
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Sep 2006

An Instance-Based Structured Object Oriented Method for Co-An Instance-Based Structured Object Oriented Method for Co-

Analysis/Co-Design of Concurrent Embedded Systems Analysis/Co-Design of Concurrent Embedded Systems

Matt Ryan

Xiaoqing Frank Liu
Missouri University of Science and Technology, fliu@mst.edu

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Ying Cheng

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/comsci_facwork/178

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
M. Ryan et al., "An Instance-Based Structured Object Oriented Method for Co-Analysis/Co-Design of
Concurrent Embedded Systems," Proceedings of the 30th Annual International Computer Software and
Applications Conference (COMPSAC'06) (2006, Chicago, IL), Institute of Electrical and Electronics
Engineers (IEEE), Sep 2006.
The definitive version is available at https://doi.org/10.1109/COMPSAC.2006.26

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork/178
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/COMPSAC.2006.26
mailto:scholarsmine@mst.edu

AN INSTANCE-BASED STRUCTURED OBJECT ORIENTED METHOD FOR
CO-ANALYSIS/CO-DESIGN OF CONCURRENT EMBEDDED SYSTEMS

Matt Ryan, Sule Simsek, Xiaoqing (Frank) Liu,
Bruce McMillin

Ying Cheng

Department of Computer Science
Intelligent Systems Center

University of Missouri – Rolla
{mjr, simsek, fliu, ff}@umr.edu

Department of Electrical and Computer
Engineering

University of Missouri – Rolla
ycheng@umr.edu

Abstract

The current object-oriented class-based approaches to
hardware/software co-analysis/co-design of embedded
systems are limited in their abilities to properly capture
the structure of individual instances of hardware and
software components and their interactions. This paper
discusses a methodology to extend a structured object-
oriented hardware/software co-design methodology
based on the High Order Object-oriented Modeling
Technique (HOOMT) to incorporate instance-based
object and behavioral models. The instance-based
structured object-oriented methodology will enable
description of a system's structure based on individual
instances of hardware and software components and
specification of the interactions among them. In addition,
lattices are introduced to specify the concurrent behavior
of hardware/software components in a concurrent
embedded system. These additions further enhance the
method's capability of providing a precise set of
specifications that can be understood easily by both
hardware and software designers in co-analysis/co-
design. The methodology has been applied to the
specification of hardware and software of a simulated
advanced power grid control system.

Keywords
Hardware/Software Co-analysis, Hardware/Software Co-
design, Instance-Based Co-Analysis/Co-Design,
Structured Object-Oriented Method, Concurrent Process,
Integration, Embedded Systems

Supported in part by the UMR Intelligent Systems Center and supported
in part by NSF MRI grant CNS-0420869.

1. Introduction

The current crop of object-oriented methods (such as
[1], [2], and [3]) for the co-analysis and co-design of
hardware and software components of embedded systems
is primarily class-based, with each of the system
components represented as a class at the higher levels of
design. This class-based bias is derived from the
traditional object-oriented software design approaches
which emphasize object classes for the general design.
By contrast, hardware design is usually done using what
can be termed instance-based methods, involving such
tools as circuit and wiring diagrams, system architecture
diagrams, etc., such as the designs shown in [4]. It is
necessary that the hardware design indicate the specific
number of instances of a component, and how those
instances interact with each other and the other system
components.

Class-based approaches to object-oriented co-analysis
and co-design present two key problems to embedded
systems design. First, while class-based diagrams capture
a significant portion of a system’s structure, they often
fail to properly capture or express system structure and
behavior where multiple instances of the same component
class are involved. The second problem with class-based
object-oriented methods stems from the different
backgrounds of the hardware and software designers.
While software designers are often accustomed to
creating and viewing designs that contain object classes
and their relationships, hardware designers are much
more used to looking at system diagrams in which all
instances of the components and their relationships and
interactions are laid out. Instance-based object-oriented
co-analysis and co-design methodologies attempt to
address these two shortcomings, allowing for enhanced
specification of a system’s components, in addition to
providing system specifications that are much more easily

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

understood by the hardware designers as well as the
software designers.

1.1. Structured Object-Oriented Co-analysis/Co-
design of Hardware/Software Using HOOMT

Previous work by one of the coauthors of this paper
developed a structured object-oriented software design
methodology based on hierarchical development called
the High Order Object-oriented Modeling Technique
(HOOMT) [6]. The integration of structured methods
with object-oriented methods provides the uniformity and
reusability of the object-oriented approach with the
hierarchical decomposition of objects, their functions, and
their dynamic behaviors that is provided by the structured
method.

This methodology was developed further by the
coauthors and incorporated into a method for the co-
analysis and co-design of hardware and software of
embedded systems [7]. This HOOMT method provides a
systematic approach that guides the co-analysis/co-design
and the natural partitioning of the design into its hardware
and software components. Our current research proposes
an extension to the hardware/software co-analysis and co-
design methodology to include the development of
instance-based object and behavioral models to further
explore the structure and interactions of hardware and
software components of embedded systems.

1.2. Distributive Lattices for Dynamic Behavior
Specification

In order to explore the interactions and concurrent
behavior of the components of embedded systems, we
borrow the concept of distributive lattices [11] from
distributed systems. The components (objects) in the
embedded systems interact by message passing. Each
message corresponds to an event in the embedded system.
The terminology regarding distributive lattices and the
timing constraints on interactions in embedded systems is
provided below:
Definition 1 Spatial constraints on the events in
embedded systems: If the event is an interaction between
different objects it is called a global interaction (event).
Definition 2 Temporal constraints on the events in
embedded systems:
(1) If a and b are events on the same object, and a comes
before b, then a b; and a & b are sequentially related.
(2) If a is the sending of a message by one object, and b is
the receipt of the same message by another object, then a

b; and a & b are causally related.
(3) Two distinct events, a and b, are said to be concurrent
if ¬ (a→b) and ¬ (b→a) [10].
Definition 3 Consistent Global State: The entire system
state, which is a collection of concurrent events,

consisting of the states of all objects based on their
interactions.
Definition 4 Distributive Lattice Representation: The
collection of all possible consistent global states of
interactions observed in an embedded system.
Definition 5 Vector Time Stamp: A vector of discrete
clock values, one from each object in the distributed
embedded system [12].
Definition 6 Lattice: A lattice L is a partial ordered set P
such that for all x, y ∈ P, there exists a greatest lower
bound and a lowest upper bound.
Definition 7 Distributive Lattice: A lattice L is said to
be distributive if the distributivity property holds on all x,
y, z ∈ L.

The components of embedded systems can interact
concurrently as well as sequentially. Although
representation models such as UML sequence diagrams
are capable of representing the sequential interactions,
they are not capable of properly representing concurrent
interactions. Therefore, it is necessary to have a model
capable of representing both sequential and concurrent
interactions between objects. In order to observe the
concurrent interactions of the embedded system
components, we utilize the distributive lattices. Figure 1
shows three sequence diagrams which represent the
interaction of three objects. It is important to note that
these three sequence diagrams represent exactly the same
interactions between objects; however, traditionally they
are treated as different interactions. Here we show that
these three sequence diagrams are represented with the
same distributive lattice, therefore, clarifying any
misrepresentation issues.

Figure 1: (a) (b) (c) Three sequence diagrams
represent the same interaction of O2 sending a
message to O3, followed by O1 sending a message
to O3. (d) All three sequence diagrams correspond
to the same distributive lattice.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

The vertices of the distributive lattice represent the
consistent global states, composed of vector time stamps
of all the objects in the system. Since there are three
interacting objects, three digits are used to represent each
object’s state. The vertices at the same level represent
concurrent consistent global states of the embedded
system, whereas the vertices at different levels which are
reachable from each other represent sequential consistent
global states of the embedded system. The edges of the
lattice represent the global events observed in the
embedded system. By going through a lattice path,
sequential, causal, and concurrent interactions of objects
in embedded systems can be observed.

The distributive lattice representation model of object
interactions is able to capture the concurrent interactions
of instance-based as well as class-based objects in
embedded systems. The observations obtained from the
distributive lattice model will be integrated into the
dynamic behavior specifications for a more complete
view of system behavior.

1.3. Advanced Power Grid Control and the
FACTS Testbed Simulation

 Power network control has become an extraordinarily
difficult task due to the sheer size of such networks. It is
desirous to attempt to mitigate the effects of single
contingencies (such as line failures) as they occur, before
some combination of contingencies can lead to a
cascading failure scenario in which most or all of a power
grid goes down.

The family of “Flexible Alternating Current
Transmission System” (FACTS) devices shows promise
for use as network-embedded controllers [8, 9]. There is
ongoing research to incorporate a number of FACTS
devices that contain embedded communicating distributed
computers into a power grid network to act as a
distributed, fault-tolerant, and real-time constrained
control system. This paper looks at the integrated,
instance-based structured object-oriented co-analysis/co-
design of a FACTS-augmented power system,
specifically a hardware-in-the-loop test system that is
currently being implemented to test FACTS control of a
simulated power system. This test system includes a
multiprocessor simulation engine that will use
mathematical formulae for simulating a power grid, and
send appropriate power generation commands to three
actual power lines, which will have FACTS devices
attached to them.

The remainder of this paper is organized as follows.
Section 2 discusses the instance-based extensions to the
HOOMT co-analysis and co-design process. Section 3
presents a number of instance-based High Order Object
Model diagrams from the modeled system which were
generated based on transformations from their class-based

diagrams, and Section 4 presents samples of distributive
lattices to model the system’s behavior. Section 5
discusses the results of the modeling effort. Section 6
contains the conclusion to the paper.

2. The Instance-based HOOMT Process for
System Co-analysis and Co-design

The original class-based structured object-oriented
HOOMT method for performing the co-analysis/co-
design phase of embedded systems development provides
a unified method for the specification of a target
embedded system, including both hardware and software
components. The method allows the partitioning of the
hardware and software components to be performed, and
the interfaces between components can be specified.
During the succeeding phases of concurrent component
implementation and component integration and testing,
continued communication between the hardware and
software designers allows for continued refinements to
the system components, as well as the possibility for the
migration of components between hardware and software
as needed.

The structured object-oriented hardware/software co-
analysis/co-design phase itself consists of two stages:
system level co-analysis and co-design, and component
level co-analysis/co-design. The hardware and software
designers start with the system level co-analysis/co-
design and working together create the HOOMT models
of the whole system. Once these models have been
sufficiently hierarchically decomposed to show primitive
objects, an initial partitioning of the system into the
hardware and software components is performed, and
each group of designers takes their respective
specifications for further development in the component
level co-analysis and co-design stage.

Figure 2(a) shows the proposed extension to the
HOOMT co-analysis/co-design method. This extension
takes place in conjunction with the structured object-
oriented co-analysis/co-design phase. Prior to component
partitioning, the class-based models are transformed into
instance-based models to further specify the component
relationships and interactions. From the instance-based
models, further refinement into more detailed physical
(implementation-specific) component specifications can
take place to supplement the component level co-
analysis/co-design.

Figure 2(b) shows the transformations of the Bus and
Power Line object classes (such as would be found inside
a Power Transmission System object). The objects are
first instantiated in an instance-based object model, here
shown as an individual power line instance connected to
two separate bus instances. Also at the instance level,
distributive lattices can be constructed to help show
component interactions and behavior which can’t be

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

captured at the class level. Additionally, further models
can be added at the instance level to simplify
specification in cases where a complete instance-based
object model would be too cumbersome to fully represent
the instantiated components. Using the bus/power line
example, a digraph representing the individual buses and
power lines could be created to show which particular
buses are connected by which power lines for a given
system.

G

G

Class-based
models (object,
information flow,
state transition)

Instance-based
models (object,

event)

Physical models

Instantiation process

Physical implementation
process

Bus Power
Lineconnects

2
1

Busi
Power
Linek

connects Busjconnects

or:
Data structures:

Bus[bus_num][info],
Line[line_num][info]

Instantiation process

Physical implementation
process

Hardware: physical
buses & lines

Software: Simulation
Engine code

(a) (b)

Figure 2: (a) The extended HOOMT development
process. (b) Example of bus/line specifications using

the development process.

From the instance-based models, the specifications of
the bus and power line component instances can be taken
to the specific designs required for implementation. The
figure shows two possibilities for the implementation of
the buses and lines, as either hardware, in the form of
wiring diagrams showing the layout and connections of
the components in an actual power transmission system,
or as software, in the form of a set of data structures
(specifically a bus and a line matrix) to be used in code
for the dynamic simulation of a power transmission
system.

2.1. Development of Instance-Based Object
Models Based on Instantiation from Class-Based
Models

The development of the instance-based models begins
with the transformation of the High Order Object Model
(HOOM) created during the system level co-analysis/co-
design stage of the HOOMT process. Beginning with the
top level object model, the component objects are
instantiated. This process starts by adding instances of

components to the diagram as needed. Once the requisite
components are in the diagram, the attributes and
constraints of each instance can be individualized
appropriately. Next, the relationships between objects
need to be updated to include the new object instances in
the diagram. Once the diagram has been instantiated, the
process continues at subsequent levels of decomposition
of the complex components of the system, following the
original object decompositions provided by the class
model. The decomposition can continue until either all
objects in the diagrams are primitives, or until there is no
further need to show the instantiation of components at
lower levels.

Once the instance-based diagrams are created, it may
be desired to create a complete system structure model, in
which the component instances at all levels of abstraction
are combined into one diagram. The system structure
diagram provides a single diagram to show the entire
instance-based structure of the system at all levels,
helping to further understanding of the system
specification by both the hardware and software
designers.

2.2. Distributive Lattices for Modeling Instance-
Based Behavior

 The basic system structure is captured by using the
instance-based object models. In order to represent the
concurrent interactions of the objects in instance-based
object models, distributive lattices are used. These
distributive lattices are re-termed “instance lattices” to
distinguish them from lattices used for class-based object
models. The advantage of using these instance lattices is
in revealing the concurrent interactions between
components at the instance-level which are not visible at
the class level. In addition, the lattices can be created in a
hierarchical manner following the decomposition of the
object models in order to show the decomposition of the
higher-level interactions present at the previous
abstraction level.

For a particular scenario of component interactions, it
is first necessary to create the vector time stamps of the
interactions taking place. Then a lattice is created to
show all possible consistent global states that may occur
over the course of the scenario. Such scenarios may be
generated from existing diagrams in the class-based
Hierarchical State Transition Model (HSTM),
combinations of HSTM diagrams with information from
the Hierarchical Object Information Flow Model
(HOIFM), or may be brand-new scenarios developed by
the designers based on knowledge/assumptions of what
the embedded system components should be doing.
Lattices can be created for multiple levels of abstraction
as needed, for as many scenarios as desired. The
generation of vector time stamps and the distributive

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

lattice may be done by automated programs/tools, such as
the LatGenU program [5].

3. Instance-Based Transformation of the
HOOM for Hardware/Software Co-
analysis/Co-design

 The transformation of the HOOM into a set of
instance-based diagrams, as well as an integrated system
structure model, begins at the top level of the class-based
model created during the initial co-analysis/co-design
process. (If needed, the actual upper-most level, or
context object diagram, can be skipped in the event that
an instance-based version of the diagram looks identical
with its class-based template.) Figure 3 shows the top
level class model for the simulated power testbed system
currently being designed and constructed as part of the
research effort.

FACTS
Device

setpoint

store_setpoint(newSetpoint)
control_power_line()
reconfigure()

flow balance
|Embedded Computer| + |DSP|

+ |Interface Board| + |Power
Electronics|

control
communication monitors

Simulated Power
Transmission System

flows
capacities
generations
loads
adjacency_matrix

AG[For each line
-capacity <= flow <= capacity
{checked by FACTS}]

AG[For each bus
sum of lines.flow is 0.
{checked by FACTS}]

AG[For each load
load is greater than or equal to 0.
{checked by FACTS}]

Line flows must correspond to
some operational point

supply_power()

manipulates,
senses

Figure 3: Class-based top level object model.

 In Figure 3, two components are visible: the FACTS
Device and the Simulated Power Transmission System.
(For simplicity, some of the components in the original
model, such as the Placement and Contingency object
classes, have been abstracted out.) Also shown are the
relationships between the three components, including a
relationship labeled “control communication” that
appears to be between the FACTS Device and itself. This
relationship, originally intended to indicate the
communications between multiple FACTS devices on a
power grid, is a prime example of the limitations of class-
based models, as will be seen when the relationship is
clarified upon instantiation.
 At the current level of abstraction, the FACTS Device
class object is instantiated into three FACTS Device
instances. Each instance is given a number from 1 to 3 to
distinguish it from the others. The relationships between
the three FACTS devices, as well as the relationships
between each of the FACTS devices and the Simulated
Power Transmission System (SPTS), are next
instantiated. These relationships are carefully instantiated

so that their original cardinalities carry over into the
instance-based model. For example, the “manipulates,
senses” relationship, which represents the interaction of
each FACTS device with its HIL line, is a 1-1
relationship, and thus each enters the SPTS at a different
point. The “monitors” relationship, however, represents
the sensor data of the whole power transmission system
that would be sent out to all of the FACTS devices, hence
a one-to-many relationship, and is instantiated as such.
Similarly, the original “control communication”
relationship has been replaced by a one-to-many
relationship that connects all three FACTS devices. The
resulting model can be seen in Figure 4.

Figure 4: Instance-based top level object model.

 In addition to the objects and their relationships, as
they become known, the individual attributes of the
components can be instantiated and added to the model.
For the FACTS devices, this would include such
attributes as what line in the simulated system each was
“attached” to. Similarly, the constraints on the
components can be instantiated, or “individualized”, as
they become known.
 After instantiating the FACTS devices in the top level
diagram, the transformation of the class-based model
continues with the high order Simulated Power
Transmission System object. Looking at the decomposed
class model reveals that the SPTS contains two object
classes, the Simulation Engine and the HIL Line, and their
respective relationships with each other and with objects
outside of the SPTS (the FACTS Device and
Contingency). To create the instance-based object model
of the SPTS, there must be three HIL lines and one
Simulation Engine. Figure 5 shows both the original
class-based model and the resulting instance-based
diagram. (Due to space constraints, the models presented
here have been simplified by removal of the attributes,
methods, and constraints.)

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

The Simulation Engine component’s instantiated
attributes include the configuration information (buses,
lines, generators, loads) of the power transmission system
to be simulated. As discussed above in Section 2, once
the model has been further transformed into the physical
(implementation) model, the bus and line objects will
manifest as both a set of data structures in the Simulation
Engine, the bus and line matrices, and as a physical set of
buses and lines, contained within the HIL line objects,
that will duplicate the power flows of three chosen power
lines in the simulated system.

Figure 5: Class and instance-based Simulated
Power Transmission System models

Simulation Engine

monitors

monitors

senses,
manipulates

senses,
manipulates

reads, sets

HIL Line1
senses,

manipulates

reads,
sets

reads,
setsHIL Line2

HIL Line3

UPFC
FACTS
Device1

UPFC
FACTS
Device2

UPFC
FACTS
Device3

senses,
manipulates

senses,
manipulates

senses,
manipulates

Simulated Power
Transmission System

monitors

control
communi

cation

Figure 6: System structure diagram.

 At this point in the process, further instantiation of
lower levels in the model’s hierarchical decomposition is
stopped to prevent the integrated system structure
diagram from becoming unmanageable. Further
instantiations at lower levels of abstraction can be
continued as needed for further exploration of component
structure and interactions. To create the system structure
diagram, the instance-based decomposition of the
Simulated Power Transmission System is incorporated
into the instance-based top level diagram in Figure 4.

The relationships between each of the three FACTS
devices and their corresponding HIL lines are matched
up, with the ports at the object edges maintaining the
proper separation for relationships that cross object
boundaries. In addition to the incorporation of the
instanced-based SPTS components, each of the three
FACTS devices is re-instantiated as a specific type of
FACTS device, a Unified Power Flow Controller, or
UPFC, FACTS Device. The completed system structure
diagram for our model is presented in Figure 6.
 From the system structure diagram, the designers can
see the whole instance-based structure of the system at
one time, and use it for further design work, including the
creation of the instance lattices for modeling scenarios of
events.

4. Class- and Instance-Based Behavior
Modeling of the FACTS Power System using
Distributive Lattices

For the instance-based co-analysis/co-design process,
distributive lattices are one of the methods being added to
the HOOMT for use in capturing the dynamic behavior of
a system. These lattices are a means of visualizing
behavior scenarios. One of the scenarios created for the
simulated testbed system under development involves the
component interactions that take place during simulation
startup. These interactions take place between the
Simulated Power Transmission System (consisting of the
Simulation Engine and the HIL Lines), and the FACTS
Device objects. For this scenario, the class- and instance-
based object models were used to identify the
components involved, and the global interactions of the
components during the scenario listed. At the top level,
using a class-based lattice (corresponding with Figure 3),
the interactions between the FACTS Device and the
SPTS are viewed as a total order sequence without any
concurrencies. These interactions consist of messages
sent and received by the two objects. In Figure 7(a), the
distributive lattice representation of these interactions is
illustrated. The vector time stamps of the consistent
global states are used to label the nodes of the lattice,
which reveal the sequential ordering of the interactions.
For this lattice, the first and second transitions represent
the sending and receiving of a message from the SPTS to
the FACTS Device saying that the SPTS is ready for the
FACTS to be started. The third and fourth transitions
correspond to the sending and receiving of a message
from the FACTS Device back to the SPTS that informs
the SPTS that the FACTS Device is ready for the
dynamic simulation to begin.

Figure 7(b) shows the top-level instance-based
interactions between the single instance of the SPTS and
the three instantiated FACTS objects. The concurrent

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

interactions which cannot be observed at the class-level
can now be seen with the instance-level view, as the
concurrent consistent global states residing at the same
levels appear. It is easy to see that at the class-level all
the interactions are sequential; one state follows the next.
However, at the instance-level, some states are concurrent
and some are sequential (observed through lattice paths).
The concurrencies are introduced by the messages sent
from the SPTS to multiple FACTS instances and vice
versa. By modeling the instance-based components’
interactions by distributive lattices, the concurrencies in
the scenario which cannot be observed at the class-level
are revealed.

00

10

SPTS snds "FACTS start" msg.

11

FACTS rcvs "FACTS start" msg.

12

FACTS snds "Simulation start" msg.

22

SPTS rcvs "Simulation start" msg.

0000

1000

11002000

2100 120020103000

21103100 22003010 20203001

3110 221021203101 32003011 3020

3111 32103120 2220

3002

30213012 32013102 4200

321131213112 421032203022 42013202

4211322132123122 4202 4220

422142123222 5220

52214222

5222

6222

(a) (b)

Figure 7: Top level instance lattices (with vector time
stamp-labeled states): (a) Class-based component

interactions. (b) Instance-based interactions

To examine the component interactions of the scenario
closer, the top-level instance-based interactions shown in
Figure 7(b) are decomposed one level down,
corresponding with the system structure diagram in
Figure 6, and the resulting distributive lattice
representation is depicted in Figure 8. The new lattice
includes the sequential and concurrent interactions
between the Simulation Engine, three FACTS devices,
and three HIL line objects. The expansion of the lattice
represents the decomposition of the high level SPTS
object into the Simulation Engine and three HIL Line

instances, and the additional interactions between those
instances that become visible at the new abstraction level.
Similar to the lattice in Figure 7(b), this lattice shows an
increase in concurrency up to approximately the halfway
point of the lattice, after which the possible consistent
global states begin to converge at the last two sequential
nodes at the bottom.

0000000

10000000000010

1100000 200000010000100000011

21000001200000 1100010 2001000 300000020000101000011

2101000 31000002200000 210001012100001200010 1100011 300100020020002001010 300010030000102000011

31010002201000 21020002101010 31001003200000 310001022100002200010 2100011 30011003002000300101020020102001011

31011003201000 310200031010102211000 22020002201010 21020102101011

30001103000011

30021003001110300201030010113200100 310011032100003200010 3100011

3201100 310210031011103211000 32020003201010 31020103101011

3000111

30022003002110300111132101003200110 3100111

3211100 32021003201110 310220031021103101111

1210010 12200001200011

2210010 22200002200011

22120002211010 2221000 220201022010113210010 32200003200011

3210110 32201003200111 32120003211010 3221000 32020103201011

32121003211110 3221100 320220032021103201111

1210011 1220010

2210011 2220010

2212010 22220002211011 2221010 3210011 3220010 4220000

3210111 3220110 4220100 3212010 32220003211011 3221010 4221000

32122003212110 32221003211111 3221110 4221100

2002011

2102011

2202011

2212011 2222010

3002011

3002210 300230030021113102011

3102210 310230031021113202011

3202210 320230032021113212011 3222010 4222000

3212210 3222200 32123003212111 3222110 4222100

3002211 3002310

3102211 3102310

3202211 3202310

3212211 3222210 32123104222200 3222300

0000012

1000012

1100012

1200012

1220011 1210012

2000012

2001012

2002012

2100012

2101012

2102012

2200012

2201012

2202012

2220011 2210012

2221011 2211012

2222011 2212012

3000012

30001123001012

30011123002012

3002112

30023113002212

3100012

31001123101012

31011123102012

3102112

31023113102212

3200012

32001123201012

32011123202012

3202112

32023113202212

3220011 3210012 4220010

3220111 3210112 42201103221011 3211012 4221010

3221111 3211112 42211103222011 3212012 4222010

3222111 3212112 4222110

3222211 32123113212212 4222210 3222310

1220012

2220012

2221012

2222012 3002312

3102312

3202312

42200113220012

42201113220112 42210113221012

42211113221112 42220113222012

42221113222112

4222211 32223113222212 3212312

4220012

4220112 4221012

4221112 4222012

4222112

4222300

4222310

42223114222212 3222312

5222300

5222310

52223114222312

5222312

6222312

Figure 8: Instance-based component interactions at
the second level.

It is important to note that Figure 8 illustrates the
interactions at a lower-level than Figure 7. The
decomposition enables the observation of more
comprehensive interactions between the components. The
distributive lattice representation of the lower-level
instance-based behavior of the FACTS system reveals a
more detailed and complete picture of what can happen
during this scenario. The number of paths, sequential and
concurrent nodes increases as the model’s hierarchical
decomposition is further instantiated. It should also be
noted that the concurrency, represented as an expansion
in the lattice, becomes larger as the lattice is decomposed
into lower levels. This same observation of the expansion
of the lattice is made in the comparison of the class-based
lattice modeling with instance-based. Additionally,
instance-based modeling reveals concurrent interactions
between the components of the system which are not

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

visible with the class-based modeling. The observation of
concurrent interactions of system components is made
possible through the incorporation of the distributive
lattices into the instance-based co-analysis/co-design
process.

5. Development Results

 The instance-based HOOM diagrams and distributive
lattices presented in this paper are a portion of the
instance-based system specifications of the proposed
simulated FACTS testbed system that were developed
using the methodology discussed in Section 2. Along
with the addition of an instance-based methodology to
structured object-oriented co-analysis/co-design, of
particular interest was the new application of the
distributive lattice concept to hierarchically decomposed
instance-based dynamic behavior specification of
concurrent embedded systems. The addition of the
instance-based object and behavior models to the
methodology has proved very useful in the system
specifications being produced, providing more accurate
representations of the components and their interactions
than were present before.
 One observation gained from the use of the
distributive lattices was the tendency for exponential state
explosion with the addition of more interactions (such as
during the hierarchical decomposition). It should be
noted that the cause of this explosion, the additional
possible consistent global states due to the additional
concurrent interactions of the scenario, is not a fault of
the lattices, but rather of the concurrent behavior itself.
Other techniques for representing behavior and
interactions would suffer either from similar state-space
explosions, or already be limited in their abilities to
capture concurrent behavior (such as the Hierarchical
State Transition Model already provided in the HOOMT).

6. Conclusions

 The use of object-oriented methodologies for
hardware/software co-analysis and co-design has been
very valuable for the specification of embedded systems.
However, existing class-based approaches present
difficulties in properly capturing the structure,
relationships, and behaviors of component instances, in
addition to not always being easily understood by
hardware designers. The addition of an instance-based
approach to the High Order Object-oriented Modeling
Technique allows for an extension of a structured object-
oriented methodology for the integrated co-analysis and
co-design of individual instances of the hardware and
software components of embedded systems. As shown in
the above examples, the instance-based extensions to the
methodology and application of distributive lattices allow

for more accurate specification of embedded system
components and their concurrent behaviors.
Additionally, the instance-based approach provides
models that by looking more like traditional hardware
specifications are more easily understood by hardware
designers, and are easier to further develop into
implementation-specific system specifications.

7. References

[1] P. Green, D. Morris, and G. Evans. “Software technology for
embedded systems”. Software Technology and Engineering
Practice, 1997. Proceedings of the Eighth IEEE International
Workshop on incorporating Computer Aided Software
Engineering, pp. 402-410, 14-18 July 1997.
[2] O. Rashid, N. L. Passos, and R. H. Halverson. “An Object
Oriented Hardware/Software Co-design Paradigm.”
Proceedings of the ISCA 13th International Conference -
Computers and their Applications, pp. 440-443, March 1997.
[3] T. Y. Lee, P. A. Hsiung, and S. J. Chen. “DESC: A
Hardware-Software Codesign Methodology for Distributed
Embedded Systems.” IEICE Transactions on Information and
Systems, IEICE Publishers, Volume E84-D, Number 3, pp. 326-
339, March 2001.
[4] L. Dong, M. L. Crow, Z. Yang, C. Shen, L. Zhang. “A
Reconfigurable FACTS System for University Laboratories.”
IEEE Transactions on Power Systems, 19(1):120-128, February,
2004.
[5] LatGenU program - Lattice Generator for Unix. Power
Research Group, University of Missouri-Rolla, 2004.
http://filpower.umr.edu.
[6] X. F. Liu, H. Lin, and L. Dong. “High Order Object-oriented
Modeling Technique for Structured Object Oriented Analysis.”
International Journal of Computer and Information Science
(IJCIS), 2(2):74-96, June 2001.
[7] M. Ryan, S. Markose, X. F. Liu, B. McMillin, Y. Cheng.
“Structured Object-Oriented Co-Analysis/Co-Design of
Hardware/Software for the FACTS Power System.”
Proceedings of the 29th Annual International Computer
Software and Applications Conference, pp. 396-402, Edinburgh,
Scotland, July 2005.
[8] M. D. Ilic. “Fundamental engineering problems and
opportunities in operating power transmission grids of the
future” Int'l Journal of Electrical Power & Energy Systems,
17(3):207-214, June 1995.
[9] B. McMillin, M. L. Crow. “Fault Tolerance and Security for
Power Transmission System Configuration with FACTS
Devices,” Proceedings of the 32rd Annual North American
Power Symposium, vol. 1, pp. 5.1-5.9, Waterloo, Ontario,
October 2000.
[10] Lamport, L., “Time, clocks and ordering of events in
distributed systems,” Communications of the ACM 21, 7, July
1978, 558-565.
[11] Mattern, F., “Virtual Time and Global States of Distributed
Systems,” “Parallel and Distributed Algorithms: proceedings of
the International Workshop on Parallel & Distributed
Algorithms”, Elsevier Science Publishers B. V.,1989, 215-226.
[12] Fidge, Colin J., “Timestamps in message-passing systems
that preserve the partial ordering,” Australian Computer Science
Communication 10, 1, February 1988, 55-66.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

	An Instance-Based Structured Object Oriented Method for Co-Analysis/Co-Design of Concurrent Embedded Systems
	Recommended Citation

	untitled

