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A Model-Based Approach for Organizing
Quantitative Computations

Jon Sticklen and Ahmed Kamel
AVKBS Laboratory - CPS Dept
A 714 Wells Hall
Michigan State University
East Lansing, MI, USA 48824
sticklen@pleiades.cps.msu.edu

ABSTRACT

Model based reasoning (MBR) is currently receiving
wide spread attention because it offers a way to circum-
vent the brittleness of reasoning systems built solely on
associational knowledge. Initially MBR was explored
under a general viewpoint of the envisonment process, al-
though more recently, the field has broadened substan-
tially. To date, most MBR approaches have focused on the
use and manipulation of qualitative models. We report
our experience in applying techniques of Functional Rea-
soning to the general problem of organizing quantitative
calculations. As a testbed, we have solved a problem ini-
tially posed at the Model-Based Diagnosis workshop held
in Paris, in July, 1989: representing an automotive cruise
control system. Our results show that the principles of the
Functional Reasoning Approach can provide leverage in
device domins characterized by quantitative data. We
end with a discussion of the current state of research in
Model Based Reasoning.

1. INTRODUCTION

Model based reasoning (MBR) is recognized as offer-
ing a way to circumvent the brittleness of reasoning sys-
tems built solely on associational type knowledge. MBR
is also attractive because it captures an intuition that is es-
pecially cogent in engineering areas: in order to trouble-
shoot a device, or redesign a device to new specifications,
or ... adevice, it is very useful to know how the device
“works” — i.e., to have a model of the device.

The MBR field is quite heterogeneous, even on the
issue of the basic building blocks for models. Models
have been described in terms of structure and correct be-
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havior of the device {1; 2;3], behavior only [4], and those
that represent structure and malfunction mode behavior
(5. In a highly related area, a large body of research has
been undertaken under the heading naive physics [6].
There are two characteristics which generally describe
previous research. First, the underlying goal has been to
develop a qualitative mathematics in which one can
minimally represent a physical device or situation, and
which can be used to drive consequence finding over the
device or situation. (This is well described in [7] for the
case of the naive physics research.) Second, although
there have been notable exceptions [8; 9], prior research
has employed a qualitative approach to the modeling
problem.

An alternative MBR methodology is the Functional
Modeling (FM) approach. The goal of FM is to make use
of known functionality of a device, to use that knowledge
to organize causal understanding of the device, and to
provide a reasoning algorithm which can be used to simu-
late the device for given starting conditions. The roots of
FM lie in research by Sembugamoorthy and Chandraseka-
ran which set the initial representational concepts for the
functional point of view [10]. Sticklen and Chandrasekaran
applied and extended the initial work to include a simula-
tion component to support diagnostic problem solving in a
medical domain [11; 12; 13]. Goel has used a simulation
viewpoint to attack problems of design problem solving
[14]; Punch has likewise used a FM simulation point of
view as a basis for the integration of Generic Tasks [15].
Allemang has recently reported an application of the
methodology of functional representation to model the
computer programs [16]. Finally, Keuneke recently com-
pleted a research project in which she demonstrated that
the functional representation is a valuable framework for

0-8186-2162-1/91/0000/0210$01.00 © 1991 IEEE
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An extended treatment of this material has been submitted to Engineering Applications of Artificial Intelligence.



the extraction of explanations of diagnostic conclusions
(17n. Overall, the functional viewpoint centers on
enumerating the proper primitives which can be used to
organize causal device understanding. Similarly motivat-
ed research has recently been reported by Chittaro et al in
Italy (18], and by Franke at UT-Austin {19].

To date, FM has not embraced a quantitative compo-
nent. The research described here extends our previous
work by integrating into FM the ability to perform numer-
ical computations. Our work was motivated by an exam-
ple suggested by Chris Price at the Model Based Diagno-
sis Workshop at IBM Paris, in July, 1989: the automatic
cruise control (ACC) system of an automobile. The test-
bed example was stated by Dr. Price in generic terms; ie.,
not implying any particular modeling technique.! After
initial inspection of the ACC, we believed we could apply
the then-current FM techniques to the problem. On trying
to work out the details of the example however, we
concluded that to deal with the problem in any sort of a
“natural” manner, a quantitative capability was

2. AUTOMATIC CRUISE CONTROL

The automatic cruise control (ACC) system is a hybrid
system that automatically controls the cruising speed of
the vehicle. It consists of electrical, electromagnetic,
pneumatic, and mechanical components. At the top level,
the ACC can be conceptualized as an equilibrium seeking
system which seeks to eliminate the difference between
two control signals: the command-speed signal set by the
driver of the vehicle, and a signal indicating the vehicle’s
true speed. The organization of the ACC is indicated in
Figure 1.

The ControlElectronics subsystem takes as input the
two electrical signals (the command speed signal, and the
feedback speed signal) and produces a control signal for
the engine throttle actuator. The signal produced depends
not only on the instantaneous value of the difference be-
tween the two input signals, but also on the history of this
difference.

required. We then extended FM to include primi- / |

Command Speed \
Throttle Actuator

tives for quantitative calculations. Most impor- Control Electronics
tantly, the extension led us to a new understand- . _ (Pressure
ing of the functional representation and simula- * mﬁ:’“‘ — i‘::;‘;“,:’i Comol Actuater
tion: it is not intrinsically qualitative; given an Erroc T
example such as the ACC, it can be used as a Amplifier v Voltage To Throttle
framework for organizing necessary numerical + Amplifier g::y vg;le Magnet Lever
calculations. We believe this is a new insight into R .
the power not only of FM, but of Model Based @ Comor
Reasoning in general.
The rudiments on the Functional Approach . .
have been described fully elsewhere (see [11)3] for Speed Sensor Engine Drive
a cogent tutorial), hence we will not reiterate that ,

material here. Below, we describe our testbed
(the automatic cruise control system), the

%

extensions made in the FM approach, and a de-
scription of the functional model for the cruise
control. We conclude with observations about our
results and the general importance of good
testbed problems such as the cruise control sys-
tem.

1. Copies of the original problem statement can be obtained
by request to Dr. Chris Price, Department of Computer
Science, University College of Wales, Aberystwyth,
Dyfed, SY23 3BZ, United Kingdom..
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Figure 1: Cruise Control System

The ThrotleAccuator subsystem takes as input the throt-
tle control signal and sets the engine throttle position. The
transformation from an electrical signal to a mechanical
one is done by an electromagnet controlling a mechanical
valve. The movement of the pressure control valve affects
the pressure inside the valve’s chamber because of the ar-
rangement of two outlets: one to the outside air and the
other to the intake manifold (the vehicle’s vacuum sys-



tem). The pressure control valve is in turn connected to an
air cylinder; the actuator cylinder. The pressure in the
valve exerts a force on the piston of the actuator cylinder.
This piston is also connected to a mechanical spring. The
position of the piston is determined by the balance be-
tween the spring force and the force exerted by the air
pressure inside the chamber. The throttle lever is directly
coupled to the actuator piston, and thus the position of the
actuator piston directly determines the position of the
throttle lever.

The EngineDrive subsystem is the engine of the vehi-
cle. We are concerned only with a small part of this sub-
system: the setting of the vehicle’s speed based on the en-
gine throttle position. For the purposes of our example,
the EngineDrive subsystem is treated as a black box, as is
the SpeedSensor subsystem. We only deal with the high
level function of the Speed Sensor system which
generates an electrical signal having a voltage
proportional to the vehicle’s speed. This voltage is fed-
back to the control electronics subsystem.

The automatic cruise control system encompasses two
types of representational challenges. First, the representa-
tion of the ACC should smoothly integrate low level
understanding of the physical processes involved which
are usually expressed in a quantitative manner (eg; a sum-
ming amplifier takes two inputs A and B and produces
output A+B) with high level understanding of the purpos-
es/goals of each of the major device subsystems (as ex-
pressed above). Second, the representation should provide
some way to organize the numerical calculations which
are necessary for performing a simulation of the ACC.
This second representational challenge is actually an issue
of control; i.e. of finding the proper calculation to carry
out in a smooth manner. As we will argue later, the
extended FM approach we have developed provides a
framework such that both of these challenges are met.

3. EXTENDING FM APPROACH

The FM approach consists of two sublanguages for de-
scription: one sublanguage for description of function,
and one sublanguage for description of behavior (i.e.; a
language of state variable change). To solve the ACC rep-
resentational problem, we extended both sublanguages.
(Keuneke has also suggested extensions for the function
sublanguage {17] .)

The function sublanguage is very simple, consisting of
only three parts: a precondition, a postcondition, and a
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pointer to implementing behaviors. Previously, we have
represented the postcondition in terms of the primitive
ToMake; i.e., the action of this primitive is to modify the
value of a state variable of the device. In the ACC exam-
ple, we need another primitive, one which will allow us to
clearly indicate that the action of a function is going to be
to fix a state variable A&ased on the context of other state
variable values at the point at which the function is in-
voked. We have called this new primitive of the function
sublanguage Zo(a/culate.

Corresponding to the ToCalculate primitive in the func-
tion sublanguage, we also required a similar new concept
for the state sublanguage. The representation of a behav-
ior in the FM approach consists of a graph structure in
which the nodes (after the first level nodes) represent
statements about changes of device state variables. Until
our experience with the ACC, these statements about state
variable changes were of two types: setting state variables
to some stated value, and incrementing state variables by
some set amount.

To naturally represent the ACC we augmented our sub-
language for state by allowing “parametrized state
change” in which a node in a behavior can be stated as a
numerical calculation over other variables of the device
which then sets a stated variable according to the result of
the computation.

We illustrate our extensions to FM below be displaying
parts of our representation for the cruise control system.

4. FUNCTIONAL MODEL OF THE ACC
4.1. FM REPRESENTATION : ACC

The device decomposition of the ACC is shown in
Figure 2. The device decomposition is a direct map from
the physical structure of the ACC physical structure with
one exception. We have split the physical control elec-
tronics subsystem into two subsystems: the control elec-
tronics subsystem and the error amplifier subsystem. This
splitting was necessary to represent the system as an
equilibrium seeking system at the high level.

Figure 2 shows the component decomposition of the
ACC. The second step in applying the FM approach (fol-
lowing component decomposition) is to enumerate the
functions of each device of the system, and the behaviors
which implement these functions. To accomplish this, a
three level graph such as shown in Figure 3 is developed.
For example, at the highest level, the Cruise-Control-Sys-
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Figure 3: ACC Device/Function/Behavior

tem level, there is one functions: the MaintainSpeed
function. The MaintainSpeed function is implemented by
a single behavior, the adjust-speed-behavior.

The first step of the FM methodology is device decom-
position. To represent the ACC, no extensions to our pre-
vious work were need to accomplish this step. The second
and third steps of the methodology are to represent the
abstractly stated functionality that is known for each de-
vice, which amount to listing its preconditions, postcondi-
tions, and listing a pointer to its implementing behav-
jor(s). The third step of the methodology is to represent
each behavior as a state change graph such as shown in
Figure 4. It is to accomplish this third step that we intro-
duced the parametrized stafe varizble, as described
below.

Below we describe the representation developed for the
ACC. As is true for any FM representation, the ACC
representation should be viewed as a set of causal chain
fragments which, taken together, give an organized view
of causality associated with a physical device.

Let us start with the highest level behavior of the cruise
control system, the adjust-speed behavior. As shown in
Figure 4, if the speed of the car does not match the speed
the driver has set (i.e., if the error signal is not zero), then
a number of causal consequences will follow in a set se-
quence. Note that by looking at one graphic (Figure 4), it
is possible to grasp the overall operation of the cruise con-
trol system.

The first causal consequence in Figure 4 is that a new
value of the “duty cycle” is calculated. The reason that
causal consequence occurs can be ascertained by follow-
ing the link AakeZlrottleControlSignal function of the
control electronics subsystem, which is shown in
Figure 5. Similarly, by a process of following the annotat-
ed links, it can be seen that the make-duty-cycle behavior
which implements the A&zkeZhrottleControlSignal func-

tion (shown in Figure 5). Going to a yet deeper level of
detail, Figure 6 shows the implementing behavior make-
duty-cycle-behavior.

Two more layers are shown in Figure 7 and Figure 8.
There are several key points that should be emphasized
about the representation of the ACC that we have shown
in part in Figure 2 through Figure 8. First, a FM represen-
tation is modular. Causality is represented in small chunks
that chain together via annotations of why one causal
chain follows another. Second, a FM representation “bot-
toms out” at a point that is appropriate for the problems
the model must address. If our model of a cruise control
were to be used to trouble shoot sub-chip level devices,

= Using function of

*control-electronics*

MakeThrottle CoatralSignal
Calculate duty-cycle-of-throttle-control-signal

«~ Using function of
*throtti-actuator*
ControlThrotte Position

error-signal * 0

J

Calculate engine-throttle-position

- Using function of
*engine-drive*

' Drive-Vehicle

Calculate vehicle-speed

= Using function of
*speed-sensor*
CanvertSpeedToVoltage

'

Calculate speed-sensor-voltage

= Using function of
*error-amplifier*

A
Calculate error-signal

- /

Figure 4: Top Level Behavior-
adjust-speed-behavior
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Figure 5: Make ThrottleControlSignal

ToCalculate: amplified-error
Provided:  (error-signal # )
By: amplification-behavior

Figure 7: AmplifySignal of
proportional-amplifier

Calculate amplified-error

Calculate duty-cycle-control-signal
Using function of
*voltage-duty-cycle-
converter®
CoantrolDutyCycle
Calculate throttle-control-signal /

N

Figure 6: make-duty-cycle-behavior
error-signal * 0

\

.

= by knowledge of
Op-Amps

Calculate amplified-error = Error-signal *-R2/R1 J

.

Figure 8: make-duty-cycle behavior

then our representation would have to be extended. As it
stands now, we would be able to trouble shoot the ACC
device to levels such as the OpAmp level (as indicated in
Figure 8). Third, the chunks are organized about
meaningful concepts: the known functions of the device.
Fourth, the extensions which we have undertaken provide
a highly organized, and meaningful way of capturing
causal knowledge about the ACC device.

4.2. FM SIMULATION : ACC

Having determined the FM representation for the ACC,
we can now use it to perform consequence finding given
starting conditions, as outlined in Section 2.3. For sim-
plicity all physical constants were given a value of 1.
Since the behavior of the physical cruise control system is
time-dependent, to simplify the simulation process, we as-
sume that each pass in our simulation spans a fixed inter-
val of time.

Reasoning Step 1: In this step, fix the initial condi-
tions. Set the command speed to be 65 mph, and the vehi-
cle speed to be 60 mph.
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Reasoning Step 2: Index from the starting conditions to
the behaviors that are applicable. The behaviors of
Figure 4, Figure 6, and Figure 8 are each applicable. But
on performing the appropriate “filtering” to obtain the
highest level applicable behavior, only the behavior of
Figure 4 remains.

Reasoning Step 3: Construct a particularized state
diagram (PSD). This is a knowledge structure that repre-
sents the state changes the device will go through as a re-
sult of the stated initial conditions. The least level of de-
tail in such a PSD corresponds to the behavior of
Figure 4, and is shown in Figure 9. We obtain more levels
of detail in the PSD by a process resembling macro-ex-
pansion of the link annotations in the original behaviors.
Figure 10 shows the PSD at a greater level of detail. The
nodes that are boxed in Figure 10 are those that also ap-
pear in Figure 9.

Reasoning Step 4: This step uses the PSD constructed
in the previous step to determine what the consequences
will be on the cruise control system as a result of the
given starting conditions. The values of state variables are
recorded in an auxiliary database. Before traversing the



/ enm'-sllgnal >0 \

Duty-Cycle of throttle control signal increased
Engine throttle position increased
Vehicle speed increased

Speed sensor voltage increased

K error signal decreased /

Figure 9: Lowest detail level
of FM simulation on ACC

Am; -cITOoT SCt Error gral sct

Duty cycle control signal set

Figure 10: Detailed level of FM
simulation on ACC

PSD, this database is initialized to the boundary condi-
tions. Then as the PSD is traversed, appropriate changes
are made to the state variable database as indicated by
each node in the PSD. The values recorded in the data-
base after one invocation of the FM simulator are shown
in Figure 11.2

Note that the vehicle speed has increased from the ini-
tial condition (60 mph) and is approaching the set speed
of 65 mph. Because the error signal is still not 0, the sim-
ulator will remain active; it will repeat the same steps as
before, and will produce the values shown in Figure 12 at
the end of the second invocation.

Although we not further discuss it here, it is interesting
to note that after the third simulation (since the error sig-
nal is still not 0) the speed is over 65 mph. In fact, pro-
ceeding with the simulation produces a damped
oscillating behavior. Although within our current frame-
work the FM simulator could not recognize and label the
behavior as “damped and oscillating,” it was very
encouraging to observe this result.

2. These values are not stored as the graph structure mirroring
the PSD, but we show it that way here for pedagogical pur-
poses.
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error-signal > 0
Ampuﬁe ogral = -5
Duty cycle control signal = 10
Duty-Cycle of throttle control signal = 0.55

Magnetic force = 0.55

Valve positiin ”Bottom”
Air pres: =0

Piston position ‘.ncreased by 2

Engine throttle position increased by 2
Vehicle speed = 62

Speed sensor voltage = 62

K error signal =3 J

Figure 11: PSD showing state variable
values after one pass




error-signal > 0

Duty cycle control signal = 11

Duty-Cycle of throttle control signal = 0.555
Magnetic foTe = 0.555

Valve posiﬁgn "Bottom”

Air pres: =0

Piston position t)creased by 2.2

Engine throttle position increased by 2.2
Vehicle speed = 64.2

Speed sensor voltage = 64.2

error signal = 0.8

- /

Figure 12: PSD showing state variable
values after second pass

5. RELATED RESEARCH

The idea of integrating quantitative and qualitative
models to reason about physical systems has recently
attracted the attention of several researchers in the MBR
community. While researchers in this area have differing
flavors for the scheme they use for implementing the inte-
gration, the intuitions underlying their research and ours
is common. That motivation lies in the inherent weakness
of qualitative models: qualitative models cannot produce
definitive predictions. On the other hand, typically quali-
tative models of a physical system typically yield more
informative explanations of reasoning than do quantitative
models. Finally, and of central importance, in many situa-
tions a combination of qualitative and quantitative rela-
tionships are known about a particular situation, and a
modeler given such a situation would desire an integrated
framework for representing all that is known about the
target system - both quantitative and qualitative relation-
ships.
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In recent research by Berleant and Kuipers [20], a
qualitative-quantitative simulator is built on the base of
the QSIM approach. In this simulator, both qualitative and
numeric state representations are maintained and used si-
multaneously during the simulation. In this way
qualitative constraints can be cross-checked against their
numeric counterparts, thus having the power of a numeri-
cal simulation without losing the flexibility of a qualita-
tive simulation. In essence, the quantitative information
alone is used for numerical simulation, while the qualita-
tive information alone is used for qualitative simulation.
While this research has the same motivation and goals as
our research it differs in detail. In our work we do not
maintain both quantitative and qualitative representations.
Instead, we utilize one framework (the functional view-
point) in our models which are represented partially
numerically and partially qualitatively. We maintain a nu-
meric representation for parts of the modeled system
where complete knowledge is available and is useful.
Meanwhile, we maintain a qualitative representation for
other parts were complete knowledge is not available
and/or not directly useful.

In other research by Forbus and Falkenhainer [21], a
qualitative-quantitative integration was also undertaken,
which in this case produces what are termed “self-explan-
atory simulations.” This simulator is based on the con-
structs of the QP theory. Forbus and Falkenhainer use a
qualitative domain model to produce a total envisionment
for the physical system. A math-model library is then
used to construct a set of ordinary differential equations
for each qualitatively distinct region of behavior identi-
fied in the envisionment. A simulation procedure is then
written for each set of equations based on the state transi-
tions in the envisionment. These procedures collectively
form a simulator for the physical system. By creating a
math-model library, they automated the process of con-
structing the differential equations, as well as the genera-
tion of the simulator. While this removes the burden of
generating simulators, some detail will typically be lost,
thus losing the power and accuracy of a numerical simula-
tion. Our work differs with Forbus and Falkenhainer at
this point. Since we manually generate the model, we will
more usually have a simulator which is as accurate as the
model. On the other hand, the automatic generation of a
model is a goal which is quite laudable in and of itself.



6. CONCLUSIONS

In his survey of Model Based Reasoning, Davis lists
three crux research issues that MBR approaches must deal
with; issues of domain independence, issues of scalability,
and issues of model selection . Although the review is ex-
plicitly over the area of troubleshooting, the same three is-
sues may be raised for the entire area of MBR.

The issue of domain independence is of whether a par-
ticular MBR technique is applicable to only a limited do-
main, or if it is more generally useful. In this report we
have outlined our experience on one research project, a
testbed project to apply FM to the cruise control problem.
To facilitate a solution, we eventually developed new
primitives for our languages in which FM systems are
written to include parametrized state variables. This sim-
ple extension yielded all the power necessary to then use
the extended FM approach as a template for organizing a
series of numerical calculations about a physical device.
The extensions we made were not specific for the ACC,
but would rather be applicable over a wide variety of de-
vices. Going research listed here, we have work in
progress at Michigan State to apply the Functional Model-
ing approach to modeling problem of global ecological
cycles, mixed systems in high performance aircraft3,
composite materials, and business organizations. As re-
sults from these projects accumulate, we expect to gain
more confidence in the generality of the FM.

The issue that Davis raises of scalability is a central
concern for MBR approaches. One way to argue for a
scalable approach is to point out ways in which the ap-
proach modularizes a domain. The Functional Approach
deals with this issue very directly; behaviors in the
Functional Approach are causal net fagments. The orga-
nization of the fragments is by the known functionality of
the device that is being modeled. Because a Functional
Representation of a device is inherently compartmental-
ized, it is easy from a representation viewpoint to add new
subdevices.

We have shown that with proper extension, we can uti-
lize FM as a framework for organizing numerical calcula-
tions about a device. An apt question would be “So what,

3. By “mixed systems” we mean systems that have compo-
nent subsystems which are built emphasizing different
physical properties. E.g., an actuator system that includes
electrical analog units, electrical digital units, hydraulic
units, and mechanical units.
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the numerical calculations about the ACC could have
been expressed easily in a simple PASCAL program?”
One reply to that sort of question is that yes, all the
numerical calculations required to carry out the solution
of the ACC could have been done in PASCAL, but how
well would such an approach scale? Suppose we were
representing a nuclear power plant. How difficult would it
be to develop a similar PASCAL program in that case?
The reason that our FM approach to organizing numerical
calculations will scale well is that the approach
emphasizes (a) modularity, and (b) an organization based
around known functionality of the device. In our ap-
proach, the numerical calculations are simply ways of de-
termining the results of changes in state that are necessary
to achieve known functionality. (E.g., see
Figure 6 on page 5.)

The final issue of Davis, model selection, is both the
most interesting of his three issues, and the hardest to pin
down. One of the reasons for the slipperiness is that se-
lection of model is a multidimensional task. Along one di-
mension, we must select the /eve/ at which we want to
represent our model. As Davis points out, no model is
complete. The Functional Representation deals straight-
forwardly with this fact by including the ability to point to
“world knowledge” as the reason for a given state vari-
able transition (in a behavior). This gives an ability to the
modeler to construct a model that “bottoms out” at what-
ever level is appropriate.4

The issue of the type of model we want to construct
should be based on (a) the representational primitives of-
fered by a particular type of model, and (b) the reasoning
that a particular type of model enables. If the knowledge
we have of a device to be modeled can be expressed in the
primitives of a particular approach, and if the output of
reasoning with that approach matches what we need to
have in terms of output, then that particular type of mod-
eling approach would be a good candidate. This statement
may seem self-evident. Yet for the most part, MBR has
not dealt explicitly with issues of zzpes of models in these
terms. We believe that one of the strongest arguments
supporting the FM approach to MBR is the relative clarity
of statement of the representational primitives of the ap-
proach, and of the reasoning methods that come bundled

4. The level at which the bottoming is legitimate is deter-
mined by whether or not the world knowledge can be treat-
ed as a monolithic entity for purposes of the current model.
A full discussion of this issue is beyond the scope of this

paper.



with the approach.

Finally, we emphasize the importance we attach to
identifying good testbed problems. Snch problems are
forceful because we explore them to exercise our current
theoretical stances, and do so in reasonable time. The ex-
tensions we made to the FM approach were made in direct
response to considering the cruise control problem. More-
over, once the necessary extensions were completed, we
gained new insight into the functional approach itself.
Incremental xtension of existing theory as new problems
are encountered and solved is what Thomas Kuhn calls
“normal science” [22). Its practice is usually taken to be a
sign that a scientific field is maturing.
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