insensitive avg avg avg 
behavior for various combinations of the bar-specimen-loading pulse 

parameters. Also, computed numerical gage data may be compared to 

experimental numerical gage data to verify if the materials tested have 



a linear elastic-strain rate insensitive constitutive law. 

1. Computer Simulation for a Sine Loading Wave 
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Kolsky's (1949) technique was simulated in the computer for a sine 

incident strain pulse propagating into the experimental assembly. The 

specimen and bar materials, and loading pulse parameters selected 

(Table VII) were identical to those used by Wu and Hustrulid (1971). 

where 

The loading strain wave, si' was defined as 

A is the maximum amplitude 

A is the wave length. 

TABLE VII - DATA USED IN THE COMPUTER SIMULATION 

Steel bars 

Specific weight, lb./in. 3 

Wave speed, 10 5 in./sec. 

Young's modulus, 106 psi 

D i a meter , i n . 

Length, in. 

Space increment, in. 

Amplitude, A, l0- 6 in./in. 

Wave length, A, in. 

995 

10 

0.2828 

1.9558 

28 

1 . 5 

84 

0.233 

Specimen 

0.0966 

2.0976 

11 

1 . 5 

1 '2 '5 

0.250 

( 3 0 l ) 
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2. Simulation Results 

Theoretical split-bar test data were generated for a sine wave 

input [Equation (3.1 )] into the split-bar finite-difference code. This 

computer simulation provided the true shapes of the reflected and trans­

mitted pulses. These were then used as if they were experimental data 

to be reduced with the standard method of analysis to obtain 11 derived 11 

values of stress, strain and strain rate as a function of time. The 

true values of stress and strain at the finite-difference mesh points 

were averaged along the specimen and compared with the derived values. 

It was found that the specimen length may influence the slope and shape 

of the stress-strain curve for a given loading pulse duration and in­

tensity (see Figure 3.4). It was interesting to note, however, that 

the derived strain (and strain rate) - time curves agreed well with 

curves representing the averages of mesh point values along the specimen. 

Thus, the derived curves of Eavg and savg vs. time reflect, contrary to 

Kumar's assumption (1968), true average dynamic effects no matter what 

specimen size is used. It was apparent that the distributions of stress, 

strain, and rate of strain were in general, not uniform along the length 

of the specimen. As expected, the degree of non-uniformity is most 

severe during the earlier portions of the loading history. 

Similarly, errors in the delay time T (Figure 3.3) affected the 

slope and shape of thederived stress and strain-time curves as well as 

the stress-strain curve (see Figure 3.5). 

An overstress caused by the axial inertia effect was observed in 

the early part of the loading cycle in the one-dimensional wave analysis. 

Therefore, data collected during the first few microseconds in the 

Hopkinson split-bar type tests should be ignored. The initial distortion 
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of the derived stress-strain curve may be sufficient to preclude the 

determination of the elastic modulus and even the yield stress for 

elastic-plastic materials. The common criterion used for selecting 

values from the derived stress, strain and strain-rate curves that 

approach those actually in the sample, is the stress difference at the 

specimen ends. It was observed that a stress difference of over 10 

percent of the first interface stress still resulted in a true stress­

strain curve (i.e., elastic with assumed modulus). 

From the computer simulation it was noted that increased derived 

strain rates were obtained by reducing the specimen length. It was 
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also found that when the specimen length increased the derived stress 

levels in the vicinity of the maximum stress departed from true (assumed) 

elastic behavior, again because of axial inertia effects (see Figure 

3.4). Therefore, the standard method of analysis may introduce important 

errors in the maximum derived stress as the specimen length increases. 

Green and Perkins (1968) in studying the effect of specimen size in 

dynamic loading concluded that the apparent fracture stress decreases 

as specimen length increases, the diameter remaining constant. They 

agreed with Mogi (1965) and Grosvenor (1963) in that such a decrease 

in the strength is due to a decrease in the end effects as the specimen 

length increases. From the above analysis the author believes that this 

explanation may be ambiguous because in the split -bar test for brittle 

materials the effect of the stress gradient on the strength may be severe. 

Here the effects of size and stress gradient on the strength need to be 

separated. Although little has been done in this area, it is an impor­

tant consideration in the split-bar test. The presence of stress gra­

dient, flaws and inhomogeneities in the material, and frictional end 



effects are known to cause an apparent size effect in the strength and 

deformation behavior under static loading and would be expected to do 

likewise for dynamic loading. 

A wave analysis of split-bar data may offer the possibility of 

studying the effects of stress gradient on rock failure under dynamic 

compressive conditions, a factor which has not yet been examined either 

experimentally or theoretically. This refinement may allow the deter­

mination of a time dependence criterion for prediction of true dynamic 

compressive strength at high strain rate and under steep stress 

gradients. 

D. EQUIPMENT, INSTRUMENTATION AND EXPERIMENTAL PROCEDURE 

The high strain rate experiments were done in a large diameter 

split Hopkinson bar apparatus similar in design to that used by Kolsky 

(1949) and others. 

The equipment, instrumentation, and experimental procedure are 

similar to those used for the long bar spallation tests. Bai (1970) 
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gives a complete description of the split Hopkinson pressure bar device 

used in this investigation. The schematic of the experimental arrange­

ment and instrumentation is shown in Figure 3.6. The loading and trans­

mission bars were both 7 ft. long and 1.497 in. in diameter with mirror 

finish ends, and made from 7075-T6 aluminum alloy (pc = 53.31 lb-sec/in. 3
). 

The strain gages were mounted at the midpoint of each elastic bar. For 

each test the rock specimen was placed in firm contact between the two 

axially aligned bars to improve the wave transmission across the inter-

faces. 
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A tapered aluminum projectile (made from the same material as the 

bars), 3ft. long, impacted the input bar to generate the incident 

stress pulse. The magnitude of the loading pulse depends on the pro­

jectile impact velocity, length, and shape. The impact also triggered 

the oscilloscopes which after a suitable time delay recorded and stored 

strain records at the gage locations as a function of time (a typical 

result is shown in Figure 3.7). The oscilloscope screens were photo­

graphed with a Polaroid camera and these records were projected onto 

graph paper for machine digitizing and analysis. 

A momentum trap was placed a short distance from the free end of 

the transmission bar to absorb the assembly momentum. This prevented 

tearing the strain gage leads from the bars during the later rigid 

body motion of the bars. 
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The bar wave velocity of each pressure bar was obtained by measur­

ing the transient time in a single-bar experiment. Its value was 2.040 

x 10 5 in./sec. Young's modulus was then calculated from the relation 

c2 = E/p to give E = 10.904 x 106 psi. 

Pulses were recorded at the two gage stations with no specimen in 

the pressure bar set up to compensate for the joint effect always pre-

sent despite the mirror finish on the ends of the bars and great care in 

alignment. In order to decrease frictional or end effects, an appro­

priate specimen geometry of length to diameter (see Table VIII) was used 

and the flat surfaces of the specimens were lubricated with a thin layer 

of high-vacuum grease. The lubrication minimized the interface shearing 

stresses present when dissimilar materials expand radially. The strain 

gage transducers were calibrated by placing a calibrating shunt resis­

tance across one of the gages as was done in the long bar experiment. 
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Figure 3.7 -Typical oscilloscope traces of incident, reflected and trans­
mitted strain pulses 



TABLE VIII- COMPRESSIVE STRESS-STRAIN-STRAIN RATE DATA FOR CONCRETE 

Specimen 

No. 

J-1-2 

H-1-3 

J-1-B 

J-1-3t 

I-4-1 

Length 
(Spec. diam=1.471 11

) 

; n. 

1.478 

1.547 

1.487 

1.008 

1.525 

Projectile 

Velocity 

in./sec 

377 

323 

373 

368 

320 

Secant* 

Modulus 

106psi 

1.40 

1.42 

1.66 

1.83 

2.05 

*Dynamic secant moduli from zero stress to ultimate fracture stress. 

tSeven reflections in the specimen before fracture. 

Ultimate Conditions 

Stress 

psi 

6836 

6480 

7399 

6907 

7030 

Strain 

I0- 6in./in. 

4863 

4538 

4436 

3763 

3414 

Strain 
Rate 
Sec- 1 

39 

37 

33 

32 

14 

(J) 

co 
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E. ANALYSIS AND TEST RESULTS 

Five sh~.·~ cylindrical specimens of concrete, with length approxi­

mately eq~~l to the diameter, were tested in the compressional split bar 

assembly, and the experimental strain gages results analyzed with the 

conventi ona 1 (standard) method to determine the dynamic : -,_ -: curves. 

The soecii!len ends were ground smooth and parallel to± .002 in. The 

governing cr1teria for specimen size wtre axial and radial inertia errors 

associated witn the analysis and the statistical variation of material 

properties. A tapered proj2ctile (see Figur0 3.6) was usee to produce 

a slowly increasing inci:iet.t str2ss pulse so that the brittle faiiun:_, 

would occur during a periJd of relative stress equilibrium in the speci­

men . Very hi g h i n i t i a 1 s t r a i n )~ c t e s s h o :J l d !:I e avo i de d when one i s test i n g 

nrittle materials since failure may occur so early in the loading cycle 

that meaningful results cannot be obtained. The strain-time information 

from the gages was processed as explained in Appendix C. The values 

of the average stress, stra1n, strain rate, and stress difference between 

the specimen ends as e. function of time v.rere computed. These input and 

output data together with the stress-strain relationship were plotted for 

a typical specime•1 in Figures 3.8 to 3.11 . Similar sets of curves 

for the remaining specimens are included in Appendix D. 

Typical strain gage records after compensation for the joint pffect 

are shown in Figure 3. 8 . It is seen from these curves that the incident 

compressive stress has a gradual increase to its maximum. This was ob­

tained with the tapered projectile and is necessary to avoid premature 

brittle fracture when there is a significant stress difference between 

the specimen ends. The shape of the slowly increasing stress region of 

the loading pulse can be controlled by properly tapering the projectile. 
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The rapid increase in the reflected stress 0R and the decrease in 

the transmitted pulse oT, at later loading times, are an indication of a 

reduction of the effective mechanical impedance (p c A ) of the specimen 
s s s 

as a result of crack growth. This will reduce in turn the load-bearing 

capacity ability of concrete in the post-failure region as will be dis­

cussed later. 

The dynamic stress-strain-strain rate curve of Figure 3.11 was 

obtained by plotting stress versus strain at corresponding times from 

Figures 3.9 and 3. 10. 

1. Dynamic Deformation and Failure 
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Reasonable dynamic a-c-e curves up to failure were obtained directly 

from the computed o-c-€ plots (see Figure 3.11 and Appendix D) in those 

regions where the stress difference was less than 10 percent. These 

close-to-equilibrium dynamic loading curves at various strain rates are 

shown in Figure 3. 12. The average strain rate is stated for each 

section of the stress-strain curve in Figure 3.12 along with the maximum 

variations. These variations were at most 28 percent of the average 

value for the regions plotted. The loading curves in Figure 3.12 should 

not be considered strictly as constant strain rates, but rather reasonable 

approximations. 

The stress-strain curves at desired constant strain rates are usually 

obtained by first plotting the instantaneous strain rates at a given strain 

versus stress for a group of tests and then cross plotting with a family 

of so-obtained constant strain curves. This refinement was not attempted 

here due to the limited number of tests and the relatively large amount 

of scatter in the results. 



8 ESPALLATION = 3.2 x l06PSI 

0 

6 

(i) 
~ 

0 
0 
0 
~ 

4. ~. I .._I 

(/) 

/L(/ 
e FRACTURE CURVE E'

1
SEc-l CURVE E',SEc-1 

(/) A 29:1:8 62:1:2 
w 

J 
a:: 8 40±1 K 68± I 
I-
(/) c 49±2 L 31 ± 8 

12r II ""~TATIC =2.37 X 10
6 

PSI 

D 42±5 M 32± I 

E 14 ±2 N 40±2 

F 19 ±3 0 50±4 

G 29:1:3 p 62 ±2 
H 40±5 Q 73 ±I 

I 50±2 R 32 

00 2 7 8 9 3 4 5 6 
AVERAGE STRAIN , ( 10-3 IN. /IN.) 

Figure 3.12 - Experimental rate-sensitive stress-stratn curves for concrete under uniaxial compression at 
different strain rates 

-......J 
w 



Unconfined compressive stress-strain-strain rate results for the 

concrete summarized in Table VIII are values under ultimate conditions, 

defined at the time when stress reaches its maximum value. Table VIII 
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and Figure 3.12 indicate that the failure strain in the concrete increases 

with strain rate, which is consistent with the results of Atchley and 

Furr (1967). It is also shown that the dynamic compressive failure 

strain (3763- 4863 ~ in./in.) for the higher strain rates (32- 39 sec-1) 

were greater than the corresponding static value (3450 ~ in./in.), which 

is in agreement with Watstein 1 s results (1953). 

The failure stress is relatively constant and shows relatively lit­

tle sensitivity at the strain rate values employed, which was also re­

ported by Green and Perkins (1968, p. 46), and Atchley and Furr (1967). 

The dynamic to static compressive strength ratio varied from 1.42 to 1.46. 

A secant modulus can be defined as the slope of the straight line 

containing the zero loading point and the fracture ooint at which reason­

able equilibrium has been established. It is shown from Table VIII and 

Figure 3.12 that the secant modulus decreases, with increasing instan­

taneous strain rate. 

The moduli determined from both long bar velocity measurements was 

significantly greater than its corresponding static value (Figure 3.12). 

The ratio of dynamic to static Young 1 s moduli was 1.35. Brittle failure 

occurred at such low strain levels that the specimen was not in a state 

of uniform stress in the early part of the dynamic experiments. There­

fore, no valid moduli could be calculated from the o-E-s curves derived 

by the conventional method. 

Figure 3.12 and Table VIII indicate that the strength is not a 

function of strain rates in the range 14 - 39 sec- 1
• The strength de-



pendence on strain rate at very high rates (10~ - 104 sec-1) reported 

by Green and Perkins (1968), and Kumar (1968) may be due to early fail­

ure (less than five wave reflections within the specimen) which alters 

the state of uniaxial stress along the specimen. 
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Rummel and Fairhurst (1970, p. 197) suggested that many rocks de­

form in a nonlinear manner near failure when loaded at moderately slow 

strain rates. In a similar way, Figure 3.12 indicates that a regime 

of slow damage (or crack growth) may precede the onset of unstable fail­

ure propagation under dynamic loading in concrete. Further studies of 

the near-failure region of dynamic deformation are necessary for a bet­

ter understanding of the processes involved. 

Strain rates can be held constant for lower rate testing as with 

stiff and servo-controlled testing machines. However, constant strain 

rates are not achieved in the higher-rate split-bar testing. In the 

reported controlled rock testing the strain rate has thus played a role 

as a parameter, and not necessarily as an independent variable, although 

it has been treated as such. The strain-rate history or variable strain­

rate loadings may be important in the deformation and failure of rocks 

and rock-like materials. 

2. Post-Failure Behavior 

For static loads up to failure the rock is in stable equilibrium 

with the stresses applied to it; difficulties in measuring stresses and 

strains arise at or near failure when the equilibrium breaks down resul­

ting in a violent and uncontrolled release of energy. With force as the 

independent variable the usual constant rate of loading used in conven­

tional compressional rock testing implies that the force be increased 

to the specimen's maximum loading-bearing capacity (compressive llstrength
11

) 
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with the failure generally being catastrophic in nature (Bieniawski, et 

al., 1970). It is therefore of great importance to study the behavior 

of failed rock, which may contribute significantly to an understanding 

of rock stability problems and lead to the development of better methoJs 

of controlling the violent failure of rock structures. 

Several investigators (Wawersik, 1968; Crouch, 1971; Rummel and 

Fairhurst, 1970; Hudson, et al., 1971; among others) have recently stud­

ied experimentally the mechanical behavior of disintegrating rock by 

considering the displacement as the independent variable. Two methods 

have been used to control the excess energy release during failure: a 

stiff testing machine and a servo-controlled testing system. When the 

load is thus controlled during the loading and unloading portion of the 

curve it is found that explosive failure of rock speci1nens is not neces­

sarily an intrinsic rock property but is often due to a rapid release 

of strain energy stored within the testing machine. These tests, where 

a fixed jisplacement rate has been applied to the rock specimen, have 

demonstratedthat rocks do retain some strength after the ultimate 

strength of the rock has been reached. 

The literature on controlled rock failure is abundant for very low 

constant strain rate loading; however, no research has been reported in 

the high strain rate range. The author has used the split Hopkinson 

bar technique and its simple method analysis, to show the potential of 

this technique in allowing reasonable unloading post-failure dynamic 

curves. As was shown in Appendix C, the simple analysis allows one to 

determine the displacements of the specimen ends as a function of time. 

These displacements can then be considered as the independent variables. 

By controlling the shape, intensity, and duration of the incident wave 
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passing through the bar-specimen-bar assembly one may devise a dynamic­

controlled testing system which will produce any desired unloading path. 

The use of different projectile shapes and sizes will aid the control 

of the incident wave. There is no reported work on the dynamic post­

failure of rock and rock-like materials. The author herein presents 

some of his findings related to the dynamic wave propagation post-failure 

of concrete. 

Figure 3.12 also shows the o-s-s curves for the failed concrete. 

It is interesting to see the great increase in strain (about 100 percent) 

with a decrease in stress during unloading (about 20 percent) at differ­

ent strain rates. This reduction in load-bearing capacity ability of 

concrete in a post-failure region is the result of crack growth which 

also causes a reduction of the effective mechanical impedance (rscsA5 ) 

of the specimen. The unloading paths of the dynamic computed curves 

shown in Appendix D were obtained when the data was processed with no 

regard to specimen end stress difference; that is, high stress gradients 

were present within the specimen during some portions of the unloading 

cycle. 
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IV. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

A. LONG BAR DEFORMATION AND FRACTURE BY SPALLATION 

The process of spallation and its separation into two phenomena 

of stress wave propagation and interaction in plain concrete (a rock-like 

material) and fracture under dynamic loading is described in this 

dissertation. 

Fundamental to the study of spallation phenomena was the dete~ina­

tion of stress, strain, and strain-rate history at the spall plane, and 

the stress distribution along the bar at time of fracture initiation. 

As the stress condition in the interior of the material cannot be 

measured directly, it was inferred from measurements of surface strains 

on the concrete bars and solution of the stress wave propagation problem. 

It was necessary as a prelude to the solution of the marching problem, 

to know or assume the dynamic properties of the concrete and its 

dynamic constitutive relation. A one-dimensional finite-difference wave­

propagation computer code was used to calculate the stress distribution 

along the bar at any desired time and the stress history at any location 

resulting from an axial projectile impact on one end of the bar. 

The strain gage signals were used to substantiate the assumed 

elastic constitutive relation and to determine the critical fracture 

time at which tensile fracture begins. The measured spall coordinate 

and the critical fracture time were input to the computer code to 

calculate the stress, strain, and strain rate-time histories at spall 

plane up to the time of fracture and the stresses along the bar at the 

instant of fracture. These quantities were then used in the development 

of different types of time-dependent dynamic fracture models. 



A general criteria based on the concept of cumulative damage was 

proposed to explain the time-dependent dynamic criteria for fracture by 

spallation in concrete bars. 

The principal conclusions resulting from this investigation on 

concrete are: 
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1. The finite-difference technique is accurate and reliable when 

applied in the numerical solution of the one-dimensional elastic stress 

wave propagation problem in long cylindrical bars. This dissertation shows 

how a judicious combination of computer and experimental stress methods 

permits more accurate descriptions of dynamic loading effects on materials. 

2. The simple elastic wave analysis explained the material be­

havior reasonably well over the dynamic-wave stress loading conditions 

employed. Attenuation and dispersion were found to be negligible in 

the long bars. 

3. The dynamic Young's modulus was significantly greater than its 

corresponding static value. The ratio of dynamic to static Young•s 

moduli was 1.35. 

4. The dynamic compressive strength deduced from the peak com-

pressive stress propagating in the long concrete bars was linearly 

dependenton projectile velocity. However, the extent of the comminution 

at the impacted end was not dependent on the projectile velocity since 

the crushed zone length varied greatly, even for approximately the same 

nozzle energy of the spherical-nosed cylindrical projectiles. The 

dynamic to static compressive strength ratio varied from 0.50 to 0.80 for 

the particular striker and velocitiesused. Stresses significantly 

higher than these could not be induced into the intact bar by increasing 



the impact velocity. The higher energy of the striker would go mostly 

into additional comminution rather than stress wave energy into the 

intact portion of the bar. 
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5. The instantaneous critical spall stress (or strain) at which 

tensile fracture begins increased with increasing instantaneous fracture 

spall strain rate, and decreased with increasing tensile stress rise time 

to fracture. This was an indication of a time dependence of the spall 

strength for concrete. A similar time dependence for dynamic fracture 

by spallation was also observed in terms of the space-tensile stress 

variation at fracture. 

6. For the range of strain rates investigated (7 to 33 sec- 1 ) the 

dynamic tensile strength was 3.5 to 5.0 times its static value. An 

approximation for the dynamic tensile strength was 1200 to 1800 times the 

static Young's modulus. 

7. At fracture the derived strain rate cs/~t is a better approxima­

tion to the instantaneous strain rate at time of fracture ~s than is the 

apparent strain rate cs/ fj,X/ c. 

8. The tensile fracture stress increased in an approximately linear 

manner with increasing peak incident compressive stress. Since it was 

observed that the spall strength was also a function of rate of loading, 

the precompression explanation of the increased tensile strength is not 

complete. 

9. The critical normal fracture strain energy and mechanical energy 

criteria are proposed to explain the spatial and time dependence explana­

tion of spallation in concrete. The critical tensile fracture strain 

energy was defined as the energy stored in the tensile-stressed part of 
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the bar between the impact end and the spall at the time of fracture 

initiation. The energy value was found to be 1.27 ± 0.38 in.-lbs. for 

concrete bars 1.47 in. diameter subjected to instantaneous strain rates 

varying from 7 to 33 sec- 1 • The use of minimum strength values was not 

required for the constancy of the strain energy. 

The critical tensile fracture mechanical energy was more nearly 

constant than the corresponding strain energy and the values of the 

former were generally higher. This critical mechanical energy was 

defined as the energy passing through the spall plane up to the time of 

fracture initiation and was found to have the value 1.68 ± 0.18 in.-lbs. 

at the time of fracture, again for 1.47 in. diameter bars. Care must be 

taken when extrapolating the results of this dissertation to other size 

bars because the area A is a scale factor. 

10. Both the tensile mechanical energy and strain energy criteria 

were shown to be equivalent to the tensile stress gradient and rate 

dependent criteria under the usual assumption of linearity in the net 

stress pulse. It was also shown that the energy criteria were special 

cases of a more generalized cumulative damage model of the form: 

ZF 
[ f[o {Z)]dZ = 1 

where 

Z is the space or time coordinate 

ZF is the value of Z at fracture initiation 
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f[a(Z)] is a second order stress damage function in terms of the physical 

material properties (E and c), cross-sectional area A, and the constant 

energy transferred or stored (W or U). The quantities A and c affect 

f[a(Z)] proportionately and E and W (or U) inversely. The mechanical 

energy concept has a more reasonable physical basis (energy transfer from 

mechanical energy to new surface energy at spall plane) for incorporation 

into the cumulative damage criterion. 

11. The empirical spallation energy criteria for concrete and their 

equivalent expressions are summarized in Table VI at the end of Chapter 

I I. 

The expression for the fracture strain in terms of the apparent 

strain rate €s = 2.209 x 10- 4 ~a1 / 3 (Equation 3.10a) is similar to the one 

reported by Birkimer (1968) = 2.060 x 10- 4 ~ l/ 3 for another concrete. ss a 

This indicates that perhaps there is a constant representing the spall 

resistance of the concrete materials, which will depend on the strain 

energy, Young's modulus, wave velocity, and cross-sectional area. 

12. The cumulative damage energy concept may be applied to spallation 

in rock and rock-like materials loaded in uniaxial stress (bar geometry) 

or uniaxial strain (plate geometry). 

In view of the great potential of the application of the findings 

obtained from this dissertation, the following recommendations are made: 

a. Investigate the application of the cumulative damage energy 

criterion for several rocks impacted in uniaxial stress, and correlate 

the results with the static physical properties to predict spallation 

behavior of unknown rocks. 

b. Continue investigating the dynamic behavior of concretes with 

different material strengths, and correlate the results to find a possible 



spall resistance constant. A correlation with the static mechanical 

properties of the concrete may be found to predict spallation behavior 

for concretes (W, U, etc.) subjected to bar geometry loading. 
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c. Study the possible application of the cumulative damage energy 

criterion to the spallation of rock and rock-like materials for uniaxial 

strain loading (plate geometry) to determine if the state of stress 

affects the general spallation criterion proposed for uniaxial stress 

loading. 

B. COMPRESSIONAL SPLIT HOPKINSON BAR TESTING 

A critical study of the principles and conventional analysis of 

the compressional split Hopkinson bar technique for rock and rock-like 

material testing has been presented. The restrictions and complications 

involved in split-bar testing of brittle materials were pointed out 

in this dissertation (pp. 56-57 ). A computer code to reduce data gen­

erated in the technique has been developed, using the conventional analy­

sis. Experimental strain-time data can be inserted in the code to com­

pute average stress, strain, and strain rate as a function of time and 

the stress difference-time history at specimen ends. This program also 

allowed plotting of the stress and stress difference-time, strain-time, 

strain rate time, and the stress-strain relationships. 

The degree to which average stresses, strain, and strain rates 

approximate actual stresses, strains, and strain rates in the material 

when the standard method of analysis has been used for processing ex­

perimental data was investigated. A finite-difference computer code 

for the simulation of the elastic wave propagation problem in the split 

Hopkinson bar technique was developed. Theoretical split-bar test data 

were generated for a sine wave input into the split-bar finite-difference 
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code. The computer simulation provided the true shapes of the reflected 

and transmitted pulses. These were then used as if they were experi­

mental data to be reduced with the standard method of analysis to ob­

tain "derived" values of stress, strain, and strain rate as a function 

of time. The simulated values of stress and strain averaged along the 

specimen at the mesh points were also determined and compared with the 

derived values. 

Split-bar experiments were performed in a large diameter split 

Hopkinson bar apparatus for concrete specimens. The experimental strain 

gages results were analyzed with the conventional method to determine 

dynamic deformation, failure, and post-failure behavior. 

On the basis of discussions and results from the conventional and 

elastic wave simulation analyses, and from the split-bar experiments 

on concrete, the following conclusions are drawn: 

1. The high-strain-rate split Hopkinson pressure bar technique 

used to obtain the dynamic-wave propagation properties of brittle mate­

rials such as rocks requires careful wave analysis in the bar and spec­

imen for accurate interpretation of experimental data. The assumptions 

made in the standard analysis may become very critical and the results 

may be of questionable validity because the brittle specimen may not 

reach the stress equilibrium over its length (a few reflections have 

taken place within the thin wafer) before brittle failure occurs. In 

this case the ratio of loading wave length to specimen length may be 

meaningless in its effect on the dynamic stress-strain curve of the 

rock specimen. Another factor controlling the high-strain-rate tech­

nique of rock testing is the statistical distribution of flaws and in­

homogeneities which may call for a greater specimen size. 



The author believes that the true dynamic-wave propagation proper­

ties of brittle materials could best be determined by a computer wave 

simulation approach. 

2. From the computer simulation for a sine incident strain pulse 

propagating into the experimental assembly it was found that: 

a. Specimen length may have a significant effect on the slope 

and shape of the stress-strain curve for a given loading pulse duration 

and intensity. However, the derived strain and strain rate-time curves 

agreed well with curves representing the averages of mesh point values 

along the specimen. Thus, the derived strains and strain rates signify 

true average dynamic effects no matter what specimen size is used. 

b. The distributions of stress, strain, and rate of strain in the 

test specimen are, in general, not uniform. As expected, the magnitude 

of this non-uniformity is most severe during the earlier portions of 

the loading cycle. 
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c. Errors in the delay time caused significant errors in the slope 

and shape of the derived stress and strain-time curves as well as the 

stress-strain curve. 

d. A stress difference between specimen ends of over 10 percent 

still resulted in an accurate stress-strain curve (i.e., elastic with 

assumed modulus}. 

e. For the same input pulse, increased derived strain rates are 

obtained when specimen length is reduced. 

f. When the specimen length is increased, the derived stress levels 

in the vicinity of the maximum stress decreased and departed from true 

(assumed) elastic behavior because of axial inertia effects. This fac-



tor should be considered in the explanation of the decrease in strength 

with increasing specimen length. 

g. The end-effects explanation of the decrease in strength as 

the specimen length increases may be ambiguous for brittle materials 

because in the split-bar test the effect of the stress gradient on the 

strength may be severe. The presence of stress gradient, flaws and 

inhomogeneities in the material, and frictional end effects generally 

cause an apparent size effect in the strength and deformation behavior. 
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3. The experimental results on concrete show a sensitivity of 

failure strain to strain rate. For the higher rates the strain increases. 

4. The dynamic compressive failure strain (3763- 4863 ~ in./in.) 

for the higher strain rates ( 32 ~ 39 sec- 1 ) were greater than the 

corresponding static value (3450 ~ in./in.). 

5. The failure stress is relatively constant and sho~relatively 

little sensitivity at the strain rates values employed (14 to 39 sec- 1
). 

The dynamic to static compressive strength ratio varied from 1.42 to 1.46. 

6. A secant modulus, defined as the slope of the straight line 

containing the zero loading point and the maximum stress at which reason­

able equilibrium has been reached, decreases with increasing instanta-

neous strain rate at fracture. 

7. Brittle failure occurred at such a low strain level that the 

specimen was not in a state of uniform stress in the earlier part of 

the dynamic experiments. Therefore, no valid moduli could be calculated 

from the o-£-s curves derived by the conventional method. 

8. The reported data from other investigators at very high strain 

rates usually indicate increasing strength with increasing strain rates. 

The author suggests that this behavior may be masked by the early failure 



(less than five wave reflections within the specimen) which alters the 

state of uniaxial stress along the specimen. 
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9. The author reports the first data on high-strain-rate controlled 

dynamic failure. The split Hopkinson bar technique and its simple method 

of analysis were used to obtain reasonable unloading post-failure dy­

namic curves. By controlling the shape, intensity and duration of the 

incident wave passing through the bar-specimen-bar assembly one may 

devise a dynamic controlled testing system which will produce any de­

sired unloading dynamic path. 

10. In the post-failure region there is a great increase in strain 

(about 100 percent) with load-bearing capacity loss (about 20 percent) 

at different strain rates. This reduction in load-bearing capacity 

ability of concrete is a result of crack growth which also causes a 

reduction of the effective mechanical impedance (pscsAs). 

The following recommendations are proposed: 

a. Determine the dynamic-wave propagation properties of brittle 

materials by computer simulation. This wave analysis information may 

then be used with the conventional method to separate the inertia effect 

from the strain rate effect in the averaged (derived) stress-strain­

strain rate relation for brittle materials. 

b. A wave analysis of split-bar data may offer the possibility 

of studying the effects of stress gradient on rock failure under dynamic 

compressive conditions, a factor which has not yet been examined either 

experimentally or theoretically. This refinement may allow a separation 

of the effects of size and stress gradient on the strength and defor­

mation, and the determination of a time dependence criterion for the 

prediction of true dynamic compressive strength. 
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c. Study the dynamic behavior of rocks and rock-like materials 

with the standard analysis of the split Hopkinson bar to improve the 

understanding of the near-failure region of dynamic loading and the 

effect of the strain-rate history in the deformation and failure behavior. 

d. Study controlled dynamic deformation, failure, and post-failure 

of rocks and rock-like materials using the split Hopkinson bar apparatus. 
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APPENDIX A 

FINITE DIFFERENCE METHOD OF ANALYSIS 

Wave propagation problems in cylindrical bars are often approached 

with a one dimensional theory because of the many complications which 

arise in the use of a two or three dimensional theory. For the latter 

cases additional equations must be programmed and more detailed con­

siderations must be given to the constitutive relation, boundary con­

ditions, yield conditions, and the approximation of artificial viscosity. 

The incorrect use of those quantities may cause more significant errors 

in the desired solution than if a simple theory is employed. Also, the 

accuracy of two or three dimensional numerical methods is limited by the 

cost of performing the numerical calculations. 

This appendix provides the theoretical base necessary for impact 

experiments utilizing a bar geometry as in spallation and dynamic stress­

strain-strain rate measurements for rock and rock-like materials. 

The simple one dimensional linear elastic stress wave equation, 

l'xx- :TT = 0, is said to be a hyperbolic partial differential equation 

and has been investigated for many years. While analytical solutions 

exist for many of the classical problems, numerical solutions have become 

popular for complex propagation problems arising in science and engineer­

ing. The high-speed digital computer has made possible the numerical 

approach to those problems. Of the known numerical approaches, the 

finite-difference method is one of the most useful, and its application 

has been growing with the research and establishment of criteria for 

stability and convergence of solutions. 

Two different boundary conditions are considered, each pertaining 
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to the particular wave propagation problems being studied, and explicit 

difference schemes are developed to solve them. The following discussion 

shows how experimental methods and computer solutions can be effectively 

combined to solve a problem which defies solution by either one alone. 

A. LINEAR ELASTIC WAVE PROPAGATION 

The mathematical model of the one dimensional solution for the 

analysis of longitudinal wave propagation in cylindrical bars is re­

presented by the following governing equations given by Kolsky (1963, 

p. 42) . 

Equation of motion: aa(x,t~ = av{x,t) = p 
Cl 2 u{x,t) 

ax p 3t ;3 t 2 (A. l ) 

Continuity equation: au(x,t) = 3s(x,t) 
ax dt 

(A. 2) 

where by definition s(x,t) = au{x,t) 
8X 

Constitutive equation: Hooke's Law a(x,t) = Es(x,t) (ft .. 3) 

where 

o(x,t) = axial stress 

E(x,t) = axial strain 

u(x,t) = axial displacement 

v(x,t) = longitudinal particle velocity 

X = a xi a 1 coordinate 

t = time 

p = mass density 

E = Young's modulus of elasticity 
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Equations (A.l), (A.2), and (A.3) lead to the familiar elastic wave 

equations which may be expressed in terms of stress, strain, displacement, 

or particle velocity. 

3 2 8 
-= 
3t2 (A. 4) 

where G- o(x,t), E(x,t), u(x,t) or v(x,t) 

c = IE/o is the bar wave velocity. 

The most elementary assumptions commonly made in the one dimensional 

approach result in approximate solutions, the accuracies of which depend 

on the following conditions: 

(1) plane transverse sections of the bar remain plane during 

the passage of the stress wave, 

(2) the stress acts uniformly over each section, and, 

{3) the effects of lateral inertia are neglected. 

The longitudinal expansions and contractions of sections of the bar will, 

however, necessarily result in lateral deformations, the ratio between 

lateral and longitudinal strains being given by Poisson's ratio. This 

lateral motion will result in a non-uniform distribution of stress across 

the sections and plane transverse sections will become distorted. The 

effect of lateral inertia in cylindrical bars is discussed by Kolsky (1963) 

and it is shown that it becomes important when the operative wave lengths 

are of the same order of magnitude or less than the diameter of the bar. 

The above assumptions are valid when the wavelengths are large compared 

with the diameter of the bar. Also, under this condition the pulse will 



undergo very little change in form or amplitude as it propagates along 

the bar. 

B. FINITE-DIFFERENCE METHOD OF APPROXIMATION FOR THE WAVE EQUATION 

The dimensionless form of the wave Equation (A.4) is: 

(A.S) 

96 

where ¢(X,T) may represent: displacement, U(X,T), velocity, V(X,T), 

strain, s(X,T), or stress, S(X,T). The coordinates X and T represent 

space and time coordinates. Capital letters are used herein to designate 

dimensionless variable. The characteristics of the above wave equation 

have slopes~~= ±1, Ames (1969). 

In general the method of characteristics provides the most accurate 

process for solving hyperbolic equations. It is probably the most con-

venient method as well when the initial data are discontinuous, because 

the propagation of discontinuities in the solution domain along the 

characteristics is difficult to deal with on any grid other than a grid 

of characteristics. Problems involving no discontinuities, however, can 

be solved satisfactorily by convergent and stable finite-difference meth­

ods with rectangular grids, and the organization of the computations 

for a digital computer is usually easier than for the method of charac-

teristics. 

From a retangular net (Figure A.l), with constant intervals H ~x 

and K = ~T, one may write: 



i=O 
T ~~ 

H=/1X 

K =AT 

i-1 i+l 

r----T----;---~~--~--~._--~----~----j~l 

P·. l,J 

r----+----1---~~--~--~._--~----~----j-1 

I 
K 

~ 

----~----~--~~--~----L---~----~------~~ j=O 
X 

Figure A.l - Rectangular net. Xi = i~X = iH and Tj = j~T = jK 
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¢ . · = ¢ ( P. . ) = ¢ (X. , T. ) = rp ( L6,X, j L T) = "' ( i H 1· K) l,J l,J 1 J 'I' ,, 

for -= < i < = 

0 < j < 00 

The finite-difference approximation with central- difference expressions 

for the non-dimensional wave Equation (A.5) has been given by Ames (1969, 

p. 193) as follows: 

ct>; 'j + l - 2 <1>; 'j +<I>; 'j- l <I>; +1 ,j - 2 <1>; ,j + <l>i -l ,j 
= (A.6) 

where <P. •• is the finite difference solution at point P .. = P(X.,T.). 
1,J l,J 1. J 

This scheme enables one to solve for qi,j+l since all of the other values 

in the Equation (A.6) are presumed to be known; that is: <J>. .; <1> .• ; 1-l,J l,J 

<1>.+
1 

.; <1>. • are known. 
1 ,J l,J-1 

Thus, <1>. • = M2 (<1>. . + cJ>. .) + 2(1-M 2 ) <1> •• - <P. . . 
l,J+l 1-l,J l+l,J l,J l,J-1 

(A.7) 

where 

M = K/ H = L T I 6X 

The explicit central difference formula (A.7) allows the calculation of 

a single value on a new row, j + 1, in terms of values on the previous 

rows, j and j - 1 (see computational molecule, Figure A.2). Thus to start 

the marching process the first two rows, j = 0 and j = 1, must be ob-
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tained initially after which the step-by-step calculation proceeds in a 

simple way. 

C. DIFFERENCE SCHEME FOR THE PURE INITIAL VALUE PROBLEM 

A pure initial value problem exists for the interior points of 

cylindrical bars since no boundary condition is involved. Ames (1969, 

p. 193-196) has formulated this as 

¢(X,O) = F(X) (A.8) 

¢T(X,O) = G(X) 

While the initial condition specifies the exact initial values c+,. on 
' 1 '0 

the line T = 0, 

= F(ibX) = F(iH) = F. 
1 

(A.9) 

the second initial condition in Equation (A.8) is used to find approximate 

values on the line T = K, or j = 1, with a "false 11 boundary at j = -1 

and the second order central difference formula 

Writing G(X;) = G(i6X) = G(iH) 

tained 

(A.lO) 

= G. the following approximation is ob­, 
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<I>. 
1 ' 1 

<I>. = 2KG. 
l,- l 1 (A.ll) 

with an associated error of K2 • With j = 0 in the approximated wave Equa­

tion (A.7), the result is 

<I>; '1 = M2 (<t>,. -1 o + <J>1.+1 o) + 2( 1-M2) cl>. , - <t>. 
' ' l,CJ 1,-1 

Upon replacing <1>;,-1 with its value from Equation (A.ll) and solvin9 for 

<1>1 , 1, one obtains 

(A.l2) 

Equation (A.12) gives approximate values of <1> on the line j = 1. 

These values would be exact if G(X) were a linear function of X. Thus 

Equations (A.7), (A.9), and (A.12) provide the necessary difference sol-

ution for the pure initial value problem. These equations can be simpli­

fied by using the criteria of stability and convergence, M : 1. The 

condition of M = 1 is of special interest not only because it corresponds 

to maximizing the permissible time interval K for fixed H, but also be­

cause it has the interesting property that any solution of the differen­

tial wave Equation (A.8) also satisfies exactly the difference equation 

<I>; ,j+1 == <t>i -1 ,j + <t>i+1 ,j -<I>; ,j-1 for j > 1 (A.l3) 

The maximum time increment K reduces the number of time steps (or 

computation time) for the duration of interest and thereby decrease pos­

sible round off errors. The finite-difference Equation (A.l3) is there-
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fore the simplest form of the approximated wave Equation (A.7), resulting 

in saving of computing steps and time. The round off error may be further 

reduced since the use of M = 1 as a multiplier in the difference formulas 

does not introduce any error. 

D. DIFFERENCE SCHEME FOR BOUNDARY POINTS 

Two selected boundary conditions are considered. These are of 

practical interest in developing solutions for wave analysis of the 

1) long bar spallation tests, and 2) split Hopkinson pressure bar ex­

periments, both for linear elastic specimens. 

1. ¢ is prescribed at boundary 

This is the simplest boundary value problem, typical of the long 

bar spallation tests, since no computation is needed at the boundary 

and all calculations are performed in the interior. Therefore, the 

method described previously in Section C applies. 

The boundary condition common to the long bar spallation experiments 

is that stresses vanish at the free end. Solutions to this problem 

are obtained by starting with previously obtained values of ¢ in the first 

two rows [obtained from the prescribed initial values of ¢(X,O) and 

¢T(X,O), and the known boundary data ¢(0,T) and ¢(L,T)]and workin9 

forward in time by means of the difference equation. 

2. Boundary conditions at interface between two elastic bars 

This boundary value problem is directly related to the wave analy­

sis of the split Hopkinson pressure bar. Consider two long linear elas­

tic bars of different materials joined to become one continuous axisym­

metric bar. For the sake of simplicity the cross-sectional areas of rods 

will be considered to be same. The material properties on either side 
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of the joint plane are shown in Figure A.3 . It is convenient to choose 

the coordinate system so that x = 0 at the joint plane. 

At x = 0 (Interface I) the boundary conditions are: 

a. Balance of forces: o(o;t) = a(o;t) (A.14) 

Hence, from the constitutive equation (Hooke's Law) (A.3), 

or from the definition of strain, 

(A.15) 

where (A.l6) 

Also from Equation (A.l4) 

(A.17) 

b. Continuity of displacements: u(o~t) = u(o~t) (A.l8) 

Hence, 

32u(o;t) = 3 2 u(o;t) (A.l9) 

3t2 3t2 

The wave equation for displacements [Equation (A.4)] for both sides of 

the Interface I yields: 
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(A.20) 

(A.21) 

Combining Equations (A.20) and (A.21), and using Equation (A.19) one 

obtains 

(A.22) 

where (A.23) 

The equation of motion [Equation (A.l)] for both sides of the Interface I 

yields: 

(A.24) 

(A.25) 

Equations (A.24) and (A.25) may be combined and used with Equation (A.19) 

to yield: 

(A.26) 

where (A.27) 

The wave Equation for stresses (A.4) can be written for both sides 

of the Interface I as: 
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(A.28) 

(A.29) 

Combining Equations (A.28) and (A.29) and using (A.l7) yields: 

Therefore, the three boundary conditions at Interface I (x = 0) can be 

expressed for ~ = o or u, as: 

( 1) ~(o;t) =~(ott) = ~(o,t) 

[From Equations (A.14) and (A.l8)] 

(2) 

where =lp 1/p 2 when ¢=o 

Kl 

E2 /E 1 when ¢=u 

[From Equations (A.26) and (A.15)] 

(3) 

where 

[From Equations (A.30) and (A.22)] 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 
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For the difference solution of the boundary value problem described 

the spatial meshes are chosen as shown in Figure A.4 . The mesh sizes 

depend on the wave velocities of the material and the time increment 

which is chosen by considering pulse shape and bar length. That is, 

(A.36) 

(A.37) 

since M = t;T/t;X = 1 

and if 6t = 
1 

L\t
2 

(= Lt) 

then 
6X

1 cl (A.38) -- -6X c2 2 

Taylor's expansion of~ for both sides of the Interface I, neglect­

ing terms higher than second order, yields: 

where 

~(-6x 1 ,t) = tJJ(o~t) + (-6x 1 ) l~xl(o-;t) 

+ l ( -6X ) 2 I I 2 1 1flxx (o-;t) 

w(6x2,t) = ~(o~t) + (~x2) ~xl(o;t) 

+ t (6x2)2 Wxxl(o~t) 

w can be either a or u 

f Equations (A.39), (A.40), and (A.32) yields: Eliminating wx rom 

(A.39) 

(A.40) 



~ 
II 

i 'j-1 

Figure A.2 - Computational molecule for the explicit scheme of Equatior 
(A.7) 

I 

BAR No.I. BAR No.2 

-----------------~0~--------------·.---x + x 

Figure A.3 - Interface between two linear elastic bars 

I 

-4 -3 -2 -I I 2 3 4 5 6 7 8 
0 0 0 ? ? 0 0 0 0 0 0 0 

BAR No.I I I BAR No.2 
I I 
I I 
~ ll x. 14-J.-

---.t tlx 

-x +X 

Figure A.4 - Difference spatial mesh 
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~x~ ~(-Lx 1 ,t) + K 1 Ax 1 ~(tx 2 ,t) = ~x 2 v(n~t) + 

K 1 ~x, 4-·(ott) + -2
1 tox ~__:.xj,' ~~· ' ( ) + 

~ 2 ' XX I 0 ~t 

i K1~x1dx3 ~xxl(o~t) (ft .. 41) 

where K
1 

is given by Equation (A.33). 

Solving Equations (A.41), (A.34), and (A.31) for ~xxi (c~t) yields: 

- ( 6X 2 + K 1 6X l ) l~1 ( 0 , t) + K l ,;1 ( I\ X' , t ) } 

Substituting Equation (A.42) into the wave Equation, vtt(x,t) 

c2 ~xx(x,t) one obtains 

{right hand side of Equation (A.42)} c~ = ~tt(o;t) 

The difference form of Equation (A.43) is: 

+ K /:,X I¥ • } = 
l l l 'J 

(A.42) 

(A.43) 

(6t)2 (A.44) 

where t . is the finite difference solution at point P .. = P(x. t.). l,J l,J l, J 



Equation (A.44) with Equation (A.36) and (A.38) b ecomes: 

where 

'¥ - ~ 1 ) ( c,j+l- 2 Kl c2 1'-l,j + 2 1-
1 + -- -- 1 + K c 

2 1 
~: ~--.) '. ,j 

= 

• I¥ • 
Cl 'J -1 

, if I¥ is stress, and 
cl 

E;; cl 
E c , i f I¥ i s d i s p 1 a cement 

1 2 

Thus Equations (A.45) and (A.9) provide the necessary cxDlicit 

difference formulas for solving the interface boundary problem. 

E. MODELING FOR COMPUTER CALCULATIONS 

In propagation or 11 marching 11 problems the solution marches out 

(A.45) 

from the initial state guided and modified in transit by the side 

boundary conditions. In this section the 11 time marching•' problems of 

spallation and split Hopkinson bar will be presented as they have been 

formulated to be solved by computer. Because of the length of the codes, 

a listing is not given here, but is available at the UMR Rock Mechanics 

and Explosives Research Center library. 

1. Spa 11 at ion Pro b 1 em 

The finite-difference model corresponding to the long bar spallation 

experiment is shown in Figure A.5. The boundary data at x = 0 will be 

provided by the gages reading at location 1 near the impact end. 
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/STRAIN GAGES 7 

INITIAL DATA 

[e.g. a-(x,O)= 0, ~(x,O) = 0 for 0 ~x ~ L] 
x, j= 0 .;· 

... 
-...... 

-- ~X ~ 
~ 

BOUNDARY DATA dt BOU NDARY DATA 

• 1 
) 

[e.· g. [e.g. o-(O,t) = Pr ( t) J u (L,t) = o] 

I~ ~ -;:-.. ~ l=- -: ~ -:;:- ~ ~ -:: ;::- -=- -: ~ 

... 
./ ..... j=J - ... ,, ,, 

gage 
F '• 

~· co I u mn 
t ,i= 0 

Figure A.5 - (Top) Incident elastic strain pulse t.: 1 (t) ':It gage 1. The 
elastic stress pulse is P1(t) = EL 1 (t) 
(Middle) Long bar of length L; L = I 16x 
(Bottom) Rectangular net illustrating input of two-point initial 
data and one-point boundary data for the finite difference 
model at long bar experiments 



Due to most efficacious choice of M(c~t/~x = 1), Equation (A.7) 

becomes Equation (A.13) which can be expressed for stresses as: 
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o. . = o ... + o. . - o .. 
1,J+l 1-l,J l+l,J 1,J-1 (A.46) 

The above Equation (A.46) is an explicit formula for the unknown 

stress o .. + at the ( i ,j+I )th mesh point in terms of known stresses 
1 'J 1 

along the (j and j-l)th time rows. Hence, to start the marchinq process, 

the first two rows, j = 0 and j = 1, must be obtained. The known boundary 

and initial values are displayed in Figure A.5 , where the first row, 

at j = 0, is given by: 

a = P
1

(0) o,o 

a = 0 for 0 < i < I 
1 

, 
; '0 

and the second row, at j = 1, is given by 

a = pl (~t) = p l ( 1) 
0, l 

a = p ( 0) 
l ' l l 

a. = 0 for 1 < i < I 1 
1 ' l 

The third row, at j = 2, is then given by 

cro,2 = P
1

(2bt) 



l ' 
1 right hand side of Equation (A.46) for j = 1 and 0 ~ i 

("; = 0 
I 

1 
, 2 

Tne ITldr'ching process may continue as long as desired, that is j = J 
l 

where J 1 ~t = total finite differencing time. 

The computer program must have at least the following features: 

a. the small time increment At(=tx/c) must be computed from the 

given input values of ~x and c. 

b. the points, P, (i) = P
1 
(illt) fori = 0,1,2 ... , for the incident 

stress wave P
1 
(t) at small time intervals of Lt must be computed from 

the experimental pulse input data. Because of the large number of 

increments ~t, a direct reading of the incremental strain values from 

the enlarged oscilloscope records is difficult. 

Since the strain curves in this investigation were fairly smooth, 
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greater time increments are used in the digitizing process and additional 

intermediate points computed by linear interpolating between digitized 

input experimental data points. The use of more accurate interpolation 

formulas was not justified since the experimental accuracy did not 

warrant an additional refining effort. 

c. the ca 1 cu 1 at ion of the row j + 1 from the known rows j and 

j - l, using Equation (A.46) must be done in such a way that the avail­

able computer storage is adequate. See flowchart in Figure A.6. 

A flow diagram of the finite-difference computer code used in this 

dissertation is shown in Figure A.7. 

2. Split Hopkinson Bar Problem 

The finite-difference model corresponding to the Kolsky•s experi­

mental technique is shown in Figure A.B. The boundary data at x = 0 



0 0 0 

CT(I,I) ::.:PI( I) 

CT(2, I ) :::PI ( 2) 

012,2} =PI ( I) 

WRITE STRESSES /\T SELECTED 

POINTS Al.ONG BAR WHEN A 
DIGITIZED INTERVAL IS COVERED 

a (3,1) :::. P! (L + 2) 

~~~~~----------~J 
0 0 " 

11 2 

Figure A.6 - Flowchart for the calculation of stresses along long bar 
a(. i) =a . .• To eliminate the zero value of the subscript 
i ~na j wet~Jadjusted from (O,I 1 ) and (O,J 1 ) to (1 ,1 1+1) and 
(1 ,J

1
+1). N =numbers of subintervals 6t between digitized 

input data points. NP0INT = total number of digitized input 
data points. NSUB = total number of points over the incident 
stress pulse, separated by 6t. 



r---~----, 
L RESE~E_ STORAG~_J 

READ MATERIAL AND TEST INFORMATION 

READ AND CALCULATE SPECIMEN AND 
PULSE BASIC PARAMETERS 

READ EXPERIMENTAL STRAIN PULSE 

CONVERT 

LINEAR 

PULSE 

PULSE COORDINATES TO TIME 

AND S TR A IN VALUES 

INTERPOLATION OF INPUT STRAIN 

DATA TO OBTAIN INTERIOR 
MESH POINTS 

SELECTING OUTPUT POINTS ALONG BAR 
(OUTPUT ·COLUMNS) 

WRITE ALL TEST, SPECIMEN 7 AND PULS 
INPUT AND CALCULATED DATA 

INITIALIZE THE FIRST THREE TIME Ll NES 

INITIALIZE THE OUTPUT COLUMNS AT 

TIME ·=o 

LABEL AND FORM FINITE DIFFERENCE TABLE 

CALCULATE STRESSES ALONG BAR, AND 
WRITE THEM AT SELECTED OUTPUT 

COLUMNS FOR EVERY DIGITIZED TIME 

Figure A.7- Flow diagram of the finite difference computer code 

11 3 



were provided by the gages located on the loading bar near the impact 

end. 
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Similarly as in the spallation problem, to start the time marching 

process, values for the first two rows are need~d. From the known 

boundary and initial values displayed in Figure A.B, the first row, at 

j = 0, is given by: 

a = 0 
; '0 

for 0 

the second row, at j = 1, is given by 

the third row, at j 2, is 

0 = 
0 '1 

P 1 (l~t) = p 1 ( 1 ) 

tf = P
1

(0) 
1 ' 1 

a. = 0 
, ' 1 

for 0 - ::;;; I 3 

then given by: 

p (2lt) == P
1

(2) 0 o 2 = 1 _, 

' 

c 
; '2 

[right hand side of Equation (A.46) for 

j = 1 and 0 ~ i < 1
1

] 



,-: = 2( 1 

) 2c 1 + )I+ ~ L '? I -! I - --------
Elcs 1 . ' ' [ c '; 

1 + 
Esc! 1 + I s 

Esc I-

- :J 
I l ' :_· 

[from Equation (A.45) for stresses] 

o. ={right hand side of Equation (A.46) for j 1 
1 '2 

and I < i < 
2 

= 0 

l l s 

The step by step numerical calculation may continue ahead as long as 

it is desired to solve the elastic wave propagation problem being studied 

(or until j = J
1

, where J
1 

Lt =total finite differencing time). 

The computer program must have at least the following features: 

a. the small time increment 6t (=Lxs/cs) must be computed fror:1 the 

given input values of 6X and c for the specimen; s s 
b. the small space increment 6x 1 (=c

1
6x

5
/cs) for the bars must be 

computed from the given input values of c 1 ,Lxs/cs; 

c. the points P
1
(i) = P

1
(i6t) must be calculated in the same manner 

as in the spallation problem; 

d. the calculation of the line j + 1 must be done in a similar 

way as explained in the spallation problem. 

The flow diagram of the finite-difference computer code used for the 

split-bar configuration follows the general pattern as for the long bar 

spallation problem shown in Figure A.? . 
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STRAIN GAGES 

INITIAL DATA 

re.g a- x,O)=O,~t (x,O)=O for OL x < L L < <I d I L L] L · c - 1 • 1 x s ' en .. s<x -
/ ~ 

I• 
x, j=O 

- 6x1 h 
BOUNDARY DATA . 6t 
[e.g o-(0, t)= P1( t)] 

BOUNDARY DATA 

[eg a-(L, t)= o] 

t 

~ -::= -,1;:- ;-o; 

~· 1=1 2 gage 

-;-
1 .. 

L column 

BOUNDARY DATA 

Figure A.8 - (Top) Incident (loading) elastic strain pulse __ t: 1 (t) 
at Gage 1. The elastic stress pulse is P1 (t) 
E t:

1 
(t) 

(Middle) Split Hopkinson bars of total length L; 
L = 2L

1
+L

5
, L

1
=I

1
6x, Ls=(I 2 -I 1 )~x 2 and ! 3 = total 

number of space 1ncrements 

(Bottom) Rectangular net illustrating input of two­
point initial data and one and three-point boundary 
data for the finite-difference model of split Hopkinson 
pressure bar experiments. 
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APPENDIX B 

SPALLATION DATA FOR CONCRETE 

Graphs of the Comparisons of Experimental 

and Theoretical Strains 

and Strain Rate History at Spall Plane 

ll 7 
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xperimentol, gage 1 

fL SECONDS 

Computed, spoil plane 

~--Experimental, gage 2 
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f1SECONDS 

-2.5 
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Figure B.l (a)- Comparison of experimental and theoretical strains for 
specimen CC-H-2-1 (Compression positive) 

(b) - Strain rate history at spall plane for specimen CC-H-2-1 
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E xpe nmental, gage I 

Computed, gage 2 

300 

TIME, f-LSECONDS 

Computed, spoil plane 

300 

f-L SECONDS 

Figure 8.2 (a) - Comparison of experimental and theoretical strains for 
specimen CC-J-2-l (compression positive) 

(b) - Strain rate history at spall plane for specimen CC-J-2-1 
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Figure 8.3 (a) - Comparison of experimental and theoretical strains for 
specimen CC-J-3-1 (compression positive) 

(b) - Strain rate history at spall plane for specimen CC-J-3-1 
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TIME I fLSECONDS 

Figure B.4 (a) - Comparison of experimental and theoretical strains for 
specimen CC-J-4-1 

(b) - Strain rate history at spall plane for specimen CC-J-4-l 
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TIME, f.LSECONDS 

gage 2 

TIME, fLSECONDS 

Figure 8.5 (a) - Comparison of experimental and theoretical strains for 
specimen CC-K-1 (compression positive) 

(b) - Strain rate history at spall plane for specimen CC-K-1 



~ 
::i_ 

0 
0 
Q 

u 
w 
(/') 

C ornputed, spoil plane 

-1 0 

-50 

123 

Experimental, gage I 

TIME , f1 SEC\JNff, 

7 
Expenmental, gage 2 

TIME I fL SECONDS 

Figure B.6 (a) - Comparison of experimental and theoretical strains for 
specimen CC-K-2 (compression positive) 

(b) - Strain rate history at spall plane for specimen CC-K-2 
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Figure 8.7 (a) - Comparison of experimental and theoretical strains for 
specimen CC-L-1 (compression positive) 

(b) - Strain rate history at spall plane for specimen CC-L-1 
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Figure 8.8 (a) - Comparison of experimental and theoretical strains for 
specimen CC-L-2 (compression positive) 

(b) - Strain rate history at spall plane for specimen CC-L-2 
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Figure 8.9 (a) - Comparison of experimental and theoretical strains for 
specimen CC-L-3 (compression positive) 

(b) - Strain rate history at spall plane for specimen CC-L-3 



127 

APPENDIX C 

DERIVATIONS FOR CONVENTIONAL SPLIT HOPKINSON BAR ANALYSIS 

For one-dimensional plane elastic stress wave propagation in the 

loading and transmission bars in the split Hopkinson bar test assembly, 

the following relation must be satisified, Kolsky (1963, p. 43): 

u =- pCV ( c 0 1 ) 

If one negl~cts the one-dimensional stress reflections in the 

specimen (that is, wave propagation and interaction, and radial and 

longitudinal inertia effects), the average stress in the specimen, -~avg' 

can be defined as: 

0 avg = } (aspecimen I + 0 specimen II) 
( c 0 2) 

where 

(J = compressive stress ; n the specimen at Interface I. 
specimen I 

0 = compressive stress in the specimen at Interface I I . 
specimen II 

The stress applied in the loading bar at Interface I, 0 I ' 
is given by 

bar 

(Co3) 
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where compression is designated as positive and tension as negative. 

The stress introduced into the transmission bar across Interface II, 

abar II' is given by 

(C.4) 

The stress in the specimen at Interface I ' 0 specimen I , is given by 

0 specimen I o' 
T 

(C.5) 

The stress in the specimen at Interface I I , 0 specimen I I ' is qiven by 

= I 

+ oR (C.6) a . OT spec1men II 

The boundary condition of equal forces on opposite sides of the 

interface and Equations (C.3) and (C.4) leads to the following expres-

sions for 0 specimen I and 0 specimen II 

(C.7) 

= 0 specimen II 
As 

(C. B) 

The average stress in the specimen from Equation (C.2) is then given by 

(C.9) 
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or in terms of strains, 

a avg (C.9a) 

For the above Equations (C.3), (C.4), (C.S), (C.6), (C. 7), (C.8), 

and (C.9), all the stresses (or strains) are to be measured at the same 

instant of time at the Interfaces I and II. In reality the stresses, 

o 1 , oR' and aT (or strains EI' ER' and FT) are measured at the strain 

gage stations locates some distance from these interfaces. A shift of 

the reflected and transmitted pulses along the time axis is therefore 

necessary in the calculation of the average stress in the specimen. The 

reflected and transmitted signals may be made time coincident bv placinq 

the gages on the loading and transmission bars equidistant from the spec-

imen (dL = dT). 

Since particle velocities are assumed to be continuous across In-

terfaces I and II, Equation (C.l) can be used to obtain 

(C.lO) 

(C.ll) 

where 

X = particle velocity at Interface I. 
I 

XII= particle velocity at Interface II. 



Equation (C.lO) shows that the net particle velocity of Interface I is 

made up of contributions from both the incident and reflected stress 

waves. 

The average strain rate, Eavgt over the specimen length is given 

by 
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(C.12) 

Substituting Equations (C.lO) and (C.ll) into Equation (C.l2) gives 

E avg 

or in terms of strains, 

E avg 

= 1 

~ (C.l3) 

(C.l3a) 

The average strain in the specimen E at any instant t is given avg 
in terms of strain by 

t 
= f (C.14) 

0 

Therefore, the average specimen stress, strain, and strain rate 

histories are given by the Equations (C.9), (C.l4), and (C.l3). It 

should be noted that multiple wave reflections within the specimen are 

not considered in the above analysis which is sometimes referred to as 

Kolsky's thin wafer technique. As it was pointed out before, the 

incident, reflected, and transmitted strain pulses must have the same 
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time origin for the computation so that time shifts must be performed in 

processing the experimental data. 

If the incident strain gage is located sufficiently far from 

Interface I, as in the thesis investigation, o 1 and oR will not overlap 

each other in time and can be recorded separately. The zero time 

corresponds to the zero stress (or strain) point for both a 1 and oR 

pulses. The dynamic stress-strain-strain rate curve is found by plotting 

stress versus strain at correponding times. 

The specimen introduces an additional time delay, ~, in the 

transmitted pulse because of the different arrival times at the two 

interfaces. This delay time is given by, 

where 

c
5 

= the propagation velocity in the specimen. 

(C.i5) 

The proper representation of the pulses for the standard analysis 

is given in Figure 3.3, where the transmitted pulse has been shifted i~ 

the positive time direction by the amount T. 
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