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A Systematic Tradeoff Methodology for Acquiring and Validating 
Imprecise Requirements 

John Yen W. Amos Tiao Xiaoqing Frank Liu 
Center for Fuzzy Logic, Robotics, and Intelligent Systems Department of Computer Science 

Department of Computer Science 
Texas A&M University 

College Station, Texas 77843-3112 

Abstract 

Requirement analysis i s  one of the most important 
phases in a software development process. Existing 
requi.rement methodologies are limited in  specifying re- 
quirements that are usually vague and imprecise, and 
in  supporting tradeofl  analysis between the conflicting 
requirements. In this paper, the elasticity of impre- 
case requirements i s  captured using fuzzy logic to facil- 
i tate  tradeofls between conflicting requirements. .Based 
on the marginal rate of substitution in  decision sci- 
ence, we  have developed a systematic  approach to  elicit 
the structures and the parameters of imprecise require- 
ments ,  t o  validate the scheme f o r  aggregating require- 
ment s ,  and to  assess relative priorit ies of conflicting 
requirements. 

1 Introduction 

Requirement analysis begins when there is recogni- 
tion that a problem exists and requires a software solu- 
tion, and ends when we have a specification of the soft- 
ware to be built, The specification contains functional 
requirements that describe the external behavior of 
the software in terms of inputs, outputs, and their rela- 
tionships, and nonfunctional requirements that impose 
constraints on the software, such as resource, cost, and 
politics. Brooks pointed out that no other parts of the 
work so cripple the resulting system if done wrong and 
no other parts are more difficult to rectify later than 
requirement analysis [3]. 

There are a t  least two challenges with requirement 
engineering [9, 61. First, requirements are usually 
vague and zniprecise in nature. Therefore, there is 
a need to bridge the gap between imprecise require- 
ments and formal specification methods. Actually, as 
Balzer et .  al. pointed out, informality is an inevitable 
and ultimately desirable feature of the specification 
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process [l]. Second, requirements often conflict with 
each other, which many conflicts are implicit and dif- 
ficult to identify [2, 71. Assessing the tradeoffs among 
conflicting requirements is a very challenging issue. 

The imprecise nature of requirements leads to a 
mismatch to the existing formal specification meth- 
ods. Most existing formal specification methodologies 
require the requirements to be stated precisely [7] or 
convert imprecise requirements into precise ones [1,4]. 
If requirements are specified to  be crisp, that is, re- 
quirements are either satisfied on not satisfied at  all, 
their capabilities of capturing the semantics of impre- 
cise requirements are limited. 

Most early software specification methods consider 
a requirement specification containing conflicting re- 
quirements to be inconsistent. In the software devel- 
opment process, contlicts are inevitable and can be 
beneficial if they can be managed well. Several works 
have focused on conflict detection and resolution in 
requirement engineering [2, 81. They are, however, 
limited in detecting implicit conflicts and do not ad- 
dress the issues of tradeoff analysis. If requirements 
are crisp, one of the conflicting requirements has to be 
dropped or modified to resolve the conflict. However, 
each conflicting requirement can be satisfied to some 
degree if the elasticit,y of a requirement is captured. 
Hence, i t  is possible to explore an effective tradeoff 
among conflicting requirements. 

In this paper, imprecise requirements are repre- 
sented by fuzzy iogilc so that the elasticity of con- 
straints imposed by imprecise requirements can be 
captured. Once the conflicts between requirements are 
identified, they need to be resolved effectively. Trade- 
offs should be made between conflicting requirements. 
Based on the marginal rate of substitution developed 
in decision science, w e  have developed a systematic 
approach to  elicit the structures and the parameters 
of imprecise requirements, to validate the scheme for 



aggregating requirements, and to  assess relative prior- 
ities of conflicting requirements. 

2 Representation of Imprecise Re- 
quirements Using Fuzzy Logic 

Requirements represent the elastic criteria against 
which the acceptability of a realization of a target sys- 
tem is judged. The foremost effort in requirement 
analysis is to represent the system requirements. The 
universe being constrained by a requirement is called 
its domain. Typical domains for imprecise require- 
ments include (1) the domain containing all possible 
system development processes under consideration, (2) 
the domain containing all possible system realizations 
under consideration, and (3)  the domain containing all 
possible input-output state transitions. 

The constraint imposed by an imprecise require- 
ment R IS represented as a satisfaction function, de- 
noted as S d R ,  that maps an element of R’s domain 
D to a number in [ O ,  11 that represents the degree to 
which the requirement is satisfied: 

SUtR : D -+ [0,1]. (1) 

In essence, the satisfaction function characterizes a 
fuzzy subset of D that satisfies the imprecise require- 
ment. 

The canonzcal form in Zedah’s test score semantics 
is used as a basis for expressing imprecise requirements 
[l I]. The representation of imprecise requirements on 
a system development process in canonical form is es- 
tablished by the following definition [6, lo]. 

Definition 1 Let R be an impreczse requzrement on 
system development process in canonical form R : 
A , ( p )  is B ,  where p zs a system development process, 
A, as a property of the process, such as cost, B zs a 
fuzzy set. Then 

Sa tR(P)  = P B ( A * ( P ) ) .  

An imprecise requirement about overall system be- 
havior can be expressed using a summarization oper- 
ation, such as AVERAGE, MIN, and MAX as follows. 

Definition 2 Assume that R zs an zmpreczse requzre- 
ment about overall system functional behavzor and as 
expressed an canonical form R : qR, ( r )  is B .  where 
@ zs a summarzzatzon operator, such as AVERAGE, 
R, zs a specafic functaonal requzrement, and r a s  a re- 
alazatzon. The satzsfactaon degree of R 2s defined as 

3 Tradeoff Analysis between Require- 
ment s 

Once we have represented the imprecise require- 
ments, we would like to know the relationship between 
requirements. We have identified four types of sig- 
nificant relationships between requirements: conflict- 
ing, cooperative, mutually exclusive, and irrelevant [6]. 
Among these four types of relationships, we are partic- 
ularly interested in the conflicting relationship. Two 
imprecise requirements, RI and R2, are said to be con- 
jlzcting with each other if an increase in the degree of 
satisfaction of RI (Rz)  often causes a decrease in the 
degree of satisfaction of R:! (RI). If an increase in 
the satisfaction degree of one requirement always de- 
creases the satisfaction degree of the other, they are 
said to be complefely conjlzctzng. 

Once conflicting relationship between imprecise re- 
quirements has identified, an effective tradeoff between 
them should be made. That is, we should explore a 
plausible approach that increases the degree of satis- 
faction of one requirement by sacrificing the degree of 
satisfaction of another requirement, while the overall 
degree of satisfaction should be maximized. 

Keeney and Raiffa have developed the concepts of 
value function, zndifference curve and Marginal Rate of 
Substztution (MRS) for the tradeoff analysis between 
multiple criteria in decision science [5] .  A value func- 
tion refers to the overall satisfaction. An indifference 
curve represents all the alternative combinations of X 
and Y for which a customer is equally well off. That 
is, the alternatives on an indifference curve all provide 
the same level of satisfaction. The MRS indicates the 
maximal amount of a decision attribute that a cus- 
tomer is willing to sacrifice for a unit increase in an- 
other decision attribute. For example, if, at  the point 
(x,y), the customer is willing to give up AA units of 
X for A units of Y ,  then the MRS of X for Y at 
point (x,y) is A. This is formally established by the 
following definition. 

Definition 3 Suppose X and Y are two deciston at- 
trzbutes, x1 and yl are values for X and Y ,  respec- 
tzvely. If the zndifference curve through (x1,yI) zs 
given b y  v(x,y) = c, then the marginal rate of sub- 
stitution (MRS)  X at  (x1,yl) 2s 

where U( ,  and v i  are the par tza l  derzvatzves of v wzth 
respect to the first and second arguments, respectively. 

where < s1,sz > zs a state transitzon and r 2 ( r )  zs the 
set of state transataons performed by  a realzzatzon r .  

Generally speaking, MRSs of two decision at- 
tributes at  two different decision points (e.g., A at 



( z l , y l )  and X at ( 2 2 , ~ ~ ) )  can be different. If MRSs 
of two decision attributes are the same for all decision 
points, we call it a constant MRS. 

3.1 Priority Assessment Based on Con- 
stant MRS 

A set of requirements often need to be ordered 
based on their degree of importance to resolve the 
potential conflicts among them. The purpose of re- 
quirement priority analysis is to  establish an order- 
ing of requirements based on their importance and 
discover how much a requirement is more important 
than another requirement. It is, however, often dif- 
ficult for customers to directly provide priorities for 
all requirements due to complex relationships between 
them. Thus it is desirable to develop a technique to 
assist them in identifying the priority of each require- 
ment. 

Compromise operators are often used to achieve a 
tradeoff among conflicting requirements. Since the 
weighted arithmetic average operator is one of the 
most widely used compromise operators to aggregate 
requirements with complex tradeoff relationships, we 
focus our discussion on assessing the priority of re- 
quirements combined using this operator. The overall 
satisfaction degree of the combined requirements can 
be computed as follows: 

n 

1=1 

where w, is a normalized weight of requirement &, p 
is a process, Ai is an attribute of p on which require- 
ment Ri imposes a constraint, and S a t ~ , ( A j ( p ) )  is the 
satisfaction degree of the case on the requirement. For 
convenience, Aj(p)  is abbreviated as zi in the follow- 
ing discussion. The following theorem show how to 
compute relative priority based on a constant MRS. 

Theorem 1 W e  assume that an imprecise require- 
ment &(k  = i , j )  has a h e a r  satisfaction funct ion 
whzch maps an attribute value to  a satisfaction degree: 
S U ~ R ~ ( X ~ )  = ak X xk + b k ,  k = i, j .  In addition, we  as- 
sume that the marginal rate of substitution of attribute 
xJ  f o r  xi  2s a constant Ai , , .  Then, 

1 W ’  = ai/\. . 
* , J .  wj ai 

Proof: Since is the MRS of attribute zJ for x i ,  the 
level of overall satisfaction degree should be the same 
before and after the substitution. Hence, we have 

n 

k = l  

That is, 

W i  x SatR,(xi)I + wj x S a t R , ( z j )  = 
wi x SatR,(zi -t 1) + 
wj x S a t R , ( c j  - A i , j ) .  

Because of the linear membership function assump- 
tion, we have 

wi X ( U ~  x xi + b i )  + wj x (U] x ~j + b j )  = 
W: x (at x ( X i  + 1) + bz) + 
wj x ( a j  x ( ~ j  - A i , j )  + b j ) .  

After simplification, we obtain W ,  x ai = W j  x aj x & , j .  

That is, 
w,  a 
w, ai 
- = L A i , j  . 

Therefore, we have ]proven the theorem. 

3.2 Assessing Satisfaction Function Using 
MRS 

One of the most critical tasks in a formal approach 
to specify imprecise requirements is to determine the 
structures and the parameters of satisfaction functions 
that reflect the customer’s intention and preferences. 
Hence it is desirable to  develop a systematic approach 
to  assist customers and requirement engineers to  con- 
struct the satisfaction functions. 

Suppose that customers think that the substitution 
rate between two reiquirements is constant. From the 
definition of marginal rate of substitution, i t  is easy to 
derive that the value function is in the following form: 

v ( x , y )  = z + X y + c ,  

where A is the constant MRS and c is a constant. As- 
suming that customlers also feel that i t  is appropriate 
to use a linear Satisfaction function to specify each im- 
precise requirement, we can derive a systematic way to 
assign the parameters of the linear function using the 
following theorem. 

Theorem 2 W e  as:sume overall satisfactron funct ion 
zs aggregated uszng !he weighted summation,  A i , ,  is  a 
constant MRS f o r  requirements Rj and .U,, and re- 
quirement & and Rj have a l inear satisfaction func- 
tion: SatR, ( z k )  = ak X xk + bk, k = i, j .  In addition, 
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we assume that the relattve przortty beiween the two re- 
quzrements zs f i xed ,  2.e. 3 = a ,  where (Y IS a constani, 
and w, and wj are normalized weights of requirements 
R, and  R3, respectzvely. Then, we have 

W J  

as1 
a, = - ,  
al = ( a +  l)X;,J , and 

a 

f ib ,  + b, = c (a  + 1). 

Proof: Since is a constant, we get 

Using weighted summation, we get 

Because of fixed relative priority and the linear satis- 
faction function assumption, we have 

After simplification, we obtain 

ff ai abi + bj 
* (3) aj x j  + - O ( X i ,  Z j )  = - X i  + - 

a+1 a + l  a + l  
The right hand sides of Eq. (2) and Eq. (3) should be 
equal for all xi and x j ,  thus we have 

a 1 = -  
a + la;, 

abi + bj 
a + l  

c = -. 

After simplification, we obtain 

a + 1  
U, = 1 

aj = (a  + l ) X i , j  , and 
a 

a b i + b j  = c ( a +  1 ) .  

Thus, we have proven the theorem. 
There are two possible uses of the above theorem. 

First, requirement engineers may use it to construct 
satisfaction functions. Second, it can be used to vali- 
date satisfaction functions previously formulated. 

3.3 Assessing the § t ~ u ~ t u ~ e s  of Satisfae- 
tion Functions 
MRS 

In section 3.2,  we have shown that parameters of 
satisfaction function can be constructed in a system- 
atic way if the satisfaction function is linear. In gen- 
eral. we may need to determine the structure of the 

satisfaction function before we can actually identify 
its parameters. Hence, it is very desirable that we can 
develop a technique for determining the possible struc- 
tures of the satisfaction function based on a systematic 
assessment. 

Suppose that customers feel that the substitution 
rates depend on one requirement but not on the other, 
how can this qualitative statement help in the assess- 
ment of the possible structures of the satisfaction func- 
tion? To answer this question, we first determine the 
form of a value function. If the MRS depends on y but 
not on x, it is easy to derive the following form for the 
value function 

V ( t ,  :y) = 2 + V Y  ( Y )  + c, 

where t’y is a value function over requirement Y and c 
is a constant. That is, the amount a customer is will- 
ing to pay in x unitis for additional y units depends on 
the level of y but not on the level of I. Under such 
a circumstance, we can determine the possible struc- 
tures of the satisfaction function of attribute X using 
the following theorem. For notational convenience, we 
use x and y to represent xi and x j ,  respectively. 

Theorem 3 We a:rsume the overall Satisfaction func- 
tion i s  aggregated vising the weighted summation, and 
relative priority between requirements R, and R, is 
f ixed ,  i.e. % is a constant, where wi and wj are nor- 
malited weight of imprecise requirements Ri and Rj, 
respectively. Let attributes constrained b y  R, and Rj 
be denoted b y  x an,d y, respectively. In addition, we 
assume MRS satisfies 

W J  

X(Z1, Y1) = X(x2, Yl), Vz1, Z2r Yl. 

That is, X depends on the level of y but not on the level 
of x. Then we have 

where a; and b; are constants. 

Proof: Since the MM depends on the level of y but 
not on the level of x, we have 

4 2 ,  Y) = 2 + V Y ( Y )  + c, (4) 

where ~ ( y )  is a value function over attribute Y and 
c is a constant. Using the weighted summation to 
aggregate requirements, we get 

~ ( z ,  Y) 1 wi x S U ~ R , ( Z )  + wj x S U ~ R ,  ( Y ) .  ( 5 )  

Because of the fixeld relative priority, it implies wi and 
wj are constants. Since the right hand sides of Eq. (4) 



and Eq. ( S )  should be equal for all 3: and y, S a t R , ( x )  
should be a linear structure. That is, 

S a t R , ( z i )  = aizi + b i .  

where ai and 6 ,  are constants. Therefore, we have 
proven the theorem. 

Furthermore, a customer sometimes may be willing 
to pay less and less for an additional unit in Y as the 
value of y increases. In other words, he might feel that 

VY(Y + 1) - VY(Y) < VY(Y) - VY(Y - 11, VY; (6) 

it worths less to go from y to y +  1 than from y - 1 to 
y, regardless of the value of y. It can be shown that 
vy is strictly concave if X does not depend on x and 
it decreases as y increases. One example of concave 
functions is fi. This is formally stated in the theorem 
below. 

Theorem 4 W e  assume the overall sattsfactzon func-  
tzon is aggregated uszng the wezghted summation,  and 
relative przority between requzrenients R, and R3 zs 
fized,  i . e .  EL zs a constant, where w; and wj are 
normalized weights of requirements R, and Rj, respec- 
tzvely. In  addition, we assume marginal rate of substi- 
tutron satisfies the following conditions; 

“ J  

Sa tR ,  (x) = a;  x + b; , 

S u t ~ ~ ( y )  is a concave function, 

where a, and 6, are constants. 

Proof: The proof is similar to that of Theorem 3. 

3.4 Assessing the Validity of Operator 

In the previous sections, we have assumed that 
the overall satisfaction function is aggregated using 
weighted summation. There are, however, many op- 
erators that can be used to aggregate a set of impre- 
cise conflicting requirements. Thus, it is desirable to  
develop techniques for validating the correctness of a 
chosen aggregation operator. 

In general, the marginal rate of substitution de- 
pends on the level of z and on the level of y. A 
value function is additzue if it has the form v(x,y) = 
ux (2) + vy (y), where vx (x) and vy (y) are single vari- 
able value functions depending only on attribute X 
and Y ,  respectively. For an overall satisfaction func- 
tion combined by the weighted summation, we have 

the structure Cy=, wi x S u t ~ , ( t ; ) .  Assuming that 
each weight wi is fixed, it is easy to show that this 
function is additive. Then we can formally describe 
the corresponding iradeofl condition in decision science 
as follows. 

Theorem 5 Consider f o u r  points A : (zl,yl), B : 
(cl,yz), C : (x2,yl), and D : (z2,y2) in an  evaluation 
space. The correspona!ing tradeoff condition i s  said to 
be satisfied if given 

b 
X(xl,Yl) = A A  = ; 7 

C 

a 
X(x1,yz) = X g  = - , and 

b 
d ’  

X(Z?.Yl) = xc = - 

we have 

Proof: For simplicity. we assume the value function is 
additive. Thus, we can represent the value function as 
v ( x ,  y) = u ~ ( x )  + vy(:y). From the definition of MRS, 
we obtain 

Thus we have proven the theorem. 
Based on the works in decision science, the corre- 

sponding tradeoff condition provides us with necessary 
and sufficient conditions for an important result, which 
is described in the following theorem [5]. 

Theorem 6 A ualue functzon IS addztrve zf and only 
z f  the corresponding tradeoff condntzon is satisfied. 

From Theorem 5 and Theorem 6, we can develop a 
procedure to assess the validity of the weighted sum- 
mation. 
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4 Conclusion 

In this paper, a systematic approach has devel- 
oped for specifying imprecise requirements and resolv- 
ing conflicts between them. The elasticity of impre- 
cise requirements is captured based on the fuzzy logic. 
Based on the marginal rate of substitution in deci- 
sion science, we have developed a systematic approach 
for assessing the relative priority of imprecise require- 
ments. We have also developed techniques to deter- 
mine the structures and the parameters of member- 
ship functions that characterizes the elasticity of re- 
quirements. Finally, we have derived a procedure to 
validate whether requirements should be aggregated 
through an additive form. These techniques not only 
can facilitate the acquisition and the validation of re- 
quirements in software engineering, they can also be 
applied to the acquisition and the validation of deci- 
sion criteria in multi-criteria fuzzy decision making. 
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