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PREFACE 

During the past four years, two methods were developed for the design 

of stainless steel structural members at the University of Missouri-Rolla 

with consultation of Professor T. V. Galambos at the University of Minnesota. 

One of the methods is based on the load and resistance factor design (LRFD) 

and the other is based on the allowable stress design (ASD). Both design 

methods are now included in the new ASCE Standard 8-90, Specification for 

the Design of Cold-Formed Stainless Steel Structural Members. 

At the September 21, 1990 meeting of the Control Group of the ASCE 

Stainless Steel Cold-Formed Section Standards Committee held in Washington, 

D.C., the urgent need for design examples using the new ASCE Standard was 

discussed at length. The University of Missouri-Rolla was asked to submit a 

proposal for preparation of such illustrative examples beginning October 1, 

1990. 

During the period from October 1990 through December 1991, a total of 

27 illustrative problems have been prepared as included herein. Most of the 

given data used for these examples are similar to those used in the 1986 

edition of the AISI Cold-Formed Steel Manual except that for each problem, 

two examples are illustrated by using LRFD and ASD methods. 

The research work reported herein was conducted in the Department of 

Civil Engineering at the University of Missouri-Rolla with the consulting 

work provided by Dr. Shin-Hua Lin and Professor T. V. Galambos. The financial 

assistance provided by the Nickel Development Institute and the Chromium 

Centre is gratefully acknowledged. Appreciation is also expressed to Dr. W. 

K. Armitage, Mr. J. P. Schade, Professor P. Van der Merwe and Professor G. 

J. Van den Berg for their technical review and suggested revisions. 
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I. INTRODUCTION 

This publication cantains 54 examples for calculation of sectional 

properties, and the design of beams, compression members, beam-columns, and 

connections. They are prepared for the purpose of illustrating the applica-

tion of various provisions of the new ASCE Standard 8-90, Specification for 

the Design of Cold-Formed Stainless Steel Structural Members. 

II. COMPUTATION OF SECTIONAL PROPERTIES OF COLD-FORMED 

SECTION USING LINEAR METHOD 

In the calculation of sectional properties of cold-formed stainless 

steel sections, the computation can be simplified by using a so-called linear 

method, in which the material of the section is considered to be concentrated 

along the centerline of the steel sheet and the area elements replaced by 

straight or curved "line elements." The thickness dimension, t, is introduced 

after the linear computations have been completed. This method has long been 

* used for the design of cold-formed carbon steel sections. 

In the application of the linear method, the total area of the section 

is found from the following relation: 

Area = L x t 

where "L" is the total length of all line elements. 

The moment of inertia of the section, I, is found from the following 

relation: 

I = I' x t 

* Cold-Formed Steel Design Manual (1986). American Iron and Steel Insti­
tute, Washington, D.C. 
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where "1'" is the moment of inertia of the centerline of the steel sheet. 

The section modulus is computed as usual by dividing I or I' x t by the 

distance from the neutral axis to the extreme fiber, not to the centerline 

of the extreme element. 

First power dimensions, such as x, y, and r (radius of gyration) are 

obtained directly by the linear method and do not involve the thickness di-

mension. 

When the flat width of an element is reduced for design purpose, the 

effective design width, b, is used directly to compute the total effective 

length, Leff , of the line elements, as shown in the examples. 

The element into which most sections may be divided for application of 

the linear method consist of straight lines and circular arcs. For convenient 

reference, the moments of inertia and location of centroid of such elements 

are identified in the sketches and formulas in Fig. 1, Properties of Line 

Elements. 

The formulas for line elements are exact, since the line as such has 

no thickness dimension; but in computing the properties of an actual element 

with a thickness dimension, the results will be approximate for the reasons 

given in the AISI Manual. 

III. CORRELATION OF SPECIFICATION AND ILLUSTRATIVE EXAMPLES 

The tables on pages 4 through 11 provide an easy cross reference between 

design provisions of the Specification and the illustrative examples. The 

first table is based on the type of design examples. The second table is 

based on various sections of the Specification. 
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CROSS REFERENCE BY EXAMPLE TO SPECIFICATION SECTION 

PROBLEM NO. * TITLE OF EXAMPLE USE OF SECTION NO. 

A. FLEXURAL MEMBERS 

1 Channel w/Unstiffened Flanges 1.5.1,1.5.2,1.5.5, 

2.1.1,2.2.1,2.2.2,2.3.1, 

3.3.1.1, App. E. 

2 Channel w/Stiffened Flanges 1.5.1,1.5.2,1.5.5,2.1.1, 

2.1.2,2.2.1,2.2.2, 

2.4,2.4.2,3.3.1.1, 

App. E. 

3 C-Section w/Bracing 1.5.1,1.5.2,1.5.5,2.1.1, 

2.1.2,2.2.1,2.2.2,2.4, 

2.4.2,3.3.1.1, 

App. E. 

4 Z-Section w/Stiffened Flanges 1.5.1,1.5.2,1.5.5,2.1.1, 

2.1.2,2.2.1,2.2.2,2.4, 

2.4.2,3.3.1.1, 

App. E. 

* Two design examples are included for each problem. The first example 
uses the LRFD method and the second example uses the ASD method. 



5 

6 

7 

8 

9 

10 

11 

Deep Z-Section w/Stiffened Flanges 

Hat Section 

Hat Section w/Intermediate 

Stiffener 

I-Section w/Unstiffened Flanges 

Channel w/Lateral Buckling 

Consideration 

Hat Section Using Inelastic 

Reserve Capacity 

Deck Section 

5 

1.5.1,1.5.2,1.5.5, 

2.2.1,2.1.1,2.2.2, 

2.4,2.4.2,3.3.1.1, 

App. E. 

1.5.1,1.5.2,1.5.5, 

2.1.1,2.1.2,2.2.1, 

2.2.2,3.3.1,3.3.1.1, 

3.3.2,3.3.4,App. E. 

1.5.1,1.5.2,1.5.5, 

2.1.1,2.1.2,2.2.1,2.2.2, 

2.4,2.4.1,3.3.1,3.3.1.1, 

App. E. 

1.5.5,2.1.1,2.2.1,2.2.2, 

3.3.1.1,3.3.1.2, 

App. E. 

1.5.5,2.1.1,2.2.1,2.2.2, 

2.3.1,3.3.1.1,3.3.1.2, 

3.3.2,3.3.3,3.3.4, 

3.3.5,App. E. 

1.5.5,2.1.1,2.1.2,2.2.1, 

2.2.2,3.3.1.1, 

App. E. 

1.5.5,2.1.1,2.1.2, 

2.2.1,2.2.2,2.4, 

2.4.2,3.3.1.1,3.3.2, 

3.3.3,3.3.4,App. E. 



12 Cylindrical Tubular Section 

13 Flange Curling 

14 Shear Lag 

B. COMPRESSION MEMBERS 

15 C-Section 

16 C-Section w/Wide Flanges 

17 I-Section 

18 I-Section w/Lips 

19 T-Section 

20 Tubular Section - Square 

21 Tubular Section - Round 

6 

1.5.5,3.6,3.6.1, 

App. E 

1.5.5,2.1.1,2.2.1,2.2.2, 

2.3.1,3.3.1.1,App. E 

2.1.1,2.1.2,2.2.1,2.2.2, 

3.3.1.1 ,App. E 

1.5.5,2.1.1,2.2.1,2.4, 

2.4.2,3.4,3.4.1,3.4.2, 

3.4.3,App. B,App. E 

1.5.5,2.1.1,2.2.1, 

2.4,2.4.2,3.4,3.4.1, 

3.4.2,3.4.3,App. E 

1.5.5,2.2.1;2.2.2,2.4, 

2.4.2,3.4.1,3.4.2, 

3.4.3,App. B,App. E 

1.5.5,2.2.1,2.2.2,2.4, 

2.4.2,3.4.1,3.4.2, 

3.4.3,App. E 

1.5.5,2.2.1,2.2.2,2.4, 

2.4.2,3.4.1,3.4.2, 

3.4.3,App. E 

1.5.5,2.1.1,2.2.1, 

3.4,3.4.1,App. E 

1.5.5,3.4.1,3.6, 

3.6.1,3.6.2,App. E 



C. BEAM-COLUMN MEMBERS 

22 C-Section 

23 Tubular Section 

D. CONNECTIONS 

24 Flat Section w/Bolted Connection 

25 

26 

27 

Flat Section w/Lap Fillet Welded 

Connection 

Flat Section w/Groove Welded 

Connection in Butt Joint 

Built-Up Section - Connecting 

Two Channels 

1 

1.5.5,2.1.2,2.2.1, 

2.2.2,2.4,2.4.2,3.3.1.2 J 

3.4,3.4.1,3.4.2, 

3.4.3,3.5,App. E 

1.5.5,2.1.1,2.1.2, 

2.2.1,2.2.2,3.3.1.1, 

3.4,3.4.1,3.5,App. E 

3.2,5.3,5.3.1,5.3.2, 

5.3.3,5.3.4,App. E 

5.2,5.2.2,App. E 

5.2,5.2.1,App. E 

4.1,4.1.1,5.2.3,App. E 



CROSS REFERENCE BY SPECIFICATION SECTION TO DESIGN EXAMPLE 

SECTION NO. ILLUSTRATED IN PROBLEM NO. * 

1. General Provisions 

1.1 

1.2 

1.3 

1.4 

1.5 

1.5.1 1,2,3,4,5,6,7 

1.5.2 1,2,3,4,5,6,7 

1.5.3 

1.5.4 

1.5.5 1,2,3,4,5,6,7,8,9,10,11,12,13, 

15,16,17,18,19,20,21,22,23 

1.6 

2. Elements 

2.1 

2.1.1 1,2,3,4,5,6,7,8,9,10,11,13,14, 

15,16,17,20,21,22,23 

2.1.2 2,3,4,5,6,7,10,11,14,19,20,21, 

22,23 

* Two design examples are included for each problem. The first example 
uses the LRFD method and the second example uses the ASD method. 
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2.2 

2.2.1 

2.2.2 

2.3 

2.3.1 

2.3.2 

2.4 

2.4.1 

2.4.2 

2.5 

2.6 

3. Members 

3.1 

3.2 

3.3 

3.3.1 

3.3.1.1 

3.3.1.2 

3.3.2 

3.3.3 

3.3.4 

3.3.5 

3.4 

9 

1,2,3,4,5,6,7,8,9,10,11,13,14, 

15,16,17,18,19,20,22,23 

1,2,3,4,5,6,7,8,9,10,11,13,14, 

22,23 

1,9,13 

1,9,13 

2,3,4,5,7,11,15,16,17,18,19,22 

7 

2,3,4,5,11,15,16,17,18,19,22 

21 

6,7 

1,2,3,4,5,6,7,8,9,10,11,13, 

14,23 

8,9,22 

6,9,11 

9,11 

6,9,11 

9 

15,16,17,19,20,22,23 



3.4.1 

3.4.2 

3.4.3 

3.5 

3.6 

3.6.1 

3.6.2 

3.6.3 

3.7 

4. Structural Assemblies 

4.1 

4.1.1 

4.1.2 

4.2 

4.3 

4.3.1 

4.3.2 

4.3.3 

5. Connections and Joints 

5.1 

5.2 

5.2.1 

5.2.2 

5.2.3 

5.3 

5.3.1 

10 

15,16,17,18,19,20,21,22,23 

15,16,17,18,19,22 

15,16,17,18,19,22 

22,23 

12,21 

12,21 

21 

27 

27 

25,26 

26 

25 

27 

24 

24 



5.3.2 

5.3.3 

5.3.4 

6. Tests 

6.1 

6.2 

6.3 

App. B Modified Ramberg-Osgood 

Equation 

App. E Allowable Stress Design 

(ASD) 

11 

24 

24 

24 

15,17 

All examples using ASD method 



IV. ILLUSTRATIVE EXAMPLE 
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EXAMPLE 1.1 CHANNEL W/UNSTIFFENED FLANGES CLRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, ~bMn' based on initiation of yielding. Also de-

termine the effective moment of inertia for deflection determination at the 

service moment. Use the following two types of stainless steels: (A) Type 

301, 1/4-Hard and (B) Type 409. Assume dead load to live load ratio D/L = 

liS and 1.2D+1.6L governs the design. 

6.000-

R=3/32" 

-,.---- t=O.060-

5.692" 
x 

0.079" 

x ------

Corner Line Element 

Figure 1.1 Section for Example 1.1 

Given: 

1. Section: 6" x 1.625" x 0.060" channel with unstiffened flanges. 

2. Compression flange braced against lateral buckling. 

Solution: 

(A) Type 301 Stainless Steel, 1/4-Hard. 

1. Calculation of the design flexural strength, ~bMn: 

13 



a a. Properties of 90 corners: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

b. Computation of I , S , and M : x e n 

For the first approximation, assume a compression stress of 

f = F = 50 ksi (yield strength in longitudinal compression, 
y 

Table Al of the Standard Specification) in the top fiber 

of the section and that the web is fully effective. 

Compression flange: k = 0.50 (for unstiffened compression element, 

see Section 2.3.1) 

wIt = 1.471/0.060 = 24.52 < 50 OK (Section 2.1.1-(1)-(iii)) 

= (1. 052/.jk)(W/t)..[f/Eo (Eq. 2.2.1-4) 

The initial modulus of elasticity, E , for Type 301 stainless 
o 

steel is obtained from Table A4 of the Standard, i.e., E = 27000 ksi. o 

A = (1. 052/..;0.50)(24.52)--/50/27000 = 1.570 > 0.673 

p = [l-(0.22/A))/" CEq. 2.2.1-3) 

= [1-(0.22/1.570))/1.570 = 0.548 

b = pw (Eq. 2.2.1-2) 

= 0.548 x 1.471 

= 0.806 in. 

14 



Effective section properties about x-axis: 

y 
L Distance 

Effective from 
Length Top Fiber 

Element (in. ) (in. ) 

Web 5.692 3.000 
Upper Corner 0.195 0.075 
Lower Corner 0.195 5.925 

Compression Flange 0.806 0.030 
Tension Flange 1.471 5.970 

Sum 8.359 

Distance from top fiber to x-axis is 

y = 27.052/8.359 = 3.236 in. cg 

Ly Ly2 
(in.2) (in. 3) 

17.076 51. 228 
0.015 0.001 
1.155 6.846 
0.024 0.001 
8.782 52.428 

27.052 110.504 

Since the distance from top compression fiber to the neutral 

axis is greater than one half the beam depth, a compression 

stress of 50 ksi will govern as assumed (i.e., initial 

yield is in compression). 

To check if web is fully effective (Section 2.2.2): 

f1 = ((3.236-0.154)/3.236]x50 = 47.62 ksi(compression) 

f2 = - ~2.764-0.154)/3.2361x50 = -40.33 ksi(tension) 

~ = f2/f1 = -40.33/47.62 = -0.847 

I' 
1 

About 
Own 
Axis 
(in. 3

) 

15.368 

15.368 

k = 4+2(1-~P+2(1-~) (Eq. 2.2.2-4) 

= 4+2 (1-( -0.847») 3+2 (1-( -0.847») 

= 20.296 

h = w = 5.692 in., h/t = w/t = 5.692/0.060 = 94.87 

15 



hIt = 94.87 < 200 OK (Section 2.1.2- (1)) 

A = (1.052/"'/20.296 )(94.87)"'/47.62/27%0 = 0.930 > 0.673 

p = (1-(0.22/0.930))/0.930 = 0.821. 

b = 0.821 x 5.692 = 4.673 in. e 

= b /2 e 

= 4.673/2 = 2.337 in. 

= b /(3-40') e 

= 4.673/(3-(-0.847)) = 1.215 in. 

(Eq. 2.2.2-2) 

(Eq. 2. 2 . 2 - 1 ) 

The effective widths, b1 and b2 , of we~ are defined in Figure 2 

of the Standard. 

b1+b2 = 1.215 + 2.337 = 3.552 in. 

Compression portion of the web calculated on the basis of the 

effective section = Ycg - 0.154 = 3.236 - 0.154 = 3.082 in. 

Since b1+b2 = 3.552 in. > 3.082 in., b t +b
2 

shall be taken 

as 3.082 in .. This verifies the assumption that the web is 

fully effective. 

I' = Ly2 +1' -Ly2 
x 1 cg 

= 110.504 + 15.368 - 8.359C~.236)2 

= 38.339 in. 3 

Actual Ix = l'xt 

= 38.339xO.060 

= 2.300 in. <4 

Se = lx/Ycg 

= 2.300/3.236 

= 0.711 in. 3 

= S F e y 
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= O. 711x50 

= 35.55 kips-in. 

c. The design flexural strength, ~bMn' based on initiation of 

yielding is determined as follows: (Section 3.3.1.1(1)) 

= 0.85 (for section with unstiffened compression flanges) 

= 0.85x35.55 = 30.22 kips-in.(positive bending) 

2. Calculation of the effective moment of inertia for deflection 

determination at the service moment M : s 

The unfactored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+l.6L, the service moment can be determined as follows: 

~bMn = 1.2MDL + 1.6MLL 

MLL 

M s 

= (1. 2(MDL/MLL )+1. 6) MLL 

= (1. 2(1/5)+1. 6) MLL 

= 1.84MLL 

= ~bMn/1.84 = 30.22/1.84 

= MDL + MLL 

= (1/5+1)MLL 

= 16.42 kips-in. 

= 1. 2(16 .42) = 19.70 kips-in. 

where 

MDL = Moment determined on the basis of nominal 

MLL = Moment determined on the basis of nominal 

dead load 

live load 

The procedure is iterative: one assumes the actual compressive 
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stress f under this service moment M . Knowing f, proceeds 
s 

as usual to obtain S and checks to see if (f x S ) is equal e e 

to M as it should. If not, reiterate until one obtains the s 

desired level of accuracy. 

a. For the first iteration, assume a stress of f = F /2 = 25 ksi 
y 

in the top and bottom fibers of the section and 

that the web is fully effective. 

For deflection determination, the value of E , reduced modulus 
r 

of elasticity determined by using Eq. (2.2.1-7), is substituted 

for E in Eq. (2.2.1-4). For a compression and tension 
o 

stresses of f = 25 ksi, the corresponding E and E t values sc s 

for Type 301 stainless steel are obtained from Table A2 

or Figure Al of the Standard as follows: 

E = 25650 ksi, sc 

Er = (Esc+Est)/2 

Est = 27000 ksi 

= (25650+27000)/2 = 26325 ksi 

Thus, for compression flange: 

A = (1.052/v'<f.50)(24.52).J25/26325 = 1.124 > 0.673 

P = (1-(0.22/1.124))/1.124 = 0.716 

b
d 

= pw 

= 0.716 x 1.471 = 1.053 in. 

Effective section properties about x-axis: 

L = 8.359 - 0.806 + 1.053 = 8.606 in. 

Ly = 27.052 - 0.024 + 1.053xO.030 = 27.060 in. z 

Ly2 = 110.504 - 0.001 + 1.053(0.030)2 = 110.504 in.' 
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1'1 = 15.368 in. 3 

y = 27.060/8.606 = 3.144 in. which is greater than one half cg 

beam depth. Thus, the top compression fiber controls the 

determination of S . 
e 

To check if web is fully effective (Section 2.2.2-(2)): 

f1 = ((3.144-0.154)/3.144)x25 = 23.78 ksi 

f2 = -((2.856-0.154)/3.144)x25 = -21.49 ksi 

~ = -21.49/23.78 = -0.904 

k = 4+2(1-(-0.904))3+2 (1-(-0.904)) = 21.613 

For a compression stress of f = 23.78 ksi and a tension stress 

of f = 21.49 ksi, the values of E and E t are found sc s 

as follows: E = 26244 ksi, sc 

Er = (Esc+Est )/2 

Est = 27000 ksi. 

= (26244+27000)/2 = 26622 ksi 

" = (1. 052/.j21. 613 )(94. 87).j23. 78/26622 = 0.642 < 0.673 

b = w e (Eq. 2.2.1-1) 

= 5.692 in. 

b2 = 5.692/2 = 2.846 in. 

b1 = 5.692/(3-(-0.904)) = 1.458 in. 

Compression portion of the web calculated on the basis 

of the effective section = 3.144 - 0.154 = 2.990 in .. 

Since b1+b2 = 4.304 in. > 2.990 in., b1+b2 shall be 

taken as 2.990 in .. This verifies the assumption that 

the web is fully effective. 
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It = 110.504 + 15.368 - 8.606(3.144)2 
X 

= 40.804 in. 3 

Actual I = 40.804 x 0.060 x 

= 2.448 in." 

s = 2.448/3.144 = 0.779 in. 3 

e 

M = f x S = 25 x 0.779 e 

= 19.48 kips-in. < M = 19.70 kips-in. s 

Need to do another iteration by increasing f. 

b. For the second iteration, assume f = 25.50 ksi in the top and 

bottom fibers of the section and that the web is fully 

effective. 

Compression flange: 

For a stress of f = 25.50 ksi, Esc = 25375 ksi and Est = 27000 ksi, 

and E = (25375+27000)/2 = 26188 ksi. Thus, 
r 

" = (1.052/.JQ.50)(24.52).J25.50/26188 = 1.138 > 0.673 

P = (1-(0.22/1.138))/1.138 = 0.709 

bd = 0.709 x 1.471 = 1.043 in. 

Effective section properties about x-axis: 

L = 8.359 - 0.806 + 1.043 = 8.596 in. 

Ly = 27.052 - 0.024 + 1.043xO.030 = 27.059 in. 2 

Ly2 = 110.504 - 0.001 + 1.043(0.030)2 = 110.504 in. 3 

1'1 = 15.368 in. 3 
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y = 27.059/8.596 = 3.148 in. which is greater than one half cg 

beam depth. Thus, the top compression fiber controls the 

determination of S . e 

To check if web is fully effective: 

f1 = (C3.148-0.154)/3.148)x25.50 = 24.25 ksi 

£2 = -(C2.825-0.154)/3.148)x25.50 = -21.85 ksi 

~ = -21.85/24.25 = -0.901 

k = 4+2(1-C-0.901)J3+2(1-C-0.901)) = 21.542 

For a compression stress of f = 24.25 ksi, E = 26063 ksi, and sc 

for a tension stress of f = 21.85 ksi, Est = 27000 ksi. Thus, 

Er = (26063+27000)/2 = 26532 ksi. 

" = (1.052/v'21.542 )(94. 87)v'24. 25/26532 = 0.650 < 0.673 

b = 5.692 in. e 

b2 = 5.692/2 = 2.846 in. 

b1 = 5.692/(3-(-0.901)) = 1.459 in. 

Compression portion of the web calculated on the basis 

of the effective section = 3.148 - 0.154 = 2.994 in .. 

Since b1+b2 = 4.305 in. > 2.994 in., b1+b2 shall be 

taken as 2.994 in .. This verifies the assumption that 

the web is fully effective. 

I' = 110.504 + 15.368 - 8.596(3.148)2 
x 

= 40.686 in. 3 

Actual Ix = 40.686 x 0.060 

= 2.441 in.4 

s = 2.441/3.148 = 0.775 in. 3 

e 
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M = f x S = 25.50 x 0.775 e 

= 19.76 kips-in. = M OK 
s 

Thus, use Ix = 2.441 in. 4 for deflection determination. 

:B) Type 409 Stainless Steel. 

1. Calculation of the design flexural strength, ~bMn: 

o a. Properties of 90 corners: 

From Case (A) above, 

r = o. 124 in., u = 0.195 in., c = 0.079 in. 

b. Computation of I , S , and M : . x e n 

For the first approximation, assume a compression stress of 

f = F = 30 ksi (yield strength in longitudinal compression, 
y 

Table Al of the Standard Specification) in the top fiber of 

the section and that the web is fully effective. 

Compression flange: k = 0.50 (for unstiffened compression element, 

see Section 2.3.1) 

wit = 1.471/0.060 = 24.52 < 50 OK (Section 2.1.1-(1)-(iii)) 

= (1. 052/.Jk)(w/t)..jf/Eo (Eq. 2.2.1-4) 

The initial modulus of elasticity, E , for Type 409 stainless 
o 

steel is obtained from Table A5 of the Standard, i.e., E = 27000 ksi. 
o 

A = (1. 052/..j0:50)(24. 52)")30/27000 = 1. 216 > 0.673 

= (1-(0.22/A))/A p 
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= (1-(0.22/1.216))/1.216 = 0.674 

b = pw (Eq. 2.2.1-2) 

= 0.674 x 1.471 

= 0.991 in. 

Effective section properties about x-axis: 

Y 
L Distance 

Effective from 
Length Top Fiber 

Element (in. ) (in. ) 

Web 5.692 3.000 
Upper Corner 0.195 0.075 
Lower Corner 0.195 5.925 

Compression Flange 0.991 0.030 
Tension Flange 1.471 5.970 

Sum 8.544 

Distance from top fiber to x-axis is 

y = 27.058/8.544 = 3.167 in. 
cg 

Ly Ly2 
(in. 2) (in. 3

) 

17.076 51.228 
0.015 0.001 
1.155 6.846 
0.030 0.001 
8.782 52.428 

27.058 110.504 

Since the distance from top compression fiber to the neutral 

axis is greater than one half the beam depth, a compression 

stress of 30 ksi will govern as assumed (i.e., initial 

yield is in compression). 

To check if web is fully effective (Section 2.2.2): 

f1 = ((3.167-0. 154)/3. 167)x30 = 28.54 ksi(compression) 

f2 = -((2.833-0.154)/3.167)x30 = -25.38 ksi(tension) 

~ = f2/f1 = -25.38/28.54 = -0.889 
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k = 4+2(1-4I)l+2( 1-41) (Eq. 2.2.2-4) 

= 4+2(1-(-0.889))3+2(1-(-0.889)) 

= 21.259 

h = w = 5.692 in., hit = wit = 5.692/0.060 = 94.87 

hit = 94.87 < 200 OK (Section 2.1.2-(1)) 

" = (1.052/..j21.259 )(94. 87}..j28.54/27000 = 0.704 > 0.673 

P = (1-(0.22/0.704))/0.104 = 0.971 

b = 0.971 x 5.692 = 5.561 in. e 

= b /2 e (Eq. 2.2.2-2) 

= 5.561/2 = 2.781 in. 

= be/(3-4I) (Eq. 2.2.2-1) 

= 5.561/(3-(-0.889)) = 1.430 in. 

The effective widths, b1 and b2 , are defined in Figure 2 of 

the Standard. 

b1+b2 = 1.430 + 2.781 = 4.211 in. 

Compression portion of the web calculated on the basis of the 

effective section = y - 0.154 = 3.167 - 0.154 = 3.013 in. cg 

Since b1+b2 = 4.211 in. > 3.013 in., b 1+b2 shall be taken 

as 3.013 in .. This verifies the assumption that the web is 

fully effective. 

I' = Ly2+I' -Ly2 
x 1 cg 

= 110.504 + 15.368 - 8.544(3.161)2 

= 40.117 • 3 
l.n. 

Actual I = I' t x x 

= 40.111xO.060 

= 2.411 in.4 
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S e 

M 
n 

= Ix/Ycg 

= 2.411/3.167 

= 0.761 in. 3 

= S F 
e Y 

= 0.761x30 

= 22.83 kips-in. 

(Eq . 3. 3 . 1. 1- 1) 

c. The design flexural strength, ~bMn' based on initiation of 

yielding is determined as follows: (Section 3.3.1.1(1)) 

= 0.85 (for section with unstiffened compression flanges) 

= 0.85x22.83 = 19.41 kips-in. (positive bending) 

2. Calculation of the effective moment of inertia for deflection 

determination at the service moment M : s 

The unfactored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+1.6L, the service moment can be determined as follows: 

~bMn = 1.2MDL + 1.6MLL 

MLL 

M s 

where 

= (1.2(MDL/MLL)+1.61MLL 

= (1. 2( 1/5)+1. 6JMLL 

= 1.84MLL 

= ~bMn/1.84 = 19.41/1. 84 

= MDL + MLL 

= (1/5+1)MLL 

= 10.55 kips-in. 

= 1. 2( 10.55) = 12.66 kips-in. 
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MDL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive 

stress f under this service moment M . Knowing f, proceeds s 

as usual to obtain S and checks to see if (f x S ) is equal 
,e e 

to M as it should. If not, reiterate until one obtains the 
s 

desired level of accuracy. 

a. For the first iteration, assume a stress of f = F /2 = 15 ksi 
Y 

in the top and bottom fibers of the section and that 

the web is fully effective. 

For deflection determination, the value of E , reduced modulus 
r 

of elasticity determined by Eq. (2.2.1-7), is substituted for E 
o 

in Eq. (2.2.1-4). For a compression and tension stress of 

f = 15 ksi, the corresponding Esc and Est values for Type 409 

stainless steel are obtained from Table A3 or Figure A2 

of the Standard as follows: 

E = 26850 ksi, sc 

E = (E +E t)/2 r sc s 

Est = 26930 ksi 

= (26850+26930)/2 = 26890 ksi 

Thus, for compression flange: 

A = (1.052/...;0.50)(24.52)";15/26890 = 0.862 > 0.673 

p = (1-(0.22/0.862))/0.862 = 0.864 

bd = pw 

= 0.864 x 1.471 = 1.271 in. 
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Effective section properties about x-axis: 

L = 8.544 - 0.991 + 1.271 = 8.824 in. 

Ly = 27.058 - 0.030 + 1.271xO.030 = 27.066 in. 2 

Ly2 = 110.504 - 0.001 + 1.271(0.030)2 = 110.504 in. 3 

1'1 = 15.368 in. 3 

y = 27.066/8.824 = 3.067 in. which is greater than one half cg 

beam depth. Thus, the top compression fiber controls the 

determination of S . e 

To check if web is fully effective (Section 2.2.2-(2»: 

f1 = (3.067-0.154)/3.067)x15 = 14.25 ksi 

f2 = -(2.933-0.154)/3.067Jx15 = -13.59 ksi 

~ = -13.59/14.25 = -0.954 

k = 4+2(1-(-0.954»)3+2(1-(-0.954)] = 22.829 

For a compression stress of f = 14.25 ksi and a tension stress 

of f = 13.59 ksi, the values of E andE t are found sc s 

as follows, respectively: Esc = 26890 ksi, Est = 26940 ksi. 

Er = (Esc+Est )/2 

= (26890+26940)/2 = 26920 ksi 

" = (1.052/.j22.829 )(94. 87).j14. 25/26920 = 0.481 < 0.673 

b = w e 

= 5.692 in. 

b2 = 5.692/2 = 2.846 in. 

b 1 = 5.692/(3-(-0.954)) = 1.440 in. 

(Eq. 2.2.1-1) 

Compression portion of the web calculated on the basis 

of the effective section = 3.067 - 0.154 = 2.913 in .. 
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Since b1+b2 = 4.286 in. > 2.913 in., b1+b2 shall be 

taken as 2.913 in .. This verifies the assumption that 

the web is fully effective. 

I' = 110.504 + 15.368 - 8.824(3.067)2 
x 

= 42.869 in. 3 

Actual I = 42.869 x 0.060 
x 

S e 

M 

= 2.572 in. 4 

= 2.572/3.067 = 0.839 in. 3 

= f x S = 15 x 0.839 e 

= 12.59 kips-in. ~ M = 12.66 kips-in. (close enough) 
s 

Therefore, need no further iteration. Use I = 2.572 in.4 for x 

deflection determination. 
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EXAMPLE 1.2 CHANNEL W/UNSTIFFENED FLANGES CASD) 

Use the data given in Example 1.1 (Figure 1.1) to determine the allowable 

moment, M , by using the Allowable Stress Design (ASD) method on the basis a 

of initiation of yielding. Also determine the effective moment of inertia 

for deflection determination at the allowable moment. Use Type 301 stainless 

steel, 1/4-Hard: F = 50 ksi. 
Y 

Solution: 

1. Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 1.1 by the LRFD method. 

Therefore, the allowable moment can be determined in accordance 

with Appendix E of the Standard as follows: 

n = 1.85 (Safety Factor stipulated in Table E of the Standard) 

M = 35.55 kips-in. (obtained from Example 1.1) 
n 

= M /n n 

= 35.55/1.85 

= 19.22 kips-in. 

(Eq. E-1) 

2. Calculation of the effective moment of inertia for deflection 

determination at the allowable moment M : a 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 1.1 for the LRFD method, except that the computed 

moment M (= fxSe ) should be equal to Ma. 
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From the results of Example 1.1, it can be seen that by assuming 

a compression stress of f=F /2=25 ksi, the computed f x S = 
Y e 

25 x 0.779 = 19.48 kips-in., which is close to the allowable 

moment, Ma = 19.22 kips-in. Therefore, the computed I x 

can be used for deflection determination. 
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EXAMPLE 2.1 CHANNEL W/STIFFENED FLANGES (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, $bMn' based on initiation of yielding. Also de-

termine the effective moment of inertia for deflection determination at the 

service moment. Use Type 301 stainless steel, 1/4~Hard. Assume dead load 

to live load ratio D/L = liS and 1.2D+1.6L governs the design. 

1.31r 
0.154' 

________ 11 

c 

Corner Line Element 
omr 

0.075" 1.625" 

Figure 2.1 Section for Example 2.1 

Given: 

1. Section: 6" x 1. 625" x 0.060" channel with stiffened flanges. 

2. Compression flange braced against lateral buckling. 

Solution: 

1. Calculation of the design flexural strength, $bMn: 

o a. Properties of 90 corners: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of are, u = 1.57r = 1.57 x 0.124 = 0.195 in. 
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Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

b. Computation of I , S , and M : x e n 

For the first approximation, assume a compression stress of 

f = F = 50 ksi (yield strength in longitudinal compression, 
y 

Table Al of the Standard) in the top fibers of the section 

and that the web is fully effective. 

Compression flange: (Section 2.4.2) 

w = 1. 317 in. 

wit = 1. 317/0.060 = 21. 95 

S = 1.2857£ (Eq. 
0 

2.4-1) 

E value for Type 301 stainless steel is obtained from Table A4 
o 

of the Standard Specification, 

S = 1.28~27000/50 = 29.74 

i.e., E = 27000 ksi. o 

S/3 = 9.91 < (w/t) = 21.95 < S = 29.74 

1a = 399t~{~w/t)/sl-0.33J3 CEq. 2.4.2-6) 

= 399(O.060)~ ((21.95/29.74)-0.33]' 

= 0.000351 in." 

D = 0.450 in. 

d = 0.296 in., d/t = 0.296/0.060 = 4.93 

= (0.296)3(0.060)/12 = 0.000130 in.~ 

D/w = 0.450/1.317 = 0.342, 0.25 < D/w = 0.342 < 0.80 

k = (4.82-5(D/w)](I /1 )n+0.43~5.25-5(D/w) s a 

n = 1/2 
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(4.82-5(0.342))(0.000130/0.000351)1/2+0 . 43 = 2.323 

5.25-5(0.342) = 3.540 > 2.323 

Use k = 2.323 

Since I < I , the stiffener is considered to be a simple lip. s a 

wit = 21.95 < 50 OK (Section 2.1.1-(I)-(i)) 

" = (1. 052/../k)(w/t)../f/Eo (Eq. 2.2.1-4) 

= (1.052/../2.323 )(21.95)../50/27000 = 0.652 < 0.673 

b = w (Eq. 2.2.1-1) 

= 1.317 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

k = 0.50 (unstiffened compression element) 

d/t = 4.93 

Also conservatively assume f=50 ksi as used in top compression fiber. 

" = (1. 052/..j0:50)(4. 93)../50/27000 = 0.316 < 0.673 

therefore, 

d' = d = 0.296 in. s 

d = d' (I /1 )~d' 
s s s a s 

= 0.296(0.000130/0.000351) 

= 0.110 in. < 0.296 in. 

(Eq . 2. 4 . 2 - 11 ) 

d = 0.110 in. (i.e. compression stiffener is not fully 
s 

effective) 
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Effective section properties about x-axis: 

y 
L Distance 

Effective from 
Length Top Fiber 

Element (in. ) (in. ) 

Web 5.692 3.000 
Upper Corners 2xO.195 = 0.390 0.075 
Lower Corners 2xO.195 = 0.390 5.925 

Compression Flange 1.317 0.030 
Upper Stiffener 0.110 0.209 
Tension Flange 1. 317 5.970 
Lower Stiffener 0.296 5.698 

Sum 9.512 

Distance from top fiber to x-axis is 

y = 29.028/9.512 = 3.052 in. cg 

Ly Ly2 
(in.2) (in. 3) 

17.076 51. 228 
0.029 0.002 
2.311 13.691 
0.040 0.001 
0.023 0.005 
7.862 46.939 
1.687 9.610 

29.028 121.476 

Since the distance from top compression fiber to the neutral 

axis is greater than one half the beam depth, a compression 

stress of 50 ksi will govern as assumed (i.e., initial 

yield is in compression). 

To check if web is fully effective (Section 2.2.2): 

f1 = U3.052-0.154)/3.052)x50 = 47.48 ksi(compression) 

f2 = -[(2.948-0.154)/3.052)x50 = -45.77 ksi(tension) 

~ = f2/f1 = -45.77/47.48 = -0.964 

I' 
1 About 

Own 
Axis 
(in. 3) 

15.368 

0.002 

15.370 

k = 4+2( 1-~)3+2( 1-4') (Eq. 2.2.2-4) 

= 4+2 (1-( -0.964))3+2(1-( -0.964)) 

= 23.079 
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h = w = 5.692 in., hit = wit = 5.692/0.060 = 94.87 

hit =.94.87 < 200 OK (Section 2.1.2-(1)) 

" = (1.052/-J23.079 )(94.87)-J47.48/27000 = 0.871 > 0.673 

p 

b e 

= (1-(0.22/"))/" 

= (1-(0.22/0.871)1/0.871 = 0.858 

= pw 

= 0.858 x 5.692 = 4.884 in. 

= b /2 e 

= 4.884/2 = 2.442 in. 

= b e /(3-4') 

= 5.037/ ~-C-0.964)) = 1.232 in. 

(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 

(Eq. 2.2.2-2) 

CEq. 2.2.2-1) 

The effective widths, b1 and b2 , of web are defined in Figure 2 

of the Standard Specification. 

b1+b2 = 1.232 + 2.442 = 3.674 in. 

Compression portion of the web calculated on the basis of the 

effective section = y - 0.154 = 3.052 - 0.154 = 2.898 in. cg 

Since b1+b2 = 3.674 in. > 2.898 in., b1+b2 shall be taken 

as 2.898 in .. This verifies the assumption that the web is 

fully effective. 

I' = Ly2+I' -Ly 2 
x 1 cg 

= 121.476 + 15.370 - 9.512(3.052)2 

= 48. 245 in. 3 

Actual I = I' t x x 

= 48.245xO.060 

= 2.895 in.~ 
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= 2.895/3.052 

= 0.949 in. 3 

M = S F (Eq. 3.3.1.1-1) n e y 

= 0.949x50 

= 47.45 kips-in. 

c. The design flexural strength, $bMn' based on initiation of 

yielding is determined as follows: (Section 3.3.1.1(1)) 

= 0.90 (for section with stiffened compression flanges) 

= 0.90x47.45 = 42.71 kips-in. 

2. Calculation of the effective moment of inertia for deflection 

determination at the service moment M : s 

The unfactored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+l.6L, the service moment can be determined as follows: 

$bMn = 1.2MDL + 1.6MLL 

MLL 

M s 

= L1.2(MDL/MLL)+1.61MLL 

= l1. 2( 1/5)+1. 61MLL 

= 1.84MLL 

= $bMn/1.84 = 42.71/1.84 

= MDL + MLL 

= (1/5+1)MLL 

= 23.21 kips-in. 

= 1.2(23.21) = 27.85 kips-in. 

where 

MDL = Moment determined on the basis of nominal 

MLL = Moment determined on the basis of nominal 
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The procedure is iterative: one assumes the actual compressive 

stress f under this service moment M . Knowing f, one proceeds 
s 

as usual to obtain S and checks to see if (f x S ) is equal e e 

to M as it should. If not, reiterate until one obtains the s 

desired level of accuracy. (Section 2.2.1-(2)) 

a. For the first iteration, assume a stress of f = F /2 = 25 ksi 
y 

in the top and bottom fibers of the section andthat 

the web is fully effective. 

Compression flange: 

S = 1.28J27000/25 = 42.07 

S/3 = 14.02 < (w/t) = 21.95 < S = 42.07 

I = 399(0.060)4(21.95/42.07)-0.33)3 
a 

= o . 000036 . in. 4 

I /1 = 0.000130/0.000036 = 3.61; 5.25-5(D/w) = 3.540 
s a 

k = (4.82-5(0.342)J(3.61)1/2+0 . 43 = 6.339 > 3.540 

Use k = 3.540 

For deflection determination, the reduced modulus of elasticity, 

E , shall be substituted for E in Eq. (2.2.1-4). For a 
r 0 

compression and tension stresses of f = 25 ksi, 

E = 26325 ksi as obtained from Example 1.1. 
r 

" = (1.052/"/3.540 )(21.95)../25/26325 = 0.378 < 0.673 

b
d 

= 1.317 in. (i.e. compression flange fully 

effective) 

Compression (upper) stiffener: 
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Again assume conservatively f = 25 ksi as used in top compression 

fiber and the corresponding E = 26325 ksi. 
r 

A = (1. 052/..jQ.50)(4. 93).j25/26325 = 0.226 < 0.673 

Therefore, d' = 0.296 in. s 

Since I /1 = 3.25 > 1.0, it follows that d = d' s ass 

= 0.296 in. (i.e. compression stiffener fully effective). 

Thus, one concludes that the section is fully effective. 

y = 6/2 = 3.000 in. (from symmetry) cg 

Full section properties about x-axis: 

Element 

Web 
Stiffeners 2 x 
Corners 4 x 
Flanges 2 x 

Sum 

L 
(in. ) 

0.296 = 
0.195 = 
1.317 = 

5.692 
0.592 
0.780 
2.634 

9.698 

y 
Distance 

from 
Centerline 
of Section 

(in. ) 

2.698 
2.925 
2.970 

4.309 
6.673 

23.234 

34.216 

Since section is singly symmetric about x-axis and fully 

I' 
Abo~t 

Own 
Axis 
(in. 3

) 

15.368 
0.004 

15.372 

effective, top compression fiber may be used in computing S . e 

To check if web is fully effective: (Section 2.2.2-(2)) 

f1 = (C3.000-0.154)/3.000]x25 = 23.72 ksi(compression) 

f2 = -23.72 ksiCtension) 
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~ = -23.72/23.72 = -1.000 

k = 4+2(1-(-1))3+2(1-(-1)) = 24.000 

For a compression and tension stresses of f = 23.72 ksi, the 

corresponding E and E t values are as follows: sc s 

Esc = 26256 ksi, and Est = 27000 ksi 

E 
r = (Esc+Est )/2 

= 26628 ksi 

A = (1.052/.J24)(94.87),J23.72/26628 = 0.608 < 0.673 

(Eq . 2. 2 . 1-7) 

b = w (Eq. 2.2.1-1) e 

= 5.692 in. 

b2 = 5.692/2 = 2.846 in. 

b1 = 5.692/(3-(-1)) = 1.423 in. 

b1+b2 = 4.269 in. 

Compression portion of the web = 3.000 - 0.154 = 2.846 in. 

Since b1+b2 = 4.269 in. > 2.846 in., b1+b2 shall be taken 

as 2.846 in .. This verifies the assumption that the web is 

fully effective. 

II = 34.216 + 15.372 = 49.588 in. 3 

x 

Actual I = 49.588 x 0.060 = 2.975 in. 4 

x 

S e 

M 

= 2.975/3.000 = 0.992 in. 3 

= f x S = 25 x 0.992 e 

= 24.80 kips-in. < M = 27.85 kips-in. s 

Need to do another iteration by increasing f. 

b. After several trials, assume that a stress of f = 28.07 ksi 

in the top and bottom fibers of the section and that 
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the web is fully effective. 

Compression flange: 

S = 1.28~7000/28.07 = 39.70 

S/3 = 13.23 < (w/t) = 21.95 < S = 39.70 

I = 399(0.060)4~21.95/39.70)-0.33J3 a 

= 0.000057 in.4 

I /1 = 0.000130/0.000057 = 2.28 
s a 

k = [4.82-5(0.342))(2.28)1/2+0 . 43 = 5.126 > 3.540 

Use k = 3.540 

For a compression and tension stresses of f = 28.07 ksi, it is 

found that Esc and Est are equal to 23950 ksi and 27000 ksi, 

respectively. 

E = (23950+27000)/2 = 25475 ksi 
r 

A = (1.052/-/3:54)(21.95).,/28.07/25475 = 0.407 < 0.673 

b
d 

= 1.317 in. (i.e. compression flange fully 

effective) 

Compression (upper) stiffener: 

f conservatively taken as for top compression fiber. 

A = (1.052/...;0:50)(4.93)"/28.07/25475 = 0.243 < 0.673 

d' = 0.296 in. 
s 

Since I /1 = 2.28 > 1.0, it follows that d = d' s ass 

= 0.296 in. (i.e. compression stiffener fully effective). 

Thus, the section is fully effective. 

y = 6/2 = 3.000 in. (from symmetry) cg 
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Full section properties are the same as were found in the 

first iteration. Thus, as before, top compression fiber 

may be used in computing S . 
e 

To check if web is fully effective: 

fl = ((3.000-0.154)/3.000)x28.07 = 26.63 ksi(compression) 

f2 = -26.63 ksi(tension) 

~ = -26.63/26.63 = -1.000 

k = 24.000 

For a compression and tension stresses of f = 26.63 ksi, 

it is found that E and E t are equal to 24754 ksi sc s 

and 27000 ksi, respectively. 

E = (24754+27000)/2 = 25877 ksi 
r 

A = (1.052/.[i4)(94.87h/26.63/25877 = 0.654 < 0.673 

b = w = 5.692 in. e 

Hence, as in first iteration, b 1 + b2 = 2.846 in. and 

thus the web is fully effective as assumed. 

I = 2.975 . ... 
l.D • 

X 

S = 0.992 • 3 
l.D. e 

M = f x S = 28.07 x 0.992 e 

= 27.85 kips-in. = M OK s 

Thus, use Ix = 2.975 in .... for deflection determination. 
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EXAMPLE 2.2 CHANNEL W/STIFFENED FLANGES (ASD) 

Use the data given in Example 2.1 (Figure 2.1) to determine the allowable 

moment, Ma' by using the Allowable Stress Design (ASD) method on the basis 

of initiation of yielding. Also determine the effective moment of inertia 

for deflection determination at the allowable moment. Use Type 301 stainless 

steel, 1/4-Hard: F = 50 ksi. 
Y 

Solution: 

1. Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 2.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance with 

Appendix E of the Standard as follows: 

n = 1.85 (Safety Factor stipulated in Table E of the Standard) 

M = 47.45 kips-in. (obtained from Example 2.1) 
n 

= M /0 n 

= 47. 45/ 1. 85 

= 26.65 kips-in. 

(Eq. E-l) 

2. Calculation of the effective moment of inertia for deflection 

determination at the allowable moment, M : a 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 2.1 for the LRFD method, except that the computed 

moment M (= fxS ) should be equal to M . e a 
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From the results of Example 2.1, it can be seen that by assuming a 

compression stress of f=28.07 ksi, the computed S = 0.992 in. 3 

e 

which is based on the fully effective section. If the assumed stress 

is equal to f=26.86 ksi, the effective section modulus is also 

determined by the full section properties, i.e., S = 0.992 in. 3
• e 

This will give fxSe = 26.65 kips-in., which is equal to Ma 

Therefore, the computed I = 2.975 in4 of the full section x 

properties can be used for deflection determination. 
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EXAMPLE 3.1 C-SECTION W/BRACING CLRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, ~bMn' based on initiation of yielding. Also de-

termine the effective moment of inertia for deflection determination at the 

service moment. Use Type 304 stainless steel, 1/4-Hard. Assume dead load 

to live load ratio D/L = 1/5 and 1.2D+1.6L governs the design. 

"000" 5.692" . 

c: 

omr Corner Line Element 
0.600" 

1.625" 

Figure 3.1 Section for Example 3.1 

Given: 

1. Section: 6" x 1.625" x 0.060" channel with stiffened flanges. 

2. Compression flange braced against lateral buckling. 

Solution: 

1. Calculation of the design flexural strength, ~bMn: 

o a. Properties of 90 corners: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 



Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

b. Computation of I , S , and M : x e n 

For the first approximation, assume a compression stress of 

f = F = 50 ksi (yield strength in longitudinal compression, 
y 

Table Al of the Standard) in the top fiber of the section 

and that the web is fully effective. 

Compression flange: 

w = 1.317 in. 

wIt = 1.317/0.060 = 21. 95 

S = 1.28~Eo/f (Eq. 2.4-1) 

The initial modulus of elasticity, E , for Type 304 stainless o 

steel is obtained from Table A4 of the Standard, 

S = 1.28 27000/50 = 29.74 

S/3 = 9.91 < (w/t) = 21.95 < S = 29.74 

i.e., E = 27000 ksi. o 

Ia = 399t4{((w/t)/S)-0.33}3 (Eq. 2.4.2-6) 

= 399(0.060)4 ((21.95/29.74)-0.33)3 

= 0.000351 in. 4 

D = 0.600 in. 

d = 0.446 in., d/t = 0.446/0.060 = 7.43 

= (0.446)3(0.060)/12 = 0.000444 in. 4 

D/w = 0.600/1.317 = 0.456, 0.25 < D/w = 0.456 < 0.80 

k = [4.82-5(D/w»)(I II )n+O.43~5.25-5(D/w) s a 
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n = 1/2 

(4.82-5(0.456))(0.000444/0.000351)1/2+0 . 43 = 3.267 

5.25-5(0.456) = 2.970 < 3.267 

Use k = 2.970 

Since I > I and D/w < 0.8, the stiffener is not considered 
s a 

as a simple lip. 

wit = 21.95 < 90 OK (Section 2.1.1-(1)-(i)) 

A = (1.052/$)(w/t)../f/Eo 

= (1.052/"/2.970 )(21.95)../50/27000 = 0.577 < 0.673 

b = w 

(Eq. 2.2.1-4) 

(Eq. 2.2.1-1) 

= 1.317 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

k = 0.50 (unstiffened compression element) 

d/t = 7.43 

f can be conservatively taken equal to 50 ksi as used in the 

top compression fiber. 

A = (1.052/~)(7.43)../50/27000= 0.476 < 0.673 

Therefore, 

d ' = d = 0.446 in. 
s 

d = d I (I II ) ~ d I 
S S S a s 

= 0.446(0.000444/0.000351) 

= 0.564 in. > 0.446 in. 

d
s 

= 0.446 in. (i.e. compression stiffener is fully 

effective) 

Thus, one concludes that the section is fully effective. 
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Ycg = 6/2 = 3.000 in. (from symmetry) 

Full section properties about x-axis: 

y 
Distance I' 1 from About 

Centerline Own 
L of Section Ly2 Axis 

Element (in. ) (in. ) (in. 3
) (in. 3

) 

Web 5.692 15.368 
Stiffeners 2 x 0.446 = 0.892 2.623 6.137 0.015 
Corners 4 x 0.195 = 0.780 2.925 6.673 
Flanges 2 x 1. 317 = 2.634 2.970 23.234 

Sum 36.044 15.383 

Since section is singly symmetric about x-axis and fully 

effective, a compression stress of 50 ksi will govern as 

assumed. (At the bottom tension fiber a tensile stress of 

50 ksi will develop simultaneously from symmetry). 

To check if web is fully effective: (Section 2.2.2) 

fl = (3.000-0.154)/3.000)x50 = 47.43 ksi(compression) 

f2 = -47.43 ksi(tension) 

~ = f2/fl = -47.43/47.43 = -1.000 

k = 4+2(l-~)l+2(l-~) 

= 4+2 (1-( -1»)3+2 (1-( -1) 1 

= 24.000 

h = w = 5.692 in., hIt = wIt = 5.692/0.060 = 94.87 

hIt = 94.87 < 200 OK (Section 2.1.2-(1» 
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= (1. 052/.J2i;)(94. 87h/47 .43/27000 = 0.854 > 0.673 

p 

b 
e 

= (1-(0.22/,\))/,\ 

= (1-(0.22/0.854))/0.854 

= pw 

= 0.869 

= b /2 e 

x 5.692 = 4.946 

= 4.946/2 = 2.473 in. 

= b
e

/(3-4J) 

= 0.869 

in. 

= 4.946/(3-(-1)) = 1.237 in. 

(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 

(Eq. 2.2.2-2) 

(Eq. 2.2.2-1) 

The effective widths, b1 and b2 , of web are defined in Figure 2 

of the Standard. 

b1+b2 = 1.237 + 2.473 = 3.710 in. 

Compression portion of the web = Ycg - 0.154 = 3.000 - 0.154 

= 2.846 in. 

Since b1+b2 = 3.710 in. > 2.846 in. , b1+b2 shall be taken 

as 2.846 in .. This verifies the assumption that the web is 

fully effective. 

I' = Ly2+1' x 1 

= 36.044 + 15.383 

= 51.427 in. 3 

Actual I = I' t x x 

= 51.427xO .060 

= 3.086 in .... 

S = 1x/Ycg e 

= 3.086/3.000 

= 1.029 in. 3 
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M 
n = S F e y 

= 1.029x50 

= 51.45 kips-in. 

(Eq . 3. 3 . 1. 1- 1 ) 

c. The design flexural strength, ~bMn' based on initiation of 

yielding is determined as follows: (Section 3.3.1.1(1)) 

= 0.90 (for section with stiffened compression flanges) 

= 0.90x51.45 = 46.31 kips-in. 

2. Calculation of the effective moment of inertia for deflection 

determination at the service moment M : 
s 

The un factored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+1.6L, the service moment can be determined as follows: 

~bMn = 1.2MDL + 1.6MLL 

MLL 

M s 

= (1.2(MDL/MLL)+1.6)MLL 

= (1.2(1/5)+1.6)MLL 

= 1.84MLL 

= ~bMn/1.84 = 46.31/1. 84 

= MDL + MLL 

= (1/5+1)MLL 

= 25.17 kips-in. 

= 1. 2(25.17) = 30.20 kips-in. 

where 

MDL = Moment determined on the basis of nominal 

MLL = Moment determined on the basis of nominal 

dead load 

live load 

The procedure is iterative: one assumes the actual compressive 
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stress f under this service moment M . Knowing f, one proceeds 
s 

as usual to obtain S and checks to see if (f x S ) is equal 
e e 

to M as it should. If not, reiterate until one obtains the s 

desired level of accuracy. (Section 2.2.1-(2)) 

After several iterations with beginning a stres's of f = F /2, 
Y 

the following only gives the results of final iteration. 

Assume that a stress of f = 29.35 ksi in the top and bottom 

fibers of the section and that the web is fully effective. 

Compression flange: 

S = 1.28127000/29.35 = 38.82 

S/3 = 12.94 < wIt = 21.95 < S = 38.82 

I = 399(0.060)4((21.95/38.82)-0.33)3 a 

= o .000067 in. 4 

I /1 = 0.000444/0.000067 = 6.627 
s a 

k = (4.82-5(0.456))(6.627)1/2+0 . 43 = 6.969 > 2.970 

k = 2.970 

For deflection determination, the reduced modulus of elasticity, 

E , is substituted for E in Eq. (2.2.1-4). For a compression 
r 0 

and tension stresses of f=29.35 ksi, the corresponding 

Esc and Est values for Type 304 stainless steel are obtained 

from Table A2 or Figure Al of the Standard as follows: 

E = 23089 ksi, and E = 26933 ksi. sc st 

E 
r 

= (Esc+Est )/2 

= (23089+26933) = 25011 ksi 

(Eq. 2. 2 . 1-7) 

" = (1.052/~2.970 )(21. 95)..j29. 35/25011 = 0.459 < 0.673 

50 



bd = 1.317 in. (i.e. compression flange fully 

effective) 

Compression (upper) stiffener: 

f can be conservatively taken equal to 29.35 ksi as used in the 

the compression fiber. 

A = (1.052/...;0.50)(7.43).J29.35/25011 = 0.379 < 0.673 

therefore, d' = 0.446 in. s 

Since I /1 = 6.627 > 1.0, it follows that d = d' s ass 

= 0.446 in. (i.e. compression stiffener fully effective). 

Thus the section is fully effective. 

Ycg = 6/2 = 3.000 in. (from symmetry) 

And since the section is singly symmetric about x-axis, 

top compression fiber (and also bottom tension fiber) 

may be used in computing S . 
e 

To check if web is fully effective: 

f1 = ((3.000-0.154)/3.000)x29.35 = 27.84 ksi(compression) 

f2 = -27.84 ksi(tension) 

~ = f2/f1 = -27.84/27.84 = -1.000 

k = 24.000 

For a compression and tension stresses of f=27.84 ksi, 

the values of Esc and Est are found as follows: 

Esc = 24090 ksi, Est = 27000 ksi. 

E 
r 

= (24090+27000)/2 

= 25550 ksi 
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A = (1. 052/-J2i;)(94.87)-J27 .84/25550 = 0.672 < 0.673 

b e = w 

= 5.692 in. 

b2 = 5.692/2 = 2.846 in. 

b i = 5.692/(3-(-1)) = 1.423 in. 

(Eq . 2. 2 . 1 -1 ) 

b1+b2 = 4.269 in. > compression portion of the web = 2.846 in. 

thus b1+b2 shall be taken as 2.846 in .. This verifies the 

assumption that the web is fully effective. 

Full section properties are the same as that used in determination 

of <PbMn since the section is fully effective. 

I x 

S e 

M 

= 3.086 in." 

= 1.029 in. 3 

= f x S = 29.35 x 1.029 e 

= 30.20 kips-in. = M OK s 

Thus, use I = 3.086 in." for deflection determination. 
x 
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EXAMPLE 3.2 C-SECTION W/BRACING (ASD) 

Rework Example 3.1 to determine the allowable moment, M , by using the Al­
a 

lowable Stress Design (ASD) method on the basis of initiation of yielding. 

Also determine the effective moment of inertia for deflection determination 

at the allowable moment. 

Solution: 

1. Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 3.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance 

with Appendix E of the Standard as follows: 

o = 1.85 (Safety Factor stipulated in Table E of the Standard) 

M = 51.45 kips-in. (obtained from Example 3.1) 
n 

M = M /0 a n 

= 51.45/1.85 

= 27.81 kips-in. 

CEq. E-1) 

2. Calculation of the effective moment of inertia for deflection 

determination at the allowable moment M : a 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 3.1 for the LRFD method, except that the computed 

moment M (= fxS ) should be equal to M . e a 
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From the results of Example 3.1, it is found that for a stress of 

f=29.35 ksi, the section is fully effective. Therefore, it can 

be seen that by assuming a stress of f=27.03 ksi (which isless 

than 29.35 ksi) the section will also be fully effective, 

i.e., S = 1.029 in. 3 Thus, e 

M = S x27.03 e 

= 27.81 kips-in. = Ma OK 

Therefore, the computed Ix = 3.083 in4 can be used for 

deflection determination. 
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EXAMPLE 4.1 Z-SECTION W/STIFFENED FLANGES (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, ~bMn' based on initiation of yielding. Also de­

termine the effective moment of inertia for deflection determination at the 

service moment. Use Type 301 stainless steel, 1/4-Hard. Assume dead load 

to live load ratio D/L = 1/5 and 1.2D+1.6L governs the design. 

1.346" 

x -----

Corner Line Element 

1.50" 
0.075" 

Figure 4.1 Section for Example 4.1 

Given: 

1. Section: 6" x 1. 500" x 0.060" Z-section with stiffened flanges. 

2. Compression flange braced against lateral buckling. 

Solution: 

1. Calculation of the design flexural strength, ~bMn: 

o a. Properties of 90 corners: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, U = 1.57r = 1.57 x 0.124 = 0.195 in. 
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Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

b. Properties of 1350 corners: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = (450 /1800 )(3. 14)r = 0.785r = 0.785 x 0.124 

= 0.097 in. 

Distance of c.g. from center of radius, 

c 1 = r sin9/9 = (0.124 x sin450 )/0.785 = 0.112 in. 

c. Computation of I , S , and M : x e n 

For the first approximation, assume a compression stress 

of f = F = 50 ksi (yield strength in longitudinal compression, 
y 

Table Al of the Standard) in the top fiber of the section 

and that the web is fully effective. 

Compression flange: 

w = 1.346 in. 

wit = 1.346/0.060 = 22.43 

S = 1.28JE:(:f (Eq. 2.4-1) o 

E = 27000 ksi (Table A4 of the Standard) 
o 

S = 1.28J27000/50 = 29.74 

S/3 = 9.91 < wit = 22.43 < S = 29.74 

I = 399t"{l(w/t)/S)-0.33p (Eq. 2.4.2-6) 
a 

= 399(0.060)"((22.43/29.74)-0.33)3 

= O. 000395 in." 

d = 0.600 in., d/t = 0.600/0.060 = 10 
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D = d+0.154tan(9/2) = 0.600+0.154tan(450/2) = 0.664 in. 

I s 

Is/Ia = 0.000540/0.000395 = 1.367 

D/w = 0.664/1.346 = 0.493, 0.25 < D/w = 0.493 < 0.80 

k = (4.82-5(D/w»)CI /1 )n+0.43~5.25-5(D/w) s a 

n = 1/2 

(4.82-5(0.493»)(1.367)1/2+0 . 43 = 3.183 

5.25-5(0.493) = 2.785 < 3.183 

k = 2.785 

(Eq. 2.4-2) 

(Eq. 2.4.2-9) 

Since I > I and D/w < 0.8, the stiffener is not considered s a 

as a simple lip. 

wIt = 22.43 < 90 OK (Section 2.1.1-(1)-(i» 

= (1.052/F)(w/t)"/f/Eo (Eq. 2.2.1-4) 

= (1.052/"/2.785 )(22.43).,/50/27000 = 0.608 < 0.673 

b = w (Eq. 2.2.1-1) 

= 1.346 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

k = 0.50 (unstiffened compression element) 

d/t = 10.00 

f conservatively taken equal to 50 ksi as in top compression fiber. 

A = (1.052/..jD.So)(10.00).j50/27000 = 0.640 < 0.673 

Therefore, 

d' = d = 0.600 in. 

d s 

s 

= d' (I /1 )~d' s s a s 

= O. 600( 1. 367) 
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= 0.820 in. > 0.600 in. 

d = 0.600 in. (i.e. compression stiffener is fully 
s 

effective) 

Thus, one concludes that the section is fully effective. 

Ycg = 6/2 = 3.000 in. (from symmetry) 

Full section properties about x axis: 

y 
Distance I' 

from 1 
About 

Centerline Own 
L of Section Ly2 Axis 

Element (in. ) (in. ) (in. 3
) (in. 3

) 

Web 5.692 15.368 
Stiffeners 2 x 0.600 = 1.200 2.722 8.891 0.018 

0 90 Corners 2 x 0.195 = 0.390 2.925 3.337 
0 135 Corners 2 x 0.097 = 0.194 2.958 1. 697 

Flanges 2 x 1.346 = 2.692 2.970 23.746 

Sum 10.168 37.671 15.386 

Since section is singly symmetric about x-axis and fully 

effective, a compression stress of 50 ksi will govern as 

assumed. (At the bottom tension fiber a tensile stress of 

50 ksi will develop simultaneously from geometry). 

To check if web is fully effective: (Section 2.2.2) 

f1 = (C3.000-0.154)/3.000)x50 = 47.43 ksiCcompression) 

£2 = -47.43 ksiCtension) 
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~ = f2/f1 = -47.43/47.43 = -1.000 

k = 4+2(1-40')3+2(1-40') 

= 4+2(1-(-1»)3+2 (1-(-1») 

= 24.000 

h = w = 5.692 in., hit = wit = 5.692/0.060 = 94.87 

hit = 94.87 < 200 OK (Section 2.1.2-(1» 

" = (1.052/~)(94.87)-J47.43/27000= 0.854 > 0.673 

p 

b e 

= (1-(0.22/"»)1" 

= (1-(0.22/0.854»)/0.854 = 0.869 

= pw 

= 0.869 x 5.692 = 4.946 in. 

= b 12 e 

= 4.946/2 = 2.473 in. 

= b e /(3-4o') 

= 4.946/ (3-(-1)) = 1.237 in. 

(Eq.2.2.1-3) 

(Eq. 2.2.1-2) 

(Eq. 2.2.2-2) 

(Eq. 2.2.2-1) 

The effective widths of web, b1 and b2 , are defined in Figure 2 

of the Standard. 

b 1+b
2 

= 1.237 + 2.473 = 3.710 in. 

Compression portion of the web = y - 0.154 cg 

= 3.000 - 0.154 

= 2.846 in. 

Since b
1
+b2 = 3.710 in. > 2.846 in., b1+b2 shall be taken 

as 2.846 in .. This verifies the assumption that the web is 

fully effective. 

= 37.671 + 15.386 
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Actual 

S e 

M 
n 

I x 

= 53.057 in. 3 

= I' t x 

= 53.057xO.060 

= 3.183 in." 

= Ix/Ycg 

= 3.183/3.000 

= 1. 061 in. 3 

= S F 
e Y 

= 1.061x50 

= 53.05 kips-in. 

(Eq . 3. 3 . 1. 1 - 1 ) 

d. The design flexural strength, ~bMn' based on initiation of 

yielding is determined as follows: (Section 3.3.1.1(1)) 

= 0.90 (for section with stiffened compression flanges) 

= 0.90x53.05 = 47.75 kips-in. 

2. Calculation of the effective moment of inertia for deflection 

determination at the service moment M : s 

The unfactored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+1.6L, the service moment can be determined as follows: 

~bMn = 1.2MDL + 1.6MLL 

= (1.2(MDL/MLL)+1.6JMLL 

= (1.2(1/5)+1.6)MLL 

= 1.84MLL 

MLL = ~bMn/1.84 = 47.75/1.84 = 25.95 kips-in. 
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M = MDL + MLL s 

= (1/5+1)MLL 

= 1.2(25.95) = 31.14 kips- in. 

where 

MDL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive 

stress f under this service moment M . Knowing f, one proceeds 
s 

as usual to obtain S and checks to see if (f x S ) is equal e e 

to M as it should. If not, reiterate until one obtains the s 

desired level of accuracy. (Section 2.2.1-(2)) 

After several trials with first iteration using f = F /2, 
Y 

the following only gives the results of final iteration. 

Assume that a stress of f = 29.35 ksi in the top and bottom 

fibers of the section and that the web is fully effective. 

Compression flange: 

S = 1.28 27000/29.35 = 38.82 

S/3 = 12.94 < wit = 22.43 < S = 38.82 

Ia = 399(0.060)" ((22.43/38.82)-0.33)3 

= 0.000079 in." 

I /1 = 0.000540/0.000079 = 6.835 
s a 

k = (4.82-5(0.493))(6.835)1/2+0 . 43 = 6.587 > 2.785 

Use k = 2.785 

For a compression and tension stresses o£ £=29.35 ksi, the values 
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of Esc and Est are found as follows: 

Esc = 23089 ksi, Est = 2~933 ksi. 

E 
r 

= (23089+26933)/2 

= 25011 ksi 

(Eq. 2.2.1-7) 

" = (1.052/.j2.785 )(22.43).j29.35/25011 = 0.484 < 0.673 

bd = 1.346 in. (i.e. compression flange fully 

effective) 

Compression (upper) stiffener: 

f can be conservatively taken equal to 29.35 ksi as used in the 

top compression fiber. 

" = (1.052/~)(10.00).j29.35/25011 = 0.510 < 0.673 

therefore, d' = 0.600 in. s 

Since I /I = 6.835 > 1.0, it follows that d = d' s ass 

= 0.600 in. (i.e. compres.ion stiffener fully effective). 

Thus, the section is fully effective. 

Ycg = 6/2 = 3.000 in. (from symmetry) 

And since the section is singly symmetric about x-axis, 

top compression fiber may be used in computing S . e 

To check if web is fully effective: 

f1 = (C3.000-0.154)/3.000)x29.35 = 27.84 ksi(compression) 

f2 = -27.84 ksiCtension) 

~ = f2/f1 = -27.84/27.84 = -1.000 

k = 24.000 

For a stress of f=27.84 ksi, the E = 25550 ksi, which is r 
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determined in Example 3.1. 

A = (1.052/.J2i;)(94.87).)27.84/25550= 0.672 < 0.673 

b e = w 

= 5.692 in. 

b2 = 5.692/2 = 2.846 in. 

b 1 = 5.692/(3-(-1)) = 1.423 in. 

CEq. 2.2.1-1) 

b1+b2 = 4.269 in. > compression portion of the web = 2.846 in. 

thus b1+b2 shall be taken as 2.846 in .. This verifies the 

assumption that the web is fully effective. 

Full section properties are the same as that used in the 

determination of ~bMn since the section is fully effective. 

I = 3.183 in. 4 

x 

5 = 1.061 in. 3 

e 

M = f x 5 = 29.35 x 1.061 e 

= 31.14 kips-in. = M OK s 

Thus, use I = 3.183 in. 4 for deflection determination. x 
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EXAMPLE 4.2 Z-SECTION W/STIFFENED FLANGES (ASD) 

Use the data given in Example 4.1 (Figure 4.1) to determine the allowable 

moment, Ma , by using the Allowable Stress Design (ASD) method on the basis 

of initiation of yielding. Also determine the effective moment of inertia 

for deflection determination at the allowable moment. Use Type 301 stainless 

steel, 1/4-Hard: F = SO ksi. 
Y 

Solution: 

1. Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 4.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance with 

Appendix E of the Standard as follows: 

n = 1.85 (Safety Factor stipulated in Table E of the Standard) 

M = 53.05 kips-in. (obtained from Example 4.1) 
n 

M = M /0 a n 

= 53.05/1.85 

= 28.68 kips-in. 

(Eq. E-l) 

2. Calculation of the effective moment of inertia for deflection 

determination at the allowable moment, M : a 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 4.1 for the LRFD method, except that the computed 
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M (= fxS ) should be equal to M . e a 

From the results of Example 4.1, it can be seen that by using a 

stress of f=29.35 ksi, the computed S = 1.061 in. 3 which is 
e 

based on the fully effective section. If the assumed stress 

is equal to f=27.03 ksi, the effective section modulus is also 

determined by the full section properties, i.e., S = 1.061 in. 3
• 

e 

This will give fxS = 28.68 kips-in., which is equal to M e a 

Therefore, the computed I = 3.183 in4 of the full section x 

properties is used for deflection determination. 
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EXAMPLE 5.1 DEEP Z-SECTION w/STIFFENED FLANGES (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, ~bMn' based on initiation of yielding. Also de­

termine the effective moment of inertia for deflection determination at the 

service moment. Use Type 301 stainless steel, 1/4-Hard. Assume dead load 

to live load ratio D/L = liS and 1.2D+l.6L governs the design. 

1.346" 

" '--
11.112" 

Corner Line Element 

0.0711"" I . 

1.50" 

Figure 5.1 Section for Example 5.1 

Given: 

1. Section: 9.5" x 1.500" x 0.060" Z-section with stiffened flanges. 

2. Compression flange braced against lateral buckling. 

Solution: 

1. Calculation of the design flexural strength, ~bMn: 

B. Properties of 900 corners: 
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r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

b. Properties of 1350 corners: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

o 0 Length of arc, u = (45 /180 )(3.14)r = 0.785r = 0.785 x 0.124 

= 0.097 in. 

Distance of c.g. from center of radius, 

c1 = r sine/9 = (0.124 x sin450 )/0.785 = 0.112 in. 

c. Computation of I , S , and M : x e n 

For the first approximation, assume a compression stress 

of f = F = 50 ksi (yield strength in longitudinal compression y 

as given in Table Al of the Standard) in the top fiber of the 

section and that the web is fully effective. 

Compression flange: 

w = 1.346 in. 

wit = 1.346/0.060 = 22.43 

S = 1.28~ (Eq. 2.4-1) o 

E = 27000 ksi (Table A4 of the Standard) 
o 

S = 1.28~27000/50 = 29.74 

S/3 = 10.36 < wit = 24.52 < S = 31.09 

1a = 399t4{C(w/t)/S)-0.33}3 (Eq. 2.4.2-6) 

= 399(O.060)4~22.43/29.74)-0.3313 
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= 0.000395 in. 4 

d = 0.600 in., d/t = 0.60010.060 = 10 

D = d+0.154tan(9/2) = 0.600+0.154tan(450/2) = 0.664 in. 

Is = d3tsin29/12 (Eq. 2.4-2) 

= (0.600)3(0.060)sin2(450)/12 = 0.000540 in.4 

Is/Ia = 0.000540/0.000395 = 1.367 

D/w = 0.664/1.346 = 0.493, 0.25 < D/w = 0.493 < 0.80 

k = (4.82-5(D/w)](I II )n+0.43~5.25-5(D/w) s a 

n = 1/2 

(4.82-5(0.493))(1.367)1/2+0 . 43 = 3.183 

5.25-5(0.493) = 2.785 < 3.183 

use k = 2.995 

(Eq. 2.4.2-9) 

Since Is > Ia and D/w < 0.8, the stiffener is not considered 

as a simple lip. 

wit = 22.43 < 90 OK (Section 2.1.1-(1)-(i)) 

= (1. 052/~)(W/t).Jf/Eo (Eq. 2.2.1-4) 

= (1.052/.J2.785 )(22.43).J50/27000 = 0.608 < 0.673 

b = w (Eq. 2.2.1-1) 

= 1.346 in. (i.e. compression flange fully effective) 

Compression (upper) stiffener: 

k = 0.50 (unstiffened compression element) 

d/t = 10.00 

f conservatively taken equal to 50 ksi as in top compression 

fiber. 

A = (1.0S2/.JQ.SO)(10.00).JSO/27000 = 0.640 < 0.673 

Therefore, 
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d' = d = 0.600 in. 

d s 

s 

= d' (I /1 )~d' 
s s a s 

Since I /1 = 1.367 > 1.000 
s a 

(Eq . 2. 4 . 2 - 11 ) 

d = d' = 0.600 in. (i.e. compression stiffener is fully s s 

effective) 

Thus, one concludes that the section is fully effective. 

Ycg = 9.5/2 = 4.750 in. (from symmetry) 

It follows that a compression stress of f=50 ksi will govern 

as assumed. 

To check if web is fully effective (Section 2.2.2): 

f1 = (4.750-0.154)/4.750)x50 = 48.38 ksi(compression) 

f2 = -48.38 ksi(tension) 

~ = f2/f1 = -48.38/48~j8 = -1.000 

k = 4+2(1-4J)3+2(1-~) 

= 4+2 (1-(-1))3+2 (1-(-1)] 

= 24.000 

h = w = 9.192 in., hit = wit = 9.192/0.060 = 153.20 

hit = 153.20 < 200 OK (Section 2.1.2-(1)) 

A = (1.052/.J24)(153.20~48.38/27000 = 1.393 > 0.673 

p 

b e 

= (1-(0.22/A))/A 

= (1-(0.22/1.393))/1.393 = 0.604 

= pw 

= 0.604 x 9.192 = 5.552 in. 

= b /2 e 

= 5.552/2 = 2.776 in; 
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= b
e

/(3-1.j.J) (Eq. 2.2.2-1) 

= 5.552/(3-(-1)) = 1.388 in. 

The effective widths of web, b1 and b2 , are defined in Figure 2 

of the Standard. 

b1+b2 = 1.388 + 2.776 = 4.164 in. 

Compression portion of the web = y - 0.154 cg 

= 4.750 - 0.154 

= 4.596 in. 

Since b1+b2 = 4.164 in. < 4.596 in., it follows that the 

web is not fully effective. Hence y = 4.750 as assumed. cg 

The procedure to determine the location of the neutral axis (N.A.) 

based on partially effective web is iterative. We start with y = 4.750 cg 

in. and from Figure 2 of the Standard, scale b
l

, b2 already computed with 

respect to y = 4.750 in. Then we proceed to compute a new N.A. and hence cg 

b1+b2 . If (b1+b2) is the same as before, the solution stabilizes and the 

location of N.A. is calculated according to this (b1+b2)· If (b1+b2) 

differ than before, one reiterates in the same manner until b1+b2 sta-

bilizes. 

Thus, for the first iteration, the web is divided into three segments: 

b 1 = 1.388 in., ineffective portion of web, and b2(=2.776)+4.750-0.154 

= 7.372 in .. Thus the ineffective portion of web = 9.192-1.388-7.372 = 

0.432 in .. 

The compression flange and stiffener remain fully effective since 

nothing is altered in their calculations. 
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Effective section properties about x-axis: 

y 
Distance 

from 
L Top Fiber Ly 

Element (in. ) (in. ) (in. 2
) 

b1 1.388 0.154+(1.388/2) = 0.848 1.177 
b2+(9.5-y )-0.154 7.372 9.5-0.154-(7.372/2) = 5.660 41.726 
Compressigfi flange 1.346 0.030 0.040 

0 Compression stiffener 0.600 0.154-0.124cos45 
+(0.600/2)sin45° = 0.278 0.167 

0 0.195 0.075 0.015 Top 90 corner 
0 0.097 0.154-0.112 0.042 0.004 Top 135 corner = 

0 0.097 9.5-(0.154-0.112) 9.458 0.917 Bottom 135 corner = 
0 0.195 9.5-0.075 9.425 1.838 Bottom 90 corner = 

Bottom stiffener 0.600 9.5-0.278 = 9.222 5.533 
Tension flange 1.346 9.5-(0.060/2) = 9.470 12.747 

Sum 13.236 64.164 

Ycg = Ly/L = 64.164/13.236 

= 4.848 in. (measured from top compression fiber) 

f1 = (4.848-0.154)/4.848)(50) = 48.41 ksi(compression) 

f2 = -(9.5-4.848-0.154)/4.848)(50) = -46.39 ksi(tension) 

~ = -46.39/48.41 = -0.958 

k = 4+2(1-(-0.958))3+2 (1-(-0.958)) 

= 22.929 

" = (1.0521...)22.929 )(153.20)...)48.41/27000 = 1.425 > 0.673 

p = (1-(0.22/1.425))/1.425 = 0.593 

b = 0.593 x 9.192 = 5.451 in. e 

b2 = 5.451/2 = 2.726 in. 

b1 = 5.451/(3-(-0.958)) = 1.377 in. 

b1+b2 = 4.103 in. = 4.164 in. Therefore, need to reiterate. 
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For the second iteration: 

b1 = 1.377 in. 

b2+(9.5-y )-0.154 = 2.726+9.5-4.848-0.154 = 7.224 in. cg 

Ineffective portion of web = 9.192-1.377-7.224 = 0.591 in. 

Effective section properties about x-axis: 

y 
Distance 

from 
L Top Fiber 

Element (in. ) (in. ) 

b1 1.377 0.843 
b2+(9.5-y )-0.154 7.224 5.734 
CompressigB flange 1.346 0.030 

Compression stiffener 0.600 0.278 
0 0.195 0.075 Top 90 corner 
0 0.097 0.042 Top 135 corner 

Bottom 1350 corner 0.097 9.458 
0 Bottom 90 corner 0.195 9.425 

Bottom stiffener 0.600 9.222 
Tension flange 1.346 9.470 

Sum 13.077 

Ycg = 65.844/13.077 = 4.882 in. (measured from top 

compression fiber) 

fl = (4.882-0.154)/4.882)(50) = 48.42 ksi 

f2 = -(9.5-4.882-0.154)/4.882)(50) = -45.72 ksi 

~ = -45.72/48.42 = -0.944 

k = 4+2(1-(-0.944))3+2(1-(-0.944)) = 22.580 

Ly 
(in.2) 

1.161 
41.422 

0.040 
0.167 
0.015 
0.004 
0.917 
1.838 
5.533 

12.747 

63.844 

}.. = (1.052/..j22.580 )(153.20)..j48.42/27000 = 1.436 > 0.673 

P = (1-(0.22/1.436))/1.436 = 0.590 
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b = 0.590 x 9.192 = 5.423 in. e 

b2 = 5.423/2 = 2.712 in. 

b1 = 5.423/(3-(-0.946)) = 1. 374 in. 

b1+b2 = 4.086 in. = 4.103 in. Therefore, need to reiterate. 

For the third iteration: 

b1 = 1.374 in. 

b2+(9.5-y )-0.154 = 2.712+9.5-4.882-0.154 = 7.176 in. cg 

Ineffective portion of web = 9.192-1.374-7.176 = 0.642 in. 

Effective section properties about x-axis: 

L = 13.026 in. 

Ly = 63.736 in. z 

Ycg = 63.736/13.026 = 4.893 in. 

f 1 = (4.893-0.154)/4.893)(50) = 48.43 ksi 

f2 = -(9.5-4.893-0.154)/4.893)(50) = -45.50 ksi 

~ = -45.50/48.43 = -0.940 

k = 4+2(1-(-0.940))3+2[1-(-0.940)) = 22.483 

" = (1.052/.J22.483 )(153.20).J48.43/27000 = 1.440 > 0.673 

P = (1-(0.22/1.440))/1.440 = 0.588 

b = 0.588 x 9.192 = 5.405 in. e 

b2 = 5.405/2 = 2.703 in. 

b1 = 5.405/(3-(-0.940)) = 1.372 in. 

b1+b2 = 4.075 in. = 4.086 in. Therefore, need to reiterate. 

For the fourth iteration: 

b
1 

= 1.372 in. 
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b2+(9.5-y )-0.154 = 2.703+9.5-4.893-0.154 = 7.156 in. cg 

Ineffective portion of web = 9.192-1.372-7.156 = 0.664 in. 

Effective section properties about x-axis: 

L = 13.004 in. 

Ly = 63.689 • 2 
J.n • 

Ycg = 63.689/13.004 = 4.898 in. 

f 1 = ((4.898-0.154)/4.898)(50) = 48.43 ksi 

f2 = -((9.5-4.898-0.154)/4.898)(50) = -45.41 ksi 

~ = -45.41/48.43 = -0.938 

k = 4+2(1-(-0.938»)3+2 ~-(-0.938») = 22.434 

" = (1.052/"'/22.434)(153.20)"'/48.43/27000= 1.441> 0.673 

P = (1-(0.22/1.441»)/1.441 = 0.588 

b = 0.588 x 9.192 = 5.405 in. 
e 

b2 = 5.405/2 = 2.703 in. 

b1 = 5.405/(3-(-0.938») = 1.373 in. 

b1+b2 = 4.076 in. close enough to 4.075 in. 

Thus, the solution stabilizes. 

Hence we now compute the location of N.A. and moment of 

inertia using b1 = 1.373 in. and bZ = Z.703 in. 

74 



Effective section properties about x-axis: 

Y r I 

1 
Distance About 

from Own 
L Top Fiber Ly Ly2 Axis 

Element (in. ) (in. ) (in. 2) (in. 3
) (in. 3

) 

b1 1. 373 0.841 1.155 0.971 0.216 
b2+(9.5-y )-0.154 7.151 5.771 41.268 238.160 30.473 
Compressigfi flange 1.346 0.030 0.040 0.001 

Compression stiffener 0.600 0.278 0.167 0.046 0.009 
0 0.195 0.075 0.015 0.001 Top 90 corner 
0 0.097 0.042 0.004 Top 135 corner 

Bottom 1350 corner 0.097 9.458 0.917 8.677 
0 Bottom 90 corner 0.195 9.425 1.838 17.322 

Bottom stiffener 0.600 9.222 5.533 51. 027 0.009 
Tension flange 1.346 9.470 12.747 120.710 

Sum 13.000 63.684 436.915 30.707 

Distance from top fiber to x-axis is 

Ycg = 63.684/13.000 = 4.899 in. 

Since the distance from top compression fiber to the neutral axis is 

greater than one half the beam depth (= 4.750 in.) , a compression 

stress of 50 ksi will govern as assumed. 

I I = Ly2+r I -Ly2 
x 1 cg 

= 436.915 + 30.707 - 13.000(4.899)2 

= 155.619 • 3 
1Il. 

Actual I = I I t 
x x 

= 155.619xO.060 

= 9.337 in." 

S = Ix/Ycg e 
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= 9.337/4.899 

= 1.906 in. 3 

M = S F (Eq. n e y 

= 1.906x50 

= 95.30 kips-in. 

d. The design flexural strength, ~bMn' based on initiation of 

yielding is determined as follows: (Section 3.3.1.1(1» 

3.3.1.1-1) 

= 0.90 (for section with stiffened compression flanges) 

= 0.90x95.30 = 85.77 kips-in. 

2. Calculation of the effective moment of inertia for deflection 

determination at the service moment M : s 

The unfactored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+l.6L, the service moment can be determined as follows: 

~bMn = 1. 2MDL + 1. 6MLL 

MLL 

M s 

= (1.2(MDL/MLL)+1.6)HLL 

= (1. 2(1/5 )+1. 6)MLL 

= 1.84MLL 

= ~bMn/1. 84 = 85.77/1.84 

= MDL + MLL 

= (1/5+1)MLL 

= 46.61 kips-in. 

= 1.2(46.61) = 55.93 kips-in. 

where 

MDL = Moment determined on the basis of nominal dead load 
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MLL = Moment determined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive 

stress f under this service moment M . Knowing f, one proceeds s 

as usual to obtain S and checks to see if (f x S ) is equal e e 

to M as it should. If not, reiterate until one obtains the s 

desired level of accuracy. (Section 2.2.1-(2)) 

a. For the first iteration, assume a stress of f = 30 ksi in the 

top and bottom fibers of the section and that the 

web is fully effective. 

Compression flange: 

S = 1.28J27000/30 = 38.40 

S/3 = 12.80 < wit = 22.43 < S = 38.40 

I = 399(0.060)~~22.43/38.40)-0.33J3 a 

= 0.000085 in.~ 

I /1 = 0.000540/0.000085 = 6.353 s a 

k = (4.82-5(0.493)J(6.353)1/2+0 . 43 = 6.366 > 2.785 

Use k = 2.785 

For deflection determination, the value of E , reduced modulus 
r 

of elasticity determined by using Eq. (2.2.1-7), is substituted 

for E in Eq. (2.2.1-4). 
o 

For a compression and tension stresses of f = 30 ksi, the 

corresponding Esc and Est values for Type 301 stainless steel 

are obtained from Table A2 or Figure Al of the Standard 

as follows: 
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E = 22650 ksi, sc 

Er = (Esc+Est )/2 

Est = 26900 ksi 

= (22650+26900)/2 = 24775 ksi 

A = (1.052/"'/2.785 )(22.43).../30/24775 = 0.492 < 0.673 

bd = 1.346 in. (i.e. compression flange fully 

effective) 

Compression (upper) stiffener: 

(Eq. 2. 2 . 1- 7) 

f can be conservatively taken equal to 30 ksi as used in the top 

compression fiber. 

A = (1.052/.JQ.50)(10.00).../30/24775 = 0.518 < 0.673 

therefore, d' = 0.600 in. 
s 

Since I /1 = 6.353 > 1.0, it follows that d = d' s ass 

= 0.600 in. (i.e. compression stiffener fully effective). 

Thus, section is fully effective (since web was assumed 

fully effective). 

y = 9.5/2 = 4.750 in. (from symmetry) cg 

To check if web is fully effective: 

f1 = ((4.750-0.154)/4.750J(30) = 29.03 ksi 

f2 = -29.03 ksi 

~ = -29.03/29.03 = -1.000 

k = 24.000 

For a compression and tension stresses of f=29.03 ksi, it is found 

that the vlues of Esc and Est are equal to 23305 ksi 

and 26950 ksi, respectively. 

E 
r 

= (E +E )/2 sc st 
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= (23305+26950)/2 = 25130 ksi 

A = (1.052/.fi4)(153.20)..j29.03/25130 = 1.118 > 0.673 

P = (1-(0.22/1.118)J/1.118 = 0.718 

b = 0.718 x 9.192 = 6.600 in. e 

b2 = 6.600/2 = 3.300 in. 

b1 = 6.600/ (3-(-1) 1 = 1.650 in. 

Compression portion of the web = Ycg - 0.154 

= 4.750 - 0.154 = 4.596 in. 

b1+b2 = 4.950 in. > 4.596 in. 

Thus b1+b2 shall be taken as 4.596 in. This verifies the 

assumption that the web is fully effective. 

Full section properties about x-axis! 

Y 
Distance 

from 
Centerline 

L of Section 
Element (in. ) (in. ) 

Web 9.192 
Stiffeners 2 x 0.600 = 1.200 4.472 

0 2 90 corners x 0.195 = 0.390 4.675 
0 135 corners 2 x 0.097 = 0.194 4.708 

Flanges 2 x 1.346 = 2.692 4.720 

Sum 

I' = Ly2+I' 
x 1 

= 96.796 + 64.740 = 161.536 in.' 

I 
x 

= 161.536(0.060) = 9.692 . " 1Il. 

Se = I /y = 9.692/4.750 = 2.040 in.' 
x cg 
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Ly2 
(in. 3

) 

23.999 
8.524 
4.300 

59.973 

96.796 

I' 1 
About 

Own 
Axis 

(in.3) 

64.722 
0.018 

64.740 



M = f x 5 = 30 x 2.040 e 

= 61.20 kips-in. not equal to M = 55.93 kips-in. s 

Thus, need to reiterate. 

However, one sees that we need to assume a smaller stress 

than 30 ksi and since the section was fully effective 

for f = 30 ksi, it will be fully effective for f < 30 ksi. 

Thus 5 = 2.040 in. 3 

e 

Therefore, the correct f at M = M /5 = 55.93/2.040 sse 

= 27.42 ksi. and I = 9.692 in. 4 for deflection determination. x 
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Remark: 

It was clearly seen that in the calculation of ~bMn' the assumption 

of the web being fully effective was not true. However, it would be in­

teresting to see the percentage of error if one neglected the partial 

effectiveness of the web and proceeded with the assumption of a fully 

effective web. 

To demonstrate: neglect the partial effectiveness of the web in the 

first approximation in the calculation of ~bMn' 

Thus the whole section is fully effective. Full section properties 

about x-axis (from part 2): 

I = 9.692 in. 4 

x 

S = 2.040 in. 3 

e 

~bMn = 0.90(2.040x50) = 91.80 kips-in. 

% error = (91.80-85.77)/85.77 x100% = 7.03% 

Since the percentage of error is small, one could rationalize that 

in practical cases to get a first-hand quick answer one could assume the 

web being fully effective. 
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EXAMPLE 5.2 DEEP Z-SECTION W/STIFFENED FLANGES (ASD) 

Use the data given in Example 5.1 (Figure 5.1) to determine the allowable 

moment, Ma' by using the Allowable Stress Design (ASD) method on the 

basis of initiation of yielding. Also determine the effective moment of 

inertia for deflection determination at the allowable moment. Use Type 

301 stainless steel, 1/4-Hard: F = 50 ksi. 
Y 

Solution: 

1. Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 5.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance with 

Appendix E of the Standard as follows: 

o = 1.85 (Safety Factor stipulated in Table E of the Standard) 

M = 95.30 kips-in. (obtained from Example 5.1) 
n 

M = M /0 a n 

= 95.30/1.85 

= 51.51 kips-in. 

(Eq. E-1) 

2. Calculation of the effective moment of inertia for deflection 

determination at the allowable moment, M : a 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 5.1 for the LRFD method, except that the computed 

moment M (= fxSe ) should be equal to Ma' 
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From the results of Example 5.1, it can be seen that by using a 

a stress of f=30 ksi, the computed S = 2.040 in. 3 which is 
e 

based on the fully effective section. If one assumes a smaller 

stress of f=25.25 ksi, the effective section modulus will 

also be determined on the basis of its full cross section, i.e., 

S = 2.040 in. 3 Therefore, fxS = 25.25x2.040 = 51.51 kips-in., e e 

which is equal to Ma determined above. 

Therefore, the computed I = 9.692 in4 obtained from the full 
x 

section properties can be used for deflection determination. 
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EXAMPLE 6.1 HAT SECTION (LRFD) 

(Complete Flexural Design) 

By using the Load and Resistance Factor Design (LRFD) method, check the ad-

equacy of the hat section given in Figure 6.1 for bending moment, shear, web 

crippling, and deflection. Use Type 316 stainless steel, 1/4-Hard. Assume 

dead load to live load ratio D/L = 1/5 and 1.2D+1.6L governs the design. 

9.000'" I 
1--____ ---: ___ --=..;8 • .:.;69:..::2" ________ .,1 ~ 0.154. 

.. 
>. 0.060" 

~--x 

D~ 
~=~IO 

3.000· . 

Figure 6.1 Section for Example 6.1 

Given: 

1. Section: Hat section, as shown in sketch. 

2. Span length: L = 8 ft., with simple supports, no overhang, and 6-in. 

support bearing lengths. 

3. Nominal Loading: Live = 250 lb/ft.j Dead = 20 lb/ft. 

Solution: 

1. Properties of 900 corners: 

Corner Radius, r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 



Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

The moment of inertia, II, of corner about its own centroidal axis 

is negligible. 

2. Nominal Section Strength, M (Section 3.3.1.1) 
n 

a. Procedure I - Based on Initiation of Yielding 

Computation of I , S , and M : (first approximation) x e n 

* Assume a compressive stress of f = F = 50 ksi in the 
y 

top fiber of the section. (See Table Al of the Standard 

for yield strength.) 

* Also assume web is fully effective. 

Element 4: 

hit = 3.692/0.060 = 61.53 < (hit) = 200 OK (Section 2.1.2-(1» max 

Assumed fully effective 

Element 5: 

wit = 8.692/0.060 = 144.9 < 400 OK (Section 2.1.1-(1)-(ii» 

k = 4 

= (1.052/-/k)(w/t).jf/Eo (Eq. 2.2.1-4) 

E is equal to 27000 ksi, which is obtained from Table A4 of 
o 

the Standard. 

~ = (1.052/../4)(144.9).j50/27000 = 3.280 > 0.673 

= (1-(0.22/~)J/~ p 
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= (1-(0.22/3.280))/3.280 = 0.284 

b = pw (Eq. 2.2.1-2) 

= 0.284 x 8.692 

= 2.469 in. 

Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly Ly2 

Element (in. ) (in. ) (in.2) (in. 3
) 

1 2 x 0.596 = 1.192 3.548 4.229 15.005 
2 4 x 0.195 = 0.780 3.925 3.062 12.016 
3 2 x 2.692 = 5.384 3.970 21.375 84.857 
4 2 x 3.692 = 7.384 2.000 14.768 29.536 
5 2.469 0.030 0.074 0.002 
6 2 x 0.195 = 0.390 0.075 0.029 0.002 

Sum 17.599 43.537 141.418 

The distance from the top fiber to the neutral axis is 

y = Ly/L = 43.537/17.599 = 2.474 in. 
cg 

I' 1 
About 

Own 
Axis 
(in. 3 

) 

0.035 

8.388 

8.423 

Since the distance from top compression fiber to the neutral 

axis, y ,is greater than one half the beam depth, a 
cg 

compressive stress of Fy will govern as assumed. 

I ' = Ly2 + I I - Ly2 
X 1 ~ 

= 141.418 + 8.423 - 17.599(2.474)2 

= 42.12 in. 3 

Actual I = tIl 
X X 
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Check Web 

= (0.060)(42.12) = 2.53 in. 4 

--'--.I~--- ---r----
0.154" •• -._--:I" 

I 

2.320" 

I-

: 
~ .... 
~ 

N 

NA ',"1 j ---'-------1 

• I 
" I 

" 

f<=50 ksi 

f1 = (2.320/2.474)(50) = 46.89 ksi(compression) 

f2 = -(1.372/2.474)(50) = -27.73 ksi(tension) 

~ = f2/f1 = -27.73/46.89 = -0.591 

k = 4+2(1-~)3+2(1-~) (Eq. 2.2.2-4) 

= 4+2 (1-(-0.591)J3+2 (1-(-0.591)) 

= 15.24 

A = (1. 052/F)(w/t)"'/f/Eo ' f = f 1 (Eq. 2.2.1-4) 

= (1.052/"'/15.24 )(61.53).../46.89/27000 = 0.691 > 0.673 

p 

b e 

= (1-(O.22/A))/A 

= [1-(0.22/0.691)J/0.691 = 0.986 

= pw 

= 0.986 x 3.692 

= 3.640 in. 

= b /2 e 

= 3.640/2 = 1.820 in. 

= b /(3-41) e 
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(Eq. 2.2.1-2) 

(Eq. 2.2.2-2) 

(Eq. 2. 2 . 2 - 1 ) 



= 3.640/(3-(-0.591)] = 1.014 in. 

b1+b2 = 1.014 + 1.820 = 2.834 in. > 2.320 in. (compression 

b. 

portion of web, see sketch shown above) 

Therefore, web is fully effective. 

S e 

M 
n 

= 

= 

= 

= 

= 

= 

Ix/Ycg 

2.53/2.474 

1.02 in. 3 

S F e y 

(1.02)(50) 

51.0 kips-in. 

Procedure II - Based on Inelastic Reserve Capacity 

CEq. 3.3.1.1-1) 

'\ = (1.11/./F /E ) y 0 
CEq. 3. 3 . 1. 1 - 2 ) 

= (1. 11/J50/27000) = 25.79 

A.2 = (1. 28/JF /E ) y 0 
CEq. 3. 3 . 1. 1 - 3 ) 

= (1. 28/J50 /27000) = 29.74 

wIt = 8.692/0.06 = 144.9 

Maximum compressive strain = C e = e y y y 

Therefore, the nominal moment, M is the same as the M n n 

determined by procedure I because the compression flange 

will yield first. 

3. Design Flexural Strength, ~bMn (Section 3.3.1) 

~b = 0.90 (for section with stiffened compression flanges) 

~bMn = O.90x51.0 = 45.9 kips-in .. 

The factored load combination is as follows: 
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Wu = 1.2wDL + 1.6wLL = 1.2(0.02)+1.6(0.25) = 0.424 kips/ft. 

Maximum required flexural strength for a simply supported beam is 

Mu = wUL2 / 8 = 0.424(8)2(12)/8 

= 40.70 kips-in. < ~bMn = 45.9 kips-in. OK 

4. Strength for Shear Only (Section 3.3.2) 

The required shear strength at any section shall not exceed the 

design shear strength ~ V : v n 

,.,. = 0.85 '+Iv 

V n 
= 4.84E t 3 (G /G )/h o s 0 

v = V /(ht) n n 

CEq. 3.3.2-1) 

In the determination of the shear strength, it is necessary to 

select a proper value of G IG for the assumed stress s 0 

from Table A12 or Figure A90f the Standard. For the first 

approximation, assume a shear stress of v=F 12=25 ksi and the 
y 

corresponding value of G /G is equal to 0.888. Thus, s 0 

hit = 3.692/0.060 = 61.53 

v = 4.84(27000)(0.888)/(61.53)2 
n 

= 30.7 ksi > assumed stress v=25 ksi NG 

For a second approximation, assume a stress of f=28.82 ksi and 

its corresponding value of G /G is 0.836. s 0 

vn = 4.84(27000)(0.836)/(61.53)2 

= 28.85 ksi = assumed stress OK 

Therefore, the total shear strength, Vn , for hat section is 

= (2 webs)(v )(ht) 
n 
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= 2(28.85)(3.692xO.060) 

= 12.78 kips 

The design shear strength is determined as follows: 

~ V = 0.85(12.78) = 10.85 kips v n 

~ V < 2(0.95F ht) = 2(0.95x42x3.692xO.06) = 17.68 kips OK v n yv 

(The shear yield strength, F , is obtained from Table Al yv 

of the Standard.) 

Maximum Required Shear Strength = Reaction 

= w L/2 = 0.424(8)/2 = 1.70 k < ~ V = 10.85 k OK u v n 

5. Web Crippling Strength for End Reaction (Section 3.3.4) 

R/t = (3/32)/0.06 = 1.563 < 6 OK 

hit = 3.692/0.06 = 61.53 < 200 

Table 2 of the Standard 
Stiffened Flanges 

Pn = t 2C3C4Ce !?31-0.61Ch/t)J f1+0.01(N/t)) 

C3 = (1.33-0.33k)k 

k = F /33 = 50/33 = 1.515 
Y 

C3 = (1.33-0.33(1.515~(1.515) = 1.257 

(Eq. 3.3.4-1) 

(Eq. 3.3.4-12) 

(Eq. 3.3.4-21) 

C4 = (1.15-0.15R/t) ~ 1.0 but not less than 0.50 (Eq. 3.3.4-13) 

(1.15-0.15R/t) = (1.15-0.15(1.563)1 = 0.916 ~ 1.0 OK 

> 0.50 OK 
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C4 = 0.916 

= 0.7+0.3(8/90)2 

= 0.7+0.3(90/90)2 = 1.0 

P = (0.06)2(1.257)(0.916)(1.0)(331-0.61(61.53)) 
n 

x(l+0.01(6/0.06)) = 2.43 k/web 

P = (2 webs)(2.43 k/web) = 4.86 k 
n 

<l>w = 0.70 

~ P = 0.70(4.86) = 3.40 k ""w n 

Reaction = 1.70 k < <I> P = 3.40 k OK w n 

6. Deflection Determination at Service Moment M s 

Find leff at Ms = WL2/8 = 0.27(8)2(12)/8 = 25.92 kips-in. 

Computation of leff' first approximation 

(Eq. 3.3.4-20) 

* Assume a stress of f = 0.6F = 30 ksi in the top and y 

bottom fibers of the section. 

* Also assume web is fully effective. 

Element 5: 

For deflection determination, the value of E , reduced modulus 
r 

of elasticity determined by using Eq. (2.2.1-7), is substituted 

for E in Eq. (2.2.1-4). For a compression and tension 
o 

stresses of f = 30 ksi, the corresponding E and E t values sc s 

for Type 316 stainless steel are obtained from Table A2 or 

Figure Al of the Standard as follows: 

E = 22650 ksi, sc E = 26900 ksi st 
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E = (E +E )/2 r sc st 

= (22650+26900)/2 = 24775 ksi 

Thus, for compression flange (Element 5): 

A = (1. 052/j4)(144.9),J30/24775 = 2.652 > 0.673 

P = (1-(0.22/2.652»)/2.652 = 0.346 

bd = pw 

= 0.346(8.692) = 3.007 in. 

Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly 

Element (in. ) (in. ) (in. 2) 

1 2 x 0.596 = 1.192 3.548 4.229 
2 4 x 0.195 = 0.780 3.925 3.062 
3 2 x 2.692 = 5.384 3.970 21.375 
4 2 x 3.692 = 7.384 2.000 14.768 
5 3.007 0.030 0.090 
6 2 x 0.195 = 0.390 0.075 0.029 

(Eq . 2 . 2 . 1 -7) 

(Eq. 2.2.1-4) 

CEq. 2.2.1-3) 

(Eq. 2.2.1-6) 

I' 
1 About 

Own 
Ly2 Axis 

(in. 3
) (in.3) 

15.005 0.035 
12.016 
84.857 
29.536 8.388 
0.003 
0.002 

Sum 18.137 43.553 141.419 8.423 

The distance from the top fiber to the neutral axis is 

Ycg 

I'eff 

= Ly/L = 43.553/18.137 = 2.401 in. 

= Ly2 + I' - Ly2 
1 cg 

= 141.419 + 8.423 - 18.137(2.401)2 

= 45.29 in. 3 

Actual Ieff = tI'eff 

= (0.060)(45.29) = 2.72 in. 4 
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Check Web 

* Should be fully effective 

r--O.154" 
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f1 = (2.247/2.401)(30) = 28.08 ksi(compression) 

f2 = -(1.445/2.401)(30) = -18.05 ksi(tension) 

~ = f2/f1 = -18.05/28.08 = -0.643 

k = 4+2( 1-~)3+2( 1-~) 

= 4+2 (1- ( - 0 . 643)) 3+2 (1- ( - 0 . 643) J 

= 16.16 

= (1.052/$)(w/t)../f/Er ' f = f 1 

(Eq. 2.2.2-4) 

(Eq. 2.2.1-4) 

For a compression stress of f1 = 28.08 ksi and a tension stress 

of f2 = 18.05 ksi, the values of E and E t are found sc s 

as follows: Esc = 24000 ksi, Est = 27000 ksi. 

E 
r 

= (24000+27000)/2 

= 25500 ksi 

(Eq . 2. 2 . 1- 7) 

" = (1. 052/../16 .16 )(61. 53)../28.08/25500 = 0.534 < 0.673 

b 

b e 

= w (Eq. 2.2.1-1) 

= 3.692 in. 

= b /2 (Eq. 2.2.2-2) e 

= 3.692/2 = 1.846 in. 
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= be /(3-4J) (Eq. 2.2.2-1) 

= 3.692/(3-(-0.643)) = 1.007 in. 

b1+b2 = 1.013 + 1.846 = 2.859 in. > 2.216 in. (compression 

portion of web, see the sketch shown above) 

Therefore, web is fully effective. 

Seff = I ff/Y = 2.72/2.401 = 1.13 in. 3 

e cg 

M = Seff(0.6Fy) 

= ( 1.13)(30) 

= 33.9 kips-in. 

To determine leff at Ms = 25.92 kips-in., an approximation 

is used by extrapolating the following values: 

(1) M = 51.00 kips-in., I = 2.53 in. 4 

(2) M = 33.90 kips-in., I = 2.72 in. 4 

(3) M = 25.92 kips-in., I = ? 

(25.92-33.9)/(1-2.72) = (33.9-51.0)/(2.72-2.52) 

-7.98 = -90.00(1-2.72) 

0.0887 = 1-2.72 

I = 2.81 in. 4 

Use I = 2.81 in. 4 in deflection calculations. 

Deflection = 5wL4 /384E I o 
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EXAMPLE 6.2 HAT SECTION (ASD) 

Rework Example 6.1 by using the Allowable Stress Design (ASD) method. 

Solution: 

1. Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 6.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance 

with Appendix E of the Standard as follows: 

o = 1.85 (Safety Factor stipulated in Table E of the Standard) 

Mn = 51.0 kips-in. (obtained from Example 6.1) 

M = M /0 a n 

= 51.0/1.85 

= 27.57 kips-in. 

The maximum applied moment, M = wL2/8 max 

(Eq. E-1) 

M = (0.25+0.02)(8)2(12")/8 = 25.92 kips-in. < 27.57 kips-in. OK max 

2. Strength for Shear Only. 

The nominal shear strength at the section was calculated in 

Example 6.1.(4) as follows: 

Vn = (2 webs)(vn)(ht) 

= 2(28.85)(3.692xO.060) 

= 12.78 kips 

The allowable shear strength is determined as follows: 

Va = Vn/n = 12.78/1.85 

Va = 6.91 kips < 2x(O.95F ht)/1.64 = 11.35 kips, yv 

95 



Use Va = 6.91 kips 

Maximum Shear Force = Reaction 

Vu = wL/2 = 0.27(8)/2 = 1.08 k < Va = 6.91 kips OK 

3. Web Crippling Strength. 

The nominal web crippling strength was determined in Example 6.1 

as follows: 

P = (0.06)2(1.257)(0.916)(1.0) 331-0.61(61.53) n 

P n 

o 

x 1+0.01(6/0.06) = 2.43 k/web 

= (2 webs)(2.43 k/web) = 4.86 k 

= 2.0 (for single web) 

= P /0 n 

= 4.86/2.0 = 2.43 kips 

Reaction = 1.08 kips < Pa = 2.43 kips OK 

4. Deflection Determination at Allowable Moment Ma 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 8.1 for the LRFD method, except that the computed 

momemt M (= fxSe ) should be equal to Ma. 

From the results of Example 6.1, it can be seen that to determine 

the moment of inertia leff at Ma = 25.57 kips-in., an 

approximation can be used by extrapolating the following values: 

(1) M = 51.00 kips-in., I = 2.53 in.~ 

(2) M = 33.90 kips-in., I = 2.72 in.~ 
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(3) M = 25.57 kips-in., I = ? 

(25.57-33.9)/(I-2.72) = (33.9-51.0)/(2.72-2.53) 

I = 2.B1 in. 4 

Use I = 2.B1 in.4 in deflection calculations. 

(Deflection = 5wL4/3B4E I) o 
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EXAMPLE 7.1 HAT SECTION w/INTERMEDIATE STIFFENER (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, ~bMn' based on initiation of yielding. Also de­

termine the effective moment of inertia for deflection determination at the 

service moment. Use Type 316 stainless steel, 1/4-Hard. Compare structural 

economy of this section with an almost identical section without an inter-

mediate stiffener computed in Example 6.1. 

0.496" 

~ _________________ 9._00cr__________ J~ 

~ ______ 4~.0~98~" ______ ~~ ________ 4.~~~8~"__ _0_.1~ ____________ ~ 

0.350" 

x--+--++---~- --:----. --- x § .. 
0.060" 

2.692'" I~ 3.000' 
p~ 

Figure 7.1 Section for Example 7.1 

Given: 

1. Section: Hat section, as shown in sketch. 

2. Dead load to live load ratio D/L = 1/5 and 1.2D+1.6L governs the design. 

Solution: 

o 1. Properties of 90 corners: 

Corner Radius, r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 

Length of are, u = 1.57r = 1.57 x 0.124 = 0.195 in. 
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Distance of e.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

The moment of inertia, I', of corner about its own centroidal 

axis is negligible. 

2. Nominal Section Strength, M (Section 3.3.1.1) 
n 

Computation of I , S , and M for the first approximation: x e n 

* Assume a compressive stress of f = F = 50 ksi in the 
y 

top fiber of the section. (See Table Al of the Standard 

for yield strength values.) 

* Also assume web is fully effective, 

Element 4: 

hit = 3.692/0.060 = 61.53 < 200 OK (Section 2.1.2-(1)) 

Assumed fully effective 

Element 5: 

E = 27000 ksi (Table A4 of the Standard) 
o 

S = 1.28,.jEJf o 
(Eq. 2.4-1) 

= 1.28J27000/50 = 29.74 

b It = 8.692/0.060 = 144.9 < 400 OK (Section 2.1.1-(1)-(ii)) 
o 

3S = 3(29.74) = 89.22 

For b It > 3S (Case III) o 

= t" f(128(b /t)/S)-285} (Eq. 2.4.1-9) o 

= (0.06)" {(128(144. 9)/29. 74J -285} = 0.004038 in." 
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Determine full section properties of stiffener 7: 

All inner radii = 3/32 

r = R + t/2 = 3/32+0.060/2 = 0.124 in. 

u = 1.57r = 1.57(0.124) = 0.195 in. 

c = 0.637r = 0.637(0.124) = 0.079 in. 

y 
Distance 

L from 
Length Top Fiber Ly 

Element (in. ) (in. ) (in. 2
) 

8 2 x 0.195 = 0.390 0.075 0.0293 
9 2 x 0.350 = 0.700 0.329 0.2303 

10 2 x 0.195 = 0.390 0.583 0.2274 

Sum 1.480 0.4870 

Distance from top fiber to the neutral axis is 

y = Ly/L = 0.4870/1.480 = 0.329 in. cg 

Ly2 
(in. 3

) 

0.0022 
0.0758 
0.1326 

0.2106 

Total area of section, Lt = (1.480)(0.060) = 0.0888 in. 2 

I I = Ly2 + I' - Ly2 
S 1 cg 

= 0.2106 + 0.0071 - 1.480(0.329)2 

= 0.0575 in.' 

Actual I = tIl 
S S 

= (0.060)(0.0575) = 0.00345 in.~ 
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Reduced Area of Stiffener 

Element 9: 

Stiffened element, k = 4 

f = F = 50 ksi 
Y 

wit = 0.350/0.060 = 5.83 < 400 OK (Section 2.1.1-(I)-(ii)) 

/I. = (1.052/../k)(w/t).Jf/Eo 

= (1. 052/.J4)(5. 83).J50/27000 = 0.132 < 0.673 

b = w 

= 0.350 in. (fully effective) 

AI = Lt = 0.0888 in. 2 

5 

A = A I (1 /1 ) ~A I 
5 5 5 a 5 

= 0.0888(0.00345/0.00439) 

= 0.0888(0.7859) 

= 0.0698 in. 2 < AI OK 
5 

Ls = (As/t) = (0.0698/0.060) = 1.163 in. 

Continuing with element 5: 

k = 3(1 /1 )1/3+1~4 
5 a 

= 3(0.7859)1/3+1 = 3.768 < 4 OK 

wit = 4.098/0.060 = 68.30 

/I. = (1. o 52/../k)(w/t).Jf/Eo 

= (1.052/.J3. 768 )(68.30).J50/27000 = 1.593 > 0.673 

p = (1-0.22//1.)//1. 

= (1-0.22/1.593)/1.593 = 0.541 

b = pw 

= 0.541(4.098) = 2.217 in. 
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(Eq. 2.2.1-1) 

(Eq . 2. 4 . 1 - 11 ) 

(Eq. 2.4.1-10) 

(Eq. 2.2.1-4) 

(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 



Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly Ly2 

Element (in. ) (in. ) (in.2) (in. 3
) 

1 2 x 0.596 = 1.192 3.548 4.229 15.005 
2 4 x 0.195 = 0.780 3.925 3.062 12.016 
3 2 x 2.692 = 5.384 3.970 21.375 84.857 
4 2 x 3.692 = 7.384 2.000 14.768 29.536 
5 2 x 2.217 = 4.434 0.030 0.133 0.004 
6 2 x 0.195 = 0.390 0.075 0.029 0.002 
7 Stiffener 1.163 0.329 0.383 0.126 

Sum 20.727 43.979 141. 546 

The distance from the top fiber to the neutral axis is 

y = Ly/L = 44.018/21.035 = 2.093 in. cg 

Since the distance from the top compression fiber to the 

neutral axis is greater than one half the beam depth, a 

compressive stress of F will govern as assumed. 
y 

I I = Ly2 + I I 1 - Ly2 
X cg 

= 141.546 + 8.481 - 20.727(2.122)2 

= 56.70 in. 3 

Actual I = tIl 
X X 

= (0.060)(56.70) = 3.40 in. 4 
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Check Web 
--0.154" 

-----,....--/.,---- --II 

• • ... .. N 
-0 ... 
~ ... -

N 
i! N.A. 
(') 

• .-... 
po. 

/ ... 

1/ ---_ ... """ --------

f1 = (1.968/2.122)(50) = 46.37 ksi(compression) 

f2 = -(1.724/2.122)(50) = -40.62 ksi(tension) 

~ = f2/f1 = -40.62/46.37 = -0.876 

k = 4+2(1-~)3+2(1-~) 

= 4+2(1-(-0.876»)3+21)-(-0.876») 

= 20.96 

= (1.052/~)(W/t)Jf/Eo f = f 1 

(Eq. 2.2.2-4) 

(Eq. 2.2.1-4) 

= (1.052/~0.96)(61.53)J46.37/27000 = 0.586 < 0.673 

b 

b e 

= w (Eq. 2.2.1-1) 

= 3.692 in. 

= b /2 (Eq. 2.2.2-2) 
e 

= 3.692/2 = 1.846 in. 

= b/C3-4J) CEq. 2.2.2-1) 

= 3.692/(3-(-0.876» = 0.953 in. 

b
1

+b
Z 

= 0.953 + 1.846 = 2.799 in. > 1.939 in. (compression 

portion of web, see sketch shown above) 

Therefore, web is fully effective. 
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= 3.40/2.122 

= 1.60 in. 3 

M = S F CEq. n e y 

= (1.60)(50) 

= 80.0 kips-in. 

3. Design Flexural Strength, $bMn (Section 3.3.1) 

$b = 0.90 (for section with stiffened compression flanges) 

$bMn = 0.90x80.0 = 72.00 kips-in. 

4. Deflection Determination at Servive Moment M s 

3.3.1.1-1) 

The un factored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+1.6L, the service moment can be determined as follows: 

$ M = b n 1. 2MDL + 1. 6MLL 

= (1. 2(MDL/MLL )+1. 6)MLL 

= [1. 2(1/5 )+1. 61MLL 

= 1. 84MLL 

MLL = $bMn/l. 84 = 72.00/1. 84 = 39.13 kips- in. 

M = MDL + MLL s 

= (1/5+1)MLL 

= 1.2(39.13) = 46.96 kips-in. 

where 

MDL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 
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Find Ieff at Ms = 46.96 kips-in. 

Computation of I eff , first approximation 

* Assume a stress of f = 0.6F = 30 ksi in the top and 
y 

bottom fibers of the section. 

* Web is fully effective, because it was fully effective at 

a higher stress gradient. 

* Element 9 of the stiffener, which was fully effective at 

f = 50 ksi will also be fully effective at f = 30 ksi. 

Element 5: 

S = 1. 28.jEJf, f = 30 
0 

= 1.28../27000/30 = 38.40 

b /t = 144.9 
0 

3S = 3(38.40) = 115.20 

For b /t > 3S (Case III) 
0 

= t 4 f[128(bo/t) /S) -285} 

= (0.06)4 f[128(144. 9)/38 .40] -285} = 0.002566 in. 4 

I = 0.00345 in. 4 

s 

k = 3(1 /1 )1/3+1~4 
s a 

= 3(0.00345/0.002566)1/3+1 = 4.311 > 4 

k = 4 

wit = 68.30 

(Eq. 2.4-1) 

(Eq. 2.4.1-9) 

(Eq. 2.4.1-10) 

For deflection determination, the value of E , reduced modulus 
r 

of elasticity determined by using Eq. (2.2.1-7), is substituted 

for E in Eq. (2.2.1-4). For a compression and tension stresses 
o 

of f = 30 ksi, the corresponding Esc and Est values for 
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Type 316 stainless steel are obtained from Table A2 or Figure A1 

of the Standard as follows: 

E = 22650 ksi, sc Est = 26900 ksi 

Er = (Esc+Est )/2 (Eq. 2.2.1-7) 

= (22650+26900)/2 = 24775 ksi 

Thus, for compression flange (Element 5): 

p 

b 

= (1.052/F)(w/t)../f/Er ' f = 30 ksi 

= (1.052/../4)(68.30)../30/24775 = 1.250 > 0.673 

= (1-0.22/")/" 

= (1-0.22/1.250)/1.250 = 0.659 

= pw 

= 0.659(4.098) = 2.701 in. 

Stiffener, Element 7: 

A = A I (I /1 ) ~ A I 
S S S a s 

= 0.0888(0.00345/0.002566) 

= O. 133 in. 2 > A I 
S 

A = AI = 0.0888 in. 2 

s s 

L = A /t = 0.0888/0.060 = 1.480 in. s s 
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(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 

(Eq . 2. 4 . 1 - 11 ) 



Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly 

Element (in. ) (in. ) (in.2) 

1 2 x 0.596 = 1.192 3.548 4.229 
2 4 x 0.195 = 0.780 3.925 3.062 
3 2 x 2.692 = 5.384 3.970 21.375 
4 2 x 3.692 = 7.384 2.000 14.768 
5 2 x 2.701 = 5.402 0.030 0.162 
6 2 x 0.195 = 0.390 0.075 0.029 
7 Stiffener 1.480 0.329 0.487 

Sum 22.012 44.112 

Distance from top fiber to the neutral axis is 

Ycg 

l'eff 

= Ly/L = 44.112/22.012 = 2.004 in. 

= Ly2 + 1 I 1 - Ly2 cg 

= 141.581 + 8.481 - 22.012(2.004)2 

= 61.66 in. 3 

Actual leff = tl'eff 

= (0.060)(61.66) = 3.70 in.4 

= 1 ff/y = 3.70/2.004 = 1.85 in. 3 

e cg 

= Seff(0.6Fy) 

= (1.85)(30) 

Ly2 
(in. 3

) 

15.005 
12.016 
84.857 
29.536 
0.005 
0.002 
0.160 

141. 581 

= 55.5 kips-in. > M = 46.96 kips-in. NG s 

Computation of leff: second approximation by extrapolating the 

following data to obtain the stress value 

(1) M = 80.00 kips-in., f = F = 50 ksi 
Y 
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(2) M = 55.50 kips-in. , f = 0.6F = 30 ksi 
Y 

(3) M = 46.96 kips- in. , f = ? 

(f-30)/(30-50) = (46.96-55.5)/(55.5-80.0) 

f = 23.03 ksi 

* Compressive stress of f = 23.03 ksi in the top fiber of section 

* Web is fully effective 

* Element 9 of stiffener is fully effective 

Element 5: 

S = 1. 28JEo/f, f = 23.03 ksi 

= 1. 28./27000/23.03 

b /t = 144.9 
0 

3S = 3(43.83) = 131.49 

For b It > 3S (Case III) 
o 

= 43.83 

Ia = e f[128Cbo/t)/S) -285} 

= CO.06)"{(128C144.9)/43.83)-285}= 0.00179 in." 

I = 0.00345 in." 
s 

k 

Since I /1 > 1, k = 4 s a 

wit = 68.30 

A = (1. 052/.Jk)(W/t)..jf/Er ' f = 23.03 ksi 

(Eq. 2.4-1) 

CEq. 2.4.1-9) 

CEq. 2.4.1-10) 

CEq. 2.2.1-4) 

For a compression and tension stresses of f= 23.03 ksi, it is 

founf that the values of Esc and Est are equal to 26390 ksi 

and 27000 ksi, respectively. 

E = (26390+27000)/2 
r 

CEq. 2.2.1-7) 

= 26695 ksi 

= (1. 052/.j4)(68. 30)-j23. 03/26695 = 1. 055 > 0.673 
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p = (1-0.22/")/" 

= (1-0.22/1.055)/1.055 = 0.750 

b = pw 

= 0.750(4.098) = 3.074 in. 

Stiffener, Element 7: 

A = A' (I /1 ) ~A' s s s a s 

Since I/Ia > 1 

A = A' = 0.0888 in. 2 
s s 

Ls = As/t = 0.0888/0.060 = 1.480 in. 

Effective section properties about x-axis: 

Y 
Distance 

L from 
Effective Length Top Fiber Ly 

Element (in. ) (in. ) (in. 2
) 

1 2 x 0.596 = 1.192 3.548 4.229 
2 4 x 0.195 = 0.780 3.925 3.062 
3 2 x 2.692 = 5.384 3.970 21.375 
4 2 x 3.692 = 7.384 2.000 14.768 
5 2 x 3.074 = 6.148 0.030 0.184 
6 2 x 0.195 = 0.390 0.075 0.029 
7 Stiffener 1.480 0.329 0.487 

Sum 22.758 44.134 

Distance from top fiber to the neutral axis is 

Ycg 

I'eff 

= Ly/L = 44.134/22.758 = 1.939 in. 

= Ly2 + I' - Ly2 
1 cg 

= 141.582 + 8.481 - 22.758(1.939)2 
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(Eq. 2.2.1-2) 

(Eq. 2. 4 . 1 - 11) 

I' 
1 About 

Own 
Ly2 Axis 

(in. 3
) (in. 3

) 

15.005 0.035 
12.016 
84.857 
29.536 8.388 

0.006 
0.002 
0.160 0.058 

141. 582 8.481 



= 64.50 in. 3 

Actual Ieff = tI'eff 

= (0.060)(64.50) = 3.87 in. 4 

= I ff/Y = 3.87/1.939 = 2.00 in. 3 

e cg 

= (2.00)(23.03) = 46.06 kips-in. close to M OK 
s 

Use I = 3.87 in. 4 in deflection calculations 

5. Comparison of sections with and without intermediate stiffeners. 

Hat 
Section 

Without Stiffener 
With Stiffener 

Total Area 
(in. 2

) 

1.43 
1.49 

Design Flexural Strength 
(kips- in.) 

45.90 
72.00 

Increase in weight = (1.49-1.43)/1.43 x100% = 4.2% 

Increase in moment capacity = (72.00-45.90)/45.90 x100% = 56.9% 
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EXAMPLE 7.2 HAT SECTION W/INTERMEDIATE STIFFENER (ASD) 

Rework Example 7.1 by using the Allowable Stress Design (ASD) method. 

Solution: 

1. Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 7.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance 

with Appendix E of the Standard as follows: 

n = 1.85 (Safety Factor stipulated in Table E of the Standard) 

M = 80.0 kips-in. (obtained from Example 7.1) n 

M = M /n a n 

= 80.0/1.85 

= 43.24 kips-in. 

2. Deflection Determination at Allowable Moment M a 

(Eq. E-1) 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 7.1 for the LRFD method, except that the computed 

moment M (= fxSe ) should be equal to Ma' 

Computation of leff: assume that 

* A stress of f = 20.50 ksi in the top and bottom fibers of section 

* Web is fully effective 

* Element 9 of stiffener is fully effective 
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Element 5: 

S = 1.28JE If, f = 20.50 ksi o 

= 1. 28J27000/20. 50 = 46.45 

b /t = 144.9 o 

3S = 3(46.45) = 139.35 

For b /t > 3S (Case III) 
o 

Ia = e {(128(bo/t) /S) -285} 

= (0.06)4{(128(144.9)/46.45)-285} = 0.00148 in. 4 

I = 0.00345 in. 4 
s 

k 

Since I /1 > 1, k = 4 s a 

wIt = 68.30 

= (1.052/F)(w/t).jf/Er , f = 20.50 ksi 

(Eq. 2.4-1) 

(Eq. 2.4.1-9) 

(Eq. 2.4.1-10) 

(Eq. 2.2.1-4) 

For a compression and tension stresses of f= 20.50 ksi, it is 

found that the values of E and E t are equal to 2690D ksi sc s 

and 27000 ksi, respectively. 

E = (26900+27000)/2 
r 

= 26950 ksi 

;. = (1.052/...)4)(68.30)"/20.50/26950 = 0.991 > 0.673 

p = (1-0.22/;')/;' 

= (1-0.22/0.991)/0.991 = 0.785 

b = pw 

= 0.785(4.098) = 3.217 in. 

Stiffener, Element 7: 

A = A' (I II )S:A' s s s a s 

Since I II > 1 
s a 
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A = AI = 0.0888 in. 2 

s s 

Ls = As/t = 0.0888/0.060 = 1.480 in. 

Effective section properties about x-axis: 

Y 
Distance 

L from 
Effective Length Top Fiber Ly Ly2 

Element (in. ) (in. ) (in. 2) (in. 3
) 

1 2 x 0.596 = 1.192 3.548 4.229 15.005 
2 4 x 0.195 = 0.780 3.925 3.062 12.016 
3 2 x 2.692 = 5.384 3.970 21.375 84.857 
4 2 x 3.692 = 7.384 2.000 14.768 29.536 
5 2 x 3.217 = 6.434 0.030 0.193 0.006 
6 2 x 0.195 = 0.390 0.075 0.029 0.002 
7 Stiffener 1.480 0.329 0.487 0.160 

Sum 23.044 44.143 141.582 

Distance from top fiber to the neutral axis is 

Ycg = Ly/L = 44.143/23.044 = 1.916 in. 

I I = Ly2 + I I 1 - Ly2 
eff cg 

= 141.582 + 8.481 - 23.044(1.916)2 

= 65.47 in. 3 

Actual Ieff = tI'eff 

= (0.060)(65.47) = 3.93 in.4 

= I ff/y = 3.93/1.916 = 2.05 in. 3 

e cg 

= (2.05)(20.50) = 42.03 kips-in. close to M OK a 

Use I = 3.93 in. 4 in deflection calculations 
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EXAMPLE 8.1 I-SECTION W/UNSTIFFENED FLANGES (LRFD) 

By using the Load and Resistance Factor Design (LRFD) criteria, determine 

the design flexural strength of an I-section (Fig. 8.1) used as a simply 

supported beam. Assume that the span length is 8 ft. with laterally braced 

at both ends and midspan and that the beam carries uniform load. Use Type 

301, 1/4-Hard, stainless steel. 

I 
B'=l 625" . 

0.15l" 
t=0.06" I b=1.471" 

J. 
I ........ / 

l' , 

A I = 6.00" a= 5.692" 

R=3/32" 
,If / 

\It' 
./'-. 

c=1.471" 

1« • i 
3.250" I 

I • • . 
C'=1.62S" 

Figure 8.1 Section for Example 8.1 

Solution: 

1. Nominal section strength (Section 3.3.1.1). 

a. Pro~edure I - based on initiation of yielding 

For this I-section, the elastic section modulus of the effective 

section, S , based on initiation of yielding can be obtained from 
e 

Example 1.1 for a channel section. Therefore, 

s = 2x(0.711) = 1.422 in3 

e 
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M 
n = S F e y 

= 1.422 x 50 = 71.10 kips-in. 

b. Procedure II - based on inelastic reserve capacity 

(Eq. 3.3.1.1-1) 

Since the member is subjected to lateral bcukling, therefore this 

provision does not apply in this example. Then, 

(Mn )l 

~b 

= 71.10 kips-in. 

= 0.85 

~b(Mn)l = 0.85 x 71.10 = 60.44 kips-in. 

2. Lateral buckling strength (Section 3.3.1.2). 

The following equations used for computing the sectional properties 

for I-section without lips are adopted from the Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 

Basic parameters used for calculating the section properties of 

an I-section without lips: 

r = R+t/2 = 3/32+0.060/2 = 0.124 in. 

From the sketch a = 5.692 in., b = 1.471 in., c = 1.471 in., 

A' = 6.0 in., B' = 1.625 in., C' = 1.625 in., 

a = 1.00 (For I-section) 

a = A'-(t/2+at/2) = 6.0-(0.060/2+0.060/2) = 5.94 in. 

-b = B'- t/2 = 1.625-0.06/2 = 1.595 in. 

c = a(C'-t/2) = 1.625-0.06/2 = 1.595 in. 

u = 1.57r = 1.57 x 0.124 = 0.195 in. 

x = a/2 = 2.97 in. 
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a. Area: 

A = t(2a+2b+2u+a(2c+2u)) = t(2a+2b+2c+4u) 

= O.06(2x5.692+2xl.471+2xl.471+4xO.195) 

= 1.083 in. 2 

b. Moment of inertia about x-axis: 

+u(a+l. 637r)2+0. 149r3J} -A(x)2 

= 2xO.06(5.692(5.692/2+0.124)2+0.0833(5.692)3 

+O.358(O.124)3+1.471(5.692+2xO.124)2 

+O.195(5.692+1.637xO.124)2+0.149(O.124)3)-1.083(2.97)2 

= 5.357 in. 4 

c. Moment of inertia about y-axis: 

I = 2tfb(b/2+r+t/2)2+0. 0833b3+u( O. 363r+t/2)2+0. 149r3 
y 

Therefore, 

+a(c(c/2+r+t/2)2+0.0833b3+u(O.363r+t/2)2+0.149r3)S 

= 2t(b(b/2+r+t/2)2+c (c/2+r+t/2)2+2xO.0833b3+2u(O.363r+t/2)2 

+2xO. 149r3) 

= 2xO.06(1.471(1.531/2+0.124)2+1.471(1.531/2+0.124)2 

+2xO.0833x(1.471)3+2xO.195(0.363xO.124+0.06/2)2 

+2xO.149x(0.124)3) 

= 0.343 in. 4 

= I /y = 5.357/3.0 = 1.786 in3 
x cg 

= 1.75+1.05(M1/M2)+0.3(M1/M2)2 

= 1.75+1.05(O/M )+O.3(O/M )2 max max 
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I 

M 

M 

f 

= 1. 75 < 2.3 

= I /2 = 0.343/2 = 0.172 in. 4 

yc y 

= TT2E Cb (Et/E )dI /L2 c o 0 yc 

= S (M /Sf) n c c 

= S f c 

= M/S f 

= (1/1.786)(TT2x27000x1.75x6xO.172/(4x12)2)(Et /Eo) 

= 116.95 CEt/Eo) 

(Eq. 

(Eq. 

In the determination of the lateral buckling stress, it is 

3.3.1.2-2) 

3.3.1.2-1) 

necessary to select a proper ratio of Et/Eo from Table A10 or 

Figure A7 in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=32 ksi. 

From Table A10, the corresponding value of Et/Eo is found to 

be equal to 0.42. Thus, 

f1 = 116.95xO.42 

= 49.12 ksi > assumed stress f=32 ksi 

Because the computed stress is larger than the assumed value, 

the further successive approximation is needed. 

Assume f=38.5 ksi, and 

Et/Eo = 0.33 

f1 = 116.95xO.33 

= 38.49 ksi = assumed stress f=38.5 ksi OK 

Therefore, 

f = M /S = 38.47 ksi 
c f 

o Properties of 90 corners: 

r = R + t/2 = 3/32 + 0.060/2 = 0.124 in. 
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Length of arc, u = 1.57r = 1.57 x 0.124 = 0.195 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.124 = 0.079 in. 

Determination of elastic section modulus of the effective section cal-

culated at a stress of f = 38.47 ksi in the extreme compression fiber 

(assume the webs are fully effective): 

Compression flange: k = 0.50 Cunstiffened compression element) 

wit = 1.471/0.06 = 24.52 < 50 OK (Section 2.1.1-(1)-(iii» 

" = (1.052/,Jk)(w/t).J f /Eo CEq. 2.2.1-4) 

= (1.052/..jQ.50)(24.52).J38.47/27000 = 1.377 > 0.673 

P = (1-0.22/")1" CEq. 2.2.1-3) 

= (1-0.22/1.377)/1.377 = 0.610 

b = pw (Eq. 2.2.1-2) 

= 0.610 x 1.471 

= 0.897 in. 

Effective section properties about x axis: 

y I' 1 L Distance About 
Effective from Own 

Length Top Fiber Ly Ly2 Axis 
Element (in. ) (in. ) (in. 2 ) (in. 3) C in. 3) 

Webs 11.384 3.000 34.152 102.456 30.736 
Upper Corners 0.390 0.075 0.029 0.002 
Lower Corners 0.390 5.925 2.310 13.691 

Compression Flanges 1.794 0.030 0.054 0.002 
Tension Flanges 2.942 5.970 17.564 104.856 

Sum 16.900 54.109 221. 007 30.736 

Distance from top fiber to x-axis is 
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Ycg = 54.109/16.90 = 3.202 in. 

Since the distance of top compression fiber from neutral axis is 

greater than one half the beam depth, a compression stress of 

f = 38.47 ksi will govern. 

To check if webs are fully effective (Section 2.2.2): 

f1 = ((3.202-0.154)/3.202)x38.47 = 36.62 ksi(compression) 

f2 = -((2.798-0.154)/3.202)x38.47 = -31.77 ksi(tension) 

~ = f2/f1 = -31.77/36.62 = -0.868 

k = 4+2(1-~)3+2(1-~) 

= 4+2 (1-(-0.868))3+2(1-(-0.868)) 

= 20.772 

h = w = 5.692 in., hIt = wIt = 5.692/0.06 = 94.87 

hit = 54.47 < 200 OK (Section 2.1.2-(1)) 

" = (1.052/-,/20.772)(54.47)-,/36.62/27000 = 0.463 < 0.673 

b e = w 

= 5.692 in. 

= b /2 e 

= 5.692/2 = 2.846 in. 

= be/(3-~) 

= 5.692/(3-(-0.868)) = 1.472 in. 

(Eq. 2.2.2-4) 

(Eq . 2. 2 . 1 - 1 ) 

CEq. 2.2.2-2) 

(Eq.2.2.2-1) 

Compression portion of the web calculated on the basis of the 

effective section = y - 0.154 = 3.202 - 0.154 = 3.048 in. cg 

Since b1+b2 = 4.318 in. > 3.048 in., b1+b2 shall be taken 

as 3.048 in .. This verifies the assumption that the webs are 
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fully effective. 

I' = Ly2+I' -Ly2 
x 1 cg 

= 221. 007 + 30.736 - 16.90(3.202)2 

= 78.471 in. 3 

Actual I = I' t x x 

= 78. 471xO. 06 

= 4.708 in. 4 

S = Ix/Ycg c 

= 4.708/3.202 

= 1.470 in. 3 

Therefore, 

(Mn )2 = S f = 1.470 x 38.47 c 

= 56.55 kips-in. 

<l>b = 0.85 

<l>b(Mn )2 = 0.85 x 56.55 

= 48.07 kips-in. < <l>b(Mn)1 = 60.44 kips-in. 

Therefore, <l>bMn = 48.07 kips-in. (i.e., lateral buckling 

strength controls). 
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EXAMPLE 8.2 I-SECTION W/UNSTIFFENED FLANGES (ASD) 

By using the Allowable Stress Design (ASD) method, rework Example 8.1 to 

determine the allowable bending strength of the I-section (Fig. 8.1). 

Solution: 

1. Nominal section strength 

M = S F n e y 

= 1.422 x 50 = 71.10 kips-in. (see Example 8.1) 

= 71.10 kips-in. 

Allowable bending strength 

n = 1.85 

(Ma)l = 71.10/1.85 = 38.43 kips-in. 

2. Lateral buckling strength 

M 
n 

f 

S c 

= 

= 

= 

= 

S (M /Sf) c c 

S f c 

Mc/S f = 38.47 ksi 

1.470 in3 

(For detailed calculations, see Example 8.1) 

= 1.470x38.47 = 56.55 kips-in. 

Allowable lateral buckling strength 

n = 1.85 

(M
a

)2 = 56.55/1.85 = 30.57 kips-in. 

Therefore, Ma = 30.57 kips-in. (i.e., lateral buckling controls) 
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EXAMPLE 9.1 CHANNELW/LATERAL BUCKLING CONSIDERATION (LRFD) 

Complete Flexural Design, 
Unstiffened Compression Flange 

By using the LRFD criteria, check the adequacy of a channel section (Fig. 

9.1) to be used as a flexural member and to support a nominal live load of 

200 lb/ft. and a nominal dead load of 40 lb/ft. Assume that the beam is 

continuous over three 10 ft. spans with 6 in. and 3 112 in. bearing lengths 

at interior and exterior supports, respectively. Also assume that, for each 

span, the compression flange is braced at the center and a quarter point of 

span, and K = K = 1.0. Use Type 304, 1/4-Hard, stainless steel. x y 

b=1.177" 
0.323" - r--i 

A'=7.00" t=0.135" 

1 
a=6.354" 

-------- x 

0.162" 

f 

B' =1. 50" 

Figure 9.1 Section for Example 9.1 

Solution: 

1. Nominal section strength, M (Section 3.3.1.1). 
n 

a. Procedure I - based on initiation of yielding 
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o Properties of 90 corners: 

r = R + t/2 = 3/16 + 0.135/2 = 0.255 in. 

Length of arc, u = 1.57r = 1.57 x 0.255 = 0.40 in. 

Distance of c.g. from center of radius, 

c = O.637r = 0.637 x 0.255 = 0.162 in. 

Computation of I , S , and M : x e n 

For the first approximation, assume a compression stress of 

f = F = 50 ksi (yield strength in longitudinal compression, 
y 

Table Al of the Standard Specification) in the top fiber 

of the section and that the web is fully effective. 

Compression flange: k = 0.50 (for unstiffened compression element, 

see Section 2.3.1 of the Standard) 

w/t = 1.177/0.135 = B.72 < 50 OK (Section 2.1.1-(I)-(iii)) 

A = (1. 052/Jk)(w/t)J f/Eo (Eq. 2.2.1-4) 

The initial modulus of elasticity, E , for Type 304 stainless o 

steel is obtained from Table A4 of the Standard, i.e., E = 27000 ksi. 
o 

A = (1.052/...jQ.50)(B.72)J50/27000 = 0.558 < 0.673 

b = w (Eq. 2. 2 . 1 - 1 ) 

= 1.177 in. 
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Effective section properties about x-axis: 

y 
L Distance 

Effective from 
Length Top Fiber 

Element (in. ) (in. ) 

Web 6.354 3.500 
Upper Corner 0.400 0.161 
Lower Corner 0.400 6.839 

Compression Flange 1.177 0.068 
Tension Flange 1.177 6.933 

Sum 9.508 

Distance from top fiber to x-axis is 

y = 33.279/9.508 = 3.500 in. cg 

Ly Ly2 
(in. 2) (in. 3) 

22.239 77 .837 
0.064 0.010 
2.736 18.709 
0.080 0.005 
8.160 56.574 

33.279 153.135 

Since the distance from top compression fiber to the neutral 

axis is equal to one half the beam depth, a compression 

stress of 50 ksi will govern as assumed (i.e., initial 

yield is in compression). 

To check if web is fully effective (Section 2.2.2): 

f1 = ~3.500-0.323)/3.500]x50 = 45.39 ksi(compression) 

f2 = -[(3.500-0.323)/3.500]x50 = -45.39 ksi(tension) 

~ = f2/f1 = -45.39/45.39 = -1.00 

I' 1 
About 

Own 
Axis 
(in. 3) 

21.378 

21.378 

k = 4+2(1-~)3+2(1-~) (Eq. 2.2.2-4) 

= 4+2 [1-( -1. OO)J 3+2 [1-( -1. 00)) 

= 24.00 

h = w = 6.354 in., hit = wit = 6.354/0.135 = 47.07 

124 



hit = 47.07 < 200 OK (Section 2.1.2-(1)) 

" = (1.052/j24:0)(47.07)J45.39/27000 = 0.414 < 0.673 

b = 6.354 in. e 

b2 = be/2 (Eq. 2.2.2-2) 

= 6.354/2 = 3.177 in. 

= b
e

/(3-4J) (Eq. 2.2.2-1) 

= 6.354/(3-(-1.0)) = 1.589 in. 

The effective widths, b 1 and b2 , of web are defined in Figure 2 

of the Standard. 

b1+b2 = 1.589 + 3.177 = 4.766 in. 

Compression portion of the web calculated on the basis of the 

effective section = Ycg - 0.154 = 3.50 - 0.323 = 3.177 in. 

Since b1+b2 = 4.766 in. > 3.177 in., b1+b2 shall be taken 

as 3.177 in .. This verifies the assumption that the web is 

fully effective. 

I' = Ly2+I' -Ly2 
x 1 cg 

= 153.135 + 21.378 - 9.508(3.50)2 

Actual 

S 
e 

I x 

= 58.04 in. 3 

= I' t x 

= 58.04xO.135 

= 7.835 in." 

= Ix/Ycg 

= 7.835/3.50 

= 2.239 in. 3 

= S F e y 

= 2.239x50 
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= 111.95 kips-in. 

b. Procedure II - based on inelastic reserve capacity 

For unstiffened compression element, C = 1. 
Y 

Maximum compressive strain = C e = e . y y y 

Therefore, the nominal ultimate moment, Mn , is the same as the (Mn)l 

determined by Procedure I because the compression flange will yield 

first. 

2. Lateral buckling strength, M (Section 3.3.1.2). n 

The following equations used for computing the sectional properties 

for channel with no lips are based on the information in Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 

a. Basic parameters used for calculating the sectional properties: 

(For a Channel with no lips) 

r = R+t/2 = 3/16+0.135/2 = 0.255 in. 

From the sketch, A' = 7.0 in., B' = 1.50 in. 

a = 0.0 (For sections with no lips) 

a = A'-(2r+t) 

= 7.0-(2xO.255+0.135) = 6.355 in. 

a = A'-t = 7-0.135 = 6.865 in. 

b = B'-(r+t/2+a(r+t/2)] = 1.5-(0.255+0.135/2) = 1.177 in. 

b = B'-(t/2+at/2) = 1.5-0.135/2 = 1.433 in. 

u = 1.57r = 1.57 x 0.255 = 0.40 in. 

b. Area: 

A = t(a+2b+2uJ 
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= 0.135(6.355+2xl.177+2xO.40) 

= 1.284 in. 2 

c. Moment of inertia about x-axis: 

Ix = 2t [0. 0417a3+b(a/2+r)2+u(a/2+0. 637r)2+0 . 149r3) 

= 2xO.135(0.0417(6.355)3+1.177(6.355/2+0.255)2 

+0.4(6.355/2+0.637xO.255)2+0.149(O.255)3) 

= 7.839 in:' 

d. Distance bwtween centroid and web centerline: 

x = (2t/A)lb(b/2+r)+u(0.363r)J 

= (2xO.135/1.284)[1.177(1.177/2+0.255)+0.4(0.363xO.255~ 

= 0.217 in. 

e. Moment of inertia about y-axis: 

I = 2t [b(b/2+r)2+0. 0833b3+O. 356r3 J -A(X')2 y 

= 2xO. 135 l1.177(1.177/2+0.255)2+0.0833(1.177)3+0.356(0.255)3) 

-1.284(0.217)2 

= 0 .204 in." 

f. Distance between shear center and web centerline: 

m = (bt/(12Ix )] (3b(a)2] 

= (1.433xO . 135/(12x7 . 839)1 (3x1. 433x( 6.865 )2) 

= 0.417 in. 
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g. Distance between centroid and shear center: 

x = -(x+m) = -(0.217+0.417) = -0.634 in. o 

h. St. Venant torsion constant: 

J = (e /3) (a+2b+2ul 

= [(0.135)3/3) (6.355+2x1.177+2xO.4) 

= 0.0078 in." 

i. Warping Constant: 

C = (ta2f)3/12) (3b+2a)/(6b+a) w 

= lo .135( 6.865 )2( 1.433)3/12) 

x (3x1.433+2x6.865)/[6(1.433)+6.865l 

= 1.819 in.' 

j. Radii of gyration: 

r = j(Ix/A) = x V(7·839/1.284) = 2.47 in. 

r = ~(Iy/A) = V(0.204/1.284) = 0.40 in. y 

r 2 = r 2+r 2+X 2 
0 X Y 0 

= (2.47)2+( 0.40 )2+( -0.634)2 

= 6.662 in. 2 

r = 0 
2.581 in. 

Therefore, for determining the lateral buckling stress: 

M 
n = S (M /Sf) c c Eq . ( 3 . 3 . 1. 2 -1 ) 

where M is the critical moment calculated in accordance with c 

Eq. (3.3.1.2-4) of the Standard. 

= I /y = 7.836/3.5 = 2.239 in' x cg 
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Cb = 1.75+1.05(M1/M2)+0.3(M1/M
2

)2 

= 1.75+1.05(-0.0063/0.10)+0.3(-0.0063/0.10)2 = 1.685 < 2.3 

where M1 and M2 are determined from the moment diagram at the 

interior support. 

M c 

where 

= (rr2E )/(K L /r )2J(Et /E ) o y y y o· 

= (1/ (Aro2») (GoJ+(rr2EoCw) /(KtLt )2J(Et /Eo ) 

Therefore, 

crey = (rr2x27000)/(1.0x2.5x12/0.40)2) (Et/Eo) 

= 47.14 (Et/Eo) 

(Eq.3.3.1.2-4) 

(Eq. 3.4.3-3) 

(Eq. 3.4.2-1) 

crt = (1/( L 284x6. 662»)( 10500xO. 0078+rr2x27000x1. 819/( 1. Ox2. 5x12F J 

x(Et/Eo) 

= 72.54 (Et/Eo) 

M = S (M /Sf) n c c 

= S f c 

where, 

f = M/S f 

= (l/2.239)(l.685x2.581x1.284x ~47.l4x72.54)(Et/Eo) 

= l45.84(Et /Eo) ksi 

Eq. ( 3 • 3 • 1. 2 -1) 

In the determination of the lateral buckling stress, it is 

necessary to select a proper ratio of Et/Eo from Table AlO or 

Figure A7 in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=32 ksi. 

From Table A10, the corresponding value of Et/Eo is found to 

be equal to 0.42. Thus, 
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f1 = 145.84xO.42 

= 61.25 ksi > assumed stress f=32 ksi 

Because the computed stress is larger than the_assumed value, the 

further successive approximation is needed. After several trials, 

assume f=42.12 ksi, and 

Et/Eo = 0.2888 

f1 = 145.84xO.2888 

= 42.12 ksi = assumed stress f=42.12 ksi OK 

Therefore, 

f = M /5 = 34.50 ksi c f 

It is noted that from the calculation of Part l(a), the section 

is fully effective for f=F =50 ksi. Therefore, for the lateral 
y 

buckling stress of f=42.12 ksi, the section will also be fully 

effective. 

Thus, 

5 f = 2.239x42.12 = 94.30 kips-in. 
c 

3. Design flexural strength, ~bMn 

Based on the above calculations, the lateral buckling stress (Mn)2 

is less than the nominal section strength (Mn)l' Therefore, 

lateral buckling governs the design. 

M = 94.30 kips-in. 
n 

~b = 0.85 

~bMn = 0.85 x 94.30 = 80.16 kips-in. 

This value can be used for both positive and negative bending. 

Wu = 1.2w
DL 

+ 1.6wLL = 1.2(0.04)+1.6(0.20) = 0.368 kips/ft. 
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For a continuous beam over three equal spans, the maximum bending moment 

is negative and occurs over the interior supports. It is given by 

M = 0.100w L2 = 0.100(0.368)(10)2(12) 
u u 

= 44.16 kips-in. < ~bMn = 80.16 kips-in. OK 

4. Strength for Shear Only (Section 3.3.2) 

The required shear strength at any section shall not exceed the 

design shear strength ~ V : v n 

..... = 0.85 'Vv 

V 
n 

= 4.84E t 3 (G /G )/h 
o s 0 

v = V /(ht) (in terms of design shear stress) 
n n 

CEq. 3.3.2-1) 

In the determination of the shear strength, it is necessary to 

select a proper value of G /G for the assumed stress s 0 

from Table A12 or Figure A9 of the Standard. For the first 

approximation, assume a shear stress of v=F /2=25 ksi and 
y 

the corresponding value of G /G is equal to 0.888. Thus, s 0 

hit = 6.354/0.135 = 47.07 

vn = 4.84(27000)(0.888)/(47.07)2 

= 52.38ksi > assumed stress v=i5 ksi NG 

For a second approximation, assume a stress of f=38.30 ksi and 

its corresponding value of G /G is 0.648. s 0 

Vn = 4.84(27000)(0.648)/(47.07)2 

= 38.24 ksi ~ assumed stress (close enough) OK 

Therefore, the total shear strength, V , for hat section is 
n 

= (2 webs)(v )(ht) n 
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= 2(38.24)(6.354xO.135) 

= 32.80 kips 

The design shear strength is determined as follows: 

~ V = 0.85(32.80) = 27.88 kips v n 

~ V < 2CO.95F ht) = 2(0.95x42x6.354xO.135) = 34.23 kips OK v n yv 

(The shear yield strength, F , is obtained from Table Al yv 

of the Standard.) 

The maximum required shear strength is given by 

V = 0.600w L 
u u 

= (0.600)(0.368)(10) = 2.21 kips < $ V = v n 27.88 kips OK 

5. Strength for combined bending and shear (Section 3.3.3). 

At the interior supports there is a combination of web bending 

and web shear: 

~bMn = 80.16 kips-in. M = 44.16 kips-in. u 

~vVn = 27.88 kips V = 2.21 kips u 

For unrein forced webs 

(M /~bM )2+(V /$ V )2 ~ 1.0 u n u v n CEq. 3.3.3-1) 

(44.16/80.16)2+(2.21/27.88)2 = 0.31 < 1.0 OK 

6. Web crippling strength (Section 3.3.4). 

R/t = (3/16)/0.135 = 1.389 < 6 OK 

hIt = 6.354/0.135 = 47.07 < 200 OK 

N/t = 3.0/0.135 = 22.22 < 210 OK (at end support) 

N/t = 6.0/0.135 = 44.44 < 210 OK (at interior support) 

Table 2 of the Standard applies: 

For end reactions: (Eq. 3.3.4-2) 
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For interior reactions: (Eq. 3.3.4-4) 

k = Fy/33 = 50/33 = 1.515 

C1 = (1.22-0.22k)k 

= [1.22-0.22(1.515)JO.515) = 1.343 

C2 ~ (1.06-0.06R/t) 

= (1. 06-0. 06( 1. 389)) = 0.977 < 1. 0 OK 

C3 = (1.33-0.33k)k 

=[1.33-0.33(1.515)) (1.515) = 1.258 

C4 = (1.15-0.15R/t) ~ 1.0 but not less than 0.50 

1.15-0.15R/t = 1.15-0.15(1.389) = 0.942 ~ 1.0 OK 

> 0.50 OK 

C4 = 0.942 

C8 = 0.7+0.3(8/90)2 

= 0.7+0.3(90/90)2 = 1.0 

For end reaction: 

Pn = t 2C3C4Ca(217-0.28(h/t)] (1+0.01(N/t)] 

= (0.135)2(1.258)(0.942)(1.0)[217-0.28(47.07)J 

x[1+0.01(22.22)] = 5.38 kips 

'" = 0.70 '+'w 

4> P = 0.70(5.38) = 3.77 kips w n 

End reaction is given by 

R = 0.400w L 
u 

(Eq. 3.3.4-21) 

(Eq. 3.3.4-10) 

(Eq . 3. 3 . 4 - 11 ) 

(Eq. 3.3.4-12) 

(Eq. 3.3.4-13) 

CEq. 3.3.4-20) 

(Eq. 3.3.4-2) 

= (0.400)(0.368)(10) = 1.47 kips < 4> P = 3.77 kips OK w n 

For interior reaction: 

P n = t 2C1 C2Ca (538-0. 74(h/t)) (1+0. 007(N/t)] 

= (0.135)2(1.343)(0.977)(1.0) (538-0.74(47 .07)J 

xL1+0.007(44.44)J = 15.79 kips 
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<Pw = 0.70 

<PwPn = 0.70(15.79) = 11.05 kips 

Interior reaction is given by 

R = 1.10w L 
u 

= (1.10)(0.368)(10) = 4.05 kips < <P P w n 
= 11. 05 kips OK 

7. Combined bending and web crippling strength (Section 3.3.5). 

At the interior supports there is a combination of web bending 

and web crippling: 

= 80.16 kips-in. 

= 11.05 kips 

M = 44.16 kips-in. 
u 

R = 4.05 kips 

For shapes having single unreinforced webs: 

1.07(R/<P P )+(M l<PbM ) s: 1.42 w nun 

1.07(4.05/11.05)+(44.16/80.16) = 0.943 < 1.42 OK 

8. Deflection due to service live load. 

(Eq. 3.3.5-1) 

From the result of sectional properties calculated in item (1) of 

this example, the section is fully effective at F = 50 ksi. 
Y 

S = S = 2.239 in. 3 

x e 

Therefore, for any stress f which is less than F = 50 ksi, the 
y 

section will be fully effective, i.e., 

I = 7.835 in.~ 
x 

This value can be used for deflection determination. 

The maximum deflection occurs at a distance of 0.446L from the 

exterior supports. It is given by 

= 0.0069wL~/(E I ) 
o x 
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Thus, the live load deflection is calculated as follows: 

~ = 0.0069(0.20)(10)4(12)3/(27000x7.83s) 

= 0.113 in. 

The live load deflection is limited to 1/240 of the span, i.e., 

L/240 = 10x12/240 = 0.5 in. > 0.113in. OK 

From the above calculations, it can be concluded that the section is 

adequate. 
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EXAMPLE 9.2 CHANNEL W/LATERAL BUCKLING CONSIDERATION (ASD) 

By using the ASD method, rework Example 9.1 for the same given data. 

Solution: 

1. Nominal section strength, M 
n 

For detailed calculations see Example 9.1. 

= S F e y 

= 2.239x50 

= 111.95 kips-in. 

2. Lateral buckling strength, M 
n 

For detailed calculations see Example 9.1. 

= S f c 

= 2.239x42.12 

= 94.30 kips-in. 

3. Allowable bending strength, Ma 

M = 94.30 kips-in. (based on lateral buckling strength) 
n 

n = 1.85 

Ma = 94.30/1.85 = 50.97 kips-in. 

This value can be used for both positive and negative bending. 

w = wDL + wLL = 0.04+0.20 = 0.24 kips/ft. 

For a continuous beam over three equal spans, the maximum bending moment 

is negative and occurs over the interior supports. It is given by 

M = 0.100wL2 = 0.100(0.24)(10)2(12) 

= 28.80 kips-in. < Ma = 50.97 kips-in. OK 
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4. Strength for Shear Only 

The required shear strength at any section shall not exceed the 

allowable shear strength V : 
a 

V = (2 webs)(v )(ht) 
n n 

= 2(38.24)(6.354xO.135) (See Example 9.1 for v ) 
n 

= 32.80 kips 

The allowable shear strength is determined as follows: 

n = 1.85 

Va = 32.80/1.85 = 17.73 kips 

Va shall be less than the allowable shear yielding strength, i.e., 

V < 2(F ht)/1.64 = 43.94 kips OK a yv 

(The safety factor used for shear yielding is 1.64, and 

the shear 'yield strength, F , is obtained from Table Al yv 

of the Standard.) 

The maximum required shear strength is given by 

V = O.600wL 

= (0.600)(0.24)(10) = 1.44 kips < Va = 17.73 kips OK 

5. Strength for combined bending and shear 

At the interior supports there is a combination of web bending 

and web shear: 

M = 50.97 kips-in. 
a 

V = 17.73 kips 
a 

For unreinforced webs 

M = 28.80 kips-in. 

V = 1.44 kips 

(28.80/50.97)2+(1.44/17.73)2 = 0.326 < 1.0 OK 
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6. Web crippling strength 

See Example 9.1 for detailed calculations. 

For end reaction: 

Pn = t2C3C4Ce(217-0.28(h/t~ (1+0.01(N/t)) 

= (0.135)2(1.258)(0.942)(1.0)(217-0.28(47.07~ 
x(,1+0.01(22.22)J = 5.38 kips 

n = 2.00 

Pa = 5.38/2.0 = 2.69 kips 

End reaction is given by 

R = 0.400wL 

= (0.400)(0.240)(10) = 0.96 kips < Pa = 2.69 kips OK 

For interior reaction: 

Pn = t 2C1C2Ce (538-0. 74(h/t)1 (1+0.007(N/t)1 

= (0.135)2(1.343)(0.977)( 1. 0) (538:-0.74(47. 07)J 

x(1+0.007(44.44)) = 15.79 kips 

n = 2.00 

Pa = 15.79/2.0 = 7.90 kips 

Interior reaction is given by 

R = 1.10wL 

= (1.10)(0.240)(10) = 2.64 kips < Pa = 7.90 kips OK 

7. Combined bending and web crippling strength 

At the interior supports there is a combination of web bending 

and web crippling: 

Ma = 50.97 kips-in. 

Pa = 7.90 kips 

M = 28.80 kips-in. 

R = 2.64 kips 

For shapes having single unreinforced webs: 
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1.07(R/P )+(M/M ) S; 1.42 a a 

1.07(2.64/7.90)+(28.80/50.97) = 0.923 < 1.42 OK 

8. Deflection due to service live load. 

From the result of sectional properties calculated in item (1) of 

Example 9.1, the section is fully effective at F = 50 ksi. 
y 

Therefore, for a stress f=42.12 ksi which is less than 

F = 50 ksi, the section will be fully effective, i.e., 
y 

I = 7. 835 in." 
x 

This value can be used for deflection determination. 

The maximum deflection occurs ·at a distance of O. 446L from the 

exterior supports. It is given by 

6 = 0.0069wL"/(E I ) 
o x 

Thus, the live load deflection is calculated as follows: 

6 = 0.0069(0.20)(10)"(12)3/(27000x7.835) 

= 0.113 in. 

The live load deflection is limited to 1/240 of the span, i.e., 

L/240 = 10x12/240 = 0.5 in. > 0.113in. OK 

From the above calculations, it can be concluded that the section is 

adequate. 
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EXAMPLE 10.1 HAT SECTION USING INELASTIC RESERVE CAPACITY CLRFD) 

(Inelastic Reserve Capacity) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, ~bMn. Use Type 301 stainless steel, annealed. 

".500" 

0.323" • 
," 

t 
3854" 

1 0 0 RSt: r 0 
§ ~ 

-
M 

c? N 
0.135-

-0.162" 

'./ ~ 
(2) I~ -0.161-

1.34T 1.670" 

" 
7.570" 

Figure 10.1 Section for Example 10.1 

Given: 

1. Section: Hat section, as shown in sketch. 

2. Top flange continuously supported. 

3. Span = 8 ft., simply supported. 

Solution: 

o 1. Properties of 90 corners: 

Corner Radius, r = R + t/2 = 3/16 + 0.135/2 = 0.255 in. 

Length of arc, u = 1.57r = 1.57 x 0.255 = 0.400 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.255 = 0.162 in. 
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I' of corner about its own centroidal axis = 0.149r3 

= 0.149(0.255)3 = 0.003 in. 3. This is negligible. 

2. Nominal Section Strength (Section 3.3.1.1) 

a. Procedure I - Based on Initiation of Yielding 

Computation of I , S , and M for the first approximation: x e n 

* Assume a compressive stress of f = F = 28 ksi (yield strength yc 

in longitudinal compression, see Table Al of the Standard) in 

the top fiber of the section. 

* Assume web is fully effective. 

Element 3: 

hIt = 2.354/0.135 = 17.44 < 200 OK (Section 2.1.2-(1)) 

Assumed fully effective 

Element 5: 

wIt = 3.854/0.135 = 28.55 < 400 OK (Section 2.1.1-(I)-(ii)) 

k = 4 

= (1.052/.jk)(w/t).J f /Eo (Eq. 2.2.1-4) 

E = 27000 ksi is obtained from Table A4 of the Standard. 
o 

A = (1.052/.Jl;)(28.55).J28/28000 = 0.475 < 0.673 

b = w (Eq. 2. 2 . 1- 1 ) 

= 3.854 in. (Fully effective) 
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Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly Ly2 

Element (in. ) (in. ) (in.2) (in. 3
) 

1 2 x 1.347 = 2.694 2.933 7.902 23.175 
2 2 x 0.400 = 0.800 2.839 2.271 6.448 
3 2 x 2.354 = 4.708 1.500 7.062 10.593 
4 2 x 0.400 = 0.800 0.161 0.129 0.021 
5 3.854 0.068 0.262 0.018 

Sum 12.856 17.626 40.255 

The distance from the top fiber to the neutral axis is 

y = Ly/L = 17.626/12.856 = 1.371 in. cg 

(3.000-y )/y = (3.0-1.371)/1.371 = 1.188 cg cg 

1.188xFyc = 33.264 ksi > Fyt = 30 ksi NG 

I' 
1 About 

Own 
Axis 
(in. 3

) 

2.174 

2.174 

(F
yt 

is the yield strength in longitudinal tension, see Table Al 

of the Standard.) 

Since the computed stress in tension flange is larger than the 

specified yield strength, Fyt = 30 ksi, the compression 

stress of F will not govern as assumed. The actual yc 

compressive stress will be less than F and so the yc 

flange will still be fully effective. The tension flange 

will yield first. Section properties will not change. 

Therefore, 

I ' = Ly2 + I' - Ly2 
X 1 cg 

= 40.255 + 2.174 - 12.856(1.371)2 

= 18.26 in. 3 
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Actual I = tIl 
X X 

= (0.135)(18.26) = 2.47 in. 4 

Check Web 

CO.32:r 

/;--:.:---=- =-----=----=--
~--~--h------~--------__ ---~--~ 

/I 

. en 
N 
ID 
N 

------~~ 
• ___________ ---1. ___ "-___ ---' 

',.30 ksi 

Assume a stress of f=30 ksi at the bottom of tension fiber. 

f1 = (1.048/1.629)(30) = 19.30 ksi(compression) 

f2 = -(1.306/1.629)(30) = -24.05 ksi(tension) 

~ = f2/f1 = -24.05/19.30 = -1.246 

k = 4+2(1-~)3+2(1-~) (Eq. 2.2.2-4) 

= 4+2 (1-(-1.246)]3+2 (1-(-1.246») 

= 31.15 

= (1.052/Jk)(w/t)~, f = f o 1 
(Eq. 2. 2 . 1 - 4 ) 

For annealed Type 301 stainless steel, E value is equal to o 

28000 ksi, which is given in Table A4 of the Standard. 

A = (1.0S2/J31.1S)(17.44)~19.30/28000 = 0.086 < 0.673 

b 

b e 

= w (Eq. 2.2.1-1) 

= 2.354 in. 

= b /2 (Eq. 2.2.2-2) 
e 

= 2.354/2 = 1.177 in. 
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b. 

= b /(3-1.jJ) 
e (Eq. 2. 2 . 2 - 1 ) 

= 2.354/(3-(-1.246)) = 0.554 in. 

b1+b2 = 0.554 + 1.177 = 1.731 in. > 1.048 in. (compression 

portion of web, see the sketch shown above) 

Therefore, web is fully effective. 

S = I /(d-y ) = 2.47/(3-1.371) = 1.516 in.' e x cg 

M = S F n e y (Eq.3.3.1.1-1) 

= (1.516)(30) 

= 45.48 kips- in._ 

Procedure II - Based on Inelastic Reserve Capacity 

"1 = (1.11/jF /E) yc 0 
(Eq. 3. 3 . 1. 1 - 2 ) 

= (1. 11/J28/28000) = 35.10 

"2 = (1. 28/JF /E) yc 0 
(Eq. 3. 3 . 1. 1 - 3 ) 

= (1.28/"/28/28000) = 40.48 

wit = 28.55 

For wit < "1 = 35.10 

C = 3.0 
Y 

Compute location of e on strain diagram, the summation 
y 

of longitudinal forces should be zero. 

Refer to equations from Reck, Pekoz, and Winter, "Inelastic 

Strength of Cold-Formed Steel Beams," Journal of the 

Structural Division, November 1975, ASCE. 

Distance from neutral axis to the outer compression fiber, y : c 

t = 0.135 in. 
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bt = 2(1.670) = 3.340 in. 

b = 4.500 in. c 

d = 3.000 in. 

Yc = (1/4)(bt -bc+2d) 

= (1/4)(3.340-4.500+2(3.000)1 = 1.210 in. 

y = y /e p c y 

= 1.21/3.0 = 0.403 in. 

y = d-y 
t c 

= 3.000-1.210 = 1.790 in. 

y = y -y cp c p 

=" 1.210-0.403 = 0.807 in. 

Ytp = Yt-yp 

= 1.790-0.403 = 1.387 in. 

Summing moments of stresses in component plates: 

Mn = Fyt{bcYc+2YcpLYp+(Ycp/2))+(4/3)Tp 

+2YtP~p+(YtP/2))+btYt} 

N.A. 

;.. 

-I 
0 
ID 
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~ -0 .. 
0 
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V 
V 

F, 

STRAIN DIAGRAM STRESS DIAGRAM 

Mn = 28(0.135){4.500(1.210)+2(O.807)lo.403+(O.807/2)) 
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+(4/3)(0.403)2+2(1.387) 0.403+(1.387/2) +3.340(1.790) 

M = 60.42 kips-in. 
n 

M shall not exceed 1.25S F = 1.25(45.48) = 56.85 kips-in. n e y 

Therefore, 

M = 1.25S F = 56.85 kips-in. n e y 

The inelastic reserve capacity is used in this example because 

the following conditions are met: (Section 3.3.1.1(2)) 

1) Member is not subject to twisting, lateral, torsional, or 

torsional-flexural buckling. 

2) The effect of cold-forming is not included in determining 

the yield point, Fy . 

3) The ratio of depth of the compressed portion of the web to 

its thickness does not exceed AI' 

(1.210-0.323)/0.135 = 6.57 < Al = 35.10 OK 

4) The shear force does not exceed 0.35F times the web 
y 

area, h x t. 

This still needs to be checked for a complete design. 

5) The angle between any web and the vertical does not 

o exceed 30 . 

3. Design Flexural Strength, ~bMn 

$b = 0.90 (for section with stiffened compression flanges) 

$bMn = 0.90 x 56.85 = 51.17 kips-in. 
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EXAMPLE 10.2 HAT SECTION USING INELASTIC RESERVE CAPACITY CASD) 

Rework Example 10.1 by using the Allowable Stress Design (ASD) method. 

Solution: 

Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 10.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance 

with Appendix E of the Standard as follows: 

M = M /0 a n 
CEq. E-1) 

o = 1.85 (Safety Factor stipulated in Table E of the Standard) 

The nominal section strength based on inelastic reserve capacity 

is as follows: 

M = 56.85 kips-in. (obtained from Example 10.1) n 

M = M /0 a n 

M = 56.85/1.85 a 

= 30.73 kips-in. 
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EXAMPLE 11.1 DECK SECTION (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, ~bMn' based on initiation of yielding. Also de-

termine the effective moment of inertia for deflection determination at the 

service moment. Compute the factored uniform load, wu ' as controlled either 

by bending or deflection. Use Type 201 stainless steel, 1/4-Hard. Assume 

dead load to live load ratio D/L = 1/5 and 1.20 + 1.6L governs the design. 

2.000" 

r-- 0.
14T 

Ycg 

o 
o 

--t---+--1.000" 
2.000" 2.000" 

Figure 11.1 Section for Example 11.1 

Given: 

1. Section: Deck section, as shown in sketch. 

2. Deck is continuous over three 10'-0" spans. 

3. Deflection due to service live load is to be limited to 1/240 of 

the span. 
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Corner Properties: 

e = 75.960 

R = 1/8" 

! 0.155" r = 
It=O.060- a = r sin(900 -7S.96

0
) 

b 

= 0.155"sin14.04° 
a 

= 0.0376" 

b = t/2+r-a 

= 0.060"/2+0.155"-0.0376" 

= 0.147" 

b l = b-t/2 

= 0.147"-0.060"/2 

= 0.117" 

b I /b" o 0 = cos(90 -75.96 ) 

b" = bl/cos14.04° 

= 0.117"/cos14.04° 

= 0.121" 
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Flat portion of web 

hI = 4.000"/cos14.04° 

= 4.123" 

h = hl-2b"-t/cos14.04° 4.000" 

= 4.123"-2(0.121") 

-0.06"/cos14.04° 

= 3.819" r 

Solution: 

1. Full Section Properties: 

Elements 2 and 6: 

Corner Radius, r = R + t/2 = 1/8 + 0.060/2 = 0.155 in. 

Angle, S = 75.960 = 1.326 rad 

Length of arc, u = Sr = 1.326(0.155) = 0.206 in. 

Distance of c.g. from center of radius, 

c
1 

= r sinS/S = 0.155(sin1.326)/1.326 = 0.113 in. 

The moment of inertia, Ill' of arc element about its own 

centroidal axis is negligible. 

Element 3: 

I = 3.819 in. 

S = 14.040 
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cos8 = 0.9701 

1'1 = (cos28P)/12 = ((0.9701)2(3.819)3)/12 = 4.368 in. 3 

Element 7: 

1 = 1.000 in. 

8 = 14.040 

cos8 = 0.9701 

Distance from top fiber to the centroid of full section is 

o y = 4-0.147-(1.000/2)cos14.04 = 3.368 in. 

2. Section Modulus for Load Determination - Based on Initiation of 

Yielding 

Since the effective design width of flat compressive elements is 

a function of stress, iteration is required. 

Computation of I , S , and M for the first approximation: 
x e n 

* Assume a compressive stress of f = F = 50 ksi in the top fiber 
y 

of the section. (See Table Al of the Standard for F value.) 
y 

* Assume web is fully effective. 

Element 3: 

hit = 3.819/0.060 = 63.65 < 200 OK (Section 2.1.2-(1)) 

Assumed fully effective 

Element 4: 

wit = 2.000/0.060 = 33.33 < 400 OK (Section 2.1.1-(1)-(ii)) 

k = 4 
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A = (1.052/.jk)(w/t).../f/Eo ' f = F 
Y 

(Eq. 2.2.1-4) 

From Table A4 of the Standard, E value is equal to 27000 ksi in 
o 

longitudinal compression for Type 201, 1/4-Hard, stainless steel. 

A = (1.052/.../4)(33.33).../50/27000 = 0.754 > 0.673 

= (1-0.22/A)/A p (Eq. 2.2.1-3) 

= (1-0.22/0.754)/0.754 = 0.939 

b = pw (Eq. 2.2.1-2) 

= 0.939 x 2.000 

= 1.878 in. 

Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly Ly2 

Element (in. ) (in. ) (in. 2) (in. 3
) 

1 1.000 3.970 3.970 15.761 
2 5 x 0.206 = 1.030 3.928 4.046 15.892 
3 4 x 3.819 = 15.276 2.000 30.552 61.104 
4 2 x 1.878 = 3.756 0.030 0.113 0.003 

5 & 8 2 x 2.000 = 4.000 3.970 15.880 63.044 
6 4 x 0.206 = 0.824 0.072 0.059 0.004 
7 1.000 3.368 3.368 11.343 

Sum 26.886 57.988 167.151 

The distance from the top fiber to the neutral axis is 

y = Ly/L = 57.988/26.886 = 2.157 in. cg 

Since the distance from the top compression fiber to the 

neutral axis is greater than one half of the deck depth, 
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a compressive stress of F will govern as assumed. 
y 

I ' = Ly2 + I' - Ly2 
X 1 q 

= 167.151 + 17.550 - 26.886(2.157)2 

= 59.61 in. 3 

Actual I = tI' x x 

= (0.060)(59.61) = 3.58 in. 4 

Check Web 

O.14r 
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• • ... 

0 '" ... ... 
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8 N.A. .... 
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II! - ... 

1/ .- ----"tJ' - ------
O.14r 

fl = (2.010/2.157)(50) = 46.59 ksi(compression) 

f2 = -(1.696/2.157)(50) = -39.31 ksi(tension) 

~ = f2/fl = -39.31/46.59 = -0.844 

k = 4+2(1-~)l+2(1-~) 

= 4+2 [1-(-0.844)J3+2 (1-(-0.844)J 

= 20.23 

(Eq. 2.2.2-4) 

= (1.052/.Jk)(w/t}.Jf/Eo' f = fl (Eq. 2.2.1-4) 

= (1.052/.J20.23 }(63.65}.j46.59/27000 = 0.618 < 0.673 

b = w (Eq. 2.2.1-1) 

b = 3.819 in. 
e 

b2 = b /2 e (Eq. 2.2.2-2) 
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= 3.819/2 = 1.910 in. 

= be /(3-4J) (Eq. 2.2.2-1) 

= 3.819/ [3-(-0.844)) = 0.993 in. 

b1+b2 = 0.993 + 1.910 = 2.903 in. > 2.002 in. (compression 

portion of web, see the sketch shown above.) 

Therefore, web is fully effective. 

S e 

M 
n 

= Ix/Ycg 

= 3.58/2.157 

= 1.66 in. 3 

= S F 
e Y 

= (1. 66)(50) 

= 83 .. 0 kips-in. 

(Eq. 3.3.1.1-1) 

$b = 0.90 (for section with stiffened compression flanges) 

$bMn = 0.90 x 83.0 = 74.7 kips-in. 

3. Moment of Inertia for Deflection Determination - Positive Bending 

The unfactored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+l.6L, the service moment can be determined as follows: 

$bMn = 1.2MDL + 1.6MLL 

= (1.2(MDL/MLL)+1.61MLL 

= (1.2(1/5)+1.6]MLL 

= 1.84MLL 

KLL = ~bKn/l.84 = 74.70/1.84 = 40.60 kips-in. 

Ks = KDL + KLL 
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= (1/5+1)MLL 

= 1. 2(40.60) = 48.72 kips-in. 

where 

MDL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

Computation of leff for the first approximation: 

* Assume a stress of f = 28.66 ksi in the top and bottom fibers 

of the section. 

* Since the web was fully effective at a higher stress gradient, 

it will be fully effective at this stress level. 

Element 4: 

wit = 33.33 

k = 4 

For deflection determination, the value of E , reduced modulus 
r 

of elasticity determined by using Eq. (2.2.1-7), is substituted 

for E in Eq. (2.2.1-4). For a compression and tension stresses 
o 

of f = 28.66 ksi, the corresponding E and E t values for sc s 

Type 201 stainless steel are obtained from Table A2 or Figure A1 

of the Standard as follows: 

E = 23550 ksi, sc 

Er = (Esc+Est)/2 

Est = 26970 ksi 

= (23550+26970)/2 = 25260 ksi 

Thus, for compression flange (Element 4): 

A = (1. 052/../k)(w/tNf/Er 

= (1.052/.j4)(33. 33N28. 66/25260 = 0.591 < 0.673 
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bd = w (Eq. 2.2.1-5) 

= 2.000 in. (Fully effective) 

Note: All elements are fully effective. 

Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly Ly2 

Element (in. ) (in. ) (in. 2) (in. 3
) 

1 1.000 3.970 3.970 15.761 
2 5 x 0.206 = 1.030 3.928 4.046 15.892 
3 4 x 3.819 = 15.276 2.000 30.552 61. 104 
4 2 x 2.000 = 4.000 0.030 0.120 0.004 

5 0: 8 2 x 2.000 = 4.000 3.970 15.880 63.044 
6 4 x 0.206 = 0.824 0.072 0.059 0.004 
7 1.000 3.368 3.368 11. 343 

Sum 27.130 57.995 167.152 

The distance from the top fiber to the neutral axis is 

y = Ly/L = 57.995/27.130 = 2.138 in. cg 

Since the distance from the top compression fiber to the 

neutral axis is greater than one half the deck depth, the 

compressive stress of 28.66 ksi will govern as assumed. 

I' eff = Ly2 + I I - Ly2 
1 cg 

= 167.152 + 17.550 - 27.130(2.138)2 

= 60.69 in. 3 

Actual Ieff = tI'eff 

= (0.060)(60.69) = 3.64 in. 4 
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S = I ff/Y = 3.64/2.138 = 1. 70 in. 3 

eff e cg 

M = Sefl 28 . 66 ) 

= (1. 70)(28.66) 

= 48.72 kips-in. = M OK s 

Thus, use Ieff = 3.64 in. 4 for deflection calculations. 

4. Section Modulus for Load Determination - Negative Bending (Based on 

Initiation of Yielding) 

Following a similar procedure as in positive bending. 

Computation of I , Sand M for the first approximation: x e n 

* Assume a compressive stress of f = F = 50 ksi in the 
Y 

bottom fiber of the section. 

* Assume web is fully effective. 

Element' 3: 

hit = 3.819/0.060 = 63.65 < 200 OK (Section 2.1.2-(1)) 

Assumed fully effective 

Element 1: 

wit = 1.000/0.060 = 16.67 < 50 OK (Section 2.1.1-(1)-(iii)) 

k = 0.50 

A = (1. 052/.JQ.50)(16. 67)..j50/27000 = 1. 067 > 0.673 

= (l-0.22/A)/A p 

= (1-0.22/1.067)/1.067 = 0.744 

b = pw 

= 0.744 x 1.000 

= 0.744 in. 
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Element 5: 

Same as element 4 in positive bending case. 

b = 1.878 in. 

Element 8: 

wit = 2.000/0.060 = 33.33 < 50 OK (Section 2.1.1-(1)-(iii» 

S = 1.28$fl 
° 

(Eq. 2.4-1) 

= 1.28~7000/50 = 29.74 

For wit > S 

Ia = t~{(115(w/t)/S)+5} (Eq. 2.4.2-13) 

= (0.060)~ {(115(33.33)/29. 74J+51 

= 0.00174 in.~ 

= (1.000)3(0.060)(sin75.96o)2/12 = 0.00471 in. 4 

D ° = 1.000+0.185tan(75.96 /2) = 1.144 in. 

D/w = 1.144/2.000 = 0.572 

For 0.25 < D/w < 0.80 

k = (4.82-5(D/w)JCI /1 )1/3+0.43~5.25-5(D/w) 
s a 

(Eq. 2.4.2-9) 

(4.82-5(0.572)](0.00471/0.00174)1/3+0 . 43 = 3.162 

5.25-5(0.572) = 2.390 < 3.162 

k = 2.390 

A = (1.052/.J2.390 )(33. 33).J50/27000 = 0.976 > 0.673 

p = (1-0.22/A)/A (Eq. 2.2.1-3) 

= (1-0.22/0.976)/0.976 = 0.794 

b = pw (Eq. 2.2.1-2) 

= 0.794(2.000) = 1.588 in. 
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Element 7 : 

I = 0.00471 in. 4 (calculated previously) s 

I a = 0.00174 in. 4 (calculated previously) 

d = 1.000 in. 

Assume a maximum stress in element, f = F = 50 ksi, although it 
y 

will be actually less. 

k = 0.50 

wit = 1.000/0.060 = 16.67 < 50 OK (Section 2.1.1-(1)-(iii)) 

A = (1. 052/F)(w/t)..jf/Eo 

= (1.052/..j0:50)(16.67).J50/27000 = 1.067 > 0.673 

p = (1-0.22/A)/A 

= (1-0.22/1.067)/1.067 = 0.744 

b = pw 

= 0.744(1.000) = 0.744 in. 

d' = 0.744 in. 
s 

d = d' (I /1 )S:d' s s s a s 

Since I /1 > 1 s a 

d = d' = 0.744 in. 
s s 

(Eq. 2.2.1-4) 

(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 

(Eq . 2. 4 . 2 - 11 ) 

I' = (d )3s inz9/12 = (0.744)3(sin75.96o)z/12 = 0.032 in. 3 
1 s 

The distance from top fiber to the centroid of the reduced section is 

y = 4-0.147-(0.744/2)cos14.04° = 3.492 in. 
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Effective section properties about x-axis: 

y I' 
1 

Distance About 
L from Own 

Effective Length Top Fiber Ly Ly2 Axis 
Element (in. ) (in. ) (in.2) (in. 3

) (in. 3
) 

1 0.744 3.970 2.954 11.726 
2 5 x 0.206 = 1.030 3.928 4.046 15.892 
3 4 x 3.819 = 15.276 2.000 30.552 61.104 17.472 
4 2 x 2.000 = 4.000 0.030 0.120 0.004 
5 1.878 3.970 7.456 29.599 
6 4 x 0.206 = 0.824 0.072 0.059 0.004 
7 0.744 3.492 2.598 9.072 0.020 
8 1.588 3.970 6.304 25.028 

Sum 26.084 54.089 152.429 17.504 

The distance from top fiber to the neutral axis is (see sketch below) 

y = Ly/L = 54.089/26.084 = 2.074 in. cg 

The corresponding tension stress can be computed as follows: 

Y /(4.00-y ) = 2.074/(4.00-2.074) = 1.077 cg cg 

1.077xFyc = 1.077 x 50 = 53.85 ksi < Fyt = 75 ksi OK 

Because the distance of the top fiber from the neutral axis 

is greater than one half the deck depth, and also because the 

computed tension stress is less than the specified value, the 

compressive stress of f=F will govern as assumed. y 

~ ... 
o 
N 

~ 
N .. .. 
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Check Web: 

O.14T 

--If------~----. 
---4--..--- 1,---- -

• " .. .. -
• .. 
" " .. 

• .. ... 
o .. 

':0 .. .. -

N.A. 

1/ 
==~'--____ ..L.-___ .... __ -' 

O.14T 

fl = (1.779/1.926)(50) = 46.18 ksi(compression) 

f2 = -(1.927/1.926)(50) = -50.03 ksi(tension) 

41 = f2/fl = -50.03/46.18 = -1. 083 

k = 4+2( 1-41 )3+2( 1-41) 

= 4+2 (1-(-1.083))3+2 (1-(-1.083)) 

= 26.24 

= (1.052/Jk)(w/t)~ f = f 
0 1 

= (1.052/J26.24)(63.65)J46.18/27000 = 0.541 < 

(Eq. 2.2.2-4) 

(Eq. 2.2.1-4) 

0.673 

b = w (Eq. 2.2.1-1) 

b e 
= 3.819 in. 

= b /2 (Eq. 2.2.2-2) 
e 

= 3.819/2 = 1.910 in. 

= b
e

/(3-41) (Eq.2.2.2-1) 

= 3.819/(3-(-1.083)1 = 0.935 in. 

b
1
+b

2 
= 0.935 + 1.910 = 2.845 in. > 1.763 in. (compression 

portion of web, see sketch shown above) 

Therefore, web is fully effective. 
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Check Element 7: 

Assume the maximum stress in element, f = 46.18 ksi 

k = 0.50 

wit = 16.67 

A = (1.052/"jk)(w/t).,jf/Eo 

= (1.052rJO::SO-)(16.67).,j46.18/27000 = 1.026 > 0.673 

P = (1-0.22/11.)/11. 

= (1-0.22/1.026)/1.026 = 0.766 

b = pw 

= 0.766(1.000) = 0.766 in. 

d' = 0.766 in. s 

d = d' (I /1 )~d' s s s a s 

Since I /1 > 1 s a 

d = d' = 0.766 in. s s 

(Eq. 2.2.1-4) 

(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 

(Eq . 2. 4 . 2 - 11 ) 

"1'1 = (ds )3s in28/12 = (0.766)3(sin75.96o)2/12 = 0.035 in. 3 

The distance from top fiber to the centroid of the reduced section is 

y = 4-0.147-(0.766/2)cos14.04° = 3.481 in. 

Determine section properties, but only the properties of 

element 7 have changed 

6L = 0.766-0.744 = 0.022 in. 

6Ly = (0.766)(3.481)-2.598 = 0.068 in. 2 

6Lyl = 0.766(3.481)2-9.072 = 0.210 in. 3 

~I' 1 = 0.035-0.032 = 0.003 in. l 

Therefore, 

L = 26.084+0.022 = 26.106 in. 

Ly = 54.089+0.068 = 54.097 • 2 
111. 
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Ly2 = 152.429+0.210 = 152.639 in. 3 

I'l = 17.504+0.003 = 17.507 in. 3 

The distance from top fiber to the neutral axis is 

Ycg = Ly/L = 54.097/26.106 = 2.072 in. 

f t = (2.072/1.928)(50) = 53.73 ksi < Fyt = 75 ksi OK 

I ' = Ly2 + I' 1 - Ly2 
X cg 

= 152.639 + 17.507 - 26.106(2.072)2 

= 58.07 in. 3 

Actual I = tI' x x 

= (0.060)(58.07) = 3.48 in. 4 

Se = I /(4.00-y ) x cg 

M n 

= 3.48/(4.00-2.072) 

= 1.80 in. 3 

= S F e y 

= (1.80)(50) 

= 90.0 kips-in. 

(Eq . 3. 3 . 1. 1 - 1 ) 

= 0.85 (for section with unstiffened compression flanges) 

= 0.85 x 90.0 = 76.5 kips-in. 

5. Moment of Inertia for Deflection Determination - Negative Bending 

The unfactored loads are used to determine the section properties 

for deflection determination. For a load combination of 

1.2D+1.6L, the service moment can be determined as follows: 
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= (1. 2(MDL/MLL )+1. 6) MLL 

= l1.2(1/5)+1.6)MLL 

= 1.84MLL 

MLL = ~bMn/1.84 = 76.50/1.84 = 41.58 kips-in. 

Ms = MDL + MLL 

= (l/5+1)MLL 

= 1.2(41.58) = 49.90 kips-in. 

Computation of leff for the first approximation: 

* Assume a stress of f = 27 ksi in the top and bottom fibers 

of the section. 

* Since the web was fully effective at a higher stress gradient, 

it will be fully effective at this stress level. 

Element 1: 

wit = 16.67 

k = 0.50 

A = (1. 052/-/k)(w/t)...)f/Er 

For a compression and tension stresses of f=27 ksi, the values of E sc 

and E are equal to 24550 ksi and 27000 ksi, respectively. 
st 

E 
r 

= (24550+27000)/2 

= 25775 ksi 

A = (1.052/.;0:50)(16.67)...)27/25775 = 0.803 > 0.673 

p = (l-0.22/A)/A 

= (1-0.22/0.803)/0.803 = 0.904 

b = pw 

= 0.904 x 1.000 
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= 0.904 in. 

Element 5: 

wIt = 33.33 

k = 4 

A = (1.052/.jk)(w/t).jf/Er 

= (1. 0521-Ji;)(33.33).j27/25775 = 0.567 < 0.673 

= w 

= 2.000 (Fully effective) 

Element 8: 

w/t = 33.33 

S = 1. 28 E /f 
o 

= 1.28 27000/27 = 40.48 

For S/3 < w/t < S, 

I a = t"399 {l(w/t)/SJ-0.33}3 

= (0.060)"(399) (33.33/40.48)-0.33)3 

= 0.000621 in." 

I = 0.00471 in." (calculated previously) 
s 

I /1 = 0.00471/0.000621 = 7.58 > 1 s a 

D = 1.144 in. (calculated previously) 

D/w = 0.572 (calculated previously) 

For 0.25 < D/w < 0.80 

k = (4.82-5(D/w)J(I II )1/2+0.43S5.25-5(D/w) s a 

Since I II > 1 s a 

k = 5.25-5(D/w) = 5.25-5(0.572) = 2.390 

A = (1.052/,Jk)(w/t).J f /Er 
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E = 25775 ksi for a stress of f=27 ksi. 
r 

A = (1. 052/v'2. 390 )(33. 33)v'27/25775 = 0.734 > 0.673 

p = (1-0.22/A)/A (Eq. 2.2.1-3) 

= (1-0.22/0.734)/0.734 = 0.954 

b = pw (Eq. 2.2.1-2) 

= 0.954(2.000) = 1.908 in. 

Element 7: 

Is/Ia > 1 

d = 1.000 in. 

Assume the maximum stress in element, f = 27 ksi, although it will 

be actually less. 

k = 0.50 

wit = 16.67 

A = (1.052/F)(w/t)v'f/Er 

= (1.0S2/.JO:5Q)(16.67)-y'27/25775 = 0.803 > 0.673 

p = (1-0.22/A)/A 

= (1-0.22/0.803)/0.803 = 0.904 

b = pw 

= 0.904(1.000) = 0.904 in. 

d' = 0.904 in. 

d s 

s 

= d' (I II )~d' 
s s a s 

Since I II > 1 s a 

d = d' = 0.904 in. 
s s 

(Eq. 2.2.1-3) 

(Eq . 2. 2 . 1 - 2 ) 

(Eq . 2. 4 . 2 - 11 ) 

I' = (d )3s in29/12 = (0.904)3(sin7S.96o)2/12 = 0.058 in. 3 

1 s 

The distance from top fiber to the centroid of the reduced section is 

o 
y = 4-0.147-(O.904/2)cos14.04 = 3.415 in. 
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Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly Ly2 

Element (in. ) (in. ) (in.2) (in. 3
) 

1 0.904 3.970 3.589 14.248 
2 5 x 0.206 = 1.030 3.928 4.046 15.892 
3 4 x 3.819 = 15.276 2.000 30.552 61.104 
4 2 x 2.000 = 4.000 0.030 0.120 0.004 
5 2.000 3.970 7.940 31.522 
6 4 x 0.206 = 0.824 0.072 0.059 0.004 
7 0.904 3.415 3.087 10.542 
8 1.908 3.970 7.575 30.072 

Sum 26.846 56.968 163.388 

The distance from top fiber to the neutral axis is 

Ycg 

Ileff 

= Ly/L = 56.968/26.846 = 2.122 in. 

= Ly2 + I I 1 - Ly2 cg 

= 163.388 + 17.530 - 26.846(2.122)2 

= 60.03 in. 3 

Actual Ieff = tlleff 

M 

= (0.060)(60.03) = 3.60 in. 4 

= I ff/(d-y ) = 3.60/(4-2.122) = 1.92 in. 3 

e cg 

= (1.92)(27) = 51.84 ksi > M = 49.90 ksi N.G. s 

Computation of Ieff for the second approximation: 

* Assume a stress of f=25.85 ksi in the top and bottom fibers 

of the section. 
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Element 1: 

wit = 16.67 

k = 0.50 

A = (1. 052/..jk)(w/t>-,Jf/Er 

For a compression and tension stresses of f=25.85 ksi, the values of 

Esc and Est are equal to 25180 ksi and 27000 ksi, respectively. 

E 
r 

= (25180+27000)/2 

= 26090 ksi 

A = (1.052/.JQ.50)(16.67)-,J25.85/26090= 0.781> 0.673 

P = (1-0.22/A)/A 

= (1-0.22/0.781)/0.781 = 0.920 

b = pw 

= 0.920 x 1.000 

= 0.917 in. 

Element 5: 

Fully effective at f = 27 ksi 

It will also be fully effective at f = 25.85 ksi 

b = 2.000 in. 

Element 8: 

wit = 33.33 

s = 1.2s..!E7i o 

= 1.2sJ27000/25.85 = 41.37 

For S/3 < wit < S, 

I II > 1 by observation from the first approximation 
s a 

D/w = 0.572 
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Since I II > 1 s a 

k = 2.390 

/I. = (1.052/F)(w/t).Jf/Er 

= (1. 052/.J2. 390 )(33.33).J25.85/26090 = 0.714 > 0.673 

p = (1-0.22//1.)//1. 

= (1-0.22/0.714)/0.714 = 0.969 

b = pw 

= 0.969 x 2.000 

= 1. 938 in. 

Element 7: 

IsIIa > 1 

d = 1.000 in. 

(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 

Assume a maximum stress in element, f = 25.85 ksi, although it will 

be actually less. 

k = 0.50 

wIt = 16.67 

/I. = (1. 052/F )(w/t).J f/Er 

= (1.052f.JO:SO)(16.67).J25.85/26090= 0.781> 0.673 

P = (1-0.22//1.)//1. 

= (1-0.22/0.781)/0.781 = 0.920 

b = pw 

= 0.920(1.000) = 0.920 in. 

d' = 0.920 in. 
s 

= d' = 0.920 in. 
s 
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The distance from top fiber to the centroid of the reduced section is 

y = 4-0.147-(0.920/2)cos14.04° = 3.407 in. 

Effective section properties about x-axis: 

y 
Distance 

L from 
Effective Length Top Fiber Ly 

Element (in. ) (in. ) (in.2) 

1 0.920 3.970 3.652 
2 5 x 0.206 = 1.030 3.928 4.046 
3 4 x 3.819 = 15.276 2.000 30.552 
4 2 x 2.000 = 4.000 0.030 0.120 
5 2.000 3.970 7.940 
6 4 x 0.206 = 0.824 0.072 0.059 
7 0.920 3.407 3.134 
8 1.938 3.970 7.694 

Sum 26.908 57.197 

The distance from top fiber to the neutral axis is 

Ycg 

Ileff 

= Ly/L = 57.197/26.908 = 2.126 in. 

= Ly2 + I I 1 - Ly2 cg 

= 164.250 + 17.533 - 26.908(2.126)2 

= 60.16 in. 3 

Actual Ieff = tlleff 

= (0.060)(60.16) = 3.61 in. 4 

Ly2 
(in. 3

) 

14.500 
15.892 
61.104 
0.004 

31. 522 
0.004 

10.679 
30.545 

164.250 

= I ff/(d-y ) = 3.61/(4-2.126) = 1.93 in. 3 

e cg 

M = (1.93)(25.85) = 49.90 kips-in. = Ms OK 

6. Summary 
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Positive Bending 

Negative Bending 

~bMn = 74.7 kips-in. 

leff = 3.64 in.~ 

~bMn = 76.5 kips-in. 

leff = 3.62 in.4 

7. Compute Factored Uniform Load 

For a continuous deck over three equal spans, the maximum bending 

moment is negative and occurs over the interior supports. It is 

given by: 

M = 0.100w L2 
u u 

Therefore, the maximum factored uniform load is 

= M /0.100L2 = 76.5/0.100(10'xI2"/1)2 = 0.0531 kips/in. 
u 

w u 
= 0.638 kips/ft 

The maximum deflection occurs at a distance of 0.446L from the 

exterior supports. It is given by: 

= 0.0069wL4/E I o 

This deflection is limited to a = L/240 for live load. Therefore, 

the maximum live load which will satisfy the deflection requirement 

is 

w
LL 

= E
o

l/(240(0.0069)L3
) = 27000(3.64)/(240(0.0069)(10x12)31 

= 0.0343 kips/in. 

w
LL 

= 0.412 kips/ft 

Wu = 1.2wDL+l.6wLL 

= (1.2(wDL/wLL )+1.6]wLL 

= [1.2(1/5)+1.6JwLL 

= 1.84wLL = 1.84(0.412) = 0.742 kips/ft > 0.638 kips/ft 

Therefore, design flexural strength governs. 
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Factored Uniform Load = 0.638 kips/ft. 

8. Check Shear Strength (Section 3.3.2) 

The required shear strength at any section shall not exceed the 

design shear strength ~ V : v n 

'" = 0.85 'l'v 

V n = 4.84E t 3 (G /G )/h o s 0 

v = V /(ht) 
n n 

(Eq. 3.3.2-1) 

In the determination of the shear strength, it is necessary to 

select a proper value of G /G for the assumed stress s 0 

from Table A12 or Figure A9 of the Standard. For the first 

approximation, assume a shear stress of v=27 ksi and the 

corresponding value of G /G is equal to 0.863. Thus, s 0 

hit = 3.819/0.060 = 63.65 < 200 (Section 2.1.2 (1)) 

v = 4.84(27000)(0.863)/(63.65)2 
n 

= 27.82 ksi > assumed stress f=27 ksi NG 

For a second approximation, assume a stress of f=27.59 ksi and 

its corresponding value of G /G is 0.855. s 0 

v = 4.84(27000)(0.855)/(63.65)2 
n 

= 27.58 ksi = assumed stress OK 

Therefore, the total shear strength, V , for hat section is n 

Vn = 4(vn)(ht) (a total of 4 webs) 

= 4(27.58)(3.819xO.060) 

= 25.28 kips 
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The design shear strength is determined as follows: 

~vVn = 0.85(25.28) = 21.49 kips 

$ V < 4(0.95F ht) = 4(0.95x42x3.819xO.06) = 36.57 kips OK v n yv 

(The shear yield strength, F , is obtained from Table A1 yv 

of the Standard.) 

The maximum required shear strength is given by 

V = 0.600w L 
u u 

= (0.600)(0.638)(10) = 3.83 kips < (~vVn)v = 21.49 kips OK 

9. Check Strength for Combined Bending and Shear (Section 3.3.3) 

At the interior supports, there is a combination of web bending 

and web shear: 

= 76.5 kips-in. 

For unreinforced webs 

Solve for w : 
u 

M = 0.100w L2 
u u 

V = 0.600w L 
u u 

(Eq. 3.3.3-1) 

{co .100w
u

(10X12)2] /76 .5F+ (CO. 600wu (10x12) 1/21. 49} 2 = 1. 0 

354.33w 2+16.16w 2 = 1.0 
u u 

370.49w 2 = 1.0 
u 

Wu = 0.0520 kips/in. 

= 0.624 kips/ft. 

Factored Uniform Load = 0.627 kip/ft is determined for the 

case of combined bending and shear. 

10. Check Web Crippling Strength (Section 3.3.4) 
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a) 

h = 3.819 in. 

t = 0.060 in. 

h/t = 3.819/0.06 = 63.65 < 200 OK 

R = 1/8 in. 

R/t = 0.125/0.06 = 2.083 < 7 OK 

Let N = 6 in. 

N/t = 6/0.06 = 100 < 210 OK 

N/h = 6/3.819 = 1.57 < 3.5 OK 

Table 2 of the Standard is used to check the web crippling 

requirements. For end reactions, use Eq. (3.3.4-2). For 

interior reaction, use Eq. (3.3.4-4). 

k = F /33 = 50/33 = 1.515 
Y 

C1 = (1.22-0.22k)k 

= (1.22-0.22(1.515»)(1.515) = 1.343 

C2 = (1.06-0.06R/t) 

= (1.06-0.06(2.083») = 0.935 < 1.0 OK 

C
3 

= (1.33-0.33k)k 

= [1.33-0.33(1.515»)(1.515) = 1.258 

(Eq. 3.3.4-21) 

(Eq. 3.3.4-10) 

(Eq . 3. 3 . 4 - 11 ) 

(Eq. 3.3.4-12) 

C
4 

= (1.15-0.15R/t) ~ 1.0 but not less than 0.50 (Eq. 3.3.4-13) 

(1.15-0.15R/t) = (1.15-0.15(2.083» = O. 838 ~ 1. 0 OK 

> 0.50 OK 

C4 = 0.838 

e = 75.96 0 

Ce 
= 0.7+0.3(e/90)2 (Eq. 3.3.4-20) 

= 0.7+0.3(75.96/90)2 = 0.914 

For end reaction: 

p = t 2C
3
C

4
C
e 

(217-0.28(h/t)] (1+0.01(N/t») 
n 

(Eq. 3.3.4-2) 
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= (0.06)2(1.258)(0.838)(0.914)(217-0.28(63.65») 

xL1+0.01(100») = 1.38 kips/web 

Total P for section: 
n 

Pn = (4 webs)(1.38 k/web) = 5.52 kips 

<t>w = 0.70 

<t> P = 0.70(5.52) = 3.86 kips 
w n 

End reaction is given by 

R = 0.400w L 
u 

= (0.400)(0.627)(10) = 2.51 kips < <t>wPn = 3.86 kips OK 

b) For interior reaction: 

P n = eC1 C2Ce (538-0. 74(h/t) 1 (1+0. 007(N/t») 

= (0.06)2(1.343)(0.935)(0.914) (538-0.74(63.65») 

x(1+0.007(100») = 3.45 kips/web 

Total P for section: 
n 

P = (4 webs)(3.45 k/web) = 13.80 kips 
n 

<t>w = 0.70 

<t> P = 0.70(13.80) = 9.66 kips 
w n 

Interior reaction is given by 

R = 1. lOw L u 

(Eq. 3.3.4-4) 

= (1.10)(0.627)(10) = 6.90 kips < <t>wPn = 9.66 kips OK 
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EXAMPLE 11.2 DECK SECTION (ASD) 

Rework Example 11.1 by using the Allowable Stress Design (ASD) method to 

determine the allowable bending moment based on initiation of yielding. Also 

determine the effective moment of inertia for deflection determination at 

the allowable momnet. Compute the allowable uniform load as controlled either 

by bending or deflection. 

Solution: 

1. Element Properties: 

See section properties calculated in Example 11.1. 

2. Section Modulus for Load Determination - Positive Bending 

(Based on Initiation of Yielding) 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 11.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance 

with Appendix E of the Standard as follows: 

M = M /n a n 

M = 83.0 kips-in. 
n 

n = 1.85 

Ma = 83.0/1.85 = 44.87 kips-in. 

(E-l) 

3. Moment of Inertia for Deflection Determination - Positive Bending 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 11.1 for the LRFD method, except that the computed 

moment M (= fxSe ) should be equal to Ma' 

From the results of Example 11.1.(3), it was found that for a 

compression stress of f=28.66 ksi, the section is fully effective. 
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Then, for an assumed stress of f=26.39 ksi (less than f = 28.66 ksi), 

the section will also be fully effective, i.e., 

S = I /y = 3.64/2.138 = 1.70 in. l 

e x cg 

M = fS = 26.39x1.70 = 44.87 kips-in. = M OK e a 

Therefore, use Ieff = 3.64 in.4 for deflection calculation. 

4. Section Modulus for Load Determination - Negative Bending 

(Based on Initiation of Yielding) 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 11.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance 

with Appendix E of the Standard as follows: 

M = M /0 a n 

M = 90.0 kips-in. 
n 

o = 1. 85 

M = 90.0/1.85 = 48.65 kips-in. 
a 

(E-l) 

5. Moment of Inertia for Deflection Determination - Negative Bending 

For deflection determination on the basis of the ASD method, the 

effective moment of inertia is determined by the same procedures 

given in Example 11.1 for the LRFD method, except that the computed 

moment M (= fxS e ) should be equal to Ma· 

For an assumed stress of f=25.20 ksi, it is found that the section 

modulus is likely to be the same as calculated in Example 11.1.(5), 

i.e. , 

Se = I /y = 3.61/(4~0-2.126) = 1.93 in. l 

x cg 

M = fS
e 

= 25.20xl.93 = 48.65 kips-in. = Ma OK 

Therefore, use leff = 3.61 in.4 for deflection calculation. 
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6. Summary 

Positive Bending 

Negative Bending 

M = 44.87 kips-in. a 

Ieff = 3.64 in. 4 

M = 48.65 kips-in. a 

Ieff = 3.61 in. 4 

7. Compute Allowable Uniform Load 

For a continuous deck over three equal spans, the maximum bending 

moment is negative and occurs over the interior supports. It is 

given by: 

M = 0.100wL2 
a 

Therefore, the maximum factored uniform load is 

w = Ma/O .100L2 = 44.87/0.100(10' x12" / 1)2 = 0.0312 kip/ in. 

w = 0.374 kip/ft 

The maximum deflection occurs at a distance of 0.446L from the 

exterior supports. It is given by: 

ll. = O. 0069wL "/E I o 

This deflection is limited to ll. = L/240 for live load. Therefore, 

the maximum live load which will satisfy the deflection requirement 

is 

w
LL 

= EoI/(240(0.0069)L3) = 27000(3.64)/l240(0.0069)(10x12)3) 

= 0.0343 kip/in. 

wLL = 0.412 kip/ft 

Therefore, allowable bending strength governs. 

Allowable Uniform Load = 0.374 kip/ft. 

8. Check Shear Strength 

178 



The required shear strength at any section shall not exceed the 

allowable shear strength V : a 

n = 1.85 (for single web) 

v = 4.84(27000)(0.855)/(63.65)2 
n 

= 27.58 ksi (from Example 11.1.(8» 

Therefore, the total shear strength, V , for hat section is 
n 

Vn = 4(vn)(ht) (a total of 4 webs) 

= 4(27.58)(3.819xO.060) 

= 25.28 kips 

The allowable shear strength is determined as follows: 

Va = Vn/Q = 25.28/1.85 = 13.66 kips 

< 4(F ht)/1.64 = 4(42x3.819xO.06)/1.64 = 23.47 kips OK yv 

The maximum required shear strength is given by 

V = 0.600wL 

= (0.600)(0.374)(10) = 2.24 kips < 13.66 kips OK 

Check Strength for Combined Bending and Shear 

At the interior supports, there is a combination of web bending 

and web shear: 

Ma = 48.65 kips-in. 

Va = 13.66 kips 

For unrein forced webs 

Solve for w: 

M = 0.100wL2 

V = 0.600wL 

(0.100w(10x12)2 /48.65)2+ (O.600w(10x12) /13.66)2 = 1.0 
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876.11w2+27.78w2 = 1.0 

903.89w2 = 1.0 

w = 0.0333 kip/in. 

= 0.399 kip/ft. 

Allowable Uniform Load = 0.399 kip/ft is determined for the 

case of combined bending and shear. 

10. Check Web Crippling Strength 

The nominal web crippling strengths are calculated in 

Example 11.1.(10) as follows: 

a) For end reaction: 

Pn = t 2C3C4Ce l217-0.28(h/t)) (1+0.01(N/t)) 

= (0.06)2(1.258)(0.838)(0.914)(217-0.28(63.65)) 

x(I+0.01(100)) = 1.38 kips/web 

Total P for section: 
n 

P = (4 webs)(1.38 k/web) = 5.52 kips 
n 

o = 2.0 (for single web) 

P = P /0 = 5.52/2.0 = 2.76 kips a n 

End reaction is given by 

R = 0.400wL 

(Eq. 3.3.4-2) 

= (0.400)(0.374)(10) = 1.50 kips < Pa = 2.76 kips OK 

b) For interior reaction: 

P
n 

= t 2C1C2Ca [538-0. 74(h/t)1 (1+0.007(N/t)1 

= (0.06)2(1.343)(0.935)(0.914)[538-0.74(63.65)) 

x (1+0.007(100)) = 3.45 kips/web 

Total P for section: n 

P = (4 webs)(3.45 k/web) = 13.80 kips 
n 
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n = 2.0 

= P /n = 13.8/2.0 = 6.90 kips n . 

Interior reaction is given by 

R = 1.10wL 

= (1.10)(0.374)(10) = 4.11 kips < Pa = 6.90 kips OK 
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EXAMPLE 12.1 CYLINDRICAL TUBULAR SECTION (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design flexural strength, ~bMn' for the section shown in Figure 12.1. Use 

Type 301, 1/4-Hard stainless st~e1. 

Outer diameter = 8.000" 
Thickness= 0.125" 

Figure 12.1 Section for Example 12.1 

Solution: 

Ratio of outside diameter to wall thickness, 

D/t = 8.00010.125 = 64.00 

0.881E IF = 0.881(27000150) = 475.7 
o y 

Since D/t < 0.88lE IF , the ASCE Specification can be used. 
o y 

The design requirement for cylindrical tubular members is based on 

Section 3.6.1 of the Standard. 

Because 0.112E IF = 0.112(27000/50) = 60.48 and o y 

0.ll2E IF < D/t < 0.881E IF , o y 0 y 

M = K F Sf (Eq. 3.6.1-2) n c y 

where 

Sf = IT (O.D. )"-(LD. )"]/32(O.D.) 

= IT [(8)"-(7.75)"]/32(8) 

= 5.995 in. 3 
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K = (l-C)(E IF )/((8.93-A )(D/t)] + 5.882C/(8.93-A) (Eq. 3.6.1-3) coy c c 

C = F IF pr y 

A = 3.048C c 

From Table A17 of the Standard, the ratio of F IF is equal to 0.5 pr y 

in longitudinal compression for Type 301, 1/4-Hard stainless steel. 

Therefore, 

K = (1-0.5)(27000/50)/((8.93-3.048xO.5)(64.0)) c 

+(5.882xO.5)/(8.93-3.048xO.5) 

= 0.967 

Mn = 0.967(50)(5.995) 

= 289.86 kips-in. 

<l>b = 0.90 

<l>bMn = 0.90 x 289.86 = 260.90 kips-in. 
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EXAMPLE 12.2 CYLINDRICAL TUBULAR SECTION (ASD) 

Rework Example 12.1 by using the Allowable Stress Design (ASD) method. 

Solution: 

Calculation of the allowable moment, M : a 

The effective section properties calculated by the ASD method are 

the same as those determined in Example 12.1 for the LRFD method. 

Therefore, the allowable moment can be determined in accordance 

with Appendix E of the Standard as follows: 

n = 1.85 (Safety Factor stipulated in Table E of the Standard) 

M = 289.86 kips-in. (obtained from Example 12.1) 
n 

M = M /n a n 

= 289.86/1.85 

= 156.7 kips-in. 

M = 25.92 kips-in. < 27.57 kips-in. OK max 

184 

(Eq. E-1) 



EXAMPLE 13.1 FLANGE CURLING (LRFD) 

By using the LRFD criteria, determine the amount of curling for the com-

pression flange of the channel section used in Example 1.1. 

6.000" 

0.154" 

R==3/32" 

-11-- t=O.OSO-

5.6~2" . 
x 

0.079" 

x ------

Figure 13.1 Section for Example 13.1 

)olution: 

1. Determination of the design flexural strength, ~bMn: 

The elastic section modulus of the effective section, S , calculated with 
e 

the extreme compression or tension fiber at F is determined in Example 
y 

1.1. 

S = 0.711 in. 3 

e 

M = S F CEq. 3.3.1.1-1) n e y 

= 0.711 x 50 = 35.55 kips-in. 

~b = 0.85 
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~bMn = 0.85 x 35.55 = 30.22 kips-in. 

2. Determination of the average stress in compression flange, f av ' at 

the service moment M : 
s 

~ M = b n 1.2MDL + 1.6MLL 

= (1. 2(MDL/MLL)+1. 6)MLL 

= (1.2(1/5)+1.6)MLL 

= 1. 84MLL 

MLL = $bMn/ 1 .84 = 30.22/1.84 = 16.42 kips-in. 

M = MDL + MLL s 

= (1/5+1)MLL 

= 1.2(16.42) = 19~70 kips-in. 

where 

MDL = Moment determined on the basis of nominal dead load 

MLL = Moment determined on the basis of nominal live load 

The procedure is iterative: one assumes the actual compressive stress f 

under this service moment M . Knowing f, proceeds as usual to obtain S 
s e 

and checks to see if (f x S ) is equal to M as it should. If not, re-e s 

iterate until one obtains the desired level of accuracy. 

For the first approximation, assume a compression stress of 

f = 25 ksi in the top fiber of the section and that the web 

is fully effective. 

Compression flange: k = 0.50 (for unstiffened compression element, 

see Section 2.3.1) 

wIt = 1.471/0.060 = 24.52 < 50 OK (Section 2.1.1-(1)-(iii)) 
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ksi. 

A = (1.052/F)(w/t),Jf/Eo (Eq. 2.2.1-4) 

The initial modulus of elasticity, E , for Type 301 stainless 
o 

steel is obtained from Table A4 of the Standard, 

A = (1.052/F-SQ)(24.52),J25/27000 = 1.110 > 0.673 

i.e., E = 27000 a 

P = (1-(0.22/A))/A (Eq. 2.2.1-3) 

= [1-(0.22/1.110))/1.110 = 0.722 

b = pw 

= 0.722 x 1.471 

= 1.062 in. 

Effective section properties about x-axis: 

Element 

Web 
Upper Corner 
Lower Corner 

L 
Effective 

Length 
(in. ) 

5.692 
0.195 
0.195 

y 
Distance 

from 
Top Fiber 

(in. ) 

3.000 
0.075 
5.925 

Ly 

17.076 
0.015 
1.155 

(Eq. 2.2.1-2) 

51. 228 
0.001 
6.846 

I' 
Abo~t 

Own 
Axis 

(in. 3
) 

15.368 

Compression Flange 1.062 0.030 0.032 0.001 
Tension Flange 1.471 5.970 

Sum 8.615 

Distance from top fiber to x-axis is 

y = 27.060/8.615 = 3.141 in. 
cg 

8.782 52.428 

27.060 110.504 

Since the distance from top compression fiber to the neutral 
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axis is greater than one half the beam depth, a compression 

stress of 25 ksi will govern as assumed (i.e., initial 

yield is in compression). 

To check if web is fully effective (Section 2.2.2): 

fl = ((3.141-0.154)/3.141)x25 = 23.77 ksi(compression) 

f2 = - [(2.859-0. 154)/3. 141)x25 = -21.53 ksi(tension) 

~ = f2/fl = -21.53/23.77 = -0.906 

k = 4+2(1-~)3+2(1-4') 

= 4+2 (1-(-0.906))3+2 [1-(-0.906)J 

= 21. 660 

(Eq. 2.2.2-4) 

h = w = 5.692 in., hit = wit = 5.692/0.060 = 94.87 

hit = 94.87 < 200 OK (Section 2.1.2-(1)) 

A = (1.052/.J21.66)(94.87).J23.77/27000 = 0.636 > 0.673 

= b /2 e (Eq. 2.2.2-2) 

= 5.692/2 = 2.846 in. 

= be/(3-~) (Eq. 2.2.2-1) 

= 5.692/(3-(-0.906)) = 1.457 in. 

The effective widths, b 1 and b2 , of web are defined in Figure 2 

of the Standard. 

b
1

+b
2 

= 1.457 + 2.846 = 4.303 in. 

Compression portion of the web calculated on the basis of the 

effective section = y - 0.154 = 3.141 - 0.154 = 2.987 in. cg 

Since b
1
+b

2 
= 4.303 in. > 2.987 in., b1+b2 shall be taken 

as 2.987 in. This verifies the assumption that the web is 

fully effective. 
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I' 
X 

Actual 

S e 

I x 

Therefore, 

= Ly2+I' -Ly2 
1 cg 

= 110.504 + 15.368 

= 40.877 in. 3 

= I' t x 

= 40.877xO.060 

= 2.453 . 4 
l.Il. 

= Ix/Ycg 

= 2.453/3.141 

= 0.781 in. 3 

= S F 
e Y 

= 0.781x25 

- 8.615(3.141)2 

(Eq . 3. 3 . 1. 1 - 1 ) 

= 19.53 kips-in. = M = 19.70 kips-in. (close enough) 
s 

fav = f (b/w) = 25.0x(1.062/1.471) = 18.05 ksi 

3. Determination of the curling of the compression flange, cf' 

1.565 

:.!16.67cf 

16.67cf 

= 1.625 - 0.06 = 1.565 in. 

= ~0.061tdE/fav ~(100cf/d) (Eq. 2.1.1-1) 

= ~0.061(0.06)(6)(27000)/18.05 ~100cf/6 
= 5.731 :.!16.67cf 

= 1. 565/5.731 

= (1.565/5.731)4 

= (1.565/5.731)4/16.67 = 0.00033 in. 
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EXAMPLE 13.2 FLANGE CURLING CASD) 

Rework Example 13.1 by using the ASD method. 

Solution: 

1. Determination of the allowable bending moment, M : a 

The nominal bending strength, M , is obtained from Example 13.1 
n 

as follows: 

M = S F = 0.711 x 50 = 35.55 kips-in. 
n e y 

Therefore, the allowa1be moment: 

n = 1. 85 

M = 35.55/1.85 = 19.22 kips-in. a 

2. Determination of the average stress in compression flange, f av ' at 

the allowable moment M : a 

Assume that a compression stress of f=25 ksi in the top fiber of 

the section and that the web is fully effective. Therefore, from 

the calculation of Example 13.1.(2): 

M = S f = 0.781x25 
e 

= 19.53 kips-in. = Ma = 19.22 kips-in. (close enough) 

Therefore, 

f = f (b/w) = 25.0x(1.062/1.471) = 18.05 ksi av 

3. Determination of the curling of the compression flange, c f . 

t 

d 

1.565 

= 1.625 - 0.06 = 1.565 in. 

= 0.06 

= 6 

= ~0.061(0.06)(6)(27000)/18.05 ~100cf/6 

= 5.731 :j16.67cf 
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:j16.67C f 

16.67c
f 

c
f 

= 1. 565/5.731 

= '(1.565/5.731)" 

= (1.565/5.731)"/16.67 = 0.00033 in. 
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EXAMPLE 14.1 SHEAR LAG (LRFD) 

For the tubular section shown in Fig. 14.1, determine the design flexural 

strength, ~bMn' if the member is to be used as a simply supported beam 

and to carry a concentrated load at midspan. Assume that the span length 

is 3 ft. and the section material is Type 316, 1/4-Hard, stainless steel. 

0.3 23"-
7.354" 

-0 .161" 

;;- Compression flange in bending 
0.. 

-0 .162" 
yt 

I 

:= --+-" • .,.. 
C"I .. 
..: x 

8.000 

- I 

I - r--t = 0.135" 

~R'" 3/16" 
~ T~ flange in bending ~ 

8.000" 

Figure 14.1 Section for Example 14.1 

Solution: 

1. Determination of the nominal moment, M , based on initiation of 
n 

yielding (Section 3.3.1.1). 

o Properties of 90 corners: 

r = R + t/2 = 3/16 + 0.135/2= 0.255 in. 

Length of arc, u = 1.57r = 1.57 x 0.255 = 0.400 in. 

Distance of c.g. from center of radius, 
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c = 0.637r = 0.637 x 0.255 = 0.162 in. 

Computation of I : x 

For the first approximation, assume a compression stress of 

f = F = 50 ksi in the compression flange, and that the webs 
y 

are fully effective. 

Compression flange: k = 4.00 (stiffened compression element 

supported by a web on each longitudinal edge) 

wit = 7.354/0.135 = 54.47 < 400 OK (Section 2.1.1-(1)-(ii)) 

p 

b 

= (1.052/.jk)(w/t).jf/Eo 

= (1.052/..j4:00)(54.47).j50/27000 = 1.233 > 0.673 

= (1-0.22/A)/A 

= (1-0.22/1.233)/1.233 = 0.666 

= pw 

= 0.666 x 7.354 

= 4.898 in. 
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Effective section properties about x axis: 

y 
L Distance 

Element Effective from 
Length Top Fiber 
(in. ) (in. ) 

Webs 14.708 4.000 
Upper Corners 0.800 0.161 
Lower Corners 0.800 7.839 

Compression Flange 4.898 0.068 
Tension Flange 7.354 7.933 

Sum 28.560 

Distance from top fiber- to x-axis is 

y = 123.904/28.560 = 4.338 in. cg 

I I 

1 
About 

Own 
Ly Ly2 Axis 

(in. 2
) (in. 3

) (in. 3
) 

58.832 235.328 66.286 
0.129 0.021 
6.271 49.160 
0.333 0.023 

58.339 462.806 

123.904 747.338 66.286 

Since the distance of top compression fiber from neutral axis is 

greater than one half the beam depth, a compression stress of 50 ksi 

will govern as assumed (i.e., initial yielding is in compression). 

To check if webs are fully effective (Section 2.2.2): 

fl = ((4.338-0.323)/4.338)x50 = 46.28 ksi(compression) 

f2 = -((3.662-0.323)/4.338]x50 = -38.49 ksi(tension) 

~ = £2/£1 = -38.49/46.28 = -0.832 

k = 4+2(1-~)l+2(1-~) 

= 4+2 (1-(-0.832))3+2 [1-(-0.832)) 

= 19.961 

h = w = 7.354 in., h/t = w/t = 7.354/0.135 = 54.47 

hit = 54.47 < 200 OK (Section 2.1.2-(1)) 
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" = (1.052/--/19.961 )(54.47)--/46.28/27000 = 0.531 < 0.673 

b e = w 

= 7.354 in. 

= b /2 e 

= 7.354/2 = 3.677 in. 

= b e/(3-4') 

= 7.354/(3-(-0.843») = 1.914 in. 

(Eq. 2. 2 . 1- 1) 

(Eq. 2.2.2-2) 

(Eq . 2 . 2 . 2 - 1 ) 

Compression portion of the web calculated on the basis of the 

effective section = y - 0.323 = 4.338 - 0.323 = 4.015 in. cg 

Since b 1+b2 = 5.591 in. > 4.015 in., b1+b2 shall be taken 

as 4.015 in .. This verifies the assumption that the webs are 

fully effective. 

I I = Ly2+1 I -Ly2 
x 1 cg 

= 747.338 + 66.286 - 28.560(4.338)2 

= 276. 175 in. 3 

Actual I = II t 

S e 

M 
n 

x x 

= 276.175xO.135 

= 37 .284 in." 

= Ix/Ycg 

= 37.284/4.338 

= 8.595 • 3 
l.Il. 

= S F = 8.595 x 50 e y 

= 429.75 kips-in. 

2. Determination of the nominal moment, M , based on shear lag 
n 

consideration (Section 2.1.1(3». 
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wf = (8-2xO.135)/2 = 3.865 in. 

L/wf = 3x12/3.865 = 9.314 < 30 

Because the L/wf ratio is less than 30, and the member carries a 

concentrated load, consideration for shear lag is needed. 

From Table 1 of the Standard: 

L/wf = 10, effective design width/actual width = 0.73 

L/wf = 8, effective design width/actual width = 0.67 

L/wf = 9.314, effective design width/actual width = ? 

(10-9.314)/(9.314-8) = (0.73-x)/(x-0.67) 

O. 686(x-0. 67) = 1.314(0.73-x) 

x =-0.709 

Therefore, the effective design widths of compression and tension 

flanges between webs are 

0.709(8-2xO.135) = 5.481 in. 

b = 5.481-2R = 5.481-2(3/16) = 5.106 in. 

Because of symmetry and assume webs are fully effective, 

y = 4.000 in. cg 

Effective section properties about x-axis: 

L = 28.560-4.898-7.354+5.106x2 = 26.520 in. 

Ly2 = 747.338-0.023-462.806+5.106(0.068)2+5.106(7.933)2 

= 605.866 in. 3 

I'l = 66.286 in. 3 

To check if webs are fully effective: 
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fl = (4.000-0.323)/4.000)x50 = 45.96 ksi 

f2 = -45.96 ksi 

~ = -45.96/45.96 = -1.000 

k = 4+2(1-(-1.000))3+2(1-(-1.000)) = 24.000 

A = (1·.052/J2i;-:O)(54.47).j45.96/27000 = 0.483 < 0.673 

b = 7.354 in. e 

b2 = 7.354/2 = 3.677 in. 

b1 = 7.354/(3-(-1.000)) = 1.839 in. 

Compression portion of the web calculated on the basis 

of the effective section = 4.000 - 0.323 = 3.677 in .. 

Since b1+b2 = 5.516 in.- > 3.677 in., b1+b2 shall be 

taken as 3.677 in .. This verifies the assumption that 

the webs are fully effective. 

II = 605.866 + 66.286 - 26.520(4.000)2 
x 

= 247.832 in. 3 

Actual I = 247.832 x 0.135 
x 

= 33.457 in. ~ 

S = 33.457/4.000 = 8.364 in. l 

e 

M = 8.364 x 50 
n 

= 418.20 kips-in. < 429.75 kips-in. (initial yielding) 

3. Determination of the design flexural strength, ~bMn. 

M = 418.20 kips-in. 
n 

= 0.90 

= 0.90 x 418.20 = 376.38 kips-in. 
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EXAMPLE 14.2 SHEAR LAG (ASD) 

Rework Example 14.1 to determine the allowable bending moment for the tubular 

section. 

Solution: 

1. Determination of the nominal moment, M , based on initiation of 
n 

yielding 

M 
n 

= S F = 8.595 x 50 e y 

= 429.75 kips-in. (from Example 14.1) 

2. Determination of the nominal moment, M , based on shear lag 
n 

consideration. 

wf = (8-2xO.135)/2 = 3.865 in. 

L/wf = 3x12/3.865 = 9.314 < 30 

Because the L/wf ratio is less than 30, and the member carries a 

concentrated load, consideration for shear lag is needed. 

S e 

M n 

= 33.457/4.000 = 8.364 in.' (from Example 14.1) 

= 8.364 x 50 

= 418.20 kips-in. < 429.75 kips-in. (initial yielding) 

3. Determination of the allowable bending strength, Ma. 

M 
n 

n 

= 418.20 kips-in. 

= 1.85 

= 418.20/1.85 = 226.05 kips-in. 
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EXAMPLE 15.1 C-SECTION (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design axial strength for C-section as shown in Figure 15.1. Use Type 304 

stainless steel, 1j4-Hard. 

0.293"-
b- 1414" 

f-- 0.293" 

l 
0.293" '(f!:'. R = 3/16" 

~ 
C'= O.S" 

Iy 
,_I.-

- ~0.105· 

I 

A' = 3.5"' 
a= .t- x 2.914· - i----- --.----

I 

I 
c= O.60T 

O. 9" 

0.293" 1"- ...I. 

1 B' = 2" 

Figure 15.1 Section for Example 15.1 

Given: 

1. Section: 3.5" x 2.0" x 0.105" channel with stiffened flanges. 

2. K L x x 

Solution: 

The following equations used for computing the sectional properties 

for channel with lips are based on the information in Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 
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1. Basic parameters used for calculating the section properties: 

r = R+t/2 = 3/16+0.105/2 = 0.240 in. 

From the sketch a = 2.914 in., b = 1.414 in., c = 0.607 in., 

A' = 3.5 in., B' = 2.0 in., c' = 0.9 in., 

a = 1.00 (Since the section has lips) 

a = A'-t = 3.5-0.105 = 3.395 in. 

b = B'-(t/2+at/21 = B'-t = 2-0.105 = 1.895 in. 

c = alC'-t/2) = C'-t/2 = 0.9-0.105/2 = 0.848 in. 

u = 1.57r = 1.57 x 0.240 = 0.377 in. 

2. Area: 

A = t(a+2b+2u+a(2c+2u)i = t(a+2b+2c+4uJ 

= 0.10S(2.914+Zx1.414+ZxO.607+4xO.377) 

= 0.889 in. 2 

3. Moment of inertia about x-axis: 

I = Zt{0.0417a3+b(a/Z+r)2+u(a/Z+0.637r)2+0.149r3 
x 

+a (0. 0833c3+( c/4 )(a-c)2+u(a/Z+0. 637r)2+0. 149r3JJ 
= 2t lo. 0417a3+b(a/2+r)2+2u(a/2+0. 637r)2+0. 298r3 

+0.0833c3+(c/4)(a-c)2) 

= ZxO.l05(0.0417(2.914)3+1.414(Z.914/Z+0.Z40)2 

+2xO.377(2.914/2+0.637xO.240)2+0.298(0.240)3 

+0.0833(0.607)3+(0.607/4)(2.914-0.607)2) 

= 1.657 in.4 
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4. Distance from centroid of section to centerline of web: 

x = (2t/A){b(b/2+r)+u(O.363r)+a(u(b+l.637r)+c(b+2r»)1 

= [(2xO.105)/0.889){1.414(1.414/2+0.240)+0.377(0.363xO.240) 

+0.377(1.414+1.637xO.240)+0.607(1.414+2xO.240)} 

= 0.757 in. 

5. Moment of inertia about y-axis: 

+u(b+l. 637r)2+0 . 149r3J} -A(X)2 

= 2xO.10511.414(1.414/2+0.240)2+0.0833(1.414)3 

+0.356(0.240)3+0.607(1.414+2xO.240)2 

+0.377(1.414+1.637xO.240)2+0.149(0.240)~-0.889(0.757)2 

= 0.524 in. 4 

6. Distance from shear center to centerline of web: 

m = (bt/12I ) (6c(a)2+3b(a)2-8(~)3) 
x 

= (1.895xO.l05)/(12xl.657))(6xO.848(3.395)2 

+3xl.895(3.395)2-8(0.848)3) 

= 1.194 in. 

7. Distance from centroid to shear center: 

x = -(x+m) = -(0.757+1.194) 
o 

= -1.951 in. 

8. St. Venant torsion constant: 

J = (t3/3)(a+2b+Zu+aCZc+Zu») 

= (CO.I0S)3/3)(Z.914+Zxl.414+4xO.377+2xO.607) 
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= 0.003266 in." 

9. Warping Constant: 

+2m(2-;( c-8)+1,(2c-38))) + l(b)2(a)2 /6) ( 3~+b)( 4~+a) -6( ~)2) 

- (m2(a)4 )/4 ! 
= ( 0 .105)2 /0.889) {CO. 75 7xO. 889x(3. 395)2 )/0.105 [0.895)2/3 

+(1.194)2-1.194x1.895J+0.889/(3xO.105) (1.194)2(3.395)3 

+(1.895)2(0.848)2(2xO.848+3x3.395») 

-(1.657x(1.194)2)/0.105(2x3.395+4xO.848) 

+ (1.194(0.848-)2) /3 8( 1. 895 )2(0.848) 

+2x1.194(2xO.848(0.848-3.395)+1.895(2xO.848-3x3.395») 

+ (1.895)2(3.395)2/6) (3xO.848+1.895)(4xO.848+3.395) 

-6( 0.848)2)- ( 1.194 )2(3.395 )"/4 J} 

= 2.050 in. 6 

10. Radii of gyration: 

r 
y 

= J(r /A) x 
= j(1.657/0.889) = 1.365 

= /(0.524/0.889) = 0.768 

(K L )/r = (6x12)/0.768 = 93.75 < 200 y y y 

in. 

in. 

r 2 = r 2+r 2+X 2 = (1.365)2+(0.768)2+(-1.951)2 
o x y 0 

= 6.259 in. 2 

11. Torsional-flexural constant: 

= 1-(x /r )2 o 0 

= 1-(-1.951)2/6.259 
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= 0.392 

12. Determination of F : (Section 3.4 of the Standard) 
n 

For this singly symmetric section (x-axis is the axis of 

symmetry), F shall be taken as the smaller of either n 

(Eq. 3.4.1-1) or (Eq. 3.4.3-1): 

a. For Flexural Buckling: 

= ( rr2E ) I ( K L I r ) 2 
t Y Y Y 

(Eq. 3.4.1-1) 

In the determination of the flexural buckling stress, it is 

necessary to select a proper value of Et from Table A13 or 

Figure All in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=20 ksi. 

From Table A13, the corresponding value of Et is found to 

be equal to 27000 ksi. Thus, 

= 30.32 ksi > assumed stress f=20 ksi 

Because the computed stress is larger than the assumed value, 

the further successive approximation is needed. 

Assume f=22.7 ksi, and 

Et = 20250 ksi 

(F
n
)l = (rr2x20250)/(93.75)2 

= 22.74 ksi = assumed stress f=22.7 ksi OK 

Alternatively, the tangent modulus Et can be determined by using 

the Modified Ramberg-Osgood equation as given in Appendix B of the 

Standard as follows: 

= (E F )/(F +0.002nE (f/F )n-l) 
o y y 0 Y (Eq. B-2) 
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From Table B in the Standard, the coefficient n is equal to 4.S8 

for Type 304, 1/4-Hard stainless steel. Thus, for an assumed 

compression stress of f = 23.1 ksi, 

Et = (27000xSO)/(SO+0.002x4.S8x27000x(23.1/S0)3.58] 

= 20S84 ksi 

Therefore, 

= 23.11 ksi = assumed stress f=23.1 ksi OK 

It is found that for this example, the flexural buckling stress 

determined by using Eq. B-2 is apporximate1y 2 % larger than that 

by using the tabulated value. 

b. For Torsional-Flexural Buckling: 

where 

a = (n2E )/(K L /r )2J(E
t

/E ) ex 0 xx x 0 

at = (1/ CAro2)) ~oJ+(TT2EoCw)/(KtLt)2J(Et/Eo) 

G = 10S00 ksi (Table A4 of the Standard) 
o 

(Eq. 3.4.3-1) 

CEq. 3.4.3-3) 

(Eq. 3.4.2-1) 

Similar to the determination of flexural buckling stress, the 

plasticity reduction factor of Et/Eo depends on the assumed 

stress value. For the first approximation, assume a buckling 

stress of f=20 ksi. The value of Et/Eo is found to be 

equal to 1.0, which is obtained from Table AlO or Figure A7 

of the Standard. Thus, 

a
ex 

= L(n2x27000)/(6x12/1.36S)2)x(1.0) 

= 9S.78 ksi 

at = (l/(O.889x6.2S9))(10S00xO.003266 + n2x27000x2.0S/(6x12)2)x(1.0) 

: 25.10 ksi 204 



Therefore, 

(FJ.2 = (1/213)(Ca +at)-JCa +at )2-4 I3a at) n ex ex ex (Eq. 3.4.3-1) 

= (1/C2xO.392)) (95.78+25.10) 

- /(95.78+25 .10)2-4xO. 392x95. 78x25 .10 ] 

= 21.37 ksi > assumed value f=20 ksi 

For the second approximation, assume a stress of f=20.46 ksi, and 

Et/Eo = 0.957. 

CFd2 = 20.46 ksi = assumed value OK 

The plasticity reduction factor Et/Eo can be alternatively 

determined by using the Ramberg-Osgood equation given in the 

Appendix B of the Standard as follows: 

Et/E = F /(F +0.002nE (f/F )n-1) o y y 0 y (Eq. B-5) 

From Table B in the Standard, the coefficient n is equal to 4.58 

for Type 304, 1/4-Hard stainless steel: Thus, for an assumed 

compression stress of f = 18.6 ksi, 

Et/Eo = 50/(50+0.002x4.58x27000x(18.6/50)3.5S) 

= 0.875 

Therefore, 

(FJ2 = 21.37x(0.875)= 18.7 ksi = assumed value OK 

(The lateral buckling stress determined by using Eq. B-5 is 

approximately 8.6 % less than that computed by using Table A10.) 

Then, F should be the smaller of (F )1 and (F )2. n n n 

Fn = 20.46 ksi (based on tabulated Et/Eo value) 

13. Determination of A : e 

205 



Flanges: 

d = 0.607 in, 

Is = d3t/12 = (0.60 7)3(0.105)/12 

= 0.001957 jJl.1 

D = 0.9 in. 

w = 1.414 in. 

D/w = 0.9/1.414 ~ 0. 636 < 0.80 

S = 1.2~ f == F o n (Eq. 2.4-1) 

The initial modulu~ of elasticity, E , for Type 301 stainless 
o 

steel is obtained tro~ Table A4 of the Standard, i.e., E = 27000 ksi. 
o 

S = 1.28~ = 46.50 

wit = 1.414/0.105 ~ 13.47 < S/3 = 15.50 

= 0 Cno ed~~ stiffener needed) 

b = w 

= 1.414 in. (flanges fully effective) 

wit = 13.47 < ~O (section 2.1.1-(1)-(i)) 

Web: 

w = 2.914 in,) k = 4.00 

= (1.052/Jk)(~/t)~, f = F o n 

= C1.052/~)(2.914/0.105)J20.46/27000 

= 0.402 < ().6n 

b = w 

= 2.914 in, (web fully effective) 

(Eq. 2.4.2-1) 

(Eq. 2.4.2-2) 

CEq. 2.4.2-3) 

(Eq. 2. 2 . 1-4 ) 

CEq. 2.2.1-1) 

wit = 2.914/0,~OS ~ 27.75 < 400 (Section 2.1.1-(1)-Cii)) 

Lips: 

d = 0.607 i~. 

k = 0.50 (u~~tif£ened compression element) 
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d s 
= d' 

s 

A = (1.052/JO.50)(0.607/0.105)/20.46/27000 

= 0.237 < 0.673 

d' = d = 0.607 in., d = 0.607 in. s s 

d/t = 5.78 < 50 (Section 2.1.1-(1)-(iii)) 

(Eq. 2.4.2-4) 

Since flanges, web, and lips are fully effective, the effective 

area is the same as the full section area, i.e., 

A = A = 0.889 in. 2 

e 

14. Determination of ~ P : (Section 3.4 of the Standard) c n 

P n = 

= 

= 

= 

= 

= 

A F e n 

0.889 x 20.46 

18.19 kips 

0.85 

0.85 x 18.19 

15.46 kips 
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EXAMPLE 15.2 C-SECTION (ASD) 

Determine the allowable axial load for C-section used in Example 15.1. 

Solution: 

1. Basic parameters used for calculating the section properties: 

See Example 15.1 for section properties of C-section. 

2. Determination of F 
n 

The following is the result obtained from Example 15.1. 

a. For Flexural Buckling: 

= (rr2E
t

) / (K L /r )2 
y Y Y 

(Fn)l = (rr2x20250)/(93.75)2 (Et is based on Table A13) 

= 22.74 ksi 

b. For Torsional-Flexural- Buckling: 

where 

a ex = ((rr2Eo)/(KxLx/rx)2)(Et/Eo) 

at = (1/(Aro2)) (GoJ+(rr2Eo Cw) /(Kt Lt )2) (Et/Eo) 

Go = 10500 ksi (Table A4 of the Standard) 

= (1/213) rea +at )- /fa +at )2- 4 I3a at1 I..! ex AJ\ ex ex 

= [1/(2xO.392») ((95.78+25.10) 

-~(95.78+25.10)2-4xO.392x95.78x25.l0) x(0.957) 

(Eq. 3.4.1-1) 

(Eq. 3.4.3-1) 

(Eq. 3.4.3-3) 

(Eq. 3.4.2-1) 

(Eq. 3.4.3-1) 

= 20.46 ksi (controls) (Et/Eo is based on Table AID) 

Then, Fn should be the smaller of (Fn)l and (Fn)2' 

F = 20.46 ksi 
n 

3. Determination of A : e 

The effective area is the same as the full section area, i.e., 

A = A = 0.889 in.' e 
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4. Determination of P : a 

p = A F CEq. 3.4-1) n e n 

= 0.889 x 20.46 

= 18.19 kips 

0 = 2.15 

P = P /0 = 18.19/2.15 a n 

= 8.46 kips 
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EXAMPLE 16.1 C-SECTION w/WIDE FLANGE (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine thl 

design axial strength for C-section as shown in Figure 16.1 Use Type 30, 

stainless steel, 1/4-Hard. 

0.293"_ - r-- 0.293" 
b- 2.914" 

+ 
0.293" 

",; 

~A=3/16" " .. 
CI

= 0.9" 

AI= 3. 

ly 
,_ ..... 

- "--0.105" 
a= 

I 

5" 2.914" ----+-----~ 
f 

I 
jc-0.607" 

O. 9" 

0.293" ~ /, 

i B 1=3.5" 

Figure 16.1 Section for Example 16.1 

Given: 

1. Section: 3.5" x 3.5" x 0.105" channel with stiffened flanges. 

2. K L = K L = KtLt = 6 ft. x x Y y 

Solution: 

The following equations used for computing the sectional properties 

for channel with lips are based on the information in Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 
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1. Basic parameters used for calculating the section properties: 

r = R+t/2 = 3/16+0.105/2 = 0.240 in. 

From the sketch a = 2.914 in. , b = 2.914 in. , c = 0.607 in. , 

AI = 3.5 in. , B' = 3.5 in. , C l = 0.9 in. , 

a = 1.00 (for section has lips) 

- = A'-t 3.5-0.105 3.395 in. a = = 

-b = B'-t = 3.5-0.105 = 3.395 in. 

- C I -t/2 0.9-0.105/2 0.848 in. c = = = 

u = 1.57r = 1.57 x 0.240 = 0.377 in. 

2. Area: 

A = t(a+2b+2c+4uJ 

= 0.105 (2.914+2x2.914+2xO.607+4xO.377) 

= 1.204 in. 2 

3. Moment of inertia about x-axis: 

I = 2tlO.0417a3+b(a/2+r)2+2u(a/2+0.637r)2+0.298r3 

x 

+0.0833cl+(c/4)(a-c)2) 

= 2xO.105(0.0417(2.914)3+2.914(2.914/2+0.240)2 

+2xO.311(2.914/2+0.631xO.240)2+0.298(0.240)l 

+0.0833(0.607)3+(0.607/4)(2.914-0.607)2) 

= 2.564 in.~ 

4. Distance from centroid of section to centerline of web: 

x = (2t/A)(b(b/2+r)+u(0.363r)+u(b+l.631r)+c(b+2r)] 
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= (2xO.105)/1.204J(2.914(2.914/2+0.240)+0.377(0.363xO.240) 

+0.377(2.914+1.637xO.240)+0.607(2.914+2xO.240») 

= 1.445 in. 

5. Moment of inertia about y-axis: 

+u(b+1.637r)2)-A(x)2 

= 2xO.105(2.914(2.914/2+0.240)2+0.0833(2.914)3 

+O.505(O.240)3+0.607(2.914+2xO.240)2 

+O.377(2.914+1.637xO.240)2J-l.204(1.445)2 

= 2.017 in.4 

6. Distance from shear center to centerline of web: 

m = (bt/121 ) (6c(a)2+3b(a)2-8( C)3 J 
x 

= (3. 395xO .105)/(12x2 .564)) (6xO. 848(3.395)2 

+3x3.395(3.395)2_8(O.848)3) 

= 1.983 in. 

7. Distance from centroid to shear center: 

xo = -(x+m) = -(1.445+1.983) 

= -3.428 in. 

8. St. Venant torsion constant: 

J = (t3/3) (a+2b+2c+4u) 

= (0.105)3/31(2.914+2x2.914+2xO.607+4xO.377) 

= 0.004424 in." 
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9. Warping Constant: 

+2m(2c( c-a)+b( 2c-3a))) + (b)2(a)2 /6) ( 3c+b) (4~+a) -6( ~)2 

-m2 (s)"/4 } 

= (0.105)2/1. 204) {(I. 445x1. 204x(3. 395)2/0.105) [(3.395)2/3 
. 

+(1.983)2-1.983x3.395 +1.204/(3xO.105) (1.983)2(3.395)3 

+(3.395)2(0.848)2(2xO.848+3x3.395)J 

- (2. 564x( 1. 983)2/0.105 (2x3. 395+4xO. 848) 

+ 1. 983(0.848)2/31 (8(3.395 )2(0.848) 

+2X1.983(2xO.848(0.848-3.395)+3.395(2xO.848-3x3.395))) 

+(3.395)2(3.395)2/6) (3xO.848+3.395)(4xO.848+3.395) 

-6(0.848)2)- (0.983)2(3.395)"/4)} 

= 7 .572 in.' 

10. Radii of gyration: 

r = ~(I /A) = V(2.564/1.204) = 1.459 in. x x 

r = .y{I /A) .= J(2.017/1.204) = 1.294 in. y y 

(K L )/r = (6x12)/1.294 = 55.64 < 200 
Y Y Y 

r 2 = r 2+r 2+X 2 = (1.459)2+(1.294)2+(-3.428)2 
o X Y 0 

= 15.554 in. 2 

11. Torsional-flexural constant: 

= 1-(-3.428)2/15.554 

= 0.244 
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12. Determination of F : (Section 3.4 of the Standard) 
n 

For this singly symmetric section (x-axis is the axis of 

symmetry), F shall be taken as the smaller of either 
n 

(Eq. 3.4.1-1) or (Eq. 3.4.3-1): 

a. For Flexural Buckling: 

(Eq . 3. 4 . 1- 1 ) 

In the determination of the flexural buckling stress, it is 

necessary to select a proper value of Et from Table A13 or 

Figure All in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=32.0 ksi. 

From Table A13, the corresponding value of Et is found to 

be equal to 11300 ksi. Thus, 

= 36.02 ksi > assumed stress f=32.0 ksi 

Because the computed stress is larger than the assumed value, 

further successive approximations are needed. For the second 

approximation, assume f=33.77 ksi, and 

Et = 10600 ksi 

(Fn)1 = (rr2x10600)/(55.64)2 

= 33.79 ksi = assumed stress f=33.77 ksi OK 

b. For Torsional-Flexural Buckling: 

= (1/2P) (0 +Ot)-j(a +Ot)2_4PO at) ex ex ex 

where 

°ex = (n2E )/(K L /r )2)(E
t
/E ) 

o x x x 0 

= (1/(Ar 2»)(G J+(n2E C )/(Kt Lt )2](E
t

/E ) o 0 0 w 0 

G = 10500 ksi (Table A4 of the Standard) 
o 
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Similar to the determination of flexural buckling stress, the 

plasticity reduction factor of Et/Eo used for determining 

the torsional-flexural buckling stress depends on the assumed 

stress value. For the first approximation, assume a buckling 

stress of f=20 ksi. The value of Et/Ea is found to be 

equal to 1.0, which is obtained from Table AI0 or Figure A7 

of the Standard. Thus, 

a = (CTT2x27000)/C6xI2/1.459)2]xC1.0) ex 

= 109.42 ksi 

at = (I/C1.204xI5.554)J(10500XO.004424 + TT2X27000x7 .572/C6x12)2) x(1.0) 

= 23.27 ksi 

Therefore, 

(FJz = Cl/2(3)(Ca +at)-jCa +at )2-4{3a at) ex ex ex CEq. 3.4.3-1) 

= (1/C2xO.244)) (009.42+23.27) 

-JCI09.42+23.27)2-4xO.244xl09.42x23.27 J 

= 19.92 ksi 

Because the computed stress CF )2 is less than the assumed . n 

value of f=20 ksi, the second approximation will be assumed that 

a stress of f=19.92 ksi and Et/Eo = 1.0. Thus, 

(FJ2 = 19.92 ksi OK 

Fn should be the smaller of (Fn)1 and (Fn)2. 
, 

Fn = 19.92 ksi 

13. Determination of A : e 

Flanges: 

d = 0.607 in. 

Is = d3t/12 = (0.607)3(0.105)/12 
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= 0.001957 • 4 
l.Il • 

D = 0.9 in. 

w = 2.914 in. (for flange) 

D/w = 0.9/2.914 = 0.309 < 0.80 

S = 1.2sjEo/f, f = F n (Eq. 2.4-1) 

The initial modulus of elasticity, E , for Type 304 stainless o 

steel is obtained from Table A4 of the Standard, 

S = 1.28J27000/19.92 = 47.12, S/3 = 15.71 

w/t = 2.914/0.105 = 27.75 

S/3 < w/t < S 

= 399to4 {(w/t)/SJ-0.33}l 

= 399(0.105)1 (27.75/47.12)-0.33)3 

= 0.000842 in. o4 < I = 0.001957 in. o4 

s 

= 2-(I /1 ) ~ 1.0 s a 

= 2-(0.001957/0.000842) = -0.32 < 1.0 

= I /I ~ 1. 0 s a 

I /1 = (0.001957/0.000842) = 2.32 > 1.0 s a 

C2 = 1.0 

0.25 < D/w = 0.309 < 0.8 

k = [4.82-5(D/w)](I /I )n+0.43~5.25-5(D/w) s a 

n = 1/2 

i. e. , 

(4.82-5(0.309)J(0.001957/0.000842)1/2+0 . 43 = 5.414 

5.25-5(0.309) = 3.705 < 5.414 

k = 3.705 

= (1.052//k)(w/t}Jf/E, fO= F o n 

E = 27000 ks] 
o 

(Eq. 2.4.2-6) 

(Eq. 2.4.2-8) 

(Eq. 2.4.2-7) 

(Eq. 2.4.2-9) 

(Eq. 2.2.1-4) 

= (1.052/J3.705)(27.75)J19.92/27000 = 0.412 < 0.673 
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b = w (Eq. 2.2.1-1) 

= 2.914 in. (flanges fully eff~ctive) 

wIt = 27.75 < 90 (Section 2.1.1-(1)-(i» 

Web: 

w = 2.914 in., k = 4.00 

A = (1.052/{4)(2.914/0.105)/19.92/27000 

= 0.397 < 0.673 

b = w = 2.914 in. (web fully effective) 

wIt = 2.914/0.105 = 27.75 < 400 (Section 2.1.1-(1)-(ii» 

Lips: 

d = 0.607 in. 

k = 0.50 (unstiffened compression element) 

A = (1.052//0.50)(0.607/0.105)/19.92/27000 

= 0.234 < 0.673 

d' = d = 0.607 in. 

d s 

s 

= d I (I /1 ) ~ d' s s a s 

= 0.607(2.32) = 1.408 > d's = 0.607 in. 

(Eq. 2. 4 . 2 - 11 ) 

d = 0.607 in. (Lip fully effective in computing the 
s 

overall effective area) 

d/t = 5.78 

Since flanges, web, and lips are fully effective, the effective 

area is the same as the full section area, i.e., 

A = A = 1.204 in. 2 

e 

14. Determination of ~ P : (Section 3.4 of the Standard) c n 

P 
n 

= A F e n 
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= 1. 204 x 19.92 

= 23.98 kips 

<l>c = 0.85 

<l>cPn = 0.85 x 23.98 

= 20.38 kips 
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EXAMPLE 16.2 C-SECTION w/WIDE FLANGE CASD) 

Determine the allowable axial load for C-section used in Example 16.1. 

Solution: 

1. Basic parameters used for calculating the section properties: _ 

See Example 16.1 for section properties of C-section. 

2. Determination of F n 

The following results are obtained from Example 16.1. 

a. For Flexural Buckling: 

(Fn)1 = (rr2Et)/(KyLy/ry)2 

(Fn)1 = (rr2x10600)/(55.64)2 

= 33.79 ksi 

b. For Torsional-Flexural-Buckling: 

(F
n

)2 = (1/2~)(a +at)-j(a +at)2-4~a at] ex ex ex 

where 

a ex = (rr2Eo) / (KxLx/ r x)2 }(Et/Eo) 

at = 1/(Ar 2) (G J+(rr2E C )/(Kt Lt )2)(Et /E ) o 0 0 w 0 

G = 10500 ksi (Table A4 of the Standard) 
o 

(Fn~ = (1/2~)(aex+at)-j(aex+at)2-4~aexatJ 
= (1/(2xO.244))(109.42+23.27) 

-J(109.42+23.27)2_4xO.244x109.42x23.27 J 

= 19.92 ksi (control) 

Then, Fn should be the smaller of (Fn)1 and (Fn)2· 

Fn = 19.92 ksi 

3. Determination of Ae: 

(Eq. 3.4.1-1) 

(Eq. 3.4.3-1) 

(Eq. 3.4.3-3) 

(Eq. 3.4.2-1) 

(Eq. 3.4.3-1) 

The effective area is the same as the full section area, i.e., 

Ae = A = 1.204 in.2 (from Example 16.1) 
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4. Determination of P : a 

P 
n 

= A F e n 

= 1.204 x 19.92 

= 23.98 kips 

Q = 2.15 

Pa = Pn/Q = 23.98/2.15 

= 11. 15 kips 

CEq. 3.4-1) 
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EXAMPLE 17.1 I-SECTION (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine th, 

design axial strength for the I-section as shown in Figure 17.1. Use Typ' 

409 stainless steel. y 
B'=1.50 " 

b=1.178" 
, 

v~ 
h 

R =3/16" 

A'=6.00 " -- - ---- x 
a=5.355" 

t=0.135" 

\ 

~ 

c=1.178" 

Figure 17.1 Section for Example 17.1 

Given: 

1. Section: 6.0" x 3.0" x 0.135" I-section with no lips. 

2. K L = 14 ft., K L = 7.0 ft. x x Y y 

Solution: 

The following equations used for computing the sectional properties for 

I-section with no lips are based on the information in Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 
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1. Basic parameters used for calculating the sectional properties: 

r = R+t/2 = 3/16+0.135/2 = 0.255 in. 

From the sketch, A' = 6.0 in., B' = C' = 1.5 in. 

a = 1.00 (For I-section) 

a = A'-[r+t/2+(r+t/2)] 

= 6.0-(0.255+0.135/2+0.255+0.135/2) = 5.355 in. 

a = A'-(t/2+at/2) = 6.0-0.135 = 5.865 in. 

b = c = B'-(r+t/2) = 1.5-(0.255+0.135/2) = 1.178 in. 

b = c = B'-t/2 = 1.5-0.135/2 = 1.433 in. 

u = 1.57r = 1.57 x 0.255 = 0.40 in. 

2. Area: 

A = t (2a+2b+2u+a(2c+2u)] 

= 0.135(2x5.355+2x1.178+2xO.40+2x1.178+2xO.4) 

= 2.298 in. 2 

3. Moment of inertia about y-axis: 

I = 2t {b(b/2+r+t/2)2+0. 0833b3+u( O. 363r+t/2)2+0. 149r3 
y 

+a (c( c/2+r+t/2)2+0. 0833b3+u( O. 363r+t/2)2+0. 149r3J} 

= 2tx2 (b(b/2+r+t/2)2+0. 0833b3+u(0. 363r+t/2)2+0 . 149r3] 

= 2xO.135x2(1.178(1.178/2+0.255+0.135/2)2+0.0833(1.178)3 

+O.4(0.363xO.255+0.135/2)2+0.149(O.255)3J 

= 0.609 in." 

222 



4. Distance between centroid and flange centerline: 

y = a/2 = 5.865/2 = 2.933 in. 

5. Moment of inertia about x-axis: 

Ix = 2t {O. 358r3+a(a/2+r)2+0. 0833a3+a (u(a+1. 637r)2 

+0. 149r3+c(a+2r)2)]-A(y)2 

= 2xO.135(0.358(0.255)3+5.355(5.355/2+0.255)2+0.0833(5.355)3 

+ 0.4(5.355+1.637xO.255)2+0.149(0.255)3+1.178(5.355+2xO.255)2J 

-2.298(2.933)2 

= 10.66 in." 

6. Distance between shear center and flange centerline: 

m = a/2 = 2.933 in. 

7. Distance between centroid and shear center: 

Y = -(y-m) = 0 
o 

8. St. Venant torsion constant: 

J = (2t3 /3) [a+b+u+a(u+c)) 

= (2x(O .135)' /3J (5.355+1.178+0.4+0.4+1. 178) 

= 0.0140 in." 

9. Warping Constant: 

= (taZ 
/ 12)x4b3 

= (O.135(5.865)2/12)x4(1.433)' 

= 4.55 in.' 
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10. Radii of gyration: 

r = J(I /A) = J(10.66/2.298) = 2.154 in. x x 

ry =,jCIy/A) = #(0.609/2.298) = 0.515 in. 

(KxLx)/rx = (14x12)/2.514 = 66.83 < 200 

(K L )/r = (7x12)/0.515 = 163.1 < 200 (control) y y y 

r 2 = r 2+r 2+y 2 = (2.154)2+(0.515)2+0 
o x Y 0 

= 4.905 in. 2 

11. Determination of F : (Section 3.4 of the Standard) 
n 

For this doubly symmetric section (x-axis is the major axis), 

F shall be taken as the smaller of either 
n 

(Eq. 3.4.1-1) or (Eq. -3.4.2-1): 

a. For Flexural Buckling: 

(Eq. 3. 4 . 1 - 1 ) 

In the determination of the flexural buckling stress, it is 

necessary to select a proper value of Et from Table A14 or 

Figure A12 in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=8 ksi. 

From Table A14, the corresponding value of Et is found to 

be equal to 27000 ksi. Thus, 

= 10.02 ksi > assumed stress f=8 ksi 

Because the computed stress is larger than the assumed value, 

the further successive approximation is needed. After several 

trials, assume f=10.0 ksi, and 

= 26900 ksi 

= (rr2x26900)/(163.1)2 
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= 9.98 ksi N assumed stress f=10.0 ksi OK 

Alternatively, the tangent modulus Et can be determined by using 

the Modified Ramberg-Osgood equation as given in Appendix B of the 

Standard as follows: 

= (E F )/[F +0.002nE (f/F )n-1J o y y 0 y (Eq. B-2) 

From Table B in the Standard, the coefficient n is equal to 9.7 

for Type 409 stainless steel in longitudinal compression. 

Thus, for an assumed compression stress of f = 10.0 ksi, 

(F = 30 ksi, E = 27000 ksi) 
Y 0 

E
t 

= (27000x30)/ (30+0. 002x9. 7x27000x(10. 0/30)8. 7J 
= 26966 ksi 

Therefore, 

= 10.0 ksi = assumed stress f=10.0 ksi OK 

It is found that for this example, the flexural buckling stress 

determined by using Eq. B-2 is practically the same as that 

determoined by using the tabulated value. 

b. For Torsional Buckling: 

(F n) 2 = (1/(Aro2))(GoJ+(rr2EoCw) /(KtLt )2) (Et/Eo) 

G = 10500 ksi (Table A4 of the Standard) 
o 

(Eq. 3.4.2-1) 

Similar to the determination of flexural buckling stress, the 

plasticity reduction factor of Et/Eo depends on the assumed 

stress value. For the first approximation, assume a buckling 

stress of f=8 ksi. The value of Et/Eo is found to be 

equal to 1.0, which is obtained from Table Allor Figure A8 
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of the Standard. Thus, 

(Fn )2 = (1/(2.298x4.905~~0500xO.014 + n2x27000x4.555/(7x12)2]x(1.0) 

= 28.3 ksi > 8 ksi NG 

After several trials, assume a stress of f=19.65 ksi, and 

Et/Eo = 0.694. 

(Fn )2 =~/(2.298x4.905~~0500xO.014 + n2x27000x4.555/(7x12)2)x(O.694) 

= 19.64 = assumed value OK 

The plasticity reduction factor Et/Eo can be alternatively 

determined by using the Ramberg-Osgood equation given in the 

Appendix B of the Standard as follows: 

Et/E = F I(F +0.002rtE (f/F )n-1] o y y 0 y (Eq. B-5) 

From Table B in the Standard, the coefficient n is equal to 9.7 

for Type 409 stainless steel. Thus, for an assumed compression 

stress of f = 19.65 ksi, 

Et/Eo = 301 30+0.002x9.7x2700Qx(19.65/30)s.7 

= 0.694 

Therefore, 

(F
n

)2 = 28.3x(0.694)= 19.65 ksi = assumed value OK 

The lateral buckling stress determined by using Eq. B-5 is 

practically the same as that computed by using Table All. 

Then, Fn should be the smaller of (Fn)l and (Fn )2' 

F = 10.0 ksi 
n 

12. Determination of A : e 

Unstiffened Compression Flanges: (k=O.S) 
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wit = 1.178/0.135 = 8.73 < 50 

= (1.052/Jk)(w/t)Jf/E, f = F o n 

= (1.052/~)(8.73)J10.0/27000 

= 0.25 < 0.673 

b = w 

= 1.178 in. (flanges fully effective) 

Web: (Sec. 2.2.2-(2)) 

w = 5.355 in., 

wit = 5.355/0.135 = 39.67 

k = 4.0 

= (1. 052/J1C) (w/tA/f/Eo ' f = F n A 

= (1.052/~(39.67~10.0/27000 

= 0.40 < 0.673 

b = w 

= 5.355 in. (web fully effective) 

(Eq. 2.4.2-1) 

(Eq. 2.2.1-4) 

(Eq. 2.4.2-3) 

(Eq. 2.2.1-4) 

(Eq. 2.2.1-1) 

Since flanges and webs are fully effective, the effective 

area is the same as the full section area, i.e., 

A = A = 2.298 in. 2 

e 

13. Determination of ~ P : (Section 3.4 of the Standard) c n 

P n 
= A F e n 

= 2.298 x 10.0 

= 22.98 kips 

= 0.85 

The design axial strength is 

~ P = 0.85 x 22.98 
'+' C n 

= 19.53 kips 
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EXAMPLE 17.2 I-SECTION (ASD) 

Determine the allowable axial load for the I-section used in Example 17.1. 

Solution: 

1. Basic parameters used for calculating the sectional properties: 

See Example 17.1 for calculation of sectional properties of the 

I-section. 

2. Determination of F 
n 

The following results are obtained from Example 17.1. 

a. For Flexural Buckling: 

= (n2E
t
)/(K L /r )2 

y Y Y 

(F
n

)1 = (n2x26900)/(163.1)2 

= 10.0 ksi (see Example 17.1 for Et ) 

b. For Torsional Buckling: 

(Eq. 3. 4 . 1- 1 ) 

(F )2 = (1/(Ar 2))(G J+(n2E C )/(Kt Lt )2](Et /E ) CEq. 3.4.2-1) n 0 0 ow q 

= [1/ (2. 298x4. 905)) [10500xO .014 + n2x2 7000x4. 555/ (7x12 )2) (0.694) 

= 19.65 ksi 

Then, Fn should be the smaller of (Fn )1 and (Fn )2' 

F = 10.0 ksi 
n 

3. Determination of Ae: 

The effective area is the same as the full section area, i.e., 

A = A = 2.298 in. z (See Example 17.1) 
e 

4. Determination of Pa: 

= A F e n 

= 2.298 x 10.0 
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= 22.98 kips 

o = 2.15 

The allowable axial load is 

Pa = Pn/O = 22.98/2.15 

= 10.69 kips 
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EXAMPLE 18.1 I-SECTION W/LIPS (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design axial strength for the I-section as shown in Figure 18.1. Use Type 

409 stainless steel. 

1 
a=5.355" 

A'=6.00" 

C'=0.82" 

y 

B'=2.50" 

b=1.855" 

~' = 0.82 in. 

R=3/16" 

1-1---- -- X 

c=0.498" 
-+-+--~-

t=0.135" 

Figure 18.1 Section for Example 18.1 

Given: 

1. Section: 6.0" x 5.0" x 0.135" I-section with lips. 

2. Kx = Ky = 1.0, Lx = 12.0 ft. and Ly = 6.0 ft. 

Solution: 

The following equations used for computing the sectional properties for 

I-section with lips are based on the information in Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 
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1. Basic parameters used for calculating the sectional properties: 

(For a channel with lips) 

r = R+t/2 = 3/16+0.135/2 = 0.255 in. 

From the sketch, A' = 6.0 in., B' = 2.5 in., c' = 0.82 in. 

a = 1.00 (For sections with lips) 

a = A'-(2r+t) 

= 6.0-(2xO.255+0.135) = 5.355 in. 

a = A'-t = 6-0.135 = 5.865 in. 

b = B'-[r+t/2+a(r+t/2)1 = 2.5-(2xO.255+0.135) = 1.855 in. 

-b = B'-(t/2+at/2) = 2.5-0.135 = 2.365 in. 

c = a[C'-(r+t/2)] = 0.82-(0.255+0.135/2) = 0.498 in. 

c = a(C'-t/2) = 0.82-0.135/2 = 0.753 in. 

u = 1.57r = 1.57 x 0.255 = 0.40 in. 

2. Area: (lipped I-section) 

A = 2xt(a+2b+2u+a(2c+2u~ 

= 2xO.135(5.355+2x1.855+2xO.40+2xO.498+2xO.4) 

= 3.148 in. 2 

3. Moment of inertia about x-axis: (lipped I~section) 

I = 2x2t{0. 0417al +b(a/2+r)2+u(a/2+0. 637r)2+0. 149rl 

x 

+a (0. 0833cl +( c/4 )(a-c)2+u(a/2+0. 637r)2+0. 149r3J} 

= 2x2xO.135(0.0417(5.355)3+1.855(5.355/2+0.255)2 

+0.4(5.355/2+0.637xO.255)2+0.149(0.255)3+0.0833(0.498)3 

+(0.498/4)(5.355-0.498)2+0.4(5.355/2+0.637xO.255)2 
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+0.149(0.255)3J 

= 17.15 in. 4 

4. Distance bwtween centroid and web centerline for a lipped channel: 

x = (2t/A){b(b/2+r)+u(0.363r)+a(u(b+1.637r)+c(b+2r)JJ 

= (2xO.135/1.574) [1.855(1.855/2+0.255)+O.4(O.363xO.255) 

+O.4(1.855+1.637xO.255)+0.498(1.855+2xO.255~ 

= 0.741 in. 

5. Moment of inertia about y-axis: 

For a channel with lips 

+u(b+1. 637r )2+0 .149r3}1-A(x)2 

= 2xO.135[1.855(1.855/2+0.255)2+0.0833(1.855)3+0.356(O.255)3 

+0.498(1.855+2xO.255)2+0.4(1.855+1.637xO.255)2+0.149(O.255 

-1. 574(0.741)2 

= 1.292 in. 4 

For lipped I-section 

I = 2(1 '+A(x+t/2)2) y y 

= 2(1.292+1.574(0.741+0.135/2)2J = 4.642 in.4 

6. Distance between shear center and y-axis:(lipped I-section) 

m = 0 

7. Distance between centroid and shear center: (lipped I-section) 

x = 0 o 
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8. St. Venant torsion constant: (lipped I-section) 

J = (2xt3 /3)(a+2b+2u+a(2c+2u)) 

= (2x(0.135)3/3] (5.355+2x1.855+2xO.4+2xO.498+2xO.4) 

= 0.0191 in.'" 

9. Warping Constant: (lipped I-section) 

C
w 

= (tb2 /3) [(a)2b+3(a)2c+6a( c)2+4( C)3) 

= (0.135(2.365)2/3) (5.865 )2(2.365 )+3(5.865 )2( 0.753) 

+6(5.865)( O. 753)2+4( 0.753 )3J 

= 45.49 in. 6 

10. Radii of gyration: (lipped I-section) 

r = ~(I /A) = J(17.15/3.148) = 2.334 in. 
x x 

ry = J(Iy/A) =~(4.642/3.148) = 1.214 in. 

(K L )/r = (12x12)/2.334 = 61.70 < 200 (control) 
x x x 

(K L )/r = (6x12)/1.214 = 59.3 < 200 
Y Y Y 

r 2 = r 2+r 2+X 2 = (2.334)2+(1.214)2+0 
o X Y 0 

= 6.921 in. 2 

11. Determination of F : (Section 3.4 of the Standard) 
n 

For this doubly symmetric section (x-axis is the major axis), 

F shall be taken as the smaller of either 
n 

(Eq. 3.4.1-1) or (Eq. 3.4.2-1): 

a. For Flexural Buckling: 

(F
n

)1 = (TT2E )/(K L /r )2 t x x x 

or the above equation can be written as follows: 

= f(TT2E )/(K L /r )2)(Et /E ) 
~ 0 x x x 0 
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In the determination of the flexural buckling stress, it is 

necessary to select a proper value of (Et/Eo) from Table Allor 

Figure AB in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=20 ksi. 

From Table All, the corresponding value of (Et/Eo) is found to 

be equal to 0.66. Thus, 

= 46.2 ksi > assumed stress f=20 ksi 

Because the computed stress is larger than the assumed value, the 

further successive approximation is needed. After several trials, 

assume f=23.50 ksi, and (Et/Eo) = 0.336. 

(Fn)l = ((n2x27000)/(61. 7)2JxO.336 

= 23.52 ksi = assumed stress f=23.50 ksi OK 

b. For Torsional Buckling: 

= (l/(Ar 2))rG J+(n2E C )/(KtLt)2)(Et/E ) o l!o ow 0 

G = 10500 ksi (Table A4 of the Standard) 
o 

(Eq . 3. 4 . 2 - 1) 

Similar to the determination of flexural buckling stress, the 

plasticity reduction factor of Et/Eo depends on the assumed 

stress value. For the first approximation, assume a buckling 

stress of f=24 ksi. The value of Et/Eo is found to be 

equal to 0.29, which is obtained from Table Allor Figure AB 

of the Standard. Thus, 

(F
n

)2 = [1/(3.14Bx6.921)J[I0500xO.OI91+ n2x27000x45.49/(6xI2)2Jx(O.29) 

= 33.79 ksi > 24 ksi NG 

After several trials, assume a stress of f=25.43 ksi, and 
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(F n) 2 = (1/( 3 . 148x6 . 921»)(10500xO. 0191+ rr2x27000x45. 49/( 6x12)2 ]x( 0.219) 

= 25.46 ~ assumed value = f = 25.43 ksi OK 

Then, F should be the smaller of (F )1 and (F )2' n n n 

Fn = 23.52 ksi (based on flexural buckling) 

12. Determination of A : e 

Flanges: 

d = 0.498 in. 

I = d3t/12 = (0.498)3(0.135)/12 
s 

= 0.001389 in. 4 

D = 0.82 in. 

w = 1.855 in. 

D/w = 0.82/1.855 = 0.442 < 0.80 

S = 1. 28JE:7I, f = F o n CEq. 2.4-1) 

The initial modulus of elasticity, E , for Type 409 stainless o 

steel is obtained from Table AS of the Standard, 

S = 1.28J27000/23.52 = 43.37 

wit = 1.855/0.135 = 13.74 < S/3 = 14.46 

= 0 (no edge stiffener needed) 

b = w 

= 1.855 in. (flanges fully effective) 

wit = 13.74 < 90 (Section 2.1.1-(1)-(i») 

Web: 

w = 5.355 in., k = 4.00 

= (1.052/~)(w/t)~, f = F o n 

= (1.052/J4)(5.355/0.135)J23.52/27000 
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o 

CEq. 2. 4 . 2 - 1) 

CEq. 2.4.2-2) 

(Eq. 2.4.2-3) 

(Eq. 2.2.1-4) 



= 0.616 < 0.673 

b = w (Eq . 2. 2 . 1 - 1 ) 

= 5.355 in. (web fully effective) 

wit = 5.355/0.135 = 39.67 < 400 (Section 2.1.1-(1)-(ii)) 

Lips: 

d ~ 0.498 in. 

k = 0.50 (unstiffened compression element) 

d s = d' s 

A = (1.052/~)(0.498/0.135)~23.52/27000 

= 0.162 < 0.673 

d' = d = 0.498 in., d = 0.498 in. 
s s 

d/t = 3.69 < 50 (Section 2.1.1-(1)-(iii)) 

(Eq. 2.4.2-4) 

Since flanges, web, and lips are fully effective, the effective 

area is the same as the full section area, i.e., 

A = A = 3. 148 in. 2 
e 

14. Determination of ~ P : (Section 3.4 of the Standard) c n 

P n 

~c 

= A F e n 

= 3.148 

= 74.04 

= 0.85 

x 23.52 

kips 

The design axial strength is 

~ P = 0.85 x 74.04 
'+' C n 

= 62.93 kips 
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EXAMPLE 18.2 I -SECTION W/LIPS (ASD) 

Determine the allowable axial load for the I-section used in Example 18.1. 

Solution: 

1. Basic parameters used for calculating the sectional properties: 

See Example 18.1 for calculation of sectional properties of the 

I-section. 

2. Determination of F 
n 

The following results are obtained from Example 18.1. 

a. For Flexural Buckling: 

= (rr2E )/(K L /r )2(Et /E ) a x x x a 

= [Crr2x27000)/(61. 7)2)(0.336) 

= 23.52 ksi 

b. For Torsional Buckling: 

(Eq. 3.4.2-1) 

After several trials, assume a stress of f=25.43 ksi, and Et/Eo = 

0.2185. 

CF n) 2 = (1/( 3 . 148x6 . 921») (10500xO. 0191 + rr2x27000x45. 49/ C 6x12)2J x( 0 .219) 

= 25.46 t;{ assumed value OK 

Then, Fn should be the smaller of (Fn)l and (Fn )2. 

F = 23.52 ksi 
n 

3. Determination of Ae: 

The effective area is the same as the full section area, i.e., 

A = A = 3. 148 in. 2 
e 

4. Determination of Pa: 

= A F 
e n CEq. 3.4-1) 
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= 3.148 x 23.52 

= 74.04 kips 

o = 2.15 

The allowable axial load is 

= P /0 = 74.04/2.15 n 

= 34.44 kips 
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EXAMPLE 19.1 T-SECTION (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design axial strength for the T-section as shown in Figure 19.1. Use Type 

304, 1/4-Hard stainless steel. 

y 

b=1.678" 

I 
, 

~ 
R=3/16" 

.00" 

t ---x 

B'=2 

/ I 
..; .. 

t=O .135"~ ~ a=2.678" 

I , 
A =3.00 " 

Figure 19.1 Section for Example 19.1 

Given: 

1. Section: as ahown. 

2. K L = K L = 8.0 ft. 
x x Y y 

Solution: 

The following equations used for computing the sectional properties 

for T-section are based on the information in Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 
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1. Basic parameters used for calculating the sectional properties: 

r = R+t/2 = 3/16+0.135/2 = 0.255 in. 

From the sketch, A' = 3.0 in., B' = 2.0 in. 

a = 0.00 (For T-section) 

a = A'-(r+t/2+a(r+t/2)] 

= 3.0-(0.255+0.135/2) = 2.678 in. 

a = A'-(t/2+at/2) = 3.0-0.135/2 = 2.933 in. 

b = B'-(r+t/2) = 2.0-(0.255+0.135/2) = 1.678 in. 

b = B'-t/2 = 2.0-0.135/2 = 1.933 in. 

u = 1.57r = 1.57 x 0.255 = 0.40 in. 

2. Area: 

A = t(2a+2b+2u) 

= 0.135(2x2.678+2x1.678+2xO.40) = 1.284 in. 2 

3. Moment of inertia about x-axis: 

I = 2t[b(b/2+r+t/2)2+0.0833b3+u(0.363r+t/2)2 
x 

+0. 149r3] 

= 2xO.135~.678(1.678/2+0.255+0.135/2)2+0.0833(1.678)3 
+0.4(O.363xO.255+0.135/2)2+0.149(O.255)3) 

= 0.721 in. 4 

4. Distance between centroid and flange centerline: 

x = (2t/A) (u(0.363r)+a(a/2+r)) 

= (2xO.135/1.284)(0.4(0.363xO.255)+2.678(2.678/2+0.255~ 

= 0.905 in. 
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5. Moment of inertia about y-axis: 

= 2xO.135 0.358(0.255)3+2.678(2.678/2+0.255)2+0.0833(2.678)3 

-1.284(0.905)2 

= 1.219 in.'" 

6. Distance between shear center and flange centerline: 

m = a {1- (bP/ (b)3+(c)3J5 

= 2.933 {1- (1.678)3/[(1.678)3+0)}= 0 

7. Distance between centroid and shear center: 

x = -(i-m) = -0.905 in. 
o 

8. St. Venant torsion constant: 

J = (2xt3/3) [a+b+uJ 

= (2x(0.135)3/3] (2.678+1.678+0.4) 

= 0.0078 in. 4 

9. Warping Constant: 

C = 0 w 

10. Radii of gyration: 

r 
x 

=)(1 /A) =)(0.721/1.284) = 0.749 in. 
x 

=J(I /A) = )(1.219/1.284) = 0.974 in. 
y 

(K L )/r = (8x12)/0.749 = 128.17 < 200 (control) 
x x x 

(K L )/r = (8x12)/0.974 = 98.56 < 200 
y Y Y 

r 2 = r 2+r 2+X 2 
o x y 0 
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= (0.749)2+(0.974)2+(0.905)2 

= 2.329 in. 2 

11. Torsional-flexural constant: 

= 1-(x /r )2 
o 0 

= 1-(0.905)2/2.329 

= 0.648 

12. Determination of F : (Section 3.4 of the Standard) n 

CEq. 3.4.3-4) 

For this singly symmetric section (x-axis is the axis of 

symmetric), F shall be taken as the smaller of either 
n 

(Eq. 3.4.1-1) or (Eq. 3.4.3-1): 

a. For Flexural Buckling: 

CF
n

)1 = (rr2E )/(K L /r )2 t x x x CEq. 3.4.1-1) 

In the determination of the flexural buckling stress, it is 

necessary to select a proper value of E
t 

from Table A13 or 

Figure All in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=20 ksi. 

From Table A13, the corresponding value of Et is found to 

be equal to 27000 ksi. Thus, 

= 16.2 ksi < assumed stress f=20 ksi 

Because the computed stress is less than the assumed value, 

flexural buckling is in the elastic region and therefore, no 

further approximation is needed. Thus, 

E
t 

= 27000 ksi 

(Fn )1 = 16.2 ksi 
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b. For Torsional-Flexural Buckling: 

where 

a ex 

= (1/2f3) (eo +ot)-Je o +Ot)2_ 4f3 a at] l. ex ex ex 

= (Crr2E )/CK L /r )2JeEt/E ) o x x x 0 

= (l/(Ar 2)FG J+Crr2E C )/CKt Lt )2J(Et /E ) o ~o ow 0 

G = 10500 ksi CTable A4 of the Standard) 
o 

CEq. 3.4.3-1) 

CEq. 3.4.3-3) 

CEq. 3.4.2-1) 

Similar to the determination of flexural buckling stress, the 

plasticity reduction factor of Et/Eo used for determining 

the torsional-flexural buckling stress depends on the assumed 

stress value. For the first approximation, assume a buckling 

stress of f=20 ksi. The value of Et/Eo is found to be 

equal to 1.0, which is obtained from Table A10 or Figure A7 

of the Standard. Thus, 

a = (Cn2x27000) / (128.17)2) xC 1. 0) ex 

= 16.2 ksi 

at = [1/(1.284x2.329)](10500xO.0078 + oJ x (1.0) 

= 27.4 ksi 

Therefore, 

= (1/2f3) [Co +at)-J(a +at )2- 4f3a at J ex ex ex CEq. 3.4.3-1) 

= (1/(2xO.648)] [(16.2+27.4) 

-J( 16.2+27.4 )2-4xO. 648x16. 2x27 . 4 J 
= 12.5 ksi < assumed stress = 20 ksi 

Because the computed stress (Fn )2 is less than the assumed 

value of f=20 ksi, the second approximation will be assumed that 

a stress of f=12.5 ksi and Et/Eo = 1.0. Thus, 
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F should be the smaller of (F )1 and (F )2' Thus 
n n n ' 

F = 12.5 ksi n 

13. Determination of A : 
e 

Flanges: (k = 0.5) 

w = 1.678 in. 

wit = 1.678/0.135 = 12.43 

f = F 
n 

= (1.052/JO.5)(12.43)J12.5/27000 

= 0.398 < 0.673 

b = w 

Stem: (k = O. 5 ) 

w = 2.678 in. 

wit = 2.678/0.135 = 19.84 

= (1.052/JIC)(w/t)./f'7E:, f = F o n 

= (1.052/~)(19.84)j12.5/27000 

= 0.635 < 0.673 

b = w 

= 2.678 in. 

CEq. 2. 2 . 1- 4 ) 

CEq. 2.2.1-4) 

CEq. 2.2.1-1) 

Since flanges and stem are fully effective, the effective 

area is the same as the full section area, i.e., 

A = A = 1. 284 in. 2 
e 

14. Determination of ~cPn: (Section 3.4 of the Standard) 

P 
n 

=AF e n 
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= 1.284 x 12.5 

= 16.05 kips 

'" = 0.85 '+'c 

The design axial strength is 

'" p = 0.85 x 16.05 '+' C n 

= 13.64 kips 
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EXAMPLE 19.2 T-SECTION (ASD) 

Determine the allowable axial load for the T-section used in Example 19.1. 

Solution: 

1. Basic parameters used for calculating the sectional properties: 

See Example 19.1 for calculation of sectional properties of the 

T-section. 

2. Determination of F n 

The following results are obtained from Example 19.1. 

a) For Flexural Buckling: 

= (rr2E
t

) / (K L /r )2 x x X 

(Fn)1 = (rr2x26000)/(128.17)2 

= 16.2 ksi 

b) For Torsional-Flexural Buckling: 

= 0/2f3) [(0 +0 )-j(o +0 )2-4f30 0 1 ex t ex t ex t 

where 

0ex = (rr2Eo)/(KxLx/rx)2](Et/Eo) 

0t = [1/(Aro2)1(GoJ+(rr2EoCw)/(KtLt)2] (Et/Eo) 

G = 10500 ksi (Table A4 of the Standard) o 

(Fn )2 = 0/2f3) reo +0)- 1(0 +0 )2-4f30 0 J L: ex t /'( , ex t ex t 

= (1/(2xO.648)J (06.2+27.4) 

-j(16.2+27.4)2-4xO.648x16.2x27.4 Jx(1.0) 

= 12.5 ksi (control) 

Then, Fn should be the smaller of (Fn )1 and (Fn)2' 

F = 12.5 ksi n 

3. Determination of A : e 
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(Eq. 3.4.3-3) 
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The effective area is the same as the full section area, i.e., 

A = A = 1.284 in. 2 (see Example 19.1) e 

4. Determination of P : a 

P n = A F e n 

= 1.284 x 12.5 

= 16.05 kips 

Q = 2.15 

The allowable axial load is 

Pa = Pn/Q = 16.05/2.15 

= 7.47 kips 

247 

(Eq. 3.4-1 



EXAMPLE 20.1 TUBULAR SECTION - SQUARE (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design axial strength for section shown in Figure 20.1. Use Type 301 

stainless steel, 1/4-Hard. 

0.128" 
37 

1~ 
. 44" 

I-- 0.128" 

/, 
yl 

A = 1/16" 

I 

0.065" 
--+-~ 4.000· 

- ~ I 

I 
~ ./ 

4.000" 

Figure 20.1 Section for Example 20.1 

Given: 

1. Section: 4.0" x 4.0" x 0.065" Square Tube. 

2. K L = K L = 10 ft. x x Y y 

Solution: 

1. Properties of 900 Corners: 

r = R + t/2 = 1/16 + 0.065/2 = 0.095 in. 

Length of arc, u = 1.57r = 1.57 x 0.095 = 0.149 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.095 = 0.061 in. 
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I = I = I (doubly symmetric section) x y 

Y 
Distance 
to Center 

L of Section 
Element (in. ) (in. ) 

Flanges 2 x 3.744 = 7.488 2 - 0.065/2 = 
Corners 4 x 0.149 = 0.596 3.744/2+0.061 = 

Web 2 x 3.744 = 7.488 

Sum 15.572 

Ly2 
(in. 3

) 

1. 968 29.001 
1.933 2.227 

31.228 

wit = 3.744/0.065 = 57.60 < 400 (Section 2.1.1-(1)-(ii)) 

A = Lt = 15.572xO.065 = 1.012 in. 2 

II = Ly2+I 1 1 = 31.228+8.747 = 39.975 in.~ 

I = lIt = 39.975xO.065 = 2.598 in.4 

r = ~I/A = 12.598/1.012 = 1.602 in. 

KL/r = 10xI2/1.602 = 74.91 < 200 (Section 3.4-(5)) 

2. Since the square tube is a doubly symmetric closed section, 

I I 
1 About 

Own 
Axis 

(in. 3
) 

8.747 

8.747 

provisions of Section 3.4.1 of the Standard apply, i.e., section 

is not subjected to torsional-flexural buckling. 

(Eq.3.4.1-1) 

In the determination of the flexural buckling stress, it is 

necessary to select a proper value of Et from Table A13 or 

Figure All in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of £=24.0 ksi. 
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From Table A13, the corresponding value of Etis found to 

be equal to 17000 ksi. Thus, 

F = (rr2x17000) / (74.91)2 
n 

= 29.90 ksi > assumed stress f=24.0 ksi 

Because the computed stress is larger than the assumed value, 

further successive approximations are needed. For the second 

approximation, assume f=26.33 ksi, and 

Et = 14960 ksi 

F = (rr2x14960)/(74.91)2 
n 

= 26.31 ksi ~ assumed stress OK 

3. Determination of the Effective Width: 

k = 4.0 

= (1.052/Jk)(w/t)Jf/Eo ' f = F n (Eq. 2.2.1-4) 

= (1.052/J,4)(3.744/0.065)126.31/27000 = 0.946 > 0.673 

p 

b 

A e 

= 

= 

= 

= 

= 

= 

= 

(Section not fully effective) 

(l-0.22/A)/A 

(1-0.22/0.946)/0.946 = 0.811 

pw 

O. 811x3. 744 = 3.036 in. 

A-4(w-b)t 

1.012-4C3.744-3.036)xO.065 

0.828 in. 2 

4. Determination of the Design Axial Strength: 

p 
n 

= A F e n 

= 0.828x26.31 

= 21.80 kips 
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<I> c = 0.85 

<l>cPn = 0.85 x 21.80 = 18.53 kips 
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EXAMPLE 20.2 TUBULAR SECTION - SQUARE CASD) 

Determine the allowable axial load for tubular section used in Example 20.1. 

Solution: 

1. Basic parameters used for calculating the section properties: 

See Example 20.1 for section properties of tubular section. 

2. Determination of F 
n 

The following results are obtained from Example 20.1. 

For Flexural Buckling Only: 

F = (rr2Et )/(K L /r )2 n y y y 

F = (rr2x14960)/(74.91)2 n 

= 26~31 ksi 

3. Determination of A : e 

(Eq. 3. 4 . 1- 1 ) 

The effective area is obtained from Example 20.1 as follows: 

A = A = 0.828 in. 2 
e 

4. Determination of P : a 

P n = A F e n 

= 0.828 x 26.31 

= 21.80 kips 

o = 2.15 

Pa = Pn/O = 21.80/2.15 

= 10.14 kips 

(Eq. 3.4-1) 
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EXAMPLE 21.1 TUBULAR SECTION - ROUND (LRFD) 

By using the Load and Resistance Factor Design (LRFD) method, determine the 

design axial strength for the tubular section shown in Figure 21.1. Use Type 

316 stainless steel, 1/4-Hard. 

---++--- + --1+---

Outer diameter = 8.000" 
Thickness=O.12S" 

Figure 21.1 Section for Example 21.1 

Given: 

1. Section: Shown in sketch above. 

2. Height: L = 10'-0", simply supported at each end. 

Solution: 

1. Full section properties: 

I = (l/4)rr (CO.R. )"-(I .R.)" J 

= (l/4)rr (C 4)"- (3.875)") 

= 23.98 in." 

A = (l/4)rr (CO.D. )2_( I.D. )2) 

= (l/4)rr (C8)2_(7. 75)2) 

= 3.093 . 2 
1D. 

r = .fIlA 

= J23.98/3.093 
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= 2.784 in. 

2. Determination of Design Axial Strength: 

Ratio of outside diameter to wall thickness, 

D/t = 8.000/0.125 = 64.00 

D/t < 0.881E /F = 0.881(27000/50) = 475.7 OK 
o Y 

The design axial strength, ¢ P , for cylindrical tubular member is c n 

determined in accordance with Section 3.6.2 of the Standard as follows: 

¢c = 0.80 

P = F A nne CEq. 3.6.2-1) 

CEq. 3. 4 .. 1- 1 ) 

where Fn is the flexural buckling stress determined according to 

Section 3.4.1 of the Standard. 

Ae = (1-(1-(Et /Eo )2)(1-Ao/A))A CEq. 3.6.2-2) 

A = K A CEq. 3. 6 . 2 - 3 ) 
o c 

K = (l-C)(E /F )/((8.93-A )(D/t)) + 5.882C/(8.93-A) CEq. 3.6.1-3) coy ~ c c 

C = Fp/Fy 

A = 3.048C 
c 

From Table A17 of the Standard, the ratio of F /F is equal to 0.5 pr y 

in longitudinal compression for Type 301, 1/4-Hard stainless steel. 

Therefore, 

Kc = (1-0.S)(27000/S0)/((S.93-3.04SxO.S)(64.0)) 

+(5.882xO.5)/(8.93-3.048xO.5) 

= 0.967 
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In the determination of the flexural buckling stress, it is 

necessary to select a proper value of Et from Table A13 or 

Figure All in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=40.0 ksi. 

From Table A13, the corresponding value of Etis found to 

be equal to 8370 ksi. Thus, 

F = (rr2x8370)/(10x12/2.784)2 
n 

= (rr2x8370)/(43.10)2 

= 44.46 ksi > assumed stress f=40.0 ksi 

Because the computed stress is larger than the assumed value, 

further successive approximations are needed. 

Assume f=41.83 ksi, and 

E
t 

= 7876 ksi 

F = (rr2x7876)/(43.10)2 
n 

= 41.84 ksi = assumed stress f=41.83 ksi OK 

For the compressive stress of Fn = 41.83 ksi, the corresponding 

value of Et/E
o 

is equal to 0.292, which is obtianed from Table AIO 

of Figure A7 of the Standard. Therefore, 

Ae = (1-(1-(Et /Eo)2)(1-Ao/A))A 

= (1-Cl-(0.292)2)(1-0.967))A 

= 0.97xA = 3.00 in. 2 

= F A n e 

= (41.83)(3.00) 

= 125.50 kips 

<l>c = 0.80 

m p = 0.80 x 125.50 
't'c n 

= 100.40 kips 
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EXAMPLE 21.2 TUBULAR SECTION - ROUND (ASD) 

Determine the allowable axial load for tubular section used in Example 21.1. 

Solution: 

1. Basic parameters used for calculating the section properties: 

See Example 21.1 for section properties of tubular section. 

2. Determination of F n 

The following results are obtained from Example 21.1. 

F = (rr2E
t
)/(K L /r )2 n y y y 

F = (rr2x7876)/(43.10)2 
n 

= 41.84 ksi 

3. Determination of A : e 

(Eq . 3. 4 . 1- 1 ) 

The effective area is obtained from Example 21.1 as follows: 

A = 3.00 in. 2 

e 

4. Determination of P : a 

P 
n 

o 

= A F e n 

= 3.00 x 41.83 

= 125.50 kips 

= 2.15 

= P /0 = 125.50/2.15 
n 

= 58.37 kips 

(Eq. 3.4-1) 



EXAMPLE 22.1 C-SECTION (LRFD) 

By using the Load and Resistance Factor Design (LRFD) criteria, check the 

adequacy of a channel section (Fig. 22.1) to be used as compression member 

which is subjected to eccentrically axial loads of PDL = 0.35 kips and PLL 

= 1.75 kips. Consider the following two loading cases: (A) axial loads are 

applied 2 in. to the left of the c.g. of the full section at both ends, (B) 

axial loads are applied 2 in. to the left &nd 4 in. above the c.g. of the 

full section at both ends. Assume that the effective length factors K = 
x 

Ky = Kt = 1.0, and that the unbraced lengths Lx = Ly = Lt = 16 ft. Use Type 

304, 1/4-Hard, stainless. steel. Assume dead to live load ratio D/L = 115 and 

1.2D+l.6L governs the design. 

B '=3.000" 

b= 2.415· 

II"'A..I ~ 

...... --0.293· 

r-- 0.140• 

--r----t+l '--R-3I1S· 44--+-----.--
"-0.153· 

r 
I c= 0.508" 

A ,= 8.000 a= 7.415· 

01 
--tt--+---~ 

I 

I 
0.105"- f-

0.293" ~ 

3.000" 

Figure 22.1 Section for Example 22.1 

Solution: Part (A) 

257 



The following equations used for computing the sectional properties 

for channel with lips are based on the information in Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 

1. Full section properties: 

r = R+t/2 = 3/16+0.105/2 = 0.240 in. 

a = A'-(2r+t) = 8.000-(2xO.240+0.105) = 7.415 in. 

a = A'-t = 8.000-0.105 = 7.895 in. 

b = B'-(2r+t) = 3.000-(2xO.240+0.105) = 2.415 in. 

-b = B'-t = 3.000-0.105 = 2.895 in. 

c = C'-(r+t/2) = 0.800-(0.240+0.105/2) = 0.508 in. 

c = C'-t/2 = 0.800-(0.105/2) = 0.748 in. 

u = 1.57r = 1.57 x 0.240 = 0.377 in. 

Distance of corner's c.g. from center of radius = 0.637r 

= 0.637(0.240) = 0.153 in. 

A = t(a+2b+2c+4uJ = 0.105~.415+2x2.41S+2xO.508+4xO.3771 

= 1.551 in. 2 

I = 2t (,0. 0417a3+b(a/2+r)2+2u(a/2+0. 637r)2+0. 298r3 
x 

-x 

+0. 0833c3+( c/ 4) (a -C)2) 

= 2xO .lOSCO .0417(7 .415)3+2.415(7 .415/2+0.240)2 

+2xO.377(7.415/2+0.637xO.240)2+0.298(0.240)3 

+0.0833(0.508)3+(0.508/4)(7.415-0.508)2) 

= 15. 108 in. <4 

= (2t/A)lb(b/2+r)+u(O.363r)+u(b+1.637r)+c(b+2r) 

= (2xO.105/1.551) 2.415(2.415/2+0.240)+O.377(O.363xO.240) 

+O.377(2.415+1.637xO.240)+O.508(2.415+2xO.240)) 

258 



= 0.820 in. 

1y = 2t (b(b/2+r )2+0. 0833b3+O. 505r3+c(b+2r)2 

+u(b+1. 637r)2] -A(X)2 

= 2xO.105(2.415(2.415/2+0.240)2+0.0833(2.415)3 

+0.505(0.240)3+0.508(2.415+2xO.240)2 

+O.377(2.415+1.637XO.240)21-1.551(O.820)2 

= 1. 786 in." 

m = (bt/121 ) (6c(a)2+3b(a)2-8(c)3) x 

= ~2.895xO.105)/(12x15.108»)(6xO.748(7.895)2 
+3x2.895(7.895)2_8(0.748)3] 

= 1.371 in. 

x = -(x+m) = -(0.820+1.371) 
o 

= -2.191 in. 

J = (t3/3) a+2b+2c+4u 

= (0.105)3/3)(7.415+2x2.415+2xO.508+4xO.377J 

= 0.005699 in." 

c = (t2/A){(xA(a)2 /t](b)2/3+m2-mb)+(A/3t) (m)2(;)3 
w 

+(b)2(c)2(2c+3a) )-0 m2/t) (2a+4c)+ (m(c)2/3) (8(b)2(C) x 

+2m(2c(c-a)+b(2c-3a)) )+(b)2(a)2 /6]((3c+b)(4c+a) -6( C)2 J 

-m2 (a)"/4 } 

= leo .105)2 /1.551){ [0. 820xl. 551x( 7.895)2/0.1051 (2.895)2/3 

+(1.371)2-1.371x2.895)+1.551/(3xO.105)(1.371)2(7.895)3 

+(2.895)2(0.748)2(2xO.748+3x7.895)] 

-(15.108x(1.371)2/0.105)(2x7.895+4xO.748) 

+ [1. 371(0.748)2/3) (8(2.895 )2( 0.748) 

+2xl.371(2xO.748(O.748-7.895)+2.895(2xO.748-3x7.895))) 

+ (2.895)2(7.895)2/6) (3xO. 748+2.895)( 4xO. 748+7 . 895) 
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= 23.468 in. 6 

I3
w 

= -{O. 0833 (tx(a)3)+t(x)3a J 

= -fo. 0833 [0. 105xO. 820( 7.895 )3)+0 .105( 0.820 )3x 7 .895 } 

= -3.987 

I3
f 

= (t/2) ((b-x)"_(x),4J+[t(a)2/4J Lcb-x")2-(X)2) 

= (0.105/2) ((2.895-0.820)"-(0.820)") 

+(0.1050.895)2/4] ((2.895-0.820)2-(0.820)2) 

= 6.894 

13
1 

= 2ct(b-x)3+(2/3)t(b-x) ((ii/2)3_(a/2-c)3J 

j 

= 2xO.748xO.105(2.895-0.820)3+(2/3)xO.105(2.895 

-0.820){0 .895/2)3- [(7.895/2)-0. 748J3} 

= 5.581 

= (1/21 )(13 +l3
f

+13 1)-x 
y W 0 

= (1/(2x1.786))(-3.987+6.894+5.581)-(-2.191) 

= 4.567 

= ~ = }15.108/1.s51 = 3.121 in. x 

K L /r = 1(16x12) /3.121 = 61.52 
x x x 

= Vly/A = J1. 786/1.551 = 1.073 in. 

KyLy/ry = 1(16x12) /1.073 = 178.94 < 200 (Section 3.4-(5)) 

r o 

= J3.121)2+(1.073)2+(-2.191)2 = 3.961 in. 

= l-(x /r )2 
o 0 

= 1-(-2.191/3.961)2 = 0.694 

2. Determination of $ P (Section 3.4): c n 

(Eq . 3. 3 . 1. 2 - 9 ) 

(Eq. 3.4.3-4) 

Since the channel is singly symmetric, F shall be taken as 
n 
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the smaller of F calculated according to Section 3.4.1 or n 

F calculated according to Section 3.4.2. n 

a. For Flexural Buckling: 

= (rr2E )/(K L /r )2 
t Y Y Y 

(Eq. 3.4.1-1) 

In the determination of the flexural buckling stress, it is 

necessary to select a proper value of Et from Table A13 or 

Figure All in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=20 ksi. 

From Table A13, the corresponding value of Et is found to 

be equal to 27000 ksi. Thus, 

= 8.322 ksi < assumed stress f=20 ksi 

Because the computed stress is less than the assumed value, 

no further approximation is needed. The section is subject to 

the elastic flexural buckling. 

Therefore, (Fn)l = 8.322 ksi 

b. For Torsional-Flexural Buckling: 

(Fn)2 = (1/213) (0 +0 )-)(0 +0 )2-4130 0 J ex t ex t ex t 

where 

o ex = (rr2Eo) /(KxLx/ r X)2)(Et/Eo) 

0t = [1/(Aro2))(GoJ+(rr2EoCw)/(KtLt)2)(Et/Eo) 

G = 10500 ksi (Table A4 of the Standard) 
o 

(Eq . 3. 4 . 3 - 1 ) 

(Eq. 3.4.3-3) 

(Eq. 3.4.2-1) 

Similar to the determination of flexural buckling stress, the 

plasticity reduction factor of Et/Eo depends on the assumed 

stress value. For the first approximation, assume a buckling 

stress of f=20 ksi. The value of Et/Eo is found to be 

equal to 1.0, which is obtained from Table AlO or Figure A7 
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of the Standard. Thus, 

cr = ((rr2x27000)/(16x12/3.121)2)x(1.0) ex 

= 70.41 ksi 

crt = (1/(1.551x15.69))(10500xO.005699 + rr2x27000x23.468/(16x12)2Jx(1.0) 

= 9.43 ksi 

Therefore, 

Fn2 = (1/213) ((crex+crt)-J(crex+crt)2-413crexcrt ) 

= (1/( 2xO. 694)] [(70.41+9.43) 

-j( 70.41 +9.43 )2-4xO. 694x70. 41x9. 43 ) 

= 9.024 ksi < assumed value f=20 ksi OK 

(Eq. 3.4.3-1) 

This section is subject to elastic torsional-flexural buckling, 

Then, Fn should be the smaller of (Fn)l and (Fn)2' 

F = 8.322 ksi 
n 

For element 1: 

w = 7.415 in. 

wit = 7.415/0.105 = 70.62 < 400 OK (Section 21.1-(1)-(ii)) 

k = 4.0 (Since connected to two stiffened elements) 

= (1. 052/.Jk)(w/t)..jf/Eo (Eq. 2.2.1-4) 

= (1. 052/.,j4:00)(70. 62)..j8. 322/27000 

= 0.652 < 0.673 

b = w (Eq. 2.2.1-1) 

= 7.415 in. (Element 1 fully effective) 

For element 2: 
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w = 2.415 in. 

w/t = 2.415/0.105 = 23.00 

5 = 1. 2B...)Eo/f f = F , n 

= 1. 2s..j27000/B. 322 = 72.91 

8/3 = 24.30 

w/t = 23.00 < 5/3 = 24.30 

b = w 

= 2.415 in. (Element 2 fully effective) 

For element 3: 

d = 0.50B in. 

d/t = 0.50B/0.105 = 4.B4 

k = 0.50 (unstiffened compression element) 

A = (1. 052/.JQ.50)(4. 84)...)B. 322/27000 

"= 0.126 < 0.673 

d' = d = 0.50B in. 

d s 

s 

Thus 

A e 

P n 

<Pc 

<PcPn 

= d' s 

= 0.50B in. (Element 3 fully effective) 

the whole section is fully effective. 

= A = 1.551 in. 2 

= A F e n 

= 1.551 x B.322 

= 12.91 kips 

= 0.B5 

= 0.85 x 12.91 

= 10.97 kips 
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(Eq. 2.4.2-3) 

(Eq. 2.4.2-4) 

(Eq. 3.4-1) 



3. Pu = 1.2xO.35+1.6x1.75 = 3.22 kips 

Pu/~cPn = 3.22/10.97 = 0.294 > 0.15 

Must check both interaction equations (Eq. 3.5-1) and (Eq. 3.5-2). 

4. Determination of ~ P (Section 3.4 for F = F ): c no n y 

For element 1: 

" = (1. 052/.[4:00)(70. 62).j50/27000 = 1. 599 > 0.673 

p = (1-0.22/")/" (Eq. 2.2.1-3) 

= (1-0.22/1.599)/1.599 = 0.539 

b = pw (Eq. 2.2.1-2) 

= 0.539x7.415 = 4.000 in. 

For element 2: 

5 = 1. 28.j27000/50. 0 = 29.74 

5/3 '= 9.91 

5/3 = 9.91 < wIt = 23.00 < 5 = 29.74 

Ia = 399t"{((w/t)/S]-0.33}3 (Eq. 2.4.2-6) 

= 399(0.105)"~23/29.74)-0.33J3 

= 0.004227 in." 

I = d3t/12 = (0.508)3(0.105)/12 
s 

= 0.001147 in." 

I /I = 0.001147/0.004227 = 0.271 
s a 

D/w = 0.8/2.415 = 0.331 

n = 1/2 

k = (4.82-5(D/w»)(I /I )n+0.43S:S.25-S(D/w) s a 

(4.82-5(0.331)](0.271)1/2+0 . 43 = 2.078 

5.25-5(0.331) = 3.595 > 2.078 
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k = 2.078 

A = (1.052/.,)2.078 )(23.00).,)50/27000 = 0.722 > 0.673 

p = (1-0.22/A)/A 

= (1-0.22/0.722)/0.722 = 0.963 

b = pw 

= 0.963x2.415 = 2.326 in. 

For element 3: 

A = (1. 052/.JQ.50)(4. 84)")50/27000 = 0.310 < 0.673 

d' = d = 0.508 in. 

d s 

s 

= d' (I /1 ) ~ d' s s a s 

Since I /1 = 0.271 < 1.0 s a 

d = 0.508(0.271) = 0.138 in. 
s 

A = 1.551-0.105(7.415-4.000)-0.105(0.508-0.138)x2 
e 

-0.105(2.415-2.326)x2 

= 1.096 in. 2 

P = 1.096 
no 

x 50 = 54.80 kips 

<Pc = 0.85 

<PcPno = 0.85 x 54.80 

= 46.58 kips 

(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 

(Eq. 2. 4 . 2 - 11 ) 

5. Determination of Muy (required flexural strength about y-axis): (Mux 

= 0 since e = 0) y 

M will be with respect to the centroidal axes of the effective 
uy 

section determined for the required axial strength alone. 

Ae = 1.551 in. 2 under required axial strength alone 

Since Ae = A, the centroidal axes for the effective section are 
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the same as those for the full section. Therefore, e did not 
x 

change. 

M = 3.22(2.00) = 6.44 kips-in. (Required Flexural Strength) uy 

The interaction equations (Eq. 3.5-1) and (Eq. 3.5-2) reduce 

to the following: 

p 1m P +C M 1m M a ~ 1. 0 u ~c n my uy ~b ny ny 

P I <P P +M I <PbM ~ 1. 0 u c no uy ny 

(Eq. 3.5-1) 

(Eq. 3.5-2) 

6. Determination of <PbM (Section 3.3.1): ny 

3.000" 

<PbM shall be taken as the smaller of the design flexural strengths ny 

calculated according to sections 3.3.1.1 and 3.3.1.2: 

a. Section 3.3.1.1: Mny will be calculated on the basis of 

initiation of yielding. 

Here it is evident that the initial yielding will not be in 

the compression flange, rather it will be in the tension flange. 

8000" 

0.293--
7.415-

! compression flange in bending 

0.293" 
~~=3/16 _____ ~_ ~ 

• 
Y I Y 

2.415· 

t x 

Web_ - fo--O.1OS· ,--0.153-

~, 0-

W~ ./~ LO.140-
0.293" tensIOn flanges an bending 

The procedure is iterative: one assumes the °actual compressive 

stress f under M . Knowing f one proceeds as usual to obtain ny 
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x (measured from top fiber) to neutral axis. Then one obtains cg 

f = F x /(3-x ) and checks if it equals to the assumed value. y cg cg 

If not, one reiterates by assuming another f until finally it 

checks. Then for this condition one obtains I and M = f(l /x ) y ny y cg 

= F I /(3-x ) . 
Y Y cg 

For the first iteration assume a compressive stress f = 20 ksi 

in the top compression fibers and that the webs are fully 

effective. 

Compression flange: . 

k = 4.00 

wit = 7.415/0.105 = 70.62 

" = (1.052/~)(70.62).J20/27000 = 1.011 > 0.673 

P = (1-(0.22/1.011)]/1.011 = 0.774 

b = 0.774 x 7.415 = 5.739 in. 

To calculate effective section properties about y-axis: 

x 1 ' 
Distance 

1 
About 

L from Own 
Effective Length Top Fiber Lx Lx2 Axis 

Element (in. ) (in. ) (in.2) (in. 3
) (in. 3

) 

Webs 2x2.415 = 4.830 1.500 7.245 10.868 2.347 
Upper Corners 2xO .377 = 0.754 0.140 0.106 0.015 
Lower Corners 2xO.377 = 0.754 2.860 2.156 6.167 

Compression Flange 5.739 0.053 0.304 0.016 
Tension Flanges 2xO.508 = 1.016 2.948 2.995 8.830 

Su. 13.093 12.806 25.896 2.347 
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Distance from top fiber to y-axis is 

x = 12.806/13.093 = 0.978 in. cg 

f = F (x / (3-x )) y cg cg 

= 50[0.978/(3.00-0.978)) = 24.18 ksi > 20 ksi 

need to do another iteration. 

For the second iteration assume a compressive stress 

f = 25.50 ksi in the top compression fibers, and that 

the webs are fully effective. 

Compression flange: 

A = (1.052/.J4:0)(70.62)~25.5/27000 = 1.142 > 0.673 

P = (1-(0.22/1.142))/1.142 = 0.707 

b = 0.707 x 7.415 = 5.242 in. 

Effective section properties about y-axis: 

x I' 
Distance 1 About 

L from Own 
Effective Length Top Fiber Lx Lx2 Axis 

Element (in. ) (in. ) (in.2) (in. J) (in. J) 

Webs 2x2.415 = 4.830 1.500 7.245 10.868 2.347 
Upper Corners 2xO.377 = 0.754 0.140 0.106 0.015 
Lower Corners 2xO.377 = 0.754 2.860 2.156 6.167 

Compression Flange 5.242 0.053 0.278 0.015 
Tension Flanges 2xO.508 = 1. 016 2.948 2.995 8.830 

Sum 12.596 12.780 25.895 2.347 

Distance from top fiber to y-axis is 

268 



Xcg = 12.780/12.596 = 1.015 in. 

f = 50 ~.015/(3.00-1.015)) = 25.57 ksi (close enough) 

Thus actual compressive stress f = 25.50 ksi 

To check if the webs are fully effective (Section 2.2.2): 

f1 = ((1.015-0.293)/1.9851(50) = 18.17 ksi(compression) 

f2 = - ((1.985-0.293)/1.985)(50) = -42.62 ksi(tension) 

~ = f2/f1 = -42.62/18.19 = -2.343 

k = 4+2(l-~rJ+2(l-~) (Eq. 2.2.2-4) 

= 4+2 (1-( -2.343))'+2 (1-( -2.343)) 

= 85.406 

h = w = 2.415 in. 

wit = 2.415/0.105 = 23.00 < 200 OK (Section Z.I.2-(1)) 

" = (1.052/..)85.406)(23.00)..)18.19/27000= 0.068 < 0.673 

b 
e 

= 2.415 in. 

= b /2 CEq. 2.2.2-2) 
e 

= 2.415/2 = 1.208 in. 

= b /(3-~) 
e 

CEq. 2. 2 . 2 - 1 ) 

= 2.415/(3-(-2.343)) = 0.452 in. 

Compression portion of each web calculated on the basis of the 

effective section = x -0.293 = 1.015-0.293 = 0.722 in. cg 

Since b
1
+b

2 
= 1.660 in. > 0.722 in., b1+b2 shall be taken 

as 0.722 in .. This verifies the assumption that the web is 

fully effective. 

I' = Lr + I' - r.r 
y 1 ~ 

= 25.895 + 2.347 - 12.596(1.015)2 

269 



= 15 .265 in. 3 

Actual I = II t 
Y Y 

= 15.265(0.105) = 1.603 in.~ 

Se = I /(3.000-x ) 
Y cg 

M ny 

= 1.603/(3.000-1.015) 

= 0.808 in. 3 

= S F e y 

= 0.808(50) 

= 40.40 kips-in. 

<Pb = 0.90 

= 0.90 x 40.40 = 36.36 kips-in. 

(Eq . 3. 3 . 1. 1-1) 

b. Section 3.3.1.2: M will be calculated on the basis of the ny 

lateral buckling strength. (y-axis is the axis of bending). 

M n 

M c 

where 

a = ex 

= S (M /Sf) c c 

= C CbAa (j+C Jj2+r 2(a /a ) ) sex!.: sot ex 

( TT2EO) /(KxLx/ r X)2) (Et/Eo) 

(Eq. 3. 3 . 1. 2 - 1 ) 

(Eq. 3. 3 . 1. 2 - 5 ) 

(Eq. 3.4.3-3) 

= 70.41x(E /E ) ksi (from item 2.b of this example) t 0 

at = 1/(Ar02) (GOJ+(TT2EoCw)/(KtLt)2)(Et/Eo) 

= 9.43x(E /E ) ksi (from item 2.b of this example) 
t 0 

C
b 

= 1.75+1.05(M1/M2)+0.3(M1/M2)2 

= 1.75+1.05(-1.0)+0.3(-1.0)2 = 1.0 

c = 1.0 
s 

r = 3.961 in. 
0 

j = 4.567 

M = 1.0x1.0x(1.551)(70.41) [4.567 
c 
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M 
n 

+1.00/(4.567)2+(3.961)2(9.43170.41) ) 

= 1022.0 (Et/Eo) kips-in. 

= S (M IS f) c c 

M = S f n c 

Eq . ( 3 . 3 . 1. 2 - 1 ) 

In the determination of the lateral buckling stress, it is 

necessary to select a proper ratio of Et/Eo from Table A10 or 

Figure A7 in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=F =50 ksi. y 

From Table A10, the corresponding value of Et/Eo is found to 

be equal to 0.19. Thus, 

f1 = 499.5xO.19 

= 94.9 ksi > assumed stress f=50 ksi 

Because the computed stress is larger than the maximum yield 

strength, the lateral buckling stress shall be limited to 50 ksi. 

Therefore, 

f = M /S = 50.0 ksi 
c f 

To calculate effective section properties to obtain S at a c 

stress of 50.0 ksi, we assume that the webs are fully effective. 

Compression flange: 

J,. = (1.052I.J4.Oci)(70. 62).j50. 0/27000 = 1.599 > 0.673 

P = (1-(0.22/1.599)J/1.599 = 0.539 

b = 0.539 x 7.415 = 3.997 in. 
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Effective section properties about y-axis: 

Element 

Webs 
Upper Corners 
Lower Corners 

Compression Flange 
Tension Flanges 

Sum 

L 
Effective Length 

(in. ) 

2x2.415 :: 4.830 
2xO.377 :: 0.754 
2xO.377 :: 0.754 

3.997 
2xO.508 :: 1.016 

11. 351 

x 
Distance 

from 
Top Fiber 

(in. ) 

1.500 
0.140 
2.860 
0.053 
2.948 

Distance from top fiber to y-axis is 

x :: 12.714/11.351 :: 1.120 in. 
cg 

7.245 
0.106 
2.156 
0.212 
2.995 

12.714 

10.868 
0.015 
6.167 
0.011 
8.830 

25.891 

To check if the webs are fully effective (Section 2.2.2): 

I I 

1 
About 

Own 
Axis 
(in. 3

) 

2.347 

2.347 

f1 = (1.120-0.293)/1.120)(50.0) = 36.92 ksi(compression) 

f2 = -[(1.880-0.293)/1.120)(50.0) = -70.85 ksi(tension) 

~ = -70.85/36.92 :: -1.919 

k :: 4+2 [1-(-1.919)1 3 +2 (1-(-1.919)1 

= 59.581 

A = (1.052/.J59.581)(23.00).J36.92/27000= 0.116 < 0.673 

b = 2.415 in. 
e 

b
2 

= 2.415/2 = 1.208 in. 

b
1 

= 2.415/(3-(-1.919») = 0.491 in. 

Compression portion of each web calculated on the basis of the 

effective section = 1.120-0.293 = 0.827 in. 
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Since b1+b2 = 1,699 in. > 0.827 in., b
1
+b

2 
shall be taken 

as 0.827 in .. This verifies the assumption that the web is 

fully effective. 

II = 25.891 + 2.347 - 11.351(1.120)2 
Y 

= 13.999 in. 3 

Actual I = 13.999(0.105) = 1.470 in. 4 

y 

S = I /x = 1.470/1.120 = 1.313 in. 3 

c y cg 

M = M S /Sf (Eq. 3.3.1.2-1) 
ny c c 

= 102.30(1.313)/2.046 

= 65.65 kips-in. 

= 0.85 

= 0.85 x 65.65 = 55.80 kips-in. 

$bMny shall be the smaller of 36.36 kips-in. and 55.80 kips-in. 

Thus 

= 36.36 kips-in. 

7. C
my 

= O.6-0.4(M1/M2) ~ 0.4 

M1/M2 = -1.00 (single curvature) 

0.6-0.4(-1.00) = 1.00 > 0.4 

C = 1.00 my 

8. Determination of 1/ony: 

= 0.85 

I = 1. 786 in. 4 

Y 

= 1.0(16x12) = 192 in. 

= (n2 (27000)(1.786))/(192)2 = 12.91 kips 
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1/0ny = II [l-Pu/C<I>cPE)] 

= 1/ [1-3.22/CO.85x12.91)) = 1.415 

° = 0.707 ny 

9. Check interaction equations: 

P u/<l>cP n +CmyMuy/<l>bMnyOny ~ 1. 0 

3.22/10.970+1.00x6.44/C36.36xO.707) = 0.294+0.251 

= 0.545 < 1.0 OK 

P I..... P +M l ..... bM ~ 1. 0 u "'c no uy '" ny 

3.22/46.58+6.44/36.36 = 0.069+0.177 = 0.246 < 1.0 OK 

Therefore the section is adequate for the applied loads. 

Solution: Part CB) 

CEq. 3.5-4) 

CEq. 3.5-1) 

CEq. 3.5-2) 

1. Full section properties are the same as previously calculated 

in part CA.1). 

2. <I> P = 10.970 kips (calculated in part CA)). 
c n 

3. p 1<1> P = 3.22/10.970 = 0.294> 0.15 
u c n 

Therefore the following interaction equations must be satisfied. 

P u/<l> cP n +CmxMux/<l>bMnxonx +CmyMuyI <l>bMnyony ~ 1. 0 

P u/<l>cP no +Mux/<l>bMnx +Muy/<l>bMny ~ 1. 0 

4. <l>cPno = 46.58 kips (calculated in part CA.4)). 

5. Determination of Kux (Section 3.5): 

(Eq. 3.5-1) 

(Eq. 3.5-2) 

The centroida! x-axis is the same for both the full and effective 
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sections. 

ey = 4.000 in. 

Mux = Puey = 3.22(4.000) = 12.88 kips-in. 

6. Determination of $bM (Section 3.3.1): nx 

~bMnx shall be taken as the smaller of the design flexural strengths 

calculated according to Sections 3.3.1.1 and 3.3.1.2. 

a. Section 3.3.1.1: M will be calculated based on the initiation nx 

of yielding. 

First approximation: 

* Assume a compressive stress of f = F = 50 ksi in the top 
y 

fiber of the section. 

* Assume that the web is fully effective. 

Compression flange: 

w = 2.415 in. 

wIt = 2.415/0.105 = 23.00 

S = 1.28.JEo/f (Eq. 2.4-1) 

= 1. 28..j27000/50. 0 = 29.74 

For S/3 = 9.91 < wIt = 23.00 < S = 29.74 

= t"399{((w/t)/S)-0.33}3 (Eq. 2.4.2-6) 

= (0.105)"(399)((23.00/29.74)-0.33)3 

= 0.004227 in." 

= d3t/12 (Eq. 2.4-2) 

= (0.508)3(0.105)/12 = 0.001147 in." 

18/1a = 0.001147/0.004227 = 0.271 
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D = 0.800 in. 

D/w = 0.800/2.415 = 0.331 

wit = 23.00 < 50 OK (Section 2.1.1-(I)-(iii)) 

For 0.25 < D/w = 0.331 < 0.8 

k = (4.82-5(D/w))(I /1 )1/2+0.43~5.25-5(D/w) s a (Eq. 2.4.2-9) 

(4.82-5(0.331)J(0.344)1/2+0 . 43 = 2.078 

5.25-5(0.331) = 3.595 

k = 2.078 

" = (1.052/.J2.078 )(23.00)..j50.0/27000 = 0.722 > 0.673 

P = (1-(0.22/0.722))/0.722 = 0.963 

b = 0.963 x 2.415 = 2.326 in. 

Compression stiffener: 

d = 0.508 in. 

d/t = 0.508/0.105 = 4.84 

k = 0.50 

Assume the maximum stress in element, f = F = 50 ksi although y 

it will be actually less. 

= (1.052/../k)(w/t).J f /Eo (Eq. 2.2.1-4) 

= (1.052/..jQ.SO)(4.84)..j50.0/27000 = 0.310 < 0.673 

For" < 0.673 

b = w (Eq. 2. 2 . 1 - 1 ) 

d' = 0.508 in. 

d s 

s 

= d' (I /1 )~d' 
S 5 a s 

= 0.508(0.271) 

= 0.138 in. 

(Eq. 2. 4 . 2 - 11 ) 
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Effective section properties about x-axis: 

y I I 

1 Distance About 
L from Own 

Effective Length Top Fiber Ly Ly2 Axis 
Element (in. ) (in. ) (in. 2) (in. 3

) (in. 3
) 

Compression Flange 2.326 0.053 0.123 0.007 
Compression Stiffener 0.138 0.362 0.050 0.018 

Compression Corners 2xO.377 = 0.754 0.140 0.106 0.015 
Web 7.415 4.000 29.660 118.640 33.974 

Tension Flange 2.415 7.948 19.194 152.557 
Tension Stiffener 0.508 7.453 3.786 28.218 0.011 
Tension Corners 2xO .377 = 0.754 7.860 5.926 46.582 

Sum 14.310 58.845 346.037 33.985 

Distance from neutral axis to top fiber, 

Ycg = Ly/L = 58.845/14.310 = 4.112 in. 

Since the distance from the neutral axis to the top compression 

fiber is greater than half the depth of the section, a 

compressive stress of F = 50 ksi governs as assumed. 
y 

I I = Ly2 + I I 1 - Ly2 
X cg 

= 346.037 + 33.985 - 14.310(4.112)2 

= 138.06 in. 3 

Actual I = tIl 
X X 

= (0.105)(138.06) = 14.50 in. 4 

Check Web 

wit = 7.415/0.105 = 70.62 < 200 OK (Section 2.1.2-(1)) 

£1 = (4.112-0.293)/4.112)(50) = 46.44 ksi(compression) 
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f2 = - (3.888-0.293)/4.112 (50) = -43.71 ksi(tension) 

~ = f2/f1 = -43.71/46.46 = -0.941 

k = 4+2(1-(-0.941))3+2(1-(-0.941)) 

= 22.51 

= (1.052/jk)(w/t).jf/Eo (Eq. 2.2.1-4) 

= (1.052/.j22.51 )(70.62).j46.44/27000 = 0.649 < 0.673 

For" < 0.673 

b = w (Eq. 2.2.1-1) 

b = 7.415 in. e 

b2 = 7.415/2 = 3.708 in. 

b
1 

= 7.415/(3-(-0.941)) = 1.882 in. 

b1+b2 = 1.882+3.708 = 5.590 in. > 3.785 in. (compression 

portion of web) 

Therefore web is fully effective as assumed. 

Check Compression Stiffener 

Actual maximum stress in stiffener = 46.44 ksi 

" = (1.052/.J030)(4.84).j46.44/27000 = 0.299 < 0.673 

For " < 0.673 

d' = 0.508 in. 
s 

Since I /1 is s a unchanged 

d = 0.138 in. 
s 

Conservative assumption OK 

S = I /y = 14.50/4.112 = 3.526 in.' e x cg 

M = S F nx e y (Eq. 3.3.1.1-1) 

= (3.526)(50) = 176.30 kips-in. 

= 0.90 
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~bMnx = 0.90 x 176.30 = 158.67 kips-in. 

b. Section 3.3.1.2: M will be calculated based on the lateral nx 

buckling strength. 

For the full section: 

I x 

A 

= 15.108 in. 4 

= 4.000 in. 

= I /y = 15.108/4.000 = 3.777 in. 3 

x cg 

= SfFy 

= 3.777(50) = 188.85 kips-in. 

= 1.00 (for members subject to combined axial 

load and bending moment) 

= 3.961 in. 

= 1.551 in. 2 

cr = (rr2E /(K L /r )2 )(Et/E ) 
ey 0 Y Y Y 0 

= (rr2(27000)/(178.94)2)(Et /Eo) 

= 8.322 (Et/Eo) ksi 

crt = 9.43(Et /Eo) ksi (from part (A)) 

M = Cbr A cr crt (Eq. 3.3.1.2-5) 
c 0 ey 

= (1.000)(3.961)(1.551)J(8.322)(9.430)(Et /Eo ) 

= 54.42 (Et/Eo) kips-in. 

Let f = M/S f 

= 54.42(Et /Eo)/3.777 = 14.41 (Et/Eo) ksi 

For the stress f less than 20 ksi, the plasticity reduction 

factor of Et/Eo is equal to 1.0. The section is subject to 

elastic lateral buckling. Therefore, 

Mc = 54.42 kips-in. 
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f = 14.41 ksi 

Determine S , the elastic section modulus of the effective c 

section calculated at a stress of Mc/S f in the extreme 

compression fiber. 

For compression flange: 

w = 2.415 in. 

wit = 2.415/0.105 = 23.00 

S = 1. 28.JEo/f , f = F n 

8 = 1.28"/27000/14.41 = 55.41 

8/3 = 18.47 < wit = 23.00 < 8 = 55.41 

Ia = 399(0.105)4((23.00/55.41)-0.33)3 

= 0.000030 in." 

I = 0.001147 in." 
s 

I /1 = 0.001147/0.000030 = 38.23 
s a 

(4.82-5(0.331)J(38.23)1/2+0 . 43 = 20.00 > 3.595 

k = 3.595 

CEq. 2.4-1) 

" = (1.052/"/3.595 )(23.00)"/14.41/27000 = 0.295 < 0.673 

b = w = 2.415 in. (compression flange fully effective) 

For compression stiffener: 

f is taken conservatively as 14.41 ksi as used in the top 

compression fiber. 

d/t = 4.84 

" = (1.0S2/.Jif.50) (4. 84).j14.41/27000 = 0.166 < 0.673 

d' = d = 0.508 in. 
s 
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And since I II = 3B.23 > 1.0 s a 

d = d' = 0.50B in. (compression stiffener fully s s 

effective) 

And since the web was fully effective at the stress f = F 
Y 

= 50 ksi, it will be fully effective for f = 14.41 ksi. 

Thus the whole section is fully effective at Mc/Sf = 15.71 ksi 

Therefore 

M = M S IS f nx c c 

= 54.42(3.777)/3.777 

= 54.42 kips-in. 

<l>b = 0.85 

= 0.B5 x 54.42 = 46.26 kips-in. 

<l>bM shall be the smaller of 15B.67 kips-in. and 46.26 kips-in. 
nx 

Therefore 

<l>bM = 46.26 kips-in. nx 

7. Determination of Cmx (Section 3.5): 

MI/M2 = -1.00 (single curvature) 

C = 0.6-0.4(-1.0) = 1.00 > 0.4 OK 
mx 

B. Determination of cnx (Section 3.5): 

Pu = 3.22 kips 

= rr2E I I (K L ) 2 (Eq . 3. 5 - 5 ) 
o x x x 

= (rr2(27000)(15.10B)]1[1(16)x12)2 = 109.21 kips 

= 0.85 
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l/onx = 1/ (l-Pu/(<I>cPE)] 

= 1/(1-3.22/CO.85x109.21)) = 1.036 

0nx = 0.965 

9. M uy = 6.44 kips-in. (calculated in part (A.5)) 

10. <l>bM = 36.36 kips-in. (calculated in part (A.6)) ny 

11. C my 

12. a ny 

= 1.0 

= 0.707 

(calculated in part (A.7)) 

(calculated in part (A.8)) 

13. Interaction equations (Section 3.5); 

P In. P +C M In. M ° +C M In. MaS; 1. 0 u ~c n mx ux ~b nx nx my uy ~b ny ny 

CEq. 3.5-4) 

(Eq. 3.5-1) 

3.22/10.970+1.0xI2.88/(46.26xO.965)+1.0x6.44/(36.36xO.707) 

0.294+0.289+0.251 = 0.834 < 1.0 OK 

P /<1> P +M /<I>bM +M /<I>bM S; 1. 0 u c no ux nx uy ny (Eq. 3.5-2) 

3.22/46.58+12.88/46.26+6.44/36.36 

0.069+0.278+0.177 = 0.524 < 1.0 OK 

Therefore the section is adequate for the applied loads. 
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EXAMPLE 22.2 C-SECTION (ASD) 

Rework Example 22.1 by using the Allowable Stress Design (ASD) method to 

check the adequacy of a channel section (Fig. 22.1) to be used as compression 

member. 

Solution: Part (A) 

1. Full section properties: 

The section properties (A, Ix' etc.) are the same as those 

calculated in Example 22.1.(1). 

2. Determination of P : a 

The following results are obtained from Example 22.1.(2). 

a) For Flexural Buckling: 

(Fn )1 = (rr2x27000)/(178.94)2 

= 8.322 ksi 

(Eq. 3. 4. 1- 1 ) 

The section is subject to the elastic flexural buckling. 

b) For Torsional-Flexural Buckling: 

where 

o ex = ((rr2E )/(K L /r )2J(Et /E ) o x x x 0 

= 1/(Ar 2) (G J+(rr2E C )/(Kt Lt )2J(Et /E ) o 0 0 w 0 

Go = 10500 ksi (Table A4 of the Standard) 

= (1/213) ((0 +Ot)-J(o +ot)2-4130 0t) ex ex ex 

= (1/(2xO.694))((70.41+9.43) 

-/(70.41+9 .43)2_4xO. 694x70 .41x9 .43 ) 

= 9.024 ksi 

(Eq. 3.4.3-1) 

(Eq. 3.4.3-3) 

CEq. 3.4.2-1) 

(Eq. 3.4.3-1) 

This section is subject to elastic torsional-flexural buckling. 
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Then, Fn should be the smaller of (Fn)1 and (Fn )2. 

F = 8.322 ksi 
n 

Therefore, 

P = A F = 1.551x8.322 n e n 

= 12.91 kips 

n = 2.15 

= P /n = 12.91/2.15 = 6.0 kips 
n 

3. P = 0.35+1.75 = 2.10 kips 

PIP = 2.10/6.0 = 0.350 > 0.15 
a 

Must check both interaction equations as follows: 

PIP a +CmxMx/(Maxox )+CmyMy/(MayOy) ~ 1.0 

PIP +M /M +M /M ~ 1.0 ao x ax y ay 

4. Determination of P (for F = F ): ao n y 

A = 1.096 in. 2 (from Example 19.1.(4)) 
e 

P = 1.096 x 50 = 54.80 kips 
no 

n = 2.15 

P = P /n = 54.8/2.15 
ao no 

= 25.49 kips 

5. Determination of M (required flexural strength about y-axis): 
y 

(M = 0 since e = 0) 
x Y 

My will be with respect to the centroidal axes of the effective 

section determined for the required axial strength alone. 

Ae = 1.551 in. 2 under required axial strength alone 

Since A = A, the centroidal axes for the effective section are e 
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the same as those for the full section. Therefore, e did not 
x 

change. 

M = 2.10(2.00) = 4.20 kips-in. (Required Flexural Strength) y 

The interaction equations reduce to the following: 

p /P +C M /M a ~ 1 . 0 a my y ay y 

P /P +M /M ~ 1. 0 ao y ayo 

6. Determination of M ay 

M shall be taken as the smaller of the allowable flexural strengths ay 

calculated according to Sections 3.3.1.1 and 3.3.1.2: 

a. Section 3.3.1.1: May will be calculated on the basis of 

initiation of yielding. 

S e 

M ny 

o 

= 

= 

1.603/(3.000-1.015) 

= 0.808 in. 3 (from Example 22.1) 

= S F (Eq. e y 

= 0.808(50) 

= 40.40 kips-in. 

= 1.85 

M /0 = 40.40/1.85 = 21.84 kips-in. ny 

3.3.1.1-1) 

b. Section 3.3.1.2: May will be calculated on the basis of the 

lateral buckling strength. (y-axis is the axis of bending). 

M = S (M /Sf) n c c (Eq . 3. 3 . 1. 2 - 1 ) 

M = S f n c 

f = Me/Sf = 50.0 ks! 

Se = Iy/xeg = 1.470/1.120 = 1.313 in. l 

Mny = MeSe/Sf (Eq. 3.3.1.2-1) 
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= 50.0(1.313) 

= 65.65 kips-in. 

o ::: 1.85 

M = M /0 = 65.65/1.85 = 35.49 kips-in. ay ny 

M shall be the smaller of 21.84 kips-in. and 35.49 kips-in. ay 

Thus 

M = 21.84 kips-in. ay 

7. Cmy = 0.6-0.4(M1/M2) ~ 0.4 

8. 

M1/M2 = -1.00 (single curvature) 

0.6-0.4(-1.00) = 1.00 > 0.4 

C = 1. 00 my 

Determination of 1/0 : ny 

0 = 2.15 

P = n2E I / (K L ) 2 
cr o y y Y 

I = 1.786 in.o4 
y 

K L y y = 1. 0(16x12) = 192 in. 

P = n2 (27000)(1. 786) /(192)2 
cr 

1/0ny = 1/(1-(0 PIP ») c cr 

= 1/ (1-(2 . 15x2 .1/12.91») = 

0 = 0.650 
ny 

9. Check interaction equations: 

P /P +C M /M 0 ~ 1.0 a my y ay ny 

= 12.91 kips 

1/0.650 

2.1/6.0+1.00x4.2/(21.84xO.650) = 0.350+0.296 

= O. 646 < 1. 0 OK 
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PIP +M /M ~ 1.0 ao y ay 

2.1/25.49+4.2/21.84 = 0.082+0.192 = 0.274 < 1.0 OK 

Therefore the section is adequate for the applied loads. 

Solution: Part (B) 

1. Full section properties are the same as previously calculated 

in Part (A.1). 

2. P
a 

= 6.0 kips (calculated in Part (A)) 

3. P = 0.35+1.75 = 2.10 kips 

PIP = 2.10/6.0 = 0.350 > 0.15 a 

Must check both interaction equations as follows: 

P /P a +CmxMx/ (Max Ox ) +CmyMy/ (MayOy) ~ 1. 0 

PIP +M /M +M /M s: 1.0 ao x ax y ay 

4. Determination of P = 25.49 kips (calculated in Part (A)) ao 

5. Determination of M x 

The centroidal x-axis is the same for both the full and effective 

sections. 

e = 4.00 in. 
y 

Mx = 2.10(4.00) = 8.40 kips-in. (Required Flexural Strength) 

6. Determination of Max 

Max shall be taken as the smaller of the allowable flexural strengths 
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calculated according to sections 3.3.1.1 and 3.3.1.2: 

a. Section 3.3.1.1: M will be calculated on the basis of ax 

initiation of yielding. 

Se = 14.50/4.112 

M nx 

n 

= 3.526 in. 3 (from Example 22.1 Part (A)) 

= S F e y 

= 3.526(50) 

= 176.30 kips-in. 

= 1.85 

M = M /n = 176.30/1.85 = 95.30 kips-in. ax nx 

(Eq. 3. 3 . 1. 1 - 1 ) 

b. Section 3.3.1.2: M will be calculated on the basis of the ax 

lateral buckling strength. 

M n 

M n 

f 

S c 

M nx 

= 

= 

= 

= S 

S (M /Sf) c c 

S f c 

Mc/Sf = 54.42/3.777 

= e 3.777 in. 3 

= M S /Sf c c 

= 14.41x3.777 

= 54.42 kips-in. 

n = 1.85 

= 14.41 ksi 

M = M /n = 54.42/1.85 = 29.42 kips-in. ax nx 

(Eq . 3. 3 . 1. 2 - 1 ) 

(Eq. 3. 3 . 1. 2 - 1 ) 

Max shall be the smaller of 95.30 kips-in. and 29.42 kips-in. 

Thus 

Max = 29.42 kips-in. 
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8. 

M1/M2 = -1.00 (single curvature) 

0.6-0.4(-1.00) = 1.00 > 0.4 

C = 1.00 mx 

Determination of 

0 = 2.15 

1/0 : nx 

P cr . = rr2E I /(K L )2 o x x x 

= rr2(27000)( 15 .108) /(92)2 

1/0ny = 1/ (1-(0 PIP )) c cr 

= 1/ ~-(2.15x2.1/109.21)J 

0 = 0.650 ny 

9. M = 4.2 kips-in. uy 

10. May = 21.84 kips-in. 

11. C = 1.0 my 

12. o = 0.650 ny 

13. Check interaction equations: 

= 

= 109.21 kips 

1/0.959 

P/Pa+CmxMx/(MaxOnx)+CmyMy/(MayOny) ~ 1.0 

2.1/6.0+1.00x8.4/(29.42xO.959)+1.00x4.2/(21.84xO.650) 

= 0.350+0.298+0.296 = 0.944 < 1.0 OK 

P /P +M /M +M /M ~ 1. 0 ao x ax y ay 

2.1/25.49+8.4/29.42+4.2/21.84 = 0.082+0.286+0.192 = 0.560 < 1.0 OK 

Therefore the section is adequate for the applied loads. 
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EXAMPLE 23.1 TUBULAR SECTION CLRFD) 

By using the Load and Resistance Factor Design (LRFD) criteria, check the 

adequacy of a tubular section (Fig. 23.1) to be used as compression member 

which is subjected to an eccentrically axial load. The service axial load 

is P = 15 kips. Consider the following loading case: the eccentricity of 

axial load at each end of member, e , is 4 in. and member is bent in single 
y 

curvature about x-axis, and e = 0. Assume that the effective length factors 
x 

K 
x 

= K 
y 

= 1.0, and that the unbraced lengths L x 

1/4-Hard, stainless steel. Assume dead to 

= Ly = 10 ft. Use Type 304, 

load ration D/L=1/5 and live 

1.2D+1.6L gonerns the design. 

93"-
7.414· 

-0 0.2 .140" 

If r Compression ftange in bending 
;:-.. 

-0 .153" 
yf . 

• . 
~-+---;-" :! 

-or 

" 
8.000 10' 

• 
) - r---t -0.10S". 

R .. 3116'" 
~' Tension flange in bending ~ 

8.000" ~~ W 60K-in. 

l,sKips 

Figure 23.1 Section for Example 23.1 

Solution: 

1. Full section properties: 

r = R + t/2 = 3/16+0.105/2 = 0.240 in. 
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Length of arc, u = 1.57r = 1.57 x 0.240 = 0.377 in. 

Distance of c.g. from center of radius, 

c = 0.637r = 0.637 x 0.240 = 0.153 in. 

I = I (doubly symmetric section) x y 

y I' 
1 Distance About 

to Center Own 
L of Section Ly2 Axis 

Element (in. ) (in. ) (in. J) (in. 3
) 

Flanges 2 x 7.414 = 14.828 3.948 231.120 
Corners 4 x 0.377 = 1.508 3.860 22.469 

Webs 2 x 7.414 = 14.828 67.921 

Sum 31.164 253.589 67.921 

A = Lt = 31.164xO.105 = 3.272 in. 2 

I' = Ly2+I'1 = 253.589+67.921 = 321.510 in. J 

I = I =I't = 321.510xO.105 = 33.759 in." 
x y 

r = r = 33.759/3.272 = 3.212 in. 
x y 

S = I /4.000 = 33.759/4.000 = 8.440 in. 3 

X X 

K L /r = 1.0(10x12)/3.212 = 37.36 < 200 OK (Section 3.4-(5)) 
x x x 

2. Determination of ~cPn (Section 3.4): 

Since the square tube is a doubly symmetric closed section, 

provisions of Section 3.4.1 apply, i.e., section is not subjected 

to torsional flexural buckling. 

For Flexural Buckling: 
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F = (n2E ) / (K L / r ) 2 
n t y y y (Eq. 3.4.1-1) 

In the determination of the flexural buckling stress, it is 

necessary to select a proper value of Et from Table A13 or 

Figure All in the Standard for the assumed stress. For the 

first approximation, assume a compressive stress of f=44 ksi. 

From Table A13, the corresponding value of Et is found to 

be equal to 7200 ksi. Thus, 

F = (n2x7200)/(37.36)2 
n 

= 50.91 ksi > assumed stress f=44 ksi NG 

Because the computed stress is larger than the assumed value, 

further successive approximations are needed. 

Assume f=46.66 ksi, and 

Et = 6600 ksi 

F = (n2x6600)/(37.36)2 
n 

= 46.67 ksi = assumed stress OK 

w = 7.414 in. 

wIt = 7.414/0.105 = 70.61 < 400 OK (Section 2.1.1-(1)-(ii)) 

k = 4.00 (Section 2.2.1-(1)) 

= (1.052"Jk)(w/t)~f/Eo' f = Fn (Eq. 2.2.1-4) 

= (1. 052/"j4:00 )(70 . 61)~46. 44/27000 = 1. 544 > 0.673 

p = (1-0.22/A)/A 

= (1-0.22/1.544)/1.544 = 0.555 

b = pw 

= O.555x7.414 = 4.115 in. 

A = A-4(w-b)t 
e 

= 3.272-4(7.414-4.115)(0.105) = 1.886 in. 2 

= A F e n 

(Eq. 2.2.1-3) 

(Eq. 2.2.1-2) 

(Eq.3.4-1) 



= 1.886x46.66 = 88.00 kips 

(j>c = 0.85 

(j>cPn = 0.85x88.00 = 74.80 kips 

3. PDL+PLL = (PDL/PLL+l)PLL 

= (1/5+1)PLL = 1.2PLL = P 

PLL = P/l.2 = 15/1.2 = 12.5 kips 

P = 1.2PDL+l.6PLL u 

= (1.2PDL/PLL+l.6)PLL 

= (1.2(1/5)+1.6)(12.5) = 23 kips 

where 

PDL = Axial load determined on the basis of nominal dead load 

PLL = Axial load determined on the basis of nominal live load 

Pu/(j>cPn = 23/74.80 = 0.307 > 0.15 

Must check both interaction equations (Eq. 3.5-1), (Eq. 3.5-2). 

4. Determination of (j> P (Section 3.4 for F = F ) c no n y 

A = (1. 052/..j4:00)(70. 61)..j50. 0/27000 = 1.544 > 0.673 

p = (1-0.22/1.598)/1.598 = 0.540 

b = 0.540x7.414 = 4.004 in. 

A = 3.272-4(7.414-4.004)(0.105) = 1.840 in. 2 

e 

P = 1.840x50.00 = 92.00 kips 
no 

<PcPno 
= 0.85x92.00 = 78.20 kips 

5. Determination of Mux' Muy (Section 3.5): 

Since the section is doubly symmetric, the centroidal axes of the 
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effective section at ~ P are the same as those of the full c n 

section. 

M = P e = 23x4 = 92 kips-in. ux u y 

M = P e = 0 uy u x 

Since M = 0, the interaction equations (Eq. 3.5-1) and (Eq.3.5-2) uy 

reduce to the following : 

P / ~ P +M / ~bM s: 1. 0 u c no ux nx 

6. Determination of ~bM (Section 3.3.1): nx 

(Eq. 3.5-1) 

(Eq. 3.5-2) 

~bM shall be taken as the smaller of the design flexural strengths nx 

calculated according to Sections 3.3.1.1 and 3.3.1.2: 

a. Section 3.3.1.1: M will be calculated on the basis of nx 

initiation of yielding. 

Computation of I : 
x 

For the first approximation, assume a compression stress 

of f = F = 50 ksi in the compression flange, and that 
y 

the web is fully effective. 

Compression flange: k = 4.00 (stiffened compression element 

supported by a web on each longitudinal edge) 

wit = 7.414/0.105 = 70.61 < 400 OK (Section 2.1.1-(1)-(ii)) 

A = (1.052/..j4.00)(70.61).j50.0/27000 = 1.598 > 0.673 

P = (1-0.22/1.598)/1.598 = 0.540 

b = 0.540x7.414 = 4.004 in. 
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Effective section properties about x-axis: 

y 
L Distance 

Effective from 
Length Top Fiber 

Element (in. ) (in. ) 

Webs 14.828 4.000 
Upper Corners 0.754 0.140 
Lower Corners 0.754 7.860 

Compression Flange 4.004 0.053 
Tension Flange 7.414 7.948 

Sum 27.754 

Distance from top fiber to x-a~is is 

y = Ly/L = 124.482/27.754 = 4.485 in. cg 

Ly 
(in.2) 

59.312 
0.106 
5.926 
0.212 

58.926 

124.482 

I' 
1 About 

Own 
Ly2 Axis 

(in. 3
) (in. 3

) 

237.248 67.921 
0.015 

46.582 
0.011 

468.348 

752.204 67.921 

Since the distance of top compression fiber from neutral axis 

is greater than one half the section depth (i.e., 4.485 > 

4.000), a compression stress of 50 ksi will govern as 

assumed (i.e., initial yielding is in compression). 

To check if the web is fully effective (Section 2.2.2) 

f1 = ~4.485-0.293)/4.485)(50) = 46.73 ksi(compression) 

f2 = - ((3.515-0.293)/4.4851(50) = -35.92 ksi(tension) 

~ = f2/f1 = -35.92/46.73 = -0.769 

k = 4+2 (1-(-0. 769))3+2 (1-(-0. 769») 

= 18.610 

h = w = 7.414 in., hit = wIt = 7.414/0.105 = 70.61 

hIt = 70.61 < 200 OK (Section 2.1.2-(1» 
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A = (1.052/.j18.610 )(70.61).j46.73/27000 = 0.716 > 0.673 

P = (1-0.22/0.716)/0.716 = 0.968 

b = 0.968x7.414 = 7.177 in. e 

= b /2 e 

= 7.177/2 = 3.589 in. 

= b /(3-41) 
e 

= 7.177/(3-(-0.769») = 1.904 in. 

(Eq. 2.2.2-2) 

(Eq. 2.2.2-1) 

Compression portion of the web calculated on the basis of the 

effective section = y -0.293 = 4.485-0.293 = 4.192 in. cg 

, 

Since b1+b2 = 5.493 in. > 4.192 in., b1+b2 shall be taken 

as 4.192 in. 

This verifies the assumption that the web is fully effective. 

I ' = Ly2 + I' - Ly2 
X 1 cg 

= 752.204 + 67.921 - 27.754(4.485)2 

= 261.847 in. 3 

Actual I = tI' 

S e 

M nx 

x x 

= (0.105)(261.847) = 27.494 in. 4 

- I /y = 27.494/4.485 = 6.130 in. 3 

- x cg 

= S F e y 

= (6.130)(50) = 306.50 kips-in. 

= 0.90 

= 0.90 x 306.50 = 275.85 kips-in. 

(Eq. 3. 3 . 1. 1 - 1 

b. Section 3.3.1.2: M will be calculated on the basis of lateral 
rue 

buckling strength. However for this square tube (closed box-type 

member) the provisions of Section 3.3.1.2 do not apply. 
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Therefore 

= 275.85 kips-in. 

7. Cmx = 0.6-0.4(M1/M2) 

M1/M2 = -(92/92) = -1.0 (single curvature) 

0.6-0.4(M1/M2) = 0.6-0.4(-1.0) = 1.0 

8. Determination of 1/0 : nx 

<Pc = 0.85 

PE 
= 112E I / ( K L ) 2 o X x x 

I = 33.759 in." x 

K L = 1. 0(10x12) = 120 in. x x 

PE = (112(27000)(33.759»)/(120)2 = 624.73 kips 

1/0 = l/(l-P /<p PE) nx u c 

= 1/(1-23/(0.85x624.73») = 1.045 

0 = 0.957 nx 

9. Check interaction equations: 

P / <P P +C M / <PbM 0 ~ 1. 0 u c n mx ux nx nx 

(Eq. 3.5-5) 

(Eq. 3.5-4) 

(Eq. 3.5-1) 

23/74.80+1x92/(275.85xO.957) = 0.307+0.349 = 0.656 < 1.0 OK 

P / <P P +M / <PbM ~ 1. 0 u c no ux nx 
(Eq. 3.5-2) 

23/78.20+92/275.85 = 0.294+0.334 = 0.628 < 1.0 OK 

Therefore the section is adequate for the applied loads. 

297 



EXAMPLE 23.2 

Rework Example 23.1 by using the Allowable Stress Design (ASD) method to 

check the adequacy of a tubular section (Fig. 23.1) to be used as a com-

pression member. 

Solution 

1. Full section properties are the same as those calculated 

in Example 23.1. 

2. Determination of Pa 

The following results are obtained from Example 23.1.(2). 

Fn = (n2x6600)/(37.36)2 

= 46.67 ksi 

A = 1.886 in. 2 
e 

P = F A = 46.67x1.886 nne 

= 88.0 kips 

o = 2.15 

= P /0 = 88.0/2.15 = 40.93 kips n 

3. P = 15 kips 

PIP = 15.0/40.93 = 0.366 > 0.15 a 

Must check both interaction equations as follows: 

P /P +C M / (M a ) +C M / (M a) ~ 1. 0 a mx x ax x my y ay y 

PIP +M /M +M 1M ~ 1.0 ao x ax y ay 

4. Determination of P ao 

P = A F no e y 

298 



= 1.84x50 = 92.0 kips 

o = 2.15 

p = p /0 = 92.0/2.15 = 42.79 kips ao no 

5. Determination of M and M x y 

e = 4.00 in., e = 0 
y x 

M = 15.0(4.00) = 60.0 kips-in. (Required Flexural Strength) 
x 

6. Determination of M ax 

M shall be taken as the smaller of the allowable flexural strengths 
ax 

calculated according to sections 3.3.1.1 and 3.3.1.2: 

a. Section 3.3.1.1: M will be calculated on the basis of ax 

initiation of yielding. 

Se = 27.494/4.485 

M nx 

o 

= 6.130 in. 3 (from Example 23.1) 

= S F e y 

= 6.130(50) 

= 306.50 kips-in. 

= 1.85 

M = M /0 = 306.50/1.85 = 165.68 kips-in. ax nx 

(Eq. 3. 3 . 1. 1 - 1 ) 

b. Section 3.3.1.2: M will be calculated on the basis of the ax 

lateral buckling strength. However for this square tube (close 

box-type member) the provision of Section 3.3.1.2 do not apply. 

Therefore, 

M = 165.68 kips-tn. ax 
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7. Cmx = 0.6-0.4(M1/M2) ~ 0.4 

8. 

M1/M2 = -1.00 (single curvature) 

0.6-0.4(-1.00) = 1.00 > 0.4 

C = 1. 00 mx 

Determination of 1/0 : nx 

0 = 2.15 

P = rr2E I /(K L )2 
cr o x x x 

= (rr2(27000)(33.759))/(120)2 

1/0 = 1/ (1-(0 PIP )) nx c cr 

= 1/(I-(2.15x2.1/624.73)) = 

0 = 0.948 nx 

13. Check interaction equations: 

15.0/40.93+1.00x60.0/(165.68xO.948) 

= 0.366+0.382 = 0.748 < 1.0 OK 

PIP +M /M ~ 1.0 ao x ax 

= 624.73 kips 

1/0.948 

15.0/42.79+60.0/165.68 = 0.351+0.362 = 0.713 < 1.0 OK 

Therefore the section is adequate for the applied loads. 
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EXAMPLE 24.1 FLAT SECTION w/BOLTED CONNECTION (LRFD) 

Determine the maximum design strength, ~P , for the bolted connection shown 
n 

in Fig. 24.1. Use two 1/2 in. diameter hot-finished, Type 316 bolts with 

washers under both bolt head and nut. The plates are Type 304, 1/16-Hard, 

stainless steel. 

r.OD.DS. 
Bolt Diameter ,,1/2'" 

©) 
1" 

4>P 4>P 
n n 

2'" 4-

©) 
1" 

Figure 24.1 Bolted Connection for Example 24.1 

Solution: 

1. Design strength based on spacing and edge distance (Section 5.3.1) 

P = teF 
n u 

(Eq. 5.3.1-1) 
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e = 1.0 in. 

F = 80 ksi (from Table A16 of the Standard) u 

p = o .105( 1)(80) = 8.40 kips/bolt n 

~p = 0.7(2 bolts)(8.40 kips/bolt) = n 11.76 kips 

Distance between bolt hole centers must be greater than 3d. 

3d = 3(0.5) = 1.5 in. < 2 in. OK 

Distance between bolt hole center and edge of connecting member 

must be greater than 1.5d. 

1.5d = 1.5(0.5) = 0.75 in. < 1 in. OK 

2. Design strength based on tension on net section. 

Required tension strength on net section of bolted connection 

shall not exceed ~tTn from Section 3.2: 

A - based on Table 5 n 

A = 0.105 4-2(1/2+1/16) = 0.302 in. 2 

n 

F 
Y 

= 45 (from Table Al of the Standard) 

T n = A F n y 

= (0.302)(45) = 13.59 kips 

~t = 0.85 

~tTn = 0.85(13.59) = 11.55 kips 

or ~p from Section 5.3.2: 
n 

P = (1.0-r+2.5rd/s)F A ~ F A nun u n 

where in this case: 

r = 2(~Pn/2)/~Pn = 1 

d = 0.5 in. 
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s = 2 in. 

Pn = (1.0-(1)+2.5(1)(0.5)/2](80)(0.302) 

= 15.10 kips < 80(0.302) = 24.16 kips OK 

$ = 0.70 for single shear connection 

$Pn = 0.70(15.10) = 10.57 kips 

Therefore, design strength based on tension on net section 

is 10.57 kips. 

3. Design strength based on bearing (Section 5.3.3) 

For single shear with washers under bolt head and nut, the design 

4. 

bearing strength $P is: 
n 

$ = 0.65 

Pn = 2.00Fudt = 2.00(80)(0.5)(0.105) = 8.4 kips/bolt 

$P = 0.65(2 bolts)(8.4 kips/bolt) = 10.92 kips n 

Design strength based on bolt shear (Section 5.3.4) 

P = AbFn n 

Ab = (rr/4)(0 .5)2 = 0.196 in. 2 

(Eq. 

F = F = 45 ksi (Table 6, n nv for no threads in shear plane) 

P = (45)(0.196) = 8.82 kips/bolt n 

$ = 0.65 

$P = 0.65(2 bolts)(8.82 kips/bolt) = 11.47 kips n 

5. Comparing the values from 1, 2, 3, and 4 above, the design 

tensile strength on the net section of the connected part 

controls and thus, 

$P = 10.57 kips n 
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EXAMPLE 24.2 FLAT SECTION w/BOLTED CONNECTION (ASD) 

Rework Example 24.1 to determine the maximum allowable load, Pa 

Solution: 

1. Allowable load based on spacing and edge distance 

P = 0.105(1)(80) = 8.40 kips/bolt (from Example 24.1.(1)) 
n 

n = 2.40 (Table E of the Standard) 

Pa = (2 bolts)(8.40 kips/bolt)/(2.40) = 7.0 kips 

Distance between bolt hole centers must be greater than 3d. 

3d = 3(0.5) = 1.5 in. < 2 in. OK 

Distance between bolt hole center and edge of connecting member 

must be greater than 1.5d. 

1.5d = 1.5(0.5) = 0.75 in. < 1 in. OK 

2. Allowable load based on tension on net section. 

Required tension strength on net section of bolted connection 

shall not exceed $tTn from Section 3.2: 

T = A F = (0.302)(45) = 13.59 kips (Example 24.1) n n y 

n = 1.85 

Ta = (13.59)/1.85 = 7.35 kips 

or P from Section 5.3.2: 
n 

P = (1. 0 - r+ 2 . 5 rd / s ) F A S; F A nun u n 

= (1.0-(1)+2.5(1)(0.5)/2J(80)(0.302) 

= 15.10 kips < 80(0.302) = 24.16 kips (Example 24.1) 

n = 2.40 

P
a 

= (15.10)/2.40 =6.29 kips 
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Therefore, allowable load based on tension on net section 

is 6.29 kips. 

3. Allowable load based on bearing 

For single shear with washers under bolt head and nut, the design 

bearing strength ~P is: (Example 24.1) 
n 

P = 2.00F dt = 2.00(80)(0.5)(0.105) = 8.4 kips/bolt n u 

n = 2.40 

Pa = (2 bolts)(8.4 kips/bolt)/2.40 = 7.0 kips 

4. Allowable load based on bolt shear 

Pn = AbFn 

= (45)(0.196) = 8.82 kips/bolt (Example 24.1) 

n = 3.0 

P = (2 bolts)(8.82 kips/bolt)/3.0 = 5.88 kips a 

5. Comparing the values from 1, 2, 3, and 4 above, the allowable 

load based on bolt shear strength controls and thus, 

Pa = 5.88 kips 
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EXAMPLE 25.1 FLAT SECTION w/LAP FILLET WELDED CONNECTION (LRFD) 

Using the Load and Resistance Factor Design (LRFD) criteria, check to see 

if longitudinal fillet welded connection shown in Fig. 25.1 is adequate to 

transmit a factored load F = 4.5 kips. Assume that Type 301, l/4-Hard, 

stainless steel sheet and E308 electrode are to be used. 

I,X(XXXXXYXIxXyvrr 

I 
I 
I 
I 

F I r 
2Yl- I 

I 
I 
I 
I 
I 

2 

Figure 25.1 Welded Connection for Example 25.1 

Solution: 

1. Design Strength for Weld Sheet. 

Lit = 2/0.06 = 33.33 > 30 

For LIt ~ 30, 

<p = 0.55 

306 



P = 0.43tLF 
n ua 

= 0.43(0.06)(2)(90) = 4.64 kips 

(See Table A16 of the Standard for F value.) ua 

~P = 0.55(4.64) = 2.55 kips/weld 
n 

(2.55 kips/weld)(2 welds) = 5.1 kips> 4.5 kips OK 

2. Design Strength for Weld Metal. 

~ = 0.55 

P = 0.75t LF n w xx 

t = 0.707(0.0625) = 0.044 in. 
w 

F = 80 ksi (from Table A15 of the Standard) xx 

P = 0.75 (0.044)(2)(80) = 5.28 kips 
n 

~P = 0.55(5.28) = 2.90 kips/weld 
n 

(2.90 kips/weld)(2 welds) = 5.80 kips> 4.5 kips OK 
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EXAMPLE 25.2 FLAT SECTION w/LAP FILLET WELDED CONNECTION (ASD) 

Using the Allowable Stress Design (ASD) method, check to see if longitudinal 

fillet welded connection shown in Fig. 25.1 is adequate to transmit a total 

load F = 3.5 kips. Assume that Type 301, 1/4-Hard, stainless steel sheet and 

E308 electrode are to be used. 

Solution: 

1. Allowable load for Weld Sheet. 

Pn = 0.43tLF (Example 25.1) ua 

- 0.43(0.06)(2)(90) = 4.64 kips/weld 

n = 2.50 (Table E of the Standard) 

Pa = 4.64x2/2.50 = 3.71 kips >3.5 kips OK 

2. Allowable load for Weld Metal. 

n = 2.50 

Pn = 0.75 (0.044)(2)(80) = 5.28 kips/weld (Example 25.1) 

Pa = 5.28x2/2.50 = 4.22 kips> 3.5 kips OK 
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EXAMPLE 26.1 FLAT SECTION w/GROOVE WELDED CONNECTION IN BUTT JOINT (LRFD) 

Determine the design tensile strength, ~Pn' nor~al to the effective area 

of the groove welded connection as shown in Fig. 26.1. Use Type 304, 

annealed, stainless steel and E308 electrode . 

• T 

8.000" 

Figure 26.1 Welded Connection for Example 26.1 

Solution: 

Determination of the design tensile strength, ~P , normal to the 
n 

effective area provided that the effective throat equal to the 

thickness of the welded sheet. (Section 5.2.1). 

P = LtF 
n ua 

F = 75 ksi (Table A16 of the Standard) ua 

F = 80 ksi (Table A15 of the Standard) 
xx 

(Eq. 5. 2 . 1 - 1 ) 

The minimum tensile strength for weld metal is larger than 

that the base metal. OK 
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P = (8.000)(0.135)(75) 
n 

= 81. 00 kips 

<I> = 0.60 

<I>(Pn )l = 0.60 x 81.00 

= 48.60 kips 
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EXAMPLE 26.2 FLAT SECTION w/GROOVE WELDED CONNECTION IN BUTT JOINT (ASD) 

Rework Example 26.1 to determine the allowable tensile load, P , normal to a 

the effective area of the groove welded connection. 

Solution: 

Determination of the allowable tensile load, Pa , normal to the 

effective area. 

Pn = (8.000)(0.135)(75) 

= 81.00 kips (Example 26.1) 

F = 80 ksi > F = 75 ksi OK xx ua 

n = 2.50 (Table E of the Standard) 

(Pa )1 = 81.00/2.50 = 32.4 kips 
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EXAMPLE 27.1 BUILT-UP SECTION - CONNECTING TWO CHANNELS CLRFD) 

By using the LRFD criteria, determine the maximum permissible longitudinal 

spacing of connectors joining two channels to form an I-section (Fig. 27.1) 

to be used as a compression member with unbraced length of 12 ft. Also design 

resistance welds connecting the two channels to form an I-section used as a 

beam with the following load, span, and support conditions: (a) Span: 10'-0", 

(b) Total uniformly distributed factored load including factored dead load: 

0.520 kips per lin. ft., and (c) Length of bearing at end support: 3 in. Use 

Type 304, 1/4-Hard, stainless steel. 

Solution: 

I 1.625" I 
---_----, I-: ..... ----------------~- -

--- ~ _t 0.45" 

o 
o 
\0 

R=3/32" 

t=0.06" 

t 

Figure 27.1 Section for Example 27.1 

1. Maximum longitudinal spacing of connectors for compression member 

Section 4.1.1(1) . 

For compression members, the maximum permissible longitudinal 

spacing of connectors is 

Smax = Lr /(2rI ) cy (Eq. 4.1.1-1) 
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where 

r = radius of gyration of one channel about its centroidal axis cy 

parallel to web. 

r I = radius of gyration of I-section about axis perpendicular 

to direction in which buckling would occur for given 

conditions of end support and intermediate bracing. 

The following equations used for computing the sectional properties 

for channel with lips are based on the information in Part III of 

Cold-Formed Steel Design Manual (1986), American Iron and Steel 

Institute, Washington, D.C. 

Basic parameters used for calculating the section properties of a 

channel section with lips: (For parameter designations, see Fig. 22.1 

r = R+t/2 = 3/32+0.060/2 = 0.124 in. 

From the sketch a = 5.692 in., b = 1.317 in., c = 0.296 in., 

AI = 6.0 in., B' = 1. 625 in., C' = 0.45 in., 

a = 1.00 (Since the section has lips) 

-a = A' -t = 6.0-0.060 = 5.94 in. 

b = B'-(t/2+at/21 = B'-t = 1.625-0.06 = 
- alC'-t/2l = C'-t/2 0.45-0.06/2 c = = = 

u = 1.57r = 1.57 x 0.124 = 0.195 in. 

a. Area: 

A = t (a+2b+2u+a(2c+2u) J = t [a+2b+2c+4u) 

= 0.06 (5.692+2x1.317+2xO.296+4xO.195) 

= 0.582 in. 2 
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b. Moment of inertia about x-axis: 

I = 2ttO. 0417a3+b(a/2+r)2+u(a/2+0. 637r)2+0 . 149r3 

x 

+0 (0. 0833c3+( c/4)(a -c)2+u(a/2+0. 637r )2+0 . 149r3) } 

= 2t (0. 0417a3+b(a/2+r)2+2u(a/2+0. 637r)2+0. 298r3 

+0.0833c3+(c/4)(a-c)2) 

= 2xO.06(0.0417(5.692)3+1.317(5.692/2+0.124)2 

+2xO.195(5.692/2+0.637xO.124)2+0.298(0.124)3 

+0.0833(0.296)3+(0.296/4)(5.692-0.296)2] 

= 2.976 in. 4 

c. Distance from centroid of section to centerline of web: 

x = (2t/A){b(b/2+r)+u(0.363r)+0(u(b+l.637r)+c(b+2r)1} 

= (2xO.06)/0.582)(1.317(1.317/2+0.124)+O.19S(O.363xO.124) 

+0.195(1.317+1.637xO.124)+0.296(1.317+2xO.124)) 

= 0.371 in. 

d. Moment of inertia about y-axis: 

I = 2t fb(b/ 2+r )2+0. 0833b3+0 . 356r3+0 (c( b+2r)2 
y 

+u(b+l.637r)2+0.149r3 J}-A(x)2 

= 2xO.06(1.317(1.317/2+0.124)2+0.0833(1.317)3 

+0.356(0.124)3+0.296(1.317+2xO.124)2 

+0.195(1.317+1.637xO.124)2+0.149(0.124)3J-0.582(0.371)2 

= 0.181 in." 

e. Distance from shear center to centerline of web: 

II = (bt/12l ) 6c(a)2+3b(a)2-8(~)3 
x 

= ( 1. 565xO. 06) / (12x2. 976)J (6xO. 42(5.94)2 
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f. r cy 

+3x1.565(5.94)2-8(0.42)3) 

= 0.668 in. 

r = t{!jA = '/0.181/0.582 cy Y 

= 0.558 in. 

Based on the above information, the section properties of I-section 

composed of two channels can be determined as follows: 

I = 2x2.976 = 5.952 in4 

x 

A = 2xO.582 = 1.164 in2 

r = JI· /A = j5.952/1.164 = 2.26 in x x 

Iy = 2x 0.81+0.582x(0.371+0.06/2)2 = 0.549 in2 

r = JI:]A = .)0.549/1. 164 = 0.687 in < r y y x 

Therefore, r I = ry = 0.687 in 

s = (12x12)xO.558/(2xO.687) = 58.48 in. max 

Therefore, the maximum spacing of connectors used for connecting 

these two channels as a compression member is 58 in. 

2. Design resistance welds connecting the two channels to form an 

I-section used as a beam Section 4.1.1(2) 

a. Spacing of welds between end supports: 

The maximum permissible longitudinal spacing of welds for 

a flexural member is 

s = L/6 max 

= 12xlO/6 = 20 in. 

Maximum spacing is also limited by 
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(Eq. 4. 1. 1-2 ) 



(Eq. 4. 1. 1-3 ) 

in which 

g = 5.0 in. (assumed for 6 in. deep section) 

T = 0.60x2.27xO.25 = 0.341 kips (Section 5.2.3) s 

m = 0.668 in. (from avobe-calculated value) 

q = 3xO.520/12 = 0.130 kips per lin. in. 

Therefore 

s = 2x5.0xO.341/(0.668xO.130) = 39.27 in. max 

s = L/6 controls. Use a spacing of 20 in. throughout max 

the span. 

b. Strength of welds at end supports: 

Since the weld spacing is larger than the bearing length 

of 3.0 in., the required design strength of the welds 

directly at the reaction is 

T = Pm/(2g) s 

= 0.520x5xO.668/(2x5) = 0.174 kips 

which is less than 0.341 kips as provided. OK 
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(Eq. 4. 1. 1 - 5 ) 



EXAMPLE 27.2 BUILT-UP SECTION - CONNECTING TWO CHANNELS (ASD) 

Rework Example 27.1 for the same given data by using the ASD method. Assume 

that the applied uniform load is 0.4 kips/ft for the I-section used as a 

beam. 

Solution: 

1. Maximum longitudinal spacing of connectors for compression member 

Section 4.1.1(1) . 

For compression members, the maximum permissible longitudinal 

spacing of connectors is 

smax = Lrcy/(2rI ) 

= (12x12)xO.558/(2xO.687) = 58.48 in. 

Refer to Example 27.1 for the section properties used to calculate 

s The maximum spacing of connectors used for connecting max 

these two channels as a compression member is 58 in. 

2. Design resistance welds connecting the two channels to form an 

I-section used as a beam Section 4.1.1(2) 

a. Spacing of welds between end supports: 

The maximum permissible longitudinal spacing of welds for 

a flexural member is 

smax = L/6 = 12x10/6 = 20 in. 

Maximum spacing is also limited by 

in which 

g = 5.0 in. (assumed for 6 in. deep section) 

Ts = (0.25x2.27)/2.50 = 0.227 kips 

m = 0.668 in. (from Example 24.1) 
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q = 3xO.40/12 = 0.10 kips per lin. in. 

Therefore 

s = 2x5.0xO.227/(0.668xO.10) = 33.98 in. max 

s = L/6 controls. Use a spacing of 20 in. throughout max 

the span. 

b. Strength of welds at end supports: 

Since the weld spacing is larger than the bearing length 

of 3.0 in., the required design strength of the welds 

directly at the reaction is 

T = Pm/(2g) s 

= 0.40x5xO.668/(2x5) = 0.134 kips 

which is less than 0.227 kips as provided. OK 
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