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Abstract

The current object-oriented class-based approaches to 
hardware/software co-analysis/co-design of embedded 
systems are limited in their abilities to properly capture 
the structure of individual instances of hardware and 
software components and their interactions.  This paper 
discusses a methodology to extend a structured object-
oriented hardware/software co-design methodology 
based on the High Order Object-oriented Modeling 
Technique (HOOMT) to incorporate instance-based 
object and behavioral models.  The instance-based 
structured object-oriented methodology will enable 
description of a system's structure based on individual 
instances of hardware and software components and 
specification of the interactions among them.  In addition, 
lattices are introduced to specify the concurrent behavior 
of hardware/software components in a concurrent 
embedded system.  These additions further enhance the 
method's capability of providing a precise set of 
specifications that can be understood easily by both 
hardware and software designers in co-analysis/co-
design.  The methodology has been applied to the 
specification of hardware and software of a simulated 
advanced power grid control system. 

Keywords
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design, Instance-Based Co-Analysis/Co-Design, 
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1. Introduction

The current crop of object-oriented methods (such as 
[1], [2], and [3]) for the co-analysis and co-design of 
hardware and software components of embedded systems 
is primarily class-based, with each of the system 
components represented as a class at the higher levels of 
design.  This class-based bias is derived from the 
traditional object-oriented software design approaches 
which emphasize object classes for the general design.  
By contrast, hardware design is usually done using what 
can be termed instance-based methods, involving such 
tools as circuit and wiring diagrams, system architecture 
diagrams, etc., such as the designs shown in [4].  It is 
necessary that the hardware design indicate the specific 
number of instances of a component, and how those 
instances interact with each other and the other system 
components. 

Class-based approaches to object-oriented co-analysis 
and co-design present two key problems to embedded 
systems design.  First, while class-based diagrams capture 
a significant portion of a system’s structure, they often 
fail to properly capture or express system structure and 
behavior where multiple instances of the same component 
class are involved.  The second problem with class-based 
object-oriented methods stems from the different 
backgrounds of the hardware and software designers.  
While software designers are often accustomed to 
creating and viewing designs that contain object classes 
and their relationships, hardware designers are much 
more used to looking at system diagrams in which all 
instances of the components and their relationships and 
interactions are laid out.  Instance-based object-oriented 
co-analysis and co-design methodologies attempt to 
address these two shortcomings, allowing for enhanced 
specification of a system’s components, in addition to 
providing system specifications that are much more easily 
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understood by the hardware designers as well as the 
software designers. 

1.1. Structured Object-Oriented Co-analysis/Co-
design of Hardware/Software Using HOOMT 

Previous work by one of the coauthors of this paper 
developed a structured object-oriented software design 
methodology based on hierarchical development called 
the High Order Object-oriented Modeling Technique 
(HOOMT) [6].  The integration of structured methods 
with object-oriented methods provides the uniformity and 
reusability of the object-oriented approach with the 
hierarchical decomposition of objects, their functions, and 
their dynamic behaviors that is provided by the structured 
method. 

This methodology was developed further by the 
coauthors and incorporated into a method for the co-
analysis and co-design of hardware and software of 
embedded systems [7].  This HOOMT method provides a 
systematic approach that guides the co-analysis/co-design 
and the natural partitioning of the design into its hardware 
and software components.  Our current research proposes 
an extension to the hardware/software co-analysis and co-
design methodology to include the development of 
instance-based object and behavioral models to further 
explore the structure and interactions of hardware and 
software components of embedded systems. 

1.2. Distributive Lattices for Dynamic Behavior 
Specification 

In order to explore the interactions and concurrent 
behavior of the components of embedded systems, we 
borrow the concept of distributive lattices [11] from 
distributed systems.  The components (objects) in the 
embedded systems interact by message passing.  Each 
message corresponds to an event in the embedded system.  
The terminology regarding distributive lattices and the 
timing constraints on interactions in embedded systems is 
provided below: 
Definition 1 Spatial constraints on the events in 
embedded systems: If the event is an interaction between 
different objects it is called a global interaction (event).
Definition 2 Temporal constraints on the events in 
embedded systems:  
(1) If a and b are events on the same object, and a comes 
before b, then a b; and a & b are sequentially related. 
(2) If a is the sending of a message by one object, and b is 
the receipt of the same message by another object, then a

b; and a & b are causally related.  
(3) Two distinct events, a and b, are said to be concurrent 
if ¬ (a→b) and  ¬ (b→a) [10].  
Definition 3 Consistent Global State: The entire system 
state, which is a collection of concurrent events, 

consisting of the states of all objects based on their 
interactions.  
Definition 4 Distributive Lattice Representation: The 
collection of all possible consistent global states of 
interactions observed in an embedded system.  
Definition 5 Vector Time Stamp: A vector of discrete 
clock values, one from each object in the distributed 
embedded system [12]. 
Definition 6 Lattice: A lattice L is a partial ordered set P
such that for all x, y ∈ P, there exists a greatest lower 
bound and a lowest upper bound. 
Definition 7 Distributive Lattice: A lattice L is said to 
be distributive if the distributivity property holds on all x, 
y, z ∈ L.

The components of embedded systems can interact 
concurrently as well as sequentially.  Although 
representation models such as UML sequence diagrams 
are capable of representing the sequential interactions, 
they are not capable of properly representing concurrent 
interactions.  Therefore, it is necessary to have a model 
capable of representing both sequential and concurrent 
interactions between objects.  In order to observe the 
concurrent interactions of the embedded system 
components, we utilize the distributive lattices.  Figure 1 
shows three sequence diagrams which represent the 
interaction of three objects.  It is important to note that 
these three sequence diagrams represent exactly the same 
interactions between objects; however, traditionally they 
are treated as different interactions.  Here we show that 
these three sequence diagrams are represented with the 
same distributive lattice, therefore, clarifying any 
misrepresentation issues.  

Figure 1: (a) (b) (c) Three sequence diagrams 
represent the same interaction of O2 sending a 
message to O3, followed by O1 sending a message 
to  O3. (d) All three sequence diagrams correspond 
to the same distributive lattice.  
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The vertices of the distributive lattice represent the 
consistent global states, composed of vector time stamps 
of all the objects in the system.  Since there are three 
interacting objects, three digits are used to represent each 
object’s state.  The vertices at the same level represent 
concurrent consistent global states of the embedded 
system, whereas the vertices at different levels which are 
reachable from each other represent sequential consistent 
global states of the embedded system.  The edges of the 
lattice represent the global events observed in the 
embedded system.  By going through a lattice path, 
sequential, causal, and concurrent interactions of objects 
in embedded systems can be observed.  

The distributive lattice representation model of object 
interactions is able to capture the concurrent interactions 
of instance-based as well as class-based objects in 
embedded systems.  The observations obtained from the 
distributive lattice model will be integrated into the 
dynamic behavior specifications for a more complete 
view of system behavior. 

1.3. Advanced Power Grid Control and the 
FACTS Testbed Simulation 

 Power network control has become an extraordinarily 
difficult task due to the sheer size of such networks.  It is 
desirous to attempt to mitigate the effects of single 
contingencies (such as line failures) as they occur, before 
some combination of contingencies can lead to a 
cascading failure scenario in which most or all of a power 
grid goes down. 

The family of “Flexible Alternating Current 
Transmission System” (FACTS) devices shows promise 
for use as network-embedded controllers [8, 9].  There is 
ongoing research to incorporate a number of FACTS 
devices that contain embedded communicating distributed 
computers into a power grid network to act as a 
distributed, fault-tolerant, and real-time constrained 
control system.  This paper looks at the integrated, 
instance-based structured object-oriented co-analysis/co-
design of a FACTS-augmented power system, 
specifically a hardware-in-the-loop test system that is 
currently being implemented to test FACTS control of a 
simulated power system.  This test system includes a 
multiprocessor simulation engine that will use 
mathematical formulae for simulating a power grid, and 
send appropriate power generation commands to three 
actual power lines, which will have FACTS devices 
attached to them.   

The remainder of this paper is organized as follows.  
Section 2 discusses the instance-based extensions to the 
HOOMT co-analysis and co-design process.  Section 3 
presents a number of instance-based High Order Object 
Model diagrams from the modeled system which were 
generated based on transformations from their class-based 

diagrams, and Section 4 presents samples of distributive 
lattices to model the system’s behavior.  Section 5 
discusses the results of the modeling effort.  Section 6 
contains the conclusion to the paper. 

2. The Instance-based HOOMT Process for 
System Co-analysis and Co-design

The original class-based structured object-oriented 
HOOMT method for performing the co-analysis/co-
design phase of embedded systems development provides 
a unified method for the specification of a target 
embedded system, including both hardware and software 
components.  The method allows the partitioning of the 
hardware and software components to be performed, and 
the interfaces between components can be specified.  
During the succeeding phases of concurrent component 
implementation and component integration and testing, 
continued communication between the hardware and 
software designers allows for continued refinements to 
the system components, as well as the possibility for the 
migration of components between hardware and software 
as needed. 

The structured object-oriented hardware/software co-
analysis/co-design phase itself consists of two stages: 
system level co-analysis and co-design, and component 
level co-analysis/co-design.  The hardware and software 
designers start with the system level co-analysis/co-
design and working together create the HOOMT models 
of the whole system.  Once these models have been 
sufficiently hierarchically decomposed to show primitive 
objects, an initial partitioning of the system into the 
hardware and software components is performed, and 
each group of designers takes their respective 
specifications for further development in the component 
level co-analysis and co-design stage. 

Figure 2(a) shows the proposed extension to the 
HOOMT co-analysis/co-design method.  This extension 
takes place in conjunction with the structured object-
oriented co-analysis/co-design phase.  Prior to component 
partitioning, the class-based models are transformed into 
instance-based models to further specify the component 
relationships and interactions.  From the instance-based 
models, further refinement into more detailed physical 
(implementation-specific) component specifications can 
take place to supplement the component level co-
analysis/co-design.   

Figure 2(b) shows the transformations of the Bus and 
Power Line object classes (such as would be found inside 
a Power Transmission System object).  The objects are 
first instantiated in an instance-based object model, here 
shown as an individual power line instance connected to 
two separate bus instances.  Also at the instance level, 
distributive lattices can be constructed to help show 
component interactions and behavior which can’t be 
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captured at the class level.  Additionally, further models 
can be added at the instance level to simplify 
specification in cases where a complete instance-based 
object model would be too cumbersome to fully represent 
the instantiated components.  Using the bus/power line 
example, a digraph representing the individual buses and 
power lines could be created to show which particular 
buses are connected by which power lines for a given 
system. 

G

G

Class-based 
models (object, 
information flow, 
state transition)

Instance-based 
models (object, 

event)

Physical models

Instantiation process

Physical implementation
process

Bus Power 
Lineconnects

2
1

Busi
Power 
Linek

connects Busjconnects

or:
Data structures:

Bus[bus_num][info],
Line[line_num][info]

Instantiation process

Physical implementation
process

Hardware: physical 
buses & lines

Software: Simulation 
Engine code

(a) (b)

Figure 2: (a) The extended HOOMT development 
process. (b) Example of bus/line specifications using 

the development process. 

From the instance-based models, the specifications of 
the bus and power line component instances can be taken 
to the specific designs required for implementation.  The 
figure shows two possibilities for the implementation of 
the buses and lines, as either hardware, in the form of 
wiring diagrams showing the layout and connections of 
the components in an actual power transmission system, 
or as software, in the form of a set of data structures 
(specifically a bus and a line matrix) to be used in code 
for the dynamic simulation of a power transmission 
system. 

2.1. Development of Instance-Based Object 
Models Based on Instantiation from Class-Based 
Models 

The development of the instance-based models begins 
with the transformation of the High Order Object Model 
(HOOM) created during the system level co-analysis/co-
design stage of the HOOMT process.  Beginning with the 
top level object model, the component objects are 
instantiated.  This process starts by adding instances of 

components to the diagram as needed.  Once the requisite 
components are in the diagram, the attributes and 
constraints of each instance can be individualized 
appropriately.  Next, the relationships between objects 
need to be updated to include the new object instances in 
the diagram.  Once the diagram has been instantiated, the 
process continues at subsequent levels of decomposition 
of the complex components of the system, following the 
original object decompositions provided by the class 
model.  The decomposition can continue until either all 
objects in the diagrams are primitives, or until there is no 
further need to show the instantiation of components at 
lower levels. 

Once the instance-based diagrams are created, it may 
be desired to create a complete system structure model, in 
which the component instances at all levels of abstraction 
are combined into one diagram.  The system structure 
diagram provides a single diagram to show the entire 
instance-based structure of the system at all levels, 
helping to further understanding of the system 
specification by both the hardware and software 
designers. 

2.2. Distributive Lattices for Modeling Instance-
Based Behavior 

 The basic system structure is captured by using the 
instance-based object models.  In order to represent the 
concurrent interactions of the objects in instance-based 
object models, distributive lattices are used.  These 
distributive lattices are re-termed “instance lattices” to 
distinguish them from lattices used for class-based object 
models.  The advantage of using these instance lattices is 
in revealing the concurrent interactions between 
components at the instance-level which are not visible at 
the class level.  In addition, the lattices can be created in a 
hierarchical manner following the decomposition of the 
object models in order to show the decomposition of the 
higher-level interactions present at the previous 
abstraction level. 

For a particular scenario of component interactions, it 
is first necessary to create the vector time stamps of the 
interactions taking place.  Then a lattice is created to 
show all possible consistent global states that may occur 
over the course of the scenario.  Such scenarios may be 
generated from existing diagrams in the class-based 
Hierarchical State Transition Model (HSTM), 
combinations of HSTM diagrams with information from 
the Hierarchical Object Information Flow Model 
(HOIFM), or may be brand-new scenarios developed by 
the designers based on knowledge/assumptions of what 
the embedded system components should be doing.  
Lattices can be created for multiple levels of abstraction 
as needed, for as many scenarios as desired.  The 
generation of vector time stamps and the distributive 
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lattice may be done by automated programs/tools, such as 
the LatGenU program [5]. 

3. Instance-Based Transformation of the 
HOOM for Hardware/Software Co-
analysis/Co-design

 The transformation of the HOOM into a set of 
instance-based diagrams, as well as an integrated system 
structure model, begins at the top level of the class-based 
model created during the initial co-analysis/co-design 
process.  (If needed, the actual upper-most level, or 
context object diagram, can be skipped in the event that 
an instance-based version of the diagram looks identical 
with its class-based template.)  Figure 3 shows the top 
level class model for the simulated power testbed system 
currently being designed and constructed as part of the 
research effort. 

FACTS 
Device

setpoint

store_setpoint(newSetpoint)
control_power_line()
reconfigure()

flow balance
|Embedded Computer| + |DSP| 

+ |Interface Board| + |Power 
Electronics| 

control
communication monitors

Simulated Power 
Transmission System

flows
capacities
generations
loads
adjacency_matrix

AG[For each line
-capacity <= flow <= capacity
{checked by FACTS}]
------------------------------
AG[For each bus
sum of lines.flow is 0.
{checked by FACTS}]
------------------------------
AG[For each load
load is greater than or equal to 0.
{checked by FACTS}]
------------------------------
Line flows must correspond to 
some operational point

supply_power()

manipulates,
senses

Figure 3: Class-based top level object model. 

 In Figure 3, two components are visible: the FACTS 
Device and the Simulated Power Transmission System.
(For simplicity, some of the components in the original 
model, such as the Placement and Contingency object 
classes, have been abstracted out.)  Also shown are the 
relationships between the three components, including a 
relationship labeled “control communication” that 
appears to be between the FACTS Device and itself.  This 
relationship, originally intended to indicate the 
communications between multiple FACTS devices on a 
power grid, is a prime example of the limitations of class-
based models, as will be seen when the relationship is 
clarified upon instantiation.   
 At the current level of abstraction, the FACTS Device 
class object is instantiated into three FACTS Device 
instances.  Each instance is given a number from 1 to 3 to 
distinguish it from the others.  The relationships between 
the three FACTS devices, as well as the relationships 
between each of the FACTS devices and the Simulated 
Power Transmission System (SPTS), are next 
instantiated.  These relationships are carefully instantiated 

so that their original cardinalities carry over into the 
instance-based model.  For example, the “manipulates, 
senses” relationship, which represents the interaction of 
each FACTS device with its HIL line, is a 1-1 
relationship, and thus each enters the SPTS at a different 
point.  The “monitors” relationship, however, represents 
the sensor data of the whole power transmission system 
that would be sent out to all of the FACTS devices, hence 
a one-to-many relationship, and is instantiated as such.  
Similarly, the original “control communication” 
relationship has been replaced by a one-to-many 
relationship that connects all three FACTS devices.  The 
resulting model can be seen in Figure 4. 

Figure 4: Instance-based top level object model. 

 In addition to the objects and their relationships, as 
they become known, the individual attributes of the 
components can be instantiated and added to the model.  
For the FACTS devices, this would include such 
attributes as what line in the simulated system each was 
“attached” to.  Similarly, the constraints on the 
components can be instantiated, or “individualized”, as 
they become known. 
 After instantiating the FACTS devices in the top level 
diagram, the transformation of the class-based model 
continues with the high order Simulated Power 
Transmission System object.  Looking at the decomposed 
class model reveals that the SPTS contains two object 
classes, the Simulation Engine and the HIL Line, and their 
respective relationships with each other and with objects 
outside of the SPTS (the FACTS Device and 
Contingency).  To create the instance-based object model 
of the SPTS, there must be three HIL lines and one 
Simulation Engine.  Figure 5 shows both the original 
class-based model and the resulting instance-based 
diagram.  (Due to space constraints, the models presented 
here have been simplified by removal of the attributes, 
methods, and constraints.) 
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The Simulation Engine component’s instantiated 
attributes include the configuration information (buses, 
lines, generators, loads) of the power transmission system 
to be simulated.  As discussed above in Section 2, once 
the model has been further transformed into the physical 
(implementation) model, the bus and line objects will 
manifest as both a set of data structures in the Simulation 
Engine, the bus and line matrices, and as a physical set of 
buses and lines, contained within the HIL line objects, 
that will duplicate the power flows of three chosen power 
lines in the simulated system. 

Figure 5: Class and instance-based Simulated 
Power Transmission System models 

Simulation Engine

monitors

monitors

senses,
manipulates

senses,
manipulates

reads, sets

HIL Line1
senses,

manipulates

reads, 
sets

reads,
setsHIL Line2

HIL Line3

UPFC 
FACTS 
Device1

UPFC 
FACTS 
Device2

UPFC 
FACTS 
Device3

senses,
manipulates

senses,
manipulates

senses,
manipulates

Simulated Power 
Transmission System

monitors

control 
communi

cation

Figure 6: System structure diagram.

 At this point in the process, further instantiation of 
lower levels in the model’s hierarchical decomposition is 
stopped to prevent the integrated system structure 
diagram from becoming unmanageable.  Further 
instantiations at lower levels of abstraction can be 
continued as needed for further exploration of component 
structure and interactions.  To create the system structure 
diagram, the instance-based decomposition of the 
Simulated Power Transmission System is incorporated 
into the instance-based top level diagram in Figure 4.  

The relationships between each of the three FACTS 
devices and their corresponding HIL lines are matched 
up, with the ports at the object edges maintaining the 
proper separation for relationships that cross object 
boundaries.  In addition to the incorporation of the 
instanced-based SPTS components, each of the three 
FACTS devices is re-instantiated as a specific type of 
FACTS device, a Unified Power Flow Controller, or 
UPFC, FACTS Device.  The completed system structure 
diagram for our model is presented in Figure 6. 
 From the system structure diagram, the designers can 
see the whole instance-based structure of the system at 
one time, and use it for further design work, including the 
creation of the instance lattices for modeling scenarios of 
events.   

4. Class- and Instance-Based Behavior 
Modeling of the FACTS Power System using 
Distributive Lattices 

For the instance-based co-analysis/co-design process, 
distributive lattices are one of the methods being added to 
the HOOMT for use in capturing the dynamic behavior of 
a system.  These lattices are a means of visualizing 
behavior scenarios.  One of the scenarios created for the 
simulated testbed system under development involves the 
component interactions that take place during simulation 
startup.  These interactions take place between the 
Simulated Power Transmission System (consisting of the 
Simulation Engine and the HIL Lines), and the FACTS 
Device objects.  For this scenario, the class- and instance-
based object models were used to identify the 
components involved, and the global interactions of the 
components during the scenario listed.  At the top level, 
using a class-based lattice (corresponding with Figure 3), 
the interactions between the FACTS Device and the 
SPTS are viewed as a total order sequence without any 
concurrencies.  These interactions consist of messages 
sent and received by the two objects.  In Figure 7(a), the 
distributive lattice representation of these interactions is 
illustrated.  The vector time stamps of the consistent 
global states are used to label the nodes of the lattice, 
which reveal the sequential ordering of the interactions.  
For this lattice, the first and second transitions represent 
the sending and receiving of a message from the SPTS to 
the FACTS Device saying that the SPTS is ready for the 
FACTS to be started.  The third and fourth transitions 
correspond to the sending and receiving of a message 
from the FACTS Device back to the SPTS that informs 
the SPTS that the FACTS Device is ready for the 
dynamic simulation to begin. 

Figure 7(b) shows the top-level instance-based 
interactions between the single instance of the SPTS and 
the three instantiated FACTS objects.  The concurrent 
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interactions which cannot be observed at the class-level 
can now be seen with the instance-level view, as the 
concurrent consistent global states residing at the same 
levels appear.  It is easy to see that at the class-level all 
the interactions are sequential; one state follows the next. 
However, at the instance-level, some states are concurrent 
and some are sequential (observed through lattice paths).  
The concurrencies are introduced by the messages sent 
from the SPTS to multiple FACTS instances and vice 
versa.  By modeling the instance-based components’ 
interactions by distributive lattices, the concurrencies in 
the scenario which cannot be observed at the class-level 
are revealed. 

00

10

SPTS snds "FACTS start" msg.

11

FACTS rcvs "FACTS start" msg.

12

FACTS snds "Simulation start" msg.

22

SPTS rcvs "Simulation start" msg.
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Figure 7: Top level instance lattices (with vector time 
stamp-labeled states): (a) Class-based component 

interactions. (b) Instance-based interactions

To examine the component interactions of the scenario 
closer, the top-level instance-based interactions shown in 
Figure 7(b) are decomposed one level down, 
corresponding with the system structure diagram in 
Figure 6, and the resulting distributive lattice 
representation is depicted in Figure 8.  The new lattice 
includes the sequential and concurrent interactions 
between the Simulation Engine, three FACTS devices, 
and three HIL line objects. The expansion of the lattice 
represents the decomposition of the high level SPTS 
object into the Simulation Engine and three HIL Line 

instances, and the additional interactions between those 
instances that become visible at the new abstraction level.  
Similar to the lattice in Figure 7(b), this lattice shows an 
increase in concurrency up to approximately the halfway 
point of the lattice, after which the possible consistent 
global states begin to converge at the last two sequential 
nodes at the bottom.  
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Figure 8: Instance-based component interactions at 
the second level. 

It is important to note that Figure 8 illustrates the 
interactions at a lower-level than Figure 7.  The 
decomposition enables the observation of more 
comprehensive interactions between the components. The 
distributive lattice representation of the lower-level 
instance-based behavior of the FACTS system reveals a 
more detailed and complete picture of what can happen 
during this scenario.  The number of paths, sequential and 
concurrent nodes increases as the model’s hierarchical 
decomposition is further instantiated.  It should also be 
noted that the concurrency, represented as an expansion 
in the lattice, becomes larger as the lattice is decomposed 
into lower levels.  This same observation of the expansion 
of the lattice is made in the comparison of the class-based 
lattice modeling with instance-based.  Additionally, 
instance-based modeling reveals concurrent interactions 
between the components of the system which are not 
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visible with the class-based modeling.  The observation of 
concurrent interactions of system components is made 
possible through the incorporation of the distributive 
lattices into the instance-based co-analysis/co-design 
process.  

5. Development Results

 The instance-based HOOM diagrams and distributive 
lattices presented in this paper are a portion of the 
instance-based system specifications of the proposed 
simulated FACTS testbed system that were developed 
using the methodology discussed in Section 2.  Along 
with the addition of an instance-based methodology to 
structured object-oriented co-analysis/co-design, of 
particular interest was the new application of the 
distributive lattice concept to hierarchically decomposed 
instance-based dynamic behavior specification of 
concurrent embedded systems.  The addition of the 
instance-based object and behavior models to the 
methodology has proved very useful in the system 
specifications being produced, providing more accurate 
representations of the components and their interactions 
than were present before. 
 One observation gained from the use of the 
distributive lattices was the tendency for exponential state 
explosion with the addition of more interactions (such as 
during the hierarchical decomposition).  It should be 
noted that the cause of this explosion, the additional 
possible consistent global states due to the additional 
concurrent interactions of the scenario, is not a fault of 
the lattices, but rather of the concurrent behavior itself.  
Other techniques for representing behavior and 
interactions would suffer either from similar state-space 
explosions, or already be limited in their abilities to 
capture concurrent behavior (such as the Hierarchical 
State Transition Model already provided in the HOOMT).

6. Conclusions

 The use of object-oriented methodologies for 
hardware/software co-analysis and co-design has been 
very valuable for the specification of embedded systems.  
However, existing class-based approaches present 
difficulties in properly capturing the structure, 
relationships, and behaviors of component instances, in 
addition to not always being easily understood by 
hardware designers.  The addition of an instance-based 
approach to the High Order Object-oriented Modeling 
Technique allows for an extension of a structured object-
oriented methodology for the integrated co-analysis and 
co-design of individual instances of the hardware and 
software components of embedded systems.  As shown in 
the above examples, the instance-based extensions to the 
methodology and application of distributive lattices allow 

for more accurate specification of embedded system 
components and their concurrent behaviors.  
Additionally, the instance-based approach provides 
models that by looking more like traditional hardware 
specifications are more easily understood by hardware 
designers, and are easier to further develop into 
implementation-specific system specifications. 
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