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Stresses 
—in —

Suspension Bridges



Suspension Bridges
1

A suspension bridge is one in which 
the roadway over the stream or span to be 
crossed is suspended from chains or 
wire ropes.
A suspension bridge consists of the towers 
or piers over which the main chains 
or cables pass; the anchorages to which 
the ends of the cables are attached; the 
main chains or cables from which the 
roadway is suspended; the suspending 
rods or chains which connect the 
roadway with the cable and the 
roadway.
The sub-structure consists of the 
foundations, piers &c. The super-structure 
consists of the roadway and the 
chains or cables.

T owers-
The towers, frequently termed 

piers, are generally made of masonry, 
although iron has sometimes been
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used. The particular kind or form of 
towers will depend to some extent upon 
the locality and character of surroundings. 
Their dimensions will depend upon 
their height and the amount of strains 
they will haves to resist.
Where the cables pass over the towers are 
saddles. Our construction of saddles 
in which the cable passed our friction 
rollers rigidly attached to the top of the 
pier, allows the cable to slip backwards 
and forwards over it with comparatively 
little friction, so that the stress on the 
cable may be taken as equal on 
both sides of the saddle.
In another construction the chain 
is secured to its saddle, which, however, 
is free to move horizontally on the top 
of the piers.
In the first form of saddles the 
resultant pressure on the pier will 
not be vertical unless the chain
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leaves the pier at an equal inclination 
on each side, and even when the 
bridge is designed with an equal 
slope of chain on both sides of the 
pier, a change in the distribution of 
weight due to any passing load, will 
cause some departure from the equal 
slope of the chains, and therefore from 
the truly vertical pressure of the piers. 
This departure is easily allowed for 
in the design of the bridge piers.
The friction on the saddle renders 
the assumption of equal stresses on 
each side slightly incorrect, and with 
this type of saddle, care must be taken 
to provide against the wear produced 
by the motion of the chain.
In the second type, the use of rollers 
under the solid saddle leaves the 
motion of the saddle very free; its 
resultant pressure on the tower is 
always vertical, and the chains may
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leave the tower at any angle, equal 
or unequal.
The chain must in no case be rigidly 
attached to the pier, unless the pier, or 
rather support in this instance, is free 
to rock on its base, or for example, 
when the place of the pier is taken by 
iron struts working on a horizontal 
axis.
Anchorage

If the shore or bank be 
of rock, a vertical passage should be 
excavated and a strong iron plate 
placed in the bottom and firmly 
imbedded in the side of the passage. 
Through this plate the ends of the 
cables are passed and secured on the 
under side.
After the cables are put in place, the 
passage should be filled with concrete 
and masonry.
If the bank is not suitable for the
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anchorage, a heavy mass of masonry 
should be built of large blocks of cut- 
stone well bonded together for this 
purpose. In this case it is well to 
construct a passage way so that the 
chains and fastenings may at any 
time be examined. The mass of masonry 
or the natural rock to which the ends 
of the cables are fastened is frequently 
called the abutment.
Its stability must be greater than 
the tension of the cables. Its weight 
and thickness must be sufficient to 
prevent its being overturned, and its 
center of resistance must be in safe 
limits. The calculations in regard to 
the anchorage, when it is artificial, 
properly belong with the suspension bridge 
but I have left them out, since they 
can be very appropriately included in 
masonry.
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Cables

These may be made of iron bars 
connected by eye bar and pin joints, of 
iron links &c, but the custom now is 
to use wire ropes or cables. The smallest 
number of cables is two, one to support each 
side of the roadway. Generally more than 
two are used, since, for the same amount 
of material, they offer at least the same 
resistance, are more accurately manufactured 
are liable to less danger of accident, and 
can be more easily put in place and 
replaced than a single cable of an 
equal amount of material.
Great care is taken to give each wire the 
same degree of tension. To ensure this, 
it used to be thought necessary to strain 
each wire separately over the actual piers, or 
piers similarly placed, and bind them 
together when hanging, strained by their own 
weight with the dip proposed for the bridge.
It was also thought essential that each rope
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should be an aggregate of parallel wires, 
not spun, as in a rope. Experiment, 
however, has shown that wire ropes spun 
with a machine which does not put a twist 
in each wire, but lays it helically and 
untwisted, and with no straight central 
wire, are as strong as wire ropes of equal 
weight made with straight wires.
It is the custom now to make the cable of wire 
1/6” to 1/5” in diameter, and bring them to a 
cylindrical shape by a spiral wrapping of 
wire. The wires are coated with varnish 
before being bound up, and the cable itself 
is suitably protected from atmospheric 
influences.
Suspension Rods

When the cable is composed 
of links or bars, they are attached directly to 
them. If of rope, the suspension rod is 
attached to a collar of iron of suitable shape 
bent around the cable, or to a saddle piece 
resting on it. When there are two cables,
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care must be taken to distribute the load 
upon the cables according to their degree 
of strength.
Roadway

The roadway bearers are 
supported by the suspension rods. On the 
bearers are laid longitudinal joists, and on 
them the planking, or the planking is laid 
directly on the roadway bearers. The latter 
are stiffened by diagonal ties of iron 
placed horizontally between each pair of 
roadway bearers.
General Principles

The great merit of a
suspension bridge is its cheapness, arising 
from the comparatively small quantity of 
material required to carry a given passing 
load across a given span. This 
cheapness may be seen more clearly by 
considering an example. A man might 
cross a chasm of 100’ by hanging to a 
steel wire .21” in diameter, dipping 10’;
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the weight of the iron would be 12.75 lbs.
A wrought iron beam of rectangular 
cross-section three times as deep as it is 
broad, would have to be about 27” deep 
and 9” broad to carry him and its own 
weight. It would be weigh 87,500 lbs.
An iron I beam of best construction 10’ deep 
would weigh about 120 lbs. In each case 
4’ have been allowed for bearings at 
the end of the spans. The enormous 
differences would not exist if the beam 
and wire had only to carry the man, even 
then there would be a great difference in 
favor of the wire. The main difference 
arises from the fact that the bridge has to 
carry its own weight.
The chief merit of a suspension bridge 
does not, therefore, come into play, until 
the weight of the rope or beam is 
considerable when compared with the 
platform and rolling load; for although 
the chain will for any given load be
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lighter than a beam, the saving in this 
respect will, for small spans, be more 
than compensated by the expense of the 
anchorages.
The disadvantages of the suspension 
bridge are numerous. A change in the 
distribution of the load causes a very 
sensible deformation of the structure, for 
the cable of the suspension bridge must 
adapt is form to the new position of 
the load, whereas in the beam the 
deformation is hardly sensible, equilibrium 
being attained by a new distribution of 
the stresses through the material.
This flexibility of the suspension bridge 
renders it unsuitable for the passage 
of a railway train at any considerable 
speed. The platform rises up as 
a wave in front of any rapidly 
advancing load, and the masses in 
motion produce stresses much greater 
than those which would result from
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the same weights when at rest.
The kinetic effect of the oscillations 
produced by bodies of men marching, 
or by impulses due to wind, give 
rise to strains which cannot be foreseen.
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Fig. 1

Let EH’C be cable of a suspension bridge 
carrying a load which extends over the 
whole span. In practice the load carried 
by a suspension bridge cable is 
uniform in intensity in reference to 
a horizontal line. Theoretically this 
assumption would not do, but the load is 
so nearly uniform per foot of span 
that it is taken to be exactly so.
Let ED + BC = I = span

BIT = Li = height of highest tower 
DH’ = L2 = “ “ lower tower
w = load for horizontal foot 

 ̂ x = distance measured horizontally from
H’, the lowest point in the cable.
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The ordinate of any point P is x, then 
the load on H’M is

W = wx, since the total load 
is equal to the number of units of length 
into the load on one unit of length.
Draw PK tangent to the curve at P, 
then, since the resultant of the load 
between P and H’ acts through the point 
of intersection of the tangents at P and 
H’, and the load and tensions on the 
chain at P and H’ are respectively 
proportional to the sides of a triangle 
parallel to their directions, the cable 
tension at P and H’ and the direction of 
W must intersect in one point.
Since w is uniform along x, the 
resultant direction of W passes through 
N, halfway between H’ and M.
Therefore FIT = H’K, or, since 
H’K is the sub-tangent, the abscissa, 
FIT, of the curve is equal to the 
sub-tangent, hence, the curve is the
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ordinary parabola.
Also -

It is known that the horizontal 
component of the tension of a cable wire 
be a constant quantity if—the loading, 
as is assumed in this case, be 
vertical; let that component be denoted 
by H.
Let the right triangle GNP be taken for 
the triangle of forces at P, in which 
NP represents the cable tension at P,
GN the load W  = wx, and GP the constant 
horizontal component H.
PH being normal to the curve at P, the A ’s 
HPF and GNP will be similar, and we 
have the proportion:
HF FP X 1—  =  —  =  —  =  — =  a constan tGP GN wx w
HF is the sub-normal of the curve of the 
cable, and since it is constant, the 
curve must be the common parabola.
If the load placed on a cable be a
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direct function of its length, the curve 
assumed by the mean fibre of the 
cable will be a catenary. If it be a 
direct function of its span it will 
be a parabola. But the weight resting on 
the main chains is neither a direct 
function of the length of the cable nor of 
the span, but a function of both. The 
curve is, therefore, neither a catenary nor 
a parabola. But since the roadway, which 
forms the principal part of the load, is 
distributed very nearly uniformly over the 
span, the curve approaches nearer the 
parabola, and in practice, is usually 
regarded as such a curve.
Now if any two points, P and Q, be 
considered fixed, and the portion PQ of 
the cable carries the same intensity of 
load as before, we have - a cable carrying 
a load whose intensity along a straight 
line and direction are uniform.
Hence -  if - a perfectly flexible cable
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carry a load uniform in direction and 
intensity in reference to a straight line, 
the cable will assume the form of an 
ordinary parabola whose axis will 
be parallel to the loading.

Parameter of Curve
From Fg. 1 we

have the equation of the curve
x l 2 = 2 py,(1) in which 2p is 

the parameter.

Let BC = xi, ED = X2, then
x2 = 2ph1 (hi=H’B ), therefore xt = (2)
x2 -  2 ph2(h2=DH’) , therefore x2 -  2 (3)
Then, multiplying together equations (2) and (3),

x2 x1 = 2p ĵh1hz = and 2x2 x± = 4p(Jh[ + -y/̂ 2)2 (4)
Hence

(*i +  x 2) 2 = x l  +  2x xx 2 +  =  2 p ( J h 1 +

l 2 =  2 p ( h 1 +  2yJ h 1h 2 +  h 2 (6)

l2 l2
^  2 (_sj hi +̂ [h2)2 2(hi+2 /̂ hih2+h2
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If the towers* of the same height, 
the h± = h2 = h, and equation (6) 
becomes:

V
Horizontal distances from lowest point of 
curve to points of support.

The horizontal
distance from the lowest point of the cable 
to the highest tower is, Fig. 1, BC = Xi 
so also ED, the lower tower, = x2

*1 =  y[2phi— (2)

But P = 2 (6)- Substitutin9 this
value of p in (2) above--
Xl = ^  = J ^ Z Z  =

_ hua____(g)
V^T+a/^2

In a similar, we have from (3):
_ ly/̂x2 = Jhl+Jhl— (9)
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If h  = h2; x1 = x 2 = l-  — (10)

Inclination of cable at any point
Since

KH’ = H’F = y, if i is the inclination to 
a horizontal line of the curve at any point 
P, then we have from the A FPK, (FK = 2y), 

x tan(i)=2y,

tan(i) = — therefore sec(i) = 4 y 2 
X 2

(11)

At the tops of the towers
tan(i i )  = ^ — (12). tan(i2) = ^ — (13)Xi *24̂1If /i -l = h2,tan(i1') = tan(i2) = —------ (14)

Resultant tension at any point of cable
It has

been shown that if the loading on a 
cable is uniform in direction, the 
component of cable tension normal to 
that direction will be constant at all 
points of the cable. Let the resultant 
tension at the lowest point of the cable 
be this constant component, denoted by H.
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We have seen that H = wAF. But AF is 
the sub-normal of the curve, and we 
know from General geometry, that the 
subnormal to the parabola Is equal to 
one half the parmeter 2p, or equalt to p. 
Hence, H=wp— (15)

Substituting in the above the value of 
p as found in equation (6), we have:

H _ W*2 _ W*2______________________ H Q \

2 (ft1+h2)2 2(h1+2A//l1ft2+̂ l2 )

Let R represent the resultant tension 
at any point, then from the triangle of 
forces, GNP,

PN=GPsec(i), or

R = Hsec(i) = H l l  + ^ — (17) but
substituting the value of sec(i) in (11).
At the tops of the towers the tensions 
are:

(18)R1 = H
\

A h 2
1 x:

R ,= H  / I
X t

(19)
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If L i = L2, then xx = x2 = -, and from 
Equation (16)

H = ^ — (20)8 h v ’___________
Also, = R2 = H ^/l + [illegible)

Length of cables between a known point 
and the vertex, or between vertex and 
a point at which the inclination to a 
horizontal line in “i”.

From the
calculus we have the formula for 
the rectification of plane curves

dz = j d x 2 + dy2, in which z represents 
the length of the curve, and x and y the 
general coordinates.
From the equation of the curve

x2 = 2 py ,we have
x 2d x 2 

pz ’
and

dz = - J p 2 +p v
To integrate this expression, apply 
formula C of reduction.
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y = J x"»(g + bxny d x  = x j ^ b̂p g +b̂(C )

and we have
n p + m + l

x J x 2 + p 2 , p fz = -----------h -
2 p 2 J

dxyJp2+X‘ --------- (22)

To integrate dxIp2 +X2» put z = X + Vp2 + * 2— (23)

then dz = x+/ p +x dxylV2+X2

Now we have
2 j.y2

dz

x+ p̂ +x
p2+x2

-dx
dx - - ( 24)

/  T = / 
of z:

Z x + j p 2 + x 2 j p 2 + x 2
dx = log(z) Restoring the valuey jp 2+X‘

f dxyJp2+X‘ = log (x + ^/p2 + x2----- (25)

Therefore
z = x̂ v2pX + ^log(x  + ^/p2 + x2 + C 

Estimating the arc from the vertex, it 
being the origin C = -  ^logp
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(26)
Thus the corrected integral is

x J p 2+ x 2 . p , , x + J p 2+ x 2^z  = —--------\--  lo a (— -------- )—
2 p  2  a K  p  '

Now by substituting in the above for p its 
2

value j-, the equation can be put in the form--

X 2y 4 y : ■2yz = — ( ^  l + ^ - + / o ^ F  +
4 y  v x  \J x^ L x i+ ^ ] >X' (27)

Now we have seen that — = - ;  — = ta n (i);
4 y  2 x  w  ll

l l  +-^r = sec(i), and by substituting these
values, eq. (27) becomes

z = -[tan(i)sec(i) + log(tan(i) + sec(i))]— (28)
In the above formulas, the Naperian 
logarith is used, since the modulus is 1.
Since the above formulae were deduced 
for the distance from the vertex to any 
particular point, the total length of 
cable will be found by substituting for 
y1 ht \ and for x x x in equation (27); 
or i i  for i in Eq. (28); then x2 and h2 
for x and y in (27), or i2 for i in (28) 
and adding the results. Denoting these



results by ^  and l2, then total length 
will be:

k  + 12— (29)
A formula, which is close enough for 
practical purposes, and which is frequently 
used, is deduced as follows.
In fig. 1 suppose H’P is an arc of a 
circle whose radius is R. The 
coordinates x and y are the same as before. 
The expression for a circular arc in the 
integral calculus is:

r dx r dx - x iJ -1= f = J — approximately
J i- fz  1 2R2

considering R very large as compared with x.
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Suspension Rods
It is usually assumed in 

the calculations relating to suspension rods, 
that the cable lies in a vertical beam, 
and that the suspension rods are vertical. 
Since in all cases the suspension rods are 
parallel to each other, the above assumption 
does not affect the generality of the results.
If the rods are inclined, the true lengths 
can be found by multiplying the values 
obtained by the secant of the inclination of 
the rods to a vertical line.
A flat parabola nearly coincides with a 
circle and we may suppose the camber 
to be found by a parabolic arc.
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Figure 2.

Let the ordinate AD=x be measured from A 
towards B, and DC=y perpendicular to it.
Let AB=x1= the half span. The curve of 
the cables is the parabola as before. 

x2 = 2 py,
_  X 2y ~ 2 pi2From Eq. (1) p = —. substituting:8h

4hx2
y = —

AB = Xi =- l ,  ••• 1=2x, and we have 1 2 4hx2 Ahx2 x2 
 ̂ l2 4x2 ^ x2

Now L=y, in Fig II, or calling y, the 
ordinate and x the abscissa of any 
point in the curve above AB, we have 
the general equation:

y  = yi p-(33)A  ^
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In the same manner for the lower 
curve or the camber

y" = z — (34) in whichX ̂
A’B’ is taken as the axis of abscissae 
and z is the ordinate
Representing the length of any suspender 
as CC’ by L, we have -

L=CC’ = C’D+DD’+D’C’— (35)
Now DD’ = ho = C, and taking the value of 
CD and D’C’ as given in Eqs. (33) and 
(34), h = y’+y”+ C —(36)
From this we see that each suspender 
is composed of the constant length c 
and the two variable ones y’ and y” .
Adding equations (33) and (34), and 
representing the sum of the variable lengths 
by y --

y = (y' + y") = (yi + 2 ) ~ - (37)
A  *t

Now let the suspenders all be the same 
distance apart, and represent this 
constant distance by d, then
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h  = c + - r ( y i  + z )A ̂

^3 = c + (y i + z)

/1„_1 = c + ^ r - ( y !  + z)

K  = c + (24 - ) (y i + z) = c + z— (38)

Since h± was assumed equal to h2 in 
the above calculations, or the towers of 
the same height and equal to h, the lengths 
of the suspenders on each side of the 
lowest point in the cable will be 
equal, and having computed one side 
we use these values for the other.
The vertical load which any rod 
carries multiplied by the secant 
of its inclination to a vertical line 
gives the stress on such rod.



Deflection of a cable for change in length, 
the span remaining the same

In Eq. (3)
2 y 2x ( l  + r r - j) ,  substitute ^  for x and hx for 

y, and we have

* i ( l + j | ) ---- (39)
Also substituting x2 and h2 for x and h 
in the same equation, it becomes

* 2( ! + ^ > -----(40)
Adding the above equations and denoting 
the two segments of the parabola by cx 
and c2, we have the total length of 
cable --

2 Jl? . Jlo,
C1 +  c 2 =  x t +  X 2 +  -  (■—  +  — )---(41)•3 a *[ A  2

Differentiating:

d ( c i+ c 2) = i ( ^  + ^ 0 * -----(42)
•3 a i  A  2

Now ^  -  h2 being equal to a constant,
dhx =

•"• dh = 3d(Cl+Cz)----- (43)
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From whatever cause the cable 
may vary in length, this variation is 
to be put for d(cn + c2) in equations 
(42) and (43), and then dh will be 
the corresponding deflection of the 
lowest point of the cable.
If the towers are of the same 
height

en = C2, = h.2,%1 =
Then we have from (42)-

2dci = 7 7 -— <44>
dh = —j2d c ,------(45)161

In equations (42) and (43) the 
assumption, though not strictly true, 
is that the lowest point of the 
cable remains at the same horizontal 
distance from the towers.
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To obtain the true length of the curve 
since the above relations were deduced 
from the approximate formula (), we 
must take the true equation for the 
length of the curve.
As before, let (cx + c2) be the known 
length of curve before variation takes 
places; let /i^and h2,x1and be the 
original heights of the towers also segments 
of span also known.
Let y1 and y2 be the heights of the
towers above the lowest point in 
the cable, after variation in its 
length has taken place. 
x1 and x2 are still constants.
Let the variation in length of the 
cable be represented by v.

Thus v = — (cj + c2) + + c2+ )— (46)

v =
V 2
4yi

2yi l +4y!  + log( 2yl + l + 4f )
[ XU x\ \\ x'  >1 x\ J

+ x ‘
4 y

2y2
x- 1 + ~ t  + i°gA> o

2 y2
x- + 1 + -  (Cl + c2)— (47)
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But since yx — y2 = hx — h2 = a constant
we can take the value of yx or y2 and
substitute in equation (47), and we
will then have only one unknown
quantity in the right member, and this
unknown is determined by trial
(yi or y2, hx or h2 may be taken as the).
The first value of y1 or y2 taken
may be ht or h2 increased or decreased,
as the case* may be, by
dh is taken from Eq. (45).

y1 - h 1 = y2 -  h2 is the deflection
sought.
The variation of length can be obtained 
at once from equation (47) where the 
new heights y1 and y2 are given.
When the towers are of the same 
height,

x± = x2 = -, c± = c2,y1 = y2 =
Making substitutions of the values in 
equation (47), then results, after adding,
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t; = 2Z2
16/1

4/1 L  16/l2 

z >/1 + Z2 + log -2c (48)

If h is known, we can find v from 
the above equation. If v is known, h 
is found by trial, and vthen results.

h - h x-  deflection of the middle 
point of the truss.



Pressure on Tower

Fig. 3

Let Pl = the vertical component of pressure on tower head
“ Ph = “ horizontal “ “ ......................
“ R = “ resultant “ “ “ ................

Tp and T’p = tension of cable on different* sides “ 
x, x’ and 6 represent inclinations to a vertical as shown. 

When we consider friction on the saddle 
PL = TPc o s (a ) + T 'pcos(ci)\ (49)

Ph = Tpsin(a) -  T'psin(a'y, (50)

R = J pl2 + P l (51) cos(0) = ^-; (52)
When friction is not considered

Tp =  T ’v .*. PL =  Tp (c o s(a) + cos (a'))
Ph = Tp(sin(a) — sin(a'))

R = Jp.~l + Pl
cos(0) = ^

If a = a ' ,P L = 2 W ,P h = 0 ,R = 2 W PL, 0 = 0, then IV represents one half the weight of 
the load and structure.
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Bracing to resist heavy traveling load
Various

methods have been proposed, and some of 
them tried, to enable a suspension bridge 
to resists the action of a heavily traveling load 
so as to undergo no more disfigurement 
than a girder. To ensure this in a 
bridge of several bays, the piers must be 
made very strong, and the chains securely 
fastened to them.
The best way of bracing is by means of 
auxiliary girders, or a pair of straight 
girders of any convenient form hung 
from the cable by suspending rods 
and supporting the cross joists of the 
platform. These girders should be 
supported at each end, and also fastened 
down, as there are certain positions of 
the rolling load which would tend to 
raise one end of the truss. The 
ends should be free to move horizontally, 
however.
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By preventing a change in the form of 
the cable, which is accomplished by the 
stiffening truss, we not only prevent very 
injurious undulations, but also lessen 
the work of computing stresses, which 
would be very difficult if the cable did not 
retain the same form. The cable will 
assume the same parabolic curve only when 
there is a uniform pull on the suspension 
rods from end to end.
Let Tbe the uniform pull on any 
suspension rod, and t its intensity per 
unit of span. Now if p represents one 
panel length in the russ, T=pt 
Let w be the fixed load per unit of span 
sustained by the cables, and w’ the moving 
load sustained by them;
Let i be the span; R the reaction at B (fig.);
R ’ the reaction A. Suppose the 
moving load to pass on from B.
Let xt be the distance from B to the front of
the moving load. The load is supposed continuous.
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Fig. 4

All the forces acting on the truss are 
vertical in their direction, and we have 
two equations of equilibrium, indicating 
that the sum of the external vertical forces 
and that the sum of these moments about any 
point must each equal zero.

wl + w'xx — tl — R — R' = 0---- (53)
Thus by taking the moments about the 
head of the moving load-(w + w') y  — t y  — Rx1 + (t — w)  ̂ 4- R'(l — x -l) = 0~(54)
In each of the above equations are 
three unknown quantities, t, R,and R’.
If any one of these is known, the 
others may found from the two 
conditional equations.
From this we see that unless at least 
one condition is imposed, it
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is impossible to ascertain how much 
the truss will carry, either in 
connection with the cable, or alone. 
Assuming a value for t, R, or R ’, 
makes the stiffening truss act altogether 
in connection with the cable, and 
carry no load as an ordinary truss.
From the above it is seen that the 
sum of all the loads w, w’, and c*, must be 
equal to the sum of all the uniform 
upward forces, T=pt.
The resultant of the two forces act in 
different lines, and the truss is then 
subjected to the action of a couple, which 
must be counteracted another couple of 
equal moment but opposite lines of 
action. These couples must act at the 
extremities A and B. They are the 
reactions R and R’.
Therefore-

R  = -R ”
Substituting this value in Equation (53),
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and solving for z,z = w + wr Y ---- (55)
From substituting the same in (54),

r  =  - r ' =  (i  -  i i ) — (56)
In (56), if x± = l, or w’ = 0, both reactions 
become zero, R = -R ’ = 0 
It is also seen that R  and R ’ are 
numerically equal, but have opposite 
directions.
R ’ is a downward reaction and will 
show the amount of anchorage required. 
Differentiating (56) and finding value of _

dR wf wfx̂ t ŵ x-t , l-— = --------- ---------- - ,and Xi = -
d x - L  2 21 21 1 2

Now substituting xx =  -  in equation (56) 
R = ^ ----- (57)2

Equation shows the greatest shear to be 
provided for at either end of the truss, 
and also the maximum amount of 
anchorage to be provided for.
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The matter on stresses proper is very 
limited, on account of space.

Respectfully Submitted 
W. M. Claypool

Rolla, Mo., June 7th 1884.
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