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AN IMPROVED CHARACTERIZATION OF I-STEP RE OVERABLE 
EMBEDDINGS: RINGS IN HYPERCUBES F 

# Jun-Lin Liu , 
Computer & Comm. Research Lab. 

Industrial Technology Research Institute 
v400, 195-1 1 Sec. 4 Chung Hsing Rd. 

Chutung, Taiwan 310, R.0.C 

Abstract - An embedding is I-step recoverable ifany single fault 
occurs, the embedding can be reconfigured in one reconfigura- 
tion step to maintain the structure of the embedded graph. In 
this paper we present an efJicient scheme to construct this type of 
I -step recoverable ring embeddings in the hypercube. Our 
scheme will guarantee finding a I-step recoverable embedding of 
a length-k (even) ring in a d-cube where 6 2 k 2 (3/4)2d and 
d 2 3, provided such an embedding exists. Unlike previously 
proposed schemes, we solve the general problem of embedding 
rings of different lengths, and the resulting embeddings are of 
smaller expansion than in previous proposals. A suficient condi- 
tion for the non-existence of I-step recoverable embeddings of 
rings of length > (3/4)2d in d-cubes is also given. 

Keywords: Ring, Hypercube, Embedding, Fault Tolerance, 
Reconfiguration. 

I. Introduction 
The hypercube has been considered as a useful host topology 

to simulate many application graphs [1,2,3,6,12,13,14], and most 
research assumes that the hypercube is fault-free. However, 
because of increasingly large parallel computer architectures, a 
processor failure during a long computation is not uncommon, 
and hours of computation will be wasted unless the system can 
be properly reconfigured to continue normal operation. Several 
reconfigurable embedding schemes have been given for a fixed 
hypercube (without redundant processors and links) in recent 
years [4,5,7,8,9,10,11]. The fundamental idea for these schemes 
is to embed an application graph on the hypercube without fully 
utilizing the nodes on the hypercube. The remaining nodes can 
be used as spare to reconfigure the embedding in case of faults. 
The result of this research shows that by carefully embedding the 
application graphs, the topological properties of the embedding 
can be preserved under fault conditions, and reconfiguration can 
be carried out efficiently. 

We investigated the designs for reconfigurable embeddings of 
the ring in the hypercube with the aim of minimizing reconfigu- 
ration cost and performance degradation. The cost is measured 
by the number of node-state changes or reconfiguration steps 
[ 151 needed for processing of the reconfiguration, and the perfor- 
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mance degradation is characterized as the dilation of the new 
embedding after reconfiguration. Proposals for constructing such 
embeddings have been given [4,5,8,9,11] by others and us. How- 
ever, the area of designing l-step recoverable embeddings has 
not received much attention; only [5,8,11] address or partially 
address this problem. An embedding is 1-step recoverable if any 
single fault occurs the embedding can be reconfigured in one 
reconfiguration step such that the new embedding is still a ring of 
the original length. I-step recoverable embeddings are most 
interesting because of their efficient reconfigurability due to 
faults. For convenience, we will use the term "1SRE" to denote 
the phrase " 1 -step recoverable embedding" throughout the paper. 

The existing schemes for constructing 1SRE's are either 
restricted ([5,11]), applicable only to rings of some particular 
lengths, or result in embeddings with large expansion ([SI) (a low 
percentage of processor utilization on the hypercube). Thus, in 
this paper, we propose an efficient scheme to systematically con- 
struct a lSRE of a length-k ring in a d-cube where k is even, 6 
_< k 5 (3/4)2d, and d 2 3. Our scheme is based on a composition 
idea by which a lSRE in a given dimension hypercube is formed 
by combining two ISRE's in two lower dimension hypercubes. 
The running time complexity of our scheme is linear to the 
length of the ring embedded, and there are many more rings of 
different lengths which are applicable to our scheme than those 
to [5,11]. Also, the resulting 1SRE's of our scheme are of 
smaller expansion than that of [8]. 

In Section 11, we summarize the failure model and reconfigu- 
ration algorithm reported in [4,15]. The details of our proposed 
scheme and proofs for the correctness of the scheme are given in 
Section 111. In Section IV, we show the complexity of our 
scheme and compare the scheme to other existing ones. A suffi- 
cient condition for the non-existence of 1SRE's of rings of length 
> (3/4)2d in a d-cube is given in Section V. The concluding 
remarks and open problems follow as Section VI. 

11. Failure Model and Reconfiguration Algorithm 
The failure model and reconfiguration algorithm used in this 

paper follow those defined in [4,15]. We will briefly summarize 

Failure Model 
For an embedding of a length-k ring in a d-cube, every node 

on the d-cube is assigned either an active state or a spare state, 
and an active state is denoted as a positive integer from 1 through 
k ,  and a spare state is denoted as 0. A node is an active node (a 
spare node) if it has an active state (a spare state). An example 
of state assignments is shown in Fig. 1. where a length-6 ring and 
its embedding in a 3-cube is given in Fig. l(a) and l(b), respec- 
tively. Throughout the figures in this paper, we will use directed 
arcs in the hypercube to denote an embedding. 

their ideas and approaches here in the interest of completeness. 
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Fig. 1. (a) A length-6 ring. (b) An embedding of a length-6 
ring in a 3-cube with every node labeled with its state in 
parentheses. 

When a node on the hypercube becomes faulty, its state is 
changed to the faulty state, denoted as - 1 .  For example, if the 
node 011 in Fig. l(b) becomes faulty, its state will be changed 
from 5 to -1. Thus, fault detection on an embedding will be 

active states. It is assumed that reliable fault diagnosis mecha- 
nisms are available and if a node becomes faulty its state changes 

based on the identification of a missing state of the k possible 

2(d) 2(c) 

to - 1 .  In this paper we deal with single-fault scenarios only. 
Reconfiguration Algorithm 

Let a,  be a node with active state t .  For an embedding of a 
length-k ring in a d-cube, a, maintains a backup of the work 
environment of a,+l ~ and is responsible for detecting the fault and 
reconfiguring the embedding due to the missing of active state 

- 

Fig. 2. (a) The fault-free embedding of a length-10 ring in 
a 4-cube with the fault in node 0110 causing the loss of 
state 5 (b). (c) The state of a local supervisor, node 11 11, is 
changed from 7 to 5. (d) Spare node 1100 recovers the loss 
of state 7, completing the reconfiguration. 

t + 1 .  When-a,+l becomes f&ty (state changed irom t + 1 to -l), 
a, will detect this fault and act as a local supervisor to invoke the 
following reconfiguration actions: 

])Compute s = XOR(a,, a,+l, a,+*) (i.e., XOR denotes the bit- 
wise exclusive-or operation). 

2 ) ~ ~ ~  the previous state of node be W. Change the state of 
node s from w to t + 1, and assign the work environment of 

With the definition of tlhe cost for reconfiguring an embedding 
due to a fault, we have the following definition for a 1 -step recov- 
erable embedding: An ennbedding is 1-step recoverable if any 
single fault occurring the embedding can be reconfigured to 
maintain a fault-free structure of the ring embedded by changing 
at most One state in a node. 

a,,, to s. 
2a)w = 0. The reconfiguration is done. 
2b) 
w > 0. A propagated fault for recovering active state w is 
issued and the reconfiguration processing continues. 

Note that in the step 1) above, the four nodes, ai, ai+l3 ai+Z, and 
node s constitute the four nodes of a 2-D plane of the hypercube. 

The reconfiguration actions above form the xor- 
reconfiguration algorithm. An example for running the algo- 
rithm is shown in Fig. 2. Fig. 2(a) depicts a fault-free embedding 
of a length-10 ring in a 4-cube. A fault in node 01 10 causes the 
state to change from 5 to - 1  (Fig. 2(b)). Since node 01 11 with 
state 4 is responsible for detecting the missing of state 5, it will 
eventually detect this fault and act as a local supervisor to recon- 
figure the embedding. With XOR(O111,0110, 11 10) = 11 11, the 
state of node 1111 will be changed from 7 to 5, and the work 
environment of node 01 10 will be assigned to node 1 11 1 (Fig. 
2(c)). Since the previous state of node 11 11 (7) is > 0, a propa- 
gated fault for recovering state 7 is issued and the same reconfig- 
uration actions are repeated. Node 11 10 with state 6 then detect- 
ing the missing of state 7. With XOR(lll0, 1 1  11, 1101) = 1100, 
the spare node 1100 becomes active with state 7, and it is 
assigned with the old work environment of node 11 11 (Fig. 2(d)). 

The cost of reconfiguring an embedding due to a fault is mea- 
sured by the number of state changes in the fault-free nodes on 
the hypercube (i.e., the number of nodes with state changing 
from spare to active or active to spare). For the example cited, 
the final reconfiguration causes two state changes: the state of 
node 11 11 changes from state 7 to state 5 and the state of node 
1 100 changes from 0 to 7. 

111. An Efficient Scheme 
In this section, we present an efficient scheme to systemati- 

cally construct a ISRE of a length-k (even) ring in a d-cube, 
where 6 I k I (3/4)2d and d 2 3. Our scheme is based on the 
following idea: if there exists a lSRE of a length-k, ring in a d- 
cube and a lSRE of a length-k2 ring in a d-cube, then there 
should exist a 1 SRE of a length-(k, +k2) ring in a (d + 1 )-cube. 

An embedding of a length-k ring in a d-cube is specified 
completely by listing the k active nodes al, a2, . . ., ak in order. 
For example, on the 3-cubi:, a listing might be 

000,001,011,111,110,100. 

Ignoring the starting node, a more compact notation is to list in 
order only the coordinate places in which the change occurs. In 
the example cited, one would obtain c1, 2, 3, 1, 2, 3>. This k- 
tuple of coordinate places will be called the transition sequence 
for the embedding. In this paper, we will use the notation, Rk -+ 
Q d ,  to denote an embedding of a length-k ring in a d-cube. We 
also define Rk -+ Qd = S I T where S is the binary label of the 
starting node (0 for 00. . .IO) and T is the transition sequence of 
the embedding. For example, the embedding of a length-10 ring 
in a 4-cube in Fig. 2(a) is referred as R I O  -+ Q4 = 0 I < 1, 2, 3, 1, 
4, 1, 2, 3, 1 , 4  >. 
Lemma 3.1: For odd length rings and rings with length less than 
6, there are no 1 SREs in the hypercube. 
Proof: Since there are no odd length cycles as subgraphs of the 
hypercube [ l l ] ,  there are no embeddings of odd length rings in 
the hypercube. It is easy to see why there is no 1 SRE of length-2 
and length-4 rings in the hypercube. 
Lemma 3.2: If there exia8ts a lSRE of a length-k ring in a d -  
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cube, then there exists a lSRE of a length-k ring in a 
(d + 1)-cube. 
Proof: Just leave one d-cube unused, then the same lSRE of the 
length-k ring in a d-cube is also a lSRE for a length-k ring in a 
(d + 1)-cube. 
Lemma 3.3: If there exists a lSRE of a length-kl ring in a d-  
cube and a lSRE of a length-k2 ring in a d-cube, then there 
exists a lSRE of a length-(kl+kz) ring in a (d + 1)-cube. 
Proof: First, we present a compositional method to form a ISRE 
of a length-(k,+k2) ring in a (d + 1)-cube from two existing 
1SRE's of length-kl and length-kz rings in a d-cube. Let the two 
existing 1 SRE's be 

R - + Q d  E OI<Xl, yi, Z1, ... >, and ki  

k2 R +Qd E 01 < X2.y2, Z2, ... >. 

By swapping some coordinates in the transition sequence of Rkl 
-+ Q d ,  we can have the first three coordinate places of both tran- 
sition sequences be the same. For example, if Rkl -+ Qd E 0 I < 

have Rkl -+ Qd = 0 I < 1, 4, 3, 1, 4, 2, . . . > after the swapping 
(exchange 2 and 4). Then, we change the starting node of the 
new Rkl -+ Qd to be 0 0 2y2-' (0 : the bitwise-XOR operation). 
So, we have 

1, 2, 3, 1, 2, 4, I .. > and Rk2 -+ Qd E 0 I < 1, 4, 3, >, then We 

Rk, -9 = 0 @ 2"-' I < Xz, y2,  Z2, . . . >, and 
Rk2-+Qd E oI<Xz,y2,Zz, " '  > 

such that both embeddings remain 1 -step recoverable. 

. \  

Fig. 3. A transition sequence for R(k,+k2) + Q(d+l) by com- 
posing two transition sequences of Rkl -+ Qd and Rk2 -+ 
Q d .  

To form a transition sequence for a lSRE R(kl+kZ) -+ Q(d+l), 
we simply replace the first y z  coordinate place in both transition 
sequences for R,, -+ Qd and Rk2 -+ Qd with d + 1 coordinate 
place, and then combine these two transition sequences together. 
This processing is depicted in Fig. 3. Thus, we have 

Rkl+kf Qd+l 0 I < X2, d + l ,  Zz, . . ., X2, d + l ,  Z2, . . . > 

Second, we need to show that the embedding Rkl+k2 -+ Qd+, 
cited is a 1SRE. Fig. 4 will help us to explain this proof more 
clearly. Fig. 4(a) and 4(b) depict the partial portions of Rkl -+ 
Qd and Rk2 -+ Q d ,  respectively. Fig. 4(c) depicts the R(kl+kZ) -+ 

constructed by following the composition method. Note 
that, nodes s1 and s2 in Fig. 4(a) and nodes sg and s4 in Fig. 4(b) 
must be spare nodes. For R(kl+k2) -+ Q(d+l) in Fig. 4(c), all the 
active nodes except nodes ulJ, u , ~ ,  u13, and u14 remain to be 
1-step recoverable as they are in Rkl -+ Qd and RkZ -+ Q d .  And, 
all the spare nodes in Rk, -+ Qd and Rk2 -+ Qd remain to be 
spare nodes as they join in R(kl+k2) -+ Q(d+l) .  Thus, we need only 

to check the recovery processes for nodes ai,, aipr aigr and ai4 for 
verifying the 1-step recoverability for R(kl+k2) -+ Q(d+l). Since 
active nodes ai,, ai,, ai3, and aiq can be recovered by spare nodes 
s3, s4, sl, and s2 in one step, respectively, this R(kl+k2) -+ Q(d+l) is 
a1SRE. 

Example: By using the composition method in Lemma 3.3, we 
demonstrate the construction of a lSRE of a length-20 ring in a 
5-cube by two smaller lSREs,  R8 -+ Q4 0 I < 1,2,  3,4, 1 ,2 ,  3, 
4 >  and RI2 -+ Q4 = O  I < 1, 4, 3, 1, 2, 3, 1, 4, 3, 1, 2, 3 >. With 
the changing of starting node and swapping the elements in the 
transition sequence, we have R, -+ Q4 0 @ 23 I < I ,  4, 3, 2, 1, 
4, 3, 2 > and R12 -+ Q4 0 I < 1, 4, 3, 1, 2, 3, 1, 4, 3, 1 ,  2, 3 >. 
Deleting two coordinate-4 places and combining the two 
sequences together by adding two coordinate-5 places, we have 
R,, -+ Q,  E O  I < 1, 5,  3, 2, 1,4, 3, 2, 1 ,  5 ,  3, 1, 2, 3, 1 ,  4, 3, 1 ,  2, 
3 >, which is a 1SRE. Fig. 5 depicts such construction of a 
1 SRE. 

Fig. 5. 
(a) lSRE R8 -+ Q4 == 0 @ 23 I < 1,4,  3, 2, 1 ,4 ,  3, 2 > .  
(b) lSRE RI2 - + Q 4 ~ 0 l  < 1,4,  3, 1 ,2 ,  3, 1 ,4 ,  3, 1 ,2 ,  3 >. 
(c) lSRER2, -+ Q, = O  I < 1,5 ,3 ,2 ,  1 ,4 ,  3,2, 1, 5,  3, 1 ,2 ,  
3 , 1 , 4 , 3 , 1 , 2 , 3 > .  

Lemma 3.4: For a length-6 ring, there is a lSRE in a 3-cube. 
Proof: R6 + Q3 =01< 1 , 2 , 3 , 1 , 2 , 3  >,is a 1SRE. 
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Lemma 3.5: For length-6, 8, and 12 rings, there are 1SRE's in a 
4-cube. 
Proof: The proof is divided into following cases: 

Case I. For a length-6 ring, R6 4 Q4 E 0 I c 1, 2, 3, 1, 2, 3 > 
is a ISRE (Lemma 3.2 and Lemma 3.4). 
Case 11. For a length-8 ring, R8 + Q4 = 0 I < 1, 2, 3, 4, 1, 2, 
3 ,4  > i s  a 1SRE. 
Case 111. For a length-12 ring, by using the composition 
method in Lemma 3.3, we can construct a lSRE by combin- 
ing two 1SRE's of R6 + Q3 I 0 I < 1 , 2 , 3 , 1 , 2 , 3  >. We have 
R12 -) Q4 = O  I < 1, 4, 3, 1, 2, 3, 1, 4, 3, 1, 2, 3 >, which is a 
1 SRE. These ISREs are shown in Table I. 
Case N. For a length-10 ring, an easy computer program was 
used to enumerate all possibilities, and we found out there is 
no 1 SRE for a length- 10 ring in a 4-cube. 0 

TABLE I. ISRE'S of length-14, 16, 18.20, and 24 rings in a 5-cube 

" - 
R14 -+QS ~ 0 1 <  1,5, 3,4, 1,2,3,4,  1,5,3, 1 ,2 ,3  > 
Constructed From: R6 -+ Q4, Rg 4 Q4 

Constructed From: R8 -+ Q4, R8 -+ Q4 
R16 -+ Q5 Eo I <  1, 5, 3.4, 1, 2, 3,4, 1,5, 3,4, 1 ,  2, 3 , 4 >  

I Embeddines 
and Lemma 3.7, respectively. 
Induction hypothesis: .Assume the theorem follows when d 
= m > 6 .  
Induction step: d = m -I- 1 

Case I: 6 I k I (3/4112". According to induction hvpothe- 

TABLE II. Summary of con!;tntcting 1SRE's of length-22.26, . . . , 44  
and 48 rings in a 6-cube 

Embeddings I Constructed from (IEmbeddings I Constructed from 

R22 -+ Qs 1 Rio -+ Qs, Riz -+ Qslkin -+ Qh IRi8 -+ Q5, Ria -+ Q5 

I - ~ .  .- -. 
R24 -+ Q5 = 0 I c 1,5,3,  1,2,3, 1,443, I, 2,3, 1,5,3,  1,2,3,  1,4, 3, 1 .2 .3  > 
Constructed From:R12 -+ Q4, R12 -+ Q4 

Theorem 3.1: There exists a lSRE of a length-k (even) ring in a 
d-cube, where 6 I k I (3/4)2d and d 2 3, except when k=10 with 
d=4, and k=22 with d=5. 
Proof: We prove this theorem by an induction proof based on d. 

Induction base: For d := 3, d = 4, d = 5, and d = 6, the theo- 
rem follows based on L.emma 3.4. Lemma 3.5. Lemma 3.6, 1 

(3/4)2m and 6 2 k2 4 (3/4)im. By the induction hypothesis 
there exists a lSRE of a kl length in a m-cube and a lSRE 

in a (m + ])-cube. 
Case 11: (3/4)2" < ,k I (3/4)2'"+'). Since k is even, we 

Constructed From: R6 -+ Q4. R12 -+ Q4 
R7n -+ Qq = O  I < 1.5.3, 1,2, 3, 1,4,3,  1,2, 3, 1 ,5 ,3 ,2 ,  1 ,4 ,3 ,2>  

I C&truitid From: Re -+ 04. R I ?  -+ OA I have k = k ,  + k,. where kl and k,  are even, and 6 I kl 5 

Lemma 3.6: For length-6, 8, 10, . t .  , 18, 20, 24 rings, there are 
1 SRE's in a 5-cube, but no 1 SRE of a length-22 ring in a 5-cube. 
Proof: The proof is divided into the following cases: 

Case I. For length-6, 8, and 12 rings, there are 1SRE's in a 
5-cube (Lemma 3.2 and Lemma 3.5). 
Case 11. For a length-I0 ring, the embedding Rio + Qs = 0 I 
< 1,2 ,3 ,4 ,5 ,  1 , 2 , 3 , 4 , 5  > i s  a 1SRE. 
Case 111. For length-14, 16, 18, 20, and 24 rings, there are 
1SREs in a 5-cube (Lemma 3.3). 
Case IV. For a length-22 ring, the composition method does 
not work, since 22 = 12 + 10 and there is no ISRE of a 
length-10 ring in a 4-cube. A computer program was used to 
enumerate all possibilities, and it shows there is no lSRE of a 
length-22 ring in a 5-cube. 

Lemma 3.7: For length-6, 8, 10, .. . ,44,  46,48 rings (i.e., rings 
of length k, 6 I k I (3/4)26), there are 1SREs in a 6-cube. 
Proof: The proof is divided into the following cases: 

Case I. For length-6, 8, ~ . .  , 20, and 24 rings, there are 
1SRE's in a 6-cube (Lemma 3.2 and Lemma 3.6). 
Case 11. For length-22, 26, ..., 44, and 48 rings, there are 
ISRE's in a 6-cube (Lemma 3.3). A summary of construct- 
ing these 1SRE's is given in Table 11. 
Case 111. For a length-46 ring, the composition method does 
not work, since 46 = 24 + 22 and there is no ISRE for a 
length-22 ring in a 5-cube. However, the following embed- 
ding comes out, 
R4, -+Q6 = O I  < 1,2,3,  1 ,2 ,4 ,  1 ,2 ,3 ,  1, 2,5, 1,2, 3, 

1 , 2 , 4 , 1 , 2 , 3 , 1 , 6 , 3 , 4 ,  1 ,2 ,4 ,  1 , 5 , 4  
3,5,1,2,5,1,3,4,1,3,2,5,1,6,5>, 

which is a ISRE. a 

in Lemma 3.3, we can construct a lSRE of a length-k ring 
in a (m + ])-cube with these two smaller 1SRE's. 0 

IV. Complexity and Comparison 

length-n ring in the hypercube is approximately about 
The running time compllexity of our schemes for embedding a 

T ( n )  = 2T(n/2) + c ,  

and we have T(n) = O(n). So, the running time complexity of 
our scheme is polynomial to the length of the ring embedded. 

The comparison of our scheme to the existing schemes for 
1SREs (i.e., [5,8,11]) is described as follows. Basically, the 
lengths of rings that are applicable to other schemes in [5,11] are 
very restricted, since both schemes are designed for embedding 
rings of lengths 2d-' and (3/4)2d only in a d-cube. It is shown 
that for rings of such lengths both schemes have efficient ways to 
construct 1 SRE's, however, they are not able to construct 1 SRE's 
of rings of other lengths. Compared with the schemes in [5,11], 
our scheme can be applied to more rings of different lengths. 

Unlike the schemes in [5,l I], the scheme in [8] can construct 
1SRE's of any even length ring in the hypercube. However, the 
trade-off for such excellent performance is that the resulting 
ISRE's are of large expansion ( the ratio of the size (in number 
of nodes) of the embedding hypercube to that of the embedded 
ring). For many case, the scheme will embed a ring in a hyper- 
cube that is one dimension larger than is necessary in order to 
achieve efficient reconfiguration due to faults. For example, a 
length-16 or length-20 ring will be embedded in a 6-cube by the 
scheme , although a 5-cube is enough to accommodate the ring. 
Compared with the scheme in [8], our scheme has better perfor- 
mance in terms of the processor utilization of the resulting 
ISRE's. 
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We summarize the comparison of our scheme to other exist- 
ing schemes for constructing 1SREs in Table 111. 

TABLE 111. Comparison among schemes for constructing 1SREs 

I Schemes I Applicability to [he ring I Expansion of resulting 1 
I 1SRE’s 

Rings of length 2d-’ and 
(3/4)2d in a d-cube [:8y 1 Rings of length (3/4)2d in 1 - 1 
a d-cube 

All even length rings Large expansion in many 
cases 

Our scheme Rings of length from 6 to Smaller expansion than 
that for [8] (3/4)2d in a d-cube 

V. A Sufficient Condition for the Non-existence of 1SRE’s 
In this section, we discuss a sufficient condition for the non- 

existence of a lSRE of a length-k (even) ring in a d-cube where 
k > (3/4)2d and d 2 3. The sufficient condition is based on the 
idea: no spare node can serve more than d - 1 active nodes when 
k > (3/4)2d. 
Definition : Let a,, a,+l, and a,+2 be three hypercube nodes with 
consecutive active states on a lSRE, and s be the label of a spare 
node where s = XOR(a,, a,+l, a,+2). 

(1)The spare node s will be referred as the I-step recovery 
spare node for active node a,+l in the 1SRE. 

(2)Nodes s, a,, a,+l, and a,+z will constitute the four nodes of 
a 2-D plane of the hypercube. This 2-D plane will be 
referred as a I-step recovery hyperplane (1SRHP) with 
respect to s, and denoted specifically as [s, a,, a,+l, a,+2] 

Lemma 5.1: For a lSRE, it is impossible to have more than two 
1 SRHP’s (with respect to the same spare node) that intersect on a 
hypercube link with the spare node as one endpoint. 
Proof: Suppose there exists a valid 1SRE where three 1SRHP’s 
with respect to the same spare node intersect on a link with the 
spare node as one endpoint. Fig. 6 shows such a situation where 
three ISRHP’s, Cs. a,,, a,,, a,,,I, [s, ar3, aI6, a,,], and [s, at,? 
a,,], intersecting on the hypercube link (s, q3). By definition of 
lSRHP, the three hypercube links, (a,,, ar3), (al3, a,,!, and (ar3, 
a16), must all be the image links of the embedding. This is a con- 
tradiction. 

a13 ‘14 

Fig. 6. Three ISRHPs with respect to s intersect on the 
edge (s, a13). 

Theorem 5.1: For a lSRE in a d-cube, each spare node can 
serve as a 1-step recovery spare node for at most d active nodes. 
Proof : According to Lemma 5.1, the best recovery case for a 
spare node is that each hypercube link incident to it is contained 
in exactly two 1SRHP’s with respect to it. Such a situation is 
depicted in Fig. 7. 

link-i, 

\ lSRHP 
link-i3 

Fig. 7. Each hypercube link incident to the spare node s is 
contained in exactly two 1SRHP’s with respect to s. 

Lemma 5.2: If [s, a,,, a,,, arg]  and [s, ai3, ail, a,,] are two 
1SRHP’s with respect to spare node s in a lSRE, then a,,, aiz, 
a,,, ai4, a,, or a,,, ail, a,,, ail, a,, must be contained in the active 
node listing (in order) of the 1SRE. 
Proof: According to the definition of lSRHP, [s, a,,, ai*, a,,] is a 
lSRHP with respect to s if a,,, a,,, a,, or a,,, aiZ9 ai, is contained 
in the active node listing of the 1SRE. Similarly, a,,, a,, ai, or 
ai5, ai4, ai3 must also be contained in the active node listing of 
the ISRE. Thus, by combination, a,,, a,,, . . . , a,, or a,,, ai4, . . . , 
a,, must be contained in the active node listing of the 1SRE. 
Lemma 5.3: For a lSRE of a length-k ring in a d-cube, if a 
spare node serves for d active nodes as a 1-step recovery spare 
node, then k = 2d. 
Proof: From Fig. 7 ,  we can see that if a spare node serves for d 
active node as 1-step recovery spare node, then each hypercube 
link incident to this spare node must be contained in exactly two 
ISRHP’s with respect to this spare node. Such a situation is 
depicted in Fig. 8 where s is a spare node, n, (in active state) are 
neighbors to s, and a, are active nodes which use s as 1-step 
recovery spare node. Then, according to Lemma 5.2, 

must be all contained in the active node listing in order of the 
1SRE. Since the combination of these sublists forms a cycle of 
active nodes (i,e, n l ,  a l ,  ... ,nd, ad ,  nl), the length of this cycle 
must be equal to the length of the ring embedded. That is, 
k = 2 d .  
Theorem 5.2: For a lSRE of a length-k ring in a d-cube where 
k z (3/4)2d, each spare node can serve as a 1-step recovery spare 
node for i t  most d - 1 active nodes. 
Proof: Since (3/4)2d 2 2d for d 2 3, according to Theorem 5.1 
and Lemma 5.3 to embed a length-k ring in a d-cube as a lSRE 
where k > (3/4)2d, a spare node can serve for at most d - 1 
active nodes as 1 -step recovery spare node. 
Theorem 5.3: There is no lSRE of a le11gth-((3/4)2~ + q )  (even) 

ring in a d-cube, if - - - < q. 
Proof: As a consequence of Theorem 5.2, if the number of the 
total number of spare nodes multiplying d - 1 is less than the 

2d 2d 
4 d  
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a2 

Fig. 8. A spare node s is used for d active nodes as 1-step 
recovery spare node. 

total number of active nodes, then some active nodes will not be 
able to be recovered in one step. That is, if the following 
inequality is satisfied, 

, .  I 
4 12 0 
5 24 1.6 
6 48 5,3 
7 96 13.9 

1 3 
4 4 

(- 2d -4) x (d - 1 )  < - 2d + q  

14 
26,28,30 
54,56,58,60,62 
110, 112, 114 ,..., 126 

d 1  3 
- 2‘- - 2d - qd + q  < - 2d + q  
4 4  4 
2d 2d 
4 d  

* - - - - < q ,  

the embedding is not a 1SRE. 0 

rings having no 1SRE’s in a d-cube in Table IV. 
By Theorem 5.3, we have the summary of those lengths for 

TABLE 1V. Rings of length > (3/4)2d and < 2d having no 1SRE’s in a d-cube 

2d 2d Lengths of rings having no 1 1 (3’4)2d 1 d-7 I 1SRE’sinad-cube 

VI. Concluding Remarks and Open Problems 
We have presented a scheme to systematically construct a 

lSRE of a length4 (even) ring in a d-cube, where 6 
I k I (3/4)2d and d 2 3. Results show that our scheme has bet- 
ter performance, in terms of applicability to rings and expansion 
of the resulting embeddings, than that of other schemes. 

A sufficient condition for the non-existence of 1 SRE’s for 
rings of length > (3/4)2d in a d-cube is also addressed in this 
paper. Clearly there exists a gap between (3/4)2d and the lower 
bound of lengths for rings having no 1SRE’s in a d-cube, d 2 6 
(Table IV), and the size of the gap increases as d increases. It 
remains an open problem to diminish the size of the gap by either 
improving the lower bound for non-existence of 1SRE’s or 
extending the (3/4)2d bound for the existence of 1SRE’s. Experi- 
mentally, we have determined there exist 1SRE’s of rings of 
length > (3/4)2’ in large d-cubes. 
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