MISSOURI
s Missouri University of Science and Technology

Scholars' Mine

Wei-Wen Yu Center for Cold-Formed Steel

Center for Cold-Formed Steel Structures Library Structures

01 Feb 1981

Behavior of C- and Z-purlins under wind uplift

Parviz Soroushian

Teoman Pekoz

Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-library

b Part of the Structural Engineering Commons

Recommended Citation

Soroushian, Parviz and Pekdz, Teoman, "Behavior of C- and Z-purlins under wind uplift" (1981). Center for
Cold-Formed Steel Structures Library. 157.

https://scholarsmine.mst.edu/ccfss-library/157

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Center for Cold-Formed Steel Structures Library by an authorized administrator of Scholars' Mine. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.


http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ccfss-library
https://scholarsmine.mst.edu/ccfss
https://scholarsmine.mst.edu/ccfss
https://scholarsmine.mst.edu/ccfss-library?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/ccfss-library/157?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

Department of Structural Engineering
School of Civil and Environmental Engineering
Cornell University

4\¢0\%\ Report No. 81-2

T

BEHAVIOR OF C- AND Z-PURLINS
UNDER WIND UPLIFT

by

Teoman Pekoz
Project Director

and
P. Soroushian

A Research Project Sponsored by the
Metal Building Manufacturers Association
and
American Iron and Steel Institute

Ithaca, N.Y. February 1981



CCFS$ LIBRARY Teoman pekoz, P. Soroushian,
22 1 * 2047 BEHAVIOR OF C- AND Z- PURLINS
february UNDER WIND UPLIFT

1981

CCFSS LI1BRARY Teoman Pekoz, P. soroushian,
22 1 % 2047 BEHAVIOR OF C- AND 2- PURLINS

February UNDER WIND UPLIET
1981
DATE ISSUED TO T
Technical Library

Center for Cold-Formed Stes! Structures
University of Missouri-Rolla
Rolia, MO 65401

GAYLORD




PREFACE

This is the second major and final report of the Ultimate Strength of
Cold-Formed Steel Z- and C-Purlins subjected to wind uplift loading. The
first major pfogress report was by M.A.A. Razak and T. PekOz dated February
1980 (Ref. 1). The present final report presents the results of work con-
ducted since the earlier major report. To the extent péssib]e the material
presented in the earlier report is not repeated here. This final report
does contain an up-dated version of all the material presented in several
intermediate progress reports issued since February 1980.

The authors wish to thank Mr. Erol Pekdz for his expert computer pro-
gramming and support to produce all the plots in this report, Mr. Bao-kang He
for his help in the project, and Mrs. Oneita I. Weeks for her patient and
competent typing of this report.

The sponsorship of the American Iron and Steel Institute and of the
Metal Building Manufacturers Association as well as the cooperation of the

committees of the sponsors is gratefully acknowledged.
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CHAPTER 1

INTRODUCTION

Cold-formed steel lipped channel (C-) and Z-purlins are used widely in
the roofs of metal buildings. They are easy and economical to fabricate and
erect. However these sections are weak in the lateral direction and in
torsion. In order to use their full bending capacity in the strong direction,
they must be braced in the Tateral direction and against twisting. Roof
panels which are connected to the purlins do provide to some extent such
bracing effect by virtue of their shear rigidity and resistance to local
bending at the connections.

Wind uplift is an important design condition for roof purlins. The
objective of the research reported herein was to develop simple design
equations for C- and Z-purlins subjected to uplift.

The previous work reported in Refs. 2 through 4 based on the classical
theory of torsional-flexure resulted in computer programs for the analysis
of the problem. The classical theory of torsional-flexure due to its complexity
was not suitable for treating the effects of local buckling and post-buckling
behavior on the overall behavior. Furthermore, this approach was not extended
to include the effects of initial sweep and twist of purlins. The importance
of these parameters was observed in several large scale tests. The theory
was shown to be satisfactory for predicting deflections but not the ultimate
loads. The discrepancies were larger for thinner sections indicating the
importance of local behavior of the component plate elements of the sections.

In the first phase of the present research reported in Ref. 1, work was

initiated to include the above parameters in a design formulation. The basic



approach used in Ref. 1 was that given in Section 3 of Part IIl of Ref. 5.
This approach also has several deficiencies. First, a sudden bifurcation type
is the basic behavior mode assumed in that approach. Namely, it is assumed
that the compression flange of a purlin does not deflect laterally until
failure. The actual behavior is clearly not so. The compression flange de-
flects laterally from the start of loading. Second, the effect of initial
sweep and twist is not accounted for. These and several other additional
deficiencies of that approach have been eliminated by the new approach derived
in the present research. This new approach will be discussed invdetail in
Chapter 2. Failure criteria will 5150 be discussed in this chapter.

Simplications to the general solutions obtained in Chapter 2 will be
presented in Chapter 3.

Large scale and component tests by the authors and by a steel manufacturer
will be described in Chapter 4. The experimental and analytical results will
be compared in Chapter 5. Finally, a summary of the work and the conclusions

will be presented in Chapter 6.




CHAPTER 2

GENERAL THEORY AND SOLUTIONS

The previous work reported in Refs. 2 through 4 has taken into account
the bracing action of the roof panels due to their shear rigidity as well as
the resistance to rotation to local bending at the purlin-to-roof-panel
connection. The latter action will be referred to as the rotational restraint.
The rotational restraint is also provided by the cross-bending rigidity of
the panels. However, in the previous tests it was concluded that the cross-
bending rigidity is an order of magnitude higher than the local rigidity at
the connection. For this reason the rotations of the purlin due to cross-
bending of the panels will be ignored.

In order to reach a simple solution and based on an intuitive assessment
of the overall behavior in the building, the purlins will be assumed fixed
against deflection in the plane of the roof at the purlin-to-roof-panel con-
nection. This is equivalent to taking the value of the shear rigidity to be
infinite in the method of analysis of Refs. 2 through 4, This assumption
appears reasonable because studies such as those reported in Ref. 9 based on
the computer program of Ref. 3 show that as long as the value of Q is larger
than a reasonable minimum, the results are not sensitive to the value of Q.
As the correlation with the test results indicate this assumption appears
satisfactory within the framework of the simple solutions obtained in this
research.

In a great majority of metal building appiications, the purlins are
continuous over the building frames which serve as intermediate supports for

the purlins. The continuity is accomplished by lapping the purlins over the



supports. The Z-purlins are lapped by nesting one inside the other. C-purlins
are lapped by placing them back-to-back over the supports. In each case the
purlins are bolted together and the screws connecting the roof panels to the
purlins penetrate through both purlins. The research reported herein dealt
with only simply-supported purlins. The solutions can be extended to continuous
purlins as will be discussed below.

In principle, the model developed for analyzing the lateral deflection
and twisting isolates a portion of the part of the purlinsubjected to compres-
"~ sive stresses and treats it as a beam-column on an elastic foundation. The
elastic foundation is provided by the remaining portion of the purlin and the
roof panels. The lateral loading on the beam-column results from the shear
flow in the section and varies along the length of the member. The axial load
in the beam-column results from the compressive stresses in the purlin. These
too can vary along the length. In general, the component plate elements of
purlins can be quite thin. Consequently, the post-buckling behavior of the
plate elements can influence the overall behavior significantly. This effect
will be included by using the effective width approach. Furthermore, the
post-buckling interaction of the plate elements is, to some degree, reflected

in the failure criteria to be used.

2.1 The Analytical Model

The analytical model described above in prﬁncipie, will be developeq
quantitatively in this section. The C- and Z-purlins undergo vertical deflec-
tions (in the original plane of the web) and twisting. The twisting resyjtg
in lateral deflections of the compression flange. Deflected configurationg are
shown in Fig. 2.1.a. For the purposes of our discussion and the derivatjgy

of the analytical model the deformations can be considered in two stages,



These stages will be referred to as the torsion and the vertical bending
stages. These stages are illustrated in Fig. 2.1.b.

The vertical bending stage can be analyzed using the simple flexure
theory. However, the moment of inertia is to be computed for the twisted
section. Twisting does introduce some small vertical deflection component
which will be added to the vertical deflections obtained for the vertical
bending stage.

The torsion stage involves lateral deflection and twisting which will be
analyzed through the use of an idealized analytical model. The model involves
the assumption of a beam-column on elastic foundation. The beam-column section
consists of the compression flange and a portion of the web. The spring con-
straint for the elastic foundation is obtained as follows. The purlin to
panel connection can be idealized to act as a rotational spring located at the
center of rotation of each purlin as shown in Fig.2.2.a. Further simplification
is made by converting this spring into a linear extensional spring of stiff-
ness k located at the level of the compression flange shown in Fig. 2.2.a. This
linear spring combines the effect of the restraint provided by the roof panels
and the web of the purlin to the compression portion of the purlin. The roof
panel restraint is best determined by test.

As discussed above, the lateral force on the idealized beam-column results
from the variation of the shear flow along the member. In the case of Z-purlins,
the center of rotation can be assumed to be the corner between the web and the
tension flange (Fig. 2.3) and the flange shear flow force resultant causes a
twisting moment about the center of rotation. The shear flow force in the web
goes through the center of rotation and hence causes no twisting moment. On
the other hand, the center of rotation for C-purlins can be assumed as the

junction of the tension flange and its stiffener. In this case, the shear



flow force in the web does not go through the center of rotation (Fig. 2.3).
Thus the shear force in the web in addition to the shear force in the flange
causes twisting moment about the center of rotation. The change in the shea
force in the web per unit length is equal to the applied uniform vertical lo
The distributed lateral load on the beam column w(x) results from the di
ferences in the shear flow forces along the length of the member and can be

expressed as

w(x) = £1ange Shear Force at (x + dx) - Flange Shear Force at (x)

dx + aq
(2.1-1)

VQb

d —3
= b(TEXI—)*‘ aq (2']'2)
= q(%—+ a) (2.]’3)

where;

q = Distributed uplift Toad on the Z or C section
b = Flange width (see Fig. 4)

Q = Static moment of the flange and the stiffening lip

around the centroidal axis of the purlin

Moment of inertia aboyt the horizontal axis (normal to

the undeflected web) of the section in the deflected

configuration. Either tpe entire gross or the effective

section is to be ysed gs applicable. Different approaches

for determining 1 wi1y be discussed in Sections 2.2.1,

V = Shear force

H = Height of the section

= b, ;
@ = ¢ for C purlins and 0 fop 7 Purlins



flow force in the web does not go through the center of rotation (Fig. 2.3).

Thus the shear force in the web in addition to the shear force in the flange

causes twisting moment about the center of rotation. The change in the shear

force in the web per unit Tength is equal to the applied uniform vertical load q.
The distributed lateral Toad on the beam column w(x) results from the dif-

ferences in the shear flow forces along the length of the member and can be

expressed as

Flange Shear Force at {x + dx) - Flange Shear Force at (x)

wix) = ax + aq
(2.1-1)

=ig7§_1b_)+aq (2.1-2)

= gL+ o (2.1-3)

where:

q = Distributed uplift load on the Z or C section

b = Flange width (see Fig. 4)

Q = Static moment of the flange and the stiffening 1lip
around the centroidal axis of the purlin

I = Moment of inertia about the horizontal axis (normal to
the undeflected web) of the section in the deflected
configuration. Either the entire gross or the effective
section is to be used as applicable. Different approaches
for determining I will be discussed in Sections 2.2.1,
2.3, and 3.1.

V = Shear force

H = Height of the section

%-for C purlins and 0 for Z purlins

Q
n



The first term of the right hand side of Eq. 2.1-1 represents the lateral
loading on the idealized beam-column due to the shear flow in the compression
flange and is the same for both the C- and the Z-purlin. For the sake of
simplicity, the flange is assumed to be a flat element of width b (see Fig. 2.4).
This simplification is used only in determining w(x) and p(x) derived below.
The second term of the same equation is to account for the twisting moment due
to the shear force in the web. To facilitate the derivation below the loading
in the web is converted to a load applied at the flange level and which results
in the same twisting moment as the load in the web.

The distributed axial force p(x) results from the variation of the com-
pression stress along the length of the member. The beam-column section is
assumed to be the flange and part of the flat width of the compression portion
of the web BB(%-- R]) as shown in Fig.2.4. BB indicates the percentage of the
flat width. The axial force can be expressed as follows:

p(x) = Beam-Column Axial Force (x + dx) - Beam-Column Axial Force (x)

dx
(2.1-4)
d(J M—ydA)
Iy I

= ax (2.1-5)

=V 1

=V1l Yy dA (2.1-6)

A
=V .G (2.1-7)
where

M = Bending moment at the section
G = Static moment of the beam-column area about the

centroidal axis of the purlin divided by the moment

[y dA)/I (2.1-8)

| of inertia = (
' A



$ = Section modulus of the total or the effective section--
depending on the approach. This will be discussed in
Section 2.3.

A = Area of the beam-column

V = Shear force at any point in the span
(fﬁnction of x) = dM/dx

b = Flange width (Fig. 2.4)

With the above idealizations the analysis of C- and‘i-pur1ins for lateral
deflections and twisting (torsion stage) is reduced to the analysis of the
beam-column section shown in Fig. 2.4 with the loading shown in Fig. 2.2.b.

The idealized beam-column will be analyzed using the principle of sta-
tionary potential energy.

It can be shown that the potential energy (U) consists of two parts:
the internal strain energy (V) and the work of the external loads (W). The
strain energy itself consists of two parts: the flexural strain energy (Vf),

and the elastic foundation strain energy (Vk). Their values are:

2
V2 g 2 dzuo
v, - 2[ ( - ) dx 2.1-9)
£ TR (

%/2 K(u - uo)2
v =2 J ——2 dx ~ (2.1-10)

. S

where

I =

£ Moment of inertia of beam-column around its own centroidal

axis parallel to the web

©
i

Span of the beam-column

=~
n

Stiffness of the linear spring = F/H2



Deflection of the beam-column (in the plane of the'flange)

[ =
it

u Initial sweep of the beam-column (in the plane of the flange)

0
The work performed by the external loads also. has two parts: the work

of the Tateral loads (ww), and the work of the axial loads (wp). Their values

are:
. 2/2
ww = -2 J w(x) + (u - uo) dx (2.1-11)
0
2/2 82 [ 2 ,du Z.J
1 du 0
= 2 | { p(x) - 7J [(‘&) - (52) dx}dx (2.1-12)
0 X
Thus, the total potential energy U is:
U=V +W (2.1-13)
= VetV W+ wp (2.1-14)
2
w2 el (2, du /2 K(u - u )2
=2J ( u. O)dx+2J — 9% dx
2 2 2 2
0 dx dx 0
/2
-2 J w(x) - (u - uo) dx
0
2/2 2/2 2 du 2
1 du 0
-2 ), { p(X) . -Z-JX [(a) - ( W) ]dX}dX (2.1-]5)

2.2 The Solutions

In this section the total potential energy equations derived above will
be used to obtain expressions for various bracing conditions. The general
procedure involves the use of trigonometric functions satisfying the end
conditions as well as the conditions at intermediate braces where applicable.

Frequently, one or more intermediate braces are used to facilitate the

erection of the roof system and to reduce the lateral deflections. These
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braces will be referred to as the intermediate braces and the application of

the energy method will be demonstrated for certain cases.

2.2.1 Simply Supported Purlins Without
Intermediate Braces
The following displacement functions satisfy the end conditions for the

simply supported purlins:

u = z a_ * sin X (2.2-1)
n=1,3,... " %
- nx
u = pX a . sin —= 2.2-2
°© p=1,3,... " . ( )

where a  are the amplitude of deflections to be computed using the energy
expressions and a, are the amplitudes which can be obtained from the measured
values of the sweep (in the plane of the flange). Since the lateral deflec-
tions are symmetric with respect to the midspan, only the odd values of n are
used in the solution.

Substituting the above functions for u and u, in the total potential

energy equation (Eq. 2.1-16), the following is obtained:

ELer . )
U= Z [h'(a -a )1+ K R
W .. n ol 17 L R
ber n=1,3,...

LW W i

Q'ﬂ \\4\%\ + zaq) '& X M
a n=1,3,. n

R R

n=1,3, n " %no’ * 1-206n" - .063)] (2.2-3)

iu_zo
%
4 Qb
498(Fp + o) + 2 (nE1 e 4
= T +

g
ELgrn’ + K o - d6ag’nm (L2062 - gga) (2.2-4)
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The Tateral deflection shape can now be obtained by substituting a,
from Eq. 2.2-4 into Eq. 2.2-1. The lateral deflection Au in addition to the

initial sweep can be determined by subtracting Uy from u.

Au = u - Uy (2.2-5)
(8—1 o) + fa_ Gz4n1r(.206n2 - .063) .
S S S z 7 sin ==
n=1,3,. EIfﬂ n~ + K& 'nm - 4Gq& nm(.206n" - .063)
(2.2-6)

It should be noted that the lateral deflection, u, is the total lateral
deflection of the compression flange. The deflections of the vertical bending
stage does not have a component in the plane of the flange. In contrast with
this, the lateral deflection, u, causes a deflection component in the vertical
direction (in the plane of the web). The vertical deflection component is
shown in Fig. 2.5. The main part of the vertical deflection, v, results from

the vertical bending.. The total vertical deflection, v, can be expressed as

follows:

v (- 20 40+ (2.2-7)

where ¥ 1s a correction factor which will be discussed in Section 3.1.2.

The Tast term in the right hand side of the above equation is the vertical
component resulting from the torsion stage. The rest pertains to the vertical
bending stage.

In the above equations the moment of inertia I is to be taken about the
original axis perpendicular to the web before twisting or lateral deflection.
Since significant deflections are possible, the section is to be taken in the
deflected and rotated configuration. The determination of I is discussed

further in Sections 2.3 and 3.1 below. Since the moment of inertia is
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reduced as a result of the rotation (horizontal deflection) of the section and
the horizontal deflection itself is a function of the reduced moment of inertis
the following iterative procedure is needed:
1) Calculate u with the original dimensions.
2) Using the computed u get the value of I, and recompute u.
3) Repeat step 2, until the starting and the resulting values of u
about equal. Then calculate the vertical deflection and the
maximum stresses with the final u.
The total stresses in the purlin are obtained by superposing the stresses
due to bending in the plane of the web (the vertical bending stage) on the

stresses due to twisting and Tateral deflection (torsion stage). Thus the

total stress can be expressed as

_M f
o=l L | (2.2-8)
f
where
M = Moment resulting from the vertical bending stage
=q x (2-x)/2
S = Section modulus based on the moment of inertia I
S =

p Section modulus of the beam-column about its centroidal

axis parallel to the web

Mf = Beam-column bending moment

Ihe beam'CO] umn bendin "le“l. M f WS
mo i

Me = EL(u" - u!) (2.2-9)

"
l\\"""
4
=
~N
——
fa1)
=
I
o
=
S
[72)
el
>
~
3
=

(2.2-10)



13

where If is the moment of inertia of the beam-column about its axis parallel
to the web.
The maximum compressive stress occurs at the junction of the compression

flange with the web. Thus, S. to be used in Eq. 2.2-8 should be the appro-

f
priate section modulus for that point.

2.2.2 Simply Supported Purlins With
Midspan Bracing
The equations for the vertical deflections are the same as those for
purlins without intermediate braces. The shape of the lateral deflection
curve for the compression flange is changed because of the brace at midspan.
The assumed deflection and initial sweep curves are illustrated in Fig. 2.6.a.

The initial sweep is still taken as

= i H . _
u, = a, sin (2.2-11a)

However, the deflected shape is now taken as

. X . 3mx
u=(a+ ao) sin %f-+ a sin == (2.2-11b)

It may be noted that the deflected shapes were taken as infinite series for
the case without bracing. Here, only two or three terms are taken for the
sake of simplicity.

Substituting the assumed deflection functions above into the total

potential energy equation (Eq. 2.1-15), the following is obtained:

4
El.m
_ 2), K .2 298 ,Qb _ 4a 2
U 423 (82a ) t 5 a 1 (2 + al) =5 - Gge(1.93a" + .29a0a)

(2.2-11c)

The amplitude a can be determined by the Ritz procedure as follows:

U _
W (2.2-12)
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reduced as a result of the rotation (horizontal deflection) of the section and
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2) Using the computed u get the value of I, and recompute u.
3) Repeat step 2, until the starting and the resulting values of u
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maximum stresses with the final u.
The total stresses in the purlin are obtained by superposing the stresses
due to bending in the plane of the web (the vertical bending stage) on the

stresses due to twisting and lateral deflection (torsion stage). Thus the

total stress can be expressed as

M

O=%+§§ . (2.2-8)
where
M = Moment resulting from the vertical bending stage
=q x (2-x)/2
S =

Section modulus based on the moment of inertia I

Sf = Section modulus of the beam-column about its centroidal

axis parallel to the web

Mf = Beam-column bending moment

The beam-column bending moment Mf can be determined as follows:

Me = EI(u" - ug) (2.2-9)
Elfﬂz 2 nw
= - 5 n“(a, - a ) sin -Ei (2.2-10)

2 n=1,3,...
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where If is the moment of inertia of the beam-column about its axis parallel
to the web.
The maximum compressive stress occurs at the junction of the compression

flange with the web. Thus, S, to be used in Eq. 2.2-8 should be the appro-

f
priate section modulus for that point.

2.2.2 Simply Supported Purlins With
Midspan Bracing
The equations for the vertical deflections are the same as those for
purlins without intermediate braces. The shape of the Tateral deflection
curve for the compression flange is changed because of the brace at midspan.
The assumed deflection and initial sweep curves are illustrated in Fig. 2.6.a.

The initial sweep is still taken as

u, = a, sin %;— " (2.2-11a)

However, the deflected shape is now taken as

. X . 3mx
u=(a+ ao) sin %f-+ a sin —= (2.2-11b)

It may be noted that the deflected shapes were taken as infinite series for
the case without bracing. Here, only two or three terms are taken for the
sake of simplicity.

Substituting the assumed deflection functions above into the total

potential energy equation (Eq. 2.1-15), the following is obtained:

4
El .7
= _f 2 Ke .2 292 Qb . 4da 2
U 423 (82a ) t 5 a I (2 + al) 5 - Gqr(1.93a" + .29a0a)

(2.2-11c)

The amplitude a can be determined by the Ritz procedure as follows:

AU ' (2.2-12)
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1) Calculate u with the original dimensions.
2) VUsing the computed u get the value of I, and recompute u.
3) Repeat step 2, until the starting and the resulting values of u
about equal. Then calculate the vertical deflection and the
maximum stresses with the final u.
The total stresses in the purlin are obtained by superposing the stresses
due to bending in the plane of the web (the vertical bending stage) on the
stresses due to twisting and lateral deflection (torsion stage). Thus the

total stress can be expressed as

M
_M f
o=3gt Se (2.2-8)
where
M = Moment resulting from the vertical bending stage
=q x (2-x)/2
S = Section modulus based on the moment of inertia I
Sf = Section modulus of the beam-column about its centroidal
axis parallel to the web
Mf = Beam-column bending moment
The beam-column bending moment Mf can be determined as follows:
Me = ELc(u" - ut) (2.2-9)
2
El.m
R 2 . NTX
= '7;?’ . g n (an - ano) sin = (2.2-10)

/¥
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flange with the web. Thus, S, to be used in Eq. 2.2-8 should be the appro-

f
priate section modulus for that point.
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purlins without intermediate braces. The shape of the lateral deflection
curve for the compression flange is changed because of the brace at midspan.
The assumed deflection and initial sweep curves are illustrated in Fig. 2.6.a.

The initial sweep is still taken as

u, = a, sin 1‘25 "o(2.2-1a)

However, the deflected shape is now taken as

_ . TX . 3mx
u=(a+ ao) sin — + a sin == (2.2-11b)

It may be noted that the deflected shapes were taken as infinite series for
the case without bracing. Here, only two or three terms are taken for the
sake of simplicity.

Substituting the assumed deflection functions above into the total

potential energy equation (Eq. 2.1-15), the following is obtained:

4
Elcm
= _f 2], K 2 292 Qb cha 2
U 3 (82a ) + 5 a - (5t ol) - 5 - 6ge(1.93a" + .29a a)

(2.2-11¢)

The amplitude a can be determined by the Ritz procedure as follows:

oU '
— = 2-
"3 (2.2-12)
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8q¢ Qb
.. 3] (2 +al) + .29Gq£a0

"

(2.2-13)

i\

Ifn

3 + K& - 3.86Gqge
L

Now, the deflection u can be determined by substituting a from Eq. 2.2-13
into Eq. 2.2-10. It may be noted that now the maximum u occurs at x = .22
and is equal to 1.54a.

Proceeding in the same manner as was done in Section 2.2.1, the following

is obtained:

3 2 3 2
_gx(e” - 2ax” + x7) , yu
V= 24E1 *om (2.2-14)
and
2
EI w
_gx{®& - x) - H f . ]
o = X 41) + 25 ©u s (sin %§-+ 9 sin §%5 (2.2-15)
f

As in Section 2.2.1, an iterative approach may be used to determine the

moment of inertia I.

2.2.3 Simply Supported Purlins With
Third Point Bracing

As in Section 2.2.2, only the function used for lateral deflection is
changed. The initial sweep is still taken as:

- . X
Uy = 3, sin == (2.2-16)

The deflected shape is now taken as:

_ Coein TX . 5mx
u = (a+ay) - sin =+ .8lasin 5= (2.2-17)

This deflected shape satisfies lateral deflection conditions at the
brace points and at the ends (see Fig. 2.6.b).
With the above displacement functions, the total potential energy equa-

tion (Eq. 2.1-15) gives:
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4

El.m
v=—5 (410a2)+ B (1.650%) - 1.16 2% (gb + 201) - a - Gaan” (. 35a° +.03a _a)
44 T °
(2.2-18)
Applying the Ritz procedure
3 _
Nog (2.2-19)
The following is obtained
3792 (qp + 2a1) + .296q2a,
a~= 3 (2.2-20)
19971 — - 6.936qL + .83KL
g

The following expressions for v and o are obtained using the procedure

discussed in Section 2.2.1.

3 2 3 2
_ogx(fY - 24x° + x
ax{ 24E1 L+ lpzuH (2.2-21)

2
El_m
- 9"(“41 XH J— u(sin ™ + 20.25 sin 3X) (2.2-22)

% %

2.3 Failure Criteria

Under uplift Toading simply supported purlins deflect as shown in Fig. 1.a.
Thus, in general the maximum compressive stress occurs at the junction of the
web to compression flange. With only a few exceptions, the dominant failure
mechanism observed in the Jarge scale tests was the formation of an inelastic
local buckle at the web to compression flange junction. For this reason
various procedures of predicting web failure were used to formulate a purlin
failure criterion. The two procedures discussed below were developed by

LaBoube and are given in Ref. 6.
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2.3.1 Full Depth, Failure Stress Approach

In this approach that has been adopted in the 1980 AISI Specification
(Ref. 8), a failure stress is defined. The web is taken as fully effective.
In the application of this approach, the beam-column section was assumed to
be the compression portion of the section with BB taken equal to zero.

If the compression flange is a stiffened plate element, the failure

stress, F

wu ° taken as

= By . fF- -
g = [1:210 - 000337 () « \[F T+ F <F (2.3-1)

where Fy is the yield stress of the material.

If the compression flange is an unstiffened plate element the qu becomes

! H
Feu = [1:259 - 000808 () - /Fy] CF <F (2.3-2)

For the Z-purlins with inclined stiffeners, the web failure stress equatior
for unstiffened flanges was used in all cases.
For the C-purlins the decision whether the flange is stiffened or not was

based on the procedure proposed by Desmond (Ref. 7) as follows:

Define R= ¥ g =221 p _77.23 -
LR 7 . . (2.3-3)
y vy
where
w = Flat width of flange
t = Thickness
If R <R S = 0 -
. Sadeq. (2.3-4)
. - 4
If Ry<R<R ¢ I = 389t" (R~ 300y (2.3-5)
adeq. a
: - 4,115
If R>R ¢ =t (2R + 5) (2.3-6)
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IfI_ s <1 , assume the flange to be unstiffened.
S Sadeq.

If IS 3_15 , assume the flange to be stiffened.
adeq.
2.3.2 Effective Depth Approach (Ref. 6)
This is an extension of the well known (Ref. 5) effective width concept.
The post-buckling behavior is predicted through the use of the effective depth
approach.

The following determination of effective depth is taken from Ref. 6.

h, = 0.358t Kf'—cEg h (2.3-7)
where

he = Effective depth of the compression portion of web

h = Total depth of the compression portion of web

fc = Maximum compressive stress in the web

< =4+200+8)3+2(1+8), 8= |f/f] (2.3-8)

f, =

t Maximum tensile stress in web

Since he and fc both depend on each other, the following iterative approach
needs to be used:

1) Calculate stresses assuming the web to be fully effective.

2) Calculate the effective depth by Eq. 2.3-7.

3) Based on the effective area of the web, compute the neutral axis
position, and calculate the new stresses for bending about the centroidal and
parallel to flange.

4) Repeat (2), then (3), until he converges.

5) If this calculated he is less than the full compression depth, use

BB = 0.0 instead of 0.33 for determining the beam-column section to be used
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in computing the horizontal deflections and the stresses resulting from the
horizontal deflection.

6) Calculate stresses and deflections with these values of he’ BB, and
compare the stress with the following ultimate stress used for this approach:

For stiffened compression flanges, the ultimate stress is:

Fmax = S'Fy | (2.3-9)

where

w
1

Stress reduction factor = ¥,Y, < 1.0

. hy .
Yy = 1.037 - .OOOIZS(EJ /Fy (2.3-10)
= Wy W .
Yp = 1.0735 - L0735 (£ )Ag)q 4 + when: 1.0 < (B 7 (B),. < 2.0
(2.3-11)
= W
Y, = 1.0, when ()15 < 1.0 (2.3-12)
"), = 221\ = flat width of the compressi
t1im Vﬁ?- . pression flange.
Yy

For unstiffened compression flange, the above formulas become:

Fmax = S Fy (2.3‘13)
§' = Stress reduction factor = v,v, < 1.0 | (2.3-14)
Y] = 0.80

i Wy W Ny (W
Yo = 1.024 - L028(3) / (T)y5,, » when (£)/ {)q5, > 1.0 (2.3-15)
= Wy /(W
Y, = 1.0, when (£) / (£)q5, < 1.0 (2.3-16)
() _ 63.3 (2.3-17)
thin = TF »3-17
Y



CHAPTER 3

SIMPLICATIONS OF THE SOLUTIONS

AND NUMERIC STUDIES

In this chapter numeric studies carried out to simplify the solutions

of Chapter 2 will be discussed.

3.1 Simply Supported Purlins Without

Intermediate Braces

3.1.1 Simplified Form of the Equations and the Moment of Inertia

Equation 2.2-4 can be written as

¢ @+a)+a

no

an - 2

1- CnGﬂn(.ZOGn
where
4q24
EIf
Cn - q
55 + nkL'w
EI
f
= 4q
n51r5EIf
7 + nKm
L
The series
. NTX
u= X a_ sin —*=
n=1,3,... " %

- .063)

(3.1-1)

(3.1-2)

(3.1-3)

(3.1-4)

converge rapidly. In numeric studies conducted with practical values of

the parameters involved taking only one term led to errors less than 5% in

u. Forn=1, Egs. 3.1-1 and -3 become

Qb
CGGTe)

S R 45C,G
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(3.1-5)
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and
_1.27q -6
G = 94 ATEL, (3.1-6)

— K
L

The flange bending moment can now be found using Eq. 2.2-10. Due to
the term n2 in the summation, taking only the term with n=1 leads to less
accurate results. Namely, the convergence is less rapid for the flange
bending moment than that for the lateral deflection. However, with proper
simplifications,as will be described below, taking n=1 even for the flange
bending moment gives excellent results.

Before further simplifications are introduced into the above equations,
a brief discussion of the moment of inertia I is in order. Moment of inertia
I was first defined in connection with Eq. 2.1-3 in Section 2.1 and used
throughout the rest of the preceding chapter. As a result of lateral de-
flections and twist, the moment of inertia I with respect to the centroidal
axis perpendicular to the original position of the web will be reduced.

An approximate expression for the reduction can be obtained by assuming the

Z- or C-section to be without Tips (Fig. 3.2). The moment of inertia before

twisting, IO, can be expressed as

Io B Iweb * If]ange (3.1-7)
3 2
~ B . (H
=ty + 2(bt) - (3) (3.1-8)
The moment of inertia after twisting may be approximated as
I= T * Iﬂange (3.1-9)
3
2 2
= 7 cos® 6 + 2(bt) - (Hegs 9 (3.1-10)

[Eﬁ3-+ 2(bt) - (H 2 2
12 t) (20 ] cos® o = Io cos” 8 (3.1-11)
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where 6 is the angle of twist as shown in Fig. 3.1. .

Noting that

sin o = & ; cos26=1-sin6=1- I (3.1-12)
the reduced moment of inertia I becomes

‘ U 2 .

I é 10[1 - (H) ] (3.1-13)

In the actual computations, I for the actual section with the stiffeners

is used. However, the reduction factor used is the one derived above.

3.1.2 A Possible Design Approach

Parametric studies which will be discussed below and the evaluation
of the test results discussed in Chapter 5 Tead to the following simple
approach. If the portion of the web contributing to If, Q, and G is ignored

and the compression flange width is taken to be equal to b (shown in Fig. 23)

then
I = tb°/12 (3.1-14)
6 = bth/ (21 ) . (3.1-15)
and
Q = btH/2 (3.1-16)

Substituting Eq. 3.1-14 through 3.1-16 into Eqns. 3.1-5 and 3.1-6, the

following is obtained

C(zb + o) + a,
a = 'I ~ -9ZC (3.]'17)
where
tHb
= = 3.1-18a
2= ( )

0
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C = 1'273q : (3.1-18b)
7.87Eth° , |

2,4

o was defined in connection with Eq. 2.1-3. A1l parameters should have
consistent units.

In the above equations the notation has been simplified by expressing
C] as C, a; as a, and a, as ayp- Furthermore, for simplicity, the reduction
in the moment of inertia can be ignored. Therefore, depending on the
approach taken,l0 is the gross or effective moment of inertia of the unde-
formed purlin about the centroidal axis parallel to the flanges. Using
Eqs. 2.2-10, and the simplifications discussed above, Eq. 2.2-8 for the
maximum stress at the flange to web junction for Z-purlins and flange to

stiffening 1ip junction of C-purlins becomes

2
MH | Ebm

G = (a -a) (3.1-19)
21 2902 0

M is defined in connection with Eq. 2.2-8, 1 is defined by Eq. 3.1-13 with u=a
The value of the restraint factor K is not a constant but varies with

the amount of Tateral deflection or lateral load q. The following procedure

for determining the value of K in the above equations gave excellent results.

The horizontal force, w(x), at which the value of K is determined can be

found by Eq. 2.1-3. With the simplifications above thig equation becomes

2
b~ tH

Units of w are lbs/in.

The solution therefore involves a very rapidly Converging iteration.
The steps are as follows:

Step 1 — Assume a failure load q.

Step 2 — Using Eq. 3.1-20 find the value of w.



23

Step 3 — From a plot of lateral load versus 1atera1~disp1aéement in an
F test determine the vlue of K at a lateral load equal to w
per unit length of the test specimen.

Step 4 — Determine a by Eq. 3.1-17. This is the maximum lateral deflection.

Step 5 — Determine o by equation 3.1-19.

Stepl6 — Repeat steps 1 through 5 until o obtained is equal to one of the

 failure stresses defined in Section 2.3.

Step 7 — The design load is the failure load obtained above divided by an

appropriate factor of safety.
The total maximum vertical deflection can be obtained from Eq. 2.2-7

by setting x = 2/2
5q2 waz
i (3.1-21)

The first term in the above equation is the component due to vertical
bending. a2/(2H) in the second term is due to lateral bending as shown in
Fig. 3.3. The factor ¢ is to account for the cross-sectional distortion
effects. It should depend on the cross-sectional dimensions. However, a
regression analysis conducted on the test results indicated that taking a
value of 3.4 for Y leads to excellent agreement between the computed and

observed results.

3.1.3 Parametric Studies

The convergence of the series solutions and the validity of the simpli-
fications outlined in Section 3.1.2 were studied numerically. For this
purpose,the simple computer programs given in this chapter in Tables 3.1
and 3.7 as well as the rather large computer program prepared to evaluate

the test results were used. In this section the results of studies using
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the programs given in this chapter will be discussed. The results of the
larger program will be. discussed in Chapter 5.

The programs given in this chapter take the section to have sharp
corners and determines stresses and disp]acements; The idealized beam-
column is assumed to include one sixth of the web depth for the unsimplified
approach.

The results of analyses on 51 Z- and 68 C-purlin sections are given in
this chapter. Many more sections were analyzed but the results given here
are typical and were ?hought to be sufficient. The dimensions of 17 Z-purlins
are given in Table 3.2. The results of the analyses for these sections are

given in Table 3.3. In Tables 3.4 through 3.6 results are given for sections
that have the same dimensions as those given in Table 3.2 except for the
flange width W (see Fig. 3.1). In each of these tables a different flange
width is assumed. C-purlins have basically the same dimensions as the Z-
purlins except for the angle between the flange and the stiffening 1ip.
This angle is taken as 90 degrees except for sections 8 and 17 where it was
taken as 50 degrees. Tables 3.8 through 3.11 give the results for C-purlins
lTisted in Table 3.2 except for W and the angle Be. Each tab]e‘is for a
different W value. A1l the tables given in this chapter are for a span
length of 20 ft and a uniform load of 144 1bs/ft,

The following notation is used in these tables.
U7 maximum u determined by Eqs. 3.1-1 and 3.1-4 taking 7 teyms (in.).
Ul maximum u determined by Eqs. 3.1-5 and 3.1-4 taking 1 term (in.).
US maximum u determined by simplified Eq. 3.1-17 (in.).
S7 maximum stress in the flange due to lateral bending only, determined

by Eq. 2.2-10 using 7 terms of the series (ksi).
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ST same as S7 except only one term of the series is used (ksi).

SS same as S7 except the lateral bending part (last term on the right
hand side) of Eq. 3.1-19 is used (ksi).

St7 S7 plus vertical bending stress (ksi).

St1 S1 plus vertical bending stress (ksi).

StS SS plus vertical bending stress (ksi).

The stresses St7, St1, and StS are the total stresses. A lower estimate

will of course lead to a higher estimate of the ultimate load.

Since a very wide range of values of the geometric parameters were used,
some of the sections may have rather nontypical dimensions. Sections having
typical dimensions are listed in Table 4.1. These were the sections tested.
Comparing the dimensions of Table 4.1 with those of this chapter, it is seen
that Table 3.3 contains the results for typical Z-purlins and Tables 3.8
and 3.10 for typical C-purlins. The following general conclusions can be
drawn from these tables.

There is no question that the agreement between U1, U7, and US is
excellent for every one of the 119 sections tested numerically. The follow-

ing table summarizes the correlation of stresses computed by different

approaches.
S1/S7 SS/S7 StS/St7
Z-purlins Avg. .82 1.10 1.03
(Table 3.4) St. Dev. .06 1 .04
C-purlins Avg. .68 .98 1.00
(Tables 3.8 St. Dev. 1 .15 .08
and 3.10)

The above values are given only to show the trends. It is seen that
the simplified formulas compared with more complicated formulas estimate

stresses excellently. It is also seen that in general the unconservatism
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involved in taking one term of the series solution is compensated by the
conservative simplifying assumptions made.

It is very important to note that for some value of q the denominator
of Eq. 3.1-5 may be equal to zero which indicates.a buckling condition.
For values of q greater than that the equations are not valid. This situa-

tion, however, was not encountered in any of the cases studied.

3.2 Intermediate Braces

Though equations for the cases of intermediate braces were derived in
Section 2.2.2 and 2.2.3, this subject was outside the scope of the research.
Therefore no parametric or experimental studies were conducted. However it
appears reasonable that the simplifications discussed in Section 3.1 would
also be applicable to the equations of Sections 2.2.2 and 2.2.3. Further

work on this subject appears desirable.



CHAPTER 4

EXPERIMENTAL INVESTIGATION

As discussed in the preceding chapters, the behavior of purlins is
quite complex. A test program was carried out to check the theory and the
"simplifying assumptions made. Both C- and Z-purlins were used in the test
program.

The types of tests conducted can be categorized into two groups: large
scale assembly tests and component tests. Large scale assembly tests in-
volved testing 20-foot spans of purlins under vacuum and point loadings.

The purlins were tested simply supported and the span was chosen to repre-
sent the typical distance from the end support to the first inflection
point in a continuous system with 25-foot spans.

Component tests included tests for rotational restraint, roof panel
shear rigidity, and material properties.

The cross-sectional dimensions of all the tests evaluated in this
report are listed in Table 4.1. The cross-sectional notation is illustrated
in Fig. 2.4. Each section is referred to by its dimensions Plxt:xao. a,

is the maximum sweep of the compression flange of the purlin that failed

in the vacuum test.

4.1 Large Scale Tests

The results of the large scale tests are presented and evaluated in

Chapter 5.

27
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4.1.1 Z-Purlin Tests at Cornell University

The first major progress report (Ref. 1) describes the first phase of
the experimental investigation in detail. The reader is referred to that
report for a description of the test procedures, fest specimens and results.
Table 5.3 compares the specimen designations of Ref. 1 and the present
repoft.

In the first phase only Z-purlin assemblies were tested under vacuum
and point loadings. These tests will be referred to as the vacuum and beam
tests, respectively. Six vacuum and seven beam tests were conducted in the
first phase.

4,1.2 Z-Purlin Tests by a Metal Building
Manufacturer

Since the first major progress report a total of nine vacuum tests
were conducted by a metal building manufacturer and the results were made
available to the researchers. Some of these tests were Qitnessed by
T. Pekdz. They were conducted competently and in accordance with the
procedures used in the Cornell research.

The dimensions of the sections tested are listed in Tab1e‘4.1. The
results are plotted in Chapter 5 along with the calculated values. In

these tests only displacements were measured.

4.1.3 C-Purlin Tests at Cornell University
Since the first major progress report (Ref. 1), three vacuum tests

were conducted using C-purlins. The test procedures and the overall test

assembly dimensions were exactly the same as those described in detai] in

Ref. 1.
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29

The results of the C-purlin tests are plotted in Figs. 4.1 through 4.7.
Stresses and deflections were measured in the tests on C 7 x .075 and 9 x
.075. Only deflections were measured in the test on C 9 x .077.. The initial
sweeps are shown in Fig. 4.8.

A1l the test results were corrected to account for the dead load of
the roof systém. The dead load was taken as 7.5 1b/ft. The initial strain
and dial gage readings were taken at this load. Thus the initial readings
were corrected by estimating the reading at dead load and plotting it as
the initial reading. |

A1l failures took place within 6 in. of the midspan and with an

apparent local buckle at the web to flange junction.

4.2 Component Tests
4.2.1 Rotational Restraint Tests

The objective of these tests was to determine the spring constant K
used in the beam-column idealization. These tests are also referred to
as F-tests. Some tests were conducted in the first phase of the research
and the results were reported in Ref. 1. These test results were reported
in terms of the section rotation versus twisting moment. The approach
taken in the final phase of the research necessitated the determination of
the relationship between the lateral force applied to the tension flange
and the lateral displacement of the tension flange. The schematic for the
type of test conducted is shown in Fig. 4.9 taken from Ref. 1. Further
discussion of the test procedure can be found in Ref. 1. Several tests
were conducted on Z- and C-purlins. The results are plotted in Figs. 4.10

through 4.14 for Z-purlins and Figs. 4.15 through 4.17 for C-purlins.
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For the sections tested the following expressions gave surprisingly
good estimates of the value of K at loads corresponding to the shear flow
loads at failure. (The shear flow forces are discussed in Chapters 2
and 3.) These expressions are

K = ————J———7§ (4.2-1)
azh + M

Ft3

for C-purlins and

1
K= 3 (4.2-2)

58H + ﬁﬂg
Et

for Z-purlins. The second term in the denominators of these expressions

was derived taking the web of the purlin as a cantilever. The calculated

results are plotted along with the observed resylts in the figures.
Further work using different types of panels seenm necessary before a

general expression is recommended.

The rotational restraint tests for C-purlins were carried out using
two different approaches. One was the same as the procedure and set-up

used for the Z-purlins. The other was by changing the set-up shown in

Fig. 4.9 as follows: the 18 in. distance shown in the figure was increased

to one half the purlin spacing and the dial gage was mounted to a stand

that was not on the panel. This arrangement was thought to represent the

behavior of the C-purlins assembled in an alternating fashion. The first

set-up is referred to in the plots as “"gage on panel" ang the latter as

"gage outside panel." However, the two different procedures did not show

any significant difference. Therefore, the procedyre using gages "outside

panel" seem unnecessary.
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42H + =

Et3
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1 )
—————iﬂzg (4.2-2)
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Figure 4.17 shows the importance of the location of the screw (or
bolt) on the value of K obtained. 1In all the tests the screws were placed
Lithin about 1/4" of the flange centerline
4.2.2 Roof Panel Shear Rigidity

(Cantilever Tests)

The tests cohducted and their results are described in detail in Ref. 1.



CHAPTER 5

COMPARISON OF CALCULATED AND
EXPERIMENTALLY OBSERVED RESULTS

The ultimate loads observed in thirteen Z-purlin and three C-purlin
vacuum tests are compared with calculated ultimate loads in Tables 5.1 and
5.2. The sections used were those of Ref. 1 as well as those tested by a
metal building manufacturer and the C-purlins tested since Ref. 1. The test
section designations used in Ref. 1 and the present report are compared in
Table 5.3. Observed and calcu1afed stresses and deflections are compared
graphically in the figures of this chapter.

The beam tests (see Chapter 4) were shown in Ref. 1 to be in good

agreement with the vacuum tests. Thus only the vacuum tests are considered

in this chapter. Purlin Type E (Test V6) of Ref. 1 was excluded from con-
sideration. This type of purlin had an unusual sweep. It was both quite
large (.91 in) and in the direction from the 1ip to the web. The local
buckle occurred at the stiffening lip of this specimen whereas in all the
other specimens the local buckle occurred at the flange to web junction.

This case needs further study.

As described in Chapter 4, all the test results including those by a
metal building manufacturer were corrected to account for the dead load of
the roof system. The dead load was taken to be 7.5 1b/ft. The initial
strain and dial gage readings were taken at this load. Therefore the initial
readings were corrected by estimating the deflection or the strain at deaq
load and taking this as the initial reading.

The types of comparison calculations used in this chapter are desig-

nated as follows:
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COMPARISON OF CALCULATED AND
EXPERTMENTALLY OBSERVED RESULTS
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5.2. The sections used were those of Ref. 1 as well as those tested by a
metal building manufacturer and the C-purlins tested since Ref. 1. The test
section designations used in Ref. 1 and the present report are‘compared in
Table 5.3. Observed and ca]cu1a£ed stresses and deflections are compared
graphically in the figures of this chapter.

The beam tests (see Chapter 4) were shown in Ref. 1 to be in good
agreement with the vacuum tests. Thus only the vacuum tests are considered
in this chapter. Purlin Type E (Test V6) of Ref. 1 was excluded from con-
sideration. This type of purlin had an unusual sweep. It was both quite
large (.91 in) and in the direction from the 1ip to the web. The local
buckle occurred at the stiffening 1ip of this specimen whereas in all the
other specimens the local buckle occurred at the flange to web junction.
This case needs further study.

As described in Chapter 4, all the test results including those by 3
metal building manufacturer were corrected to account for the dead load of
the roof system. The dead load was taken to be 7.5 1b/ft. The initial
strain and dial gage readings were taken at this load. Therefore the initial
readings were corrected by estimating the deflection or the strain at deagq
load and taking this as the initial reading.

The types of comparison calculations used in this chapter are desig-

nated as follows:
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“"Simple" or "Simplified":
Equations of Section 3.1.2 and the failure criteria
of Section 2.3.1 were used.
"Full Depth" or "Full":
Equations of Section 3.1.1 and the failure criteria of
Section 2.3.1 were used. In all cases only one term of the
series solutions (n=1) and BB=0 (see Fig. 2.4) was taken.
"Eff. Depth" or "Eff.":
Equations of Section 3.1.1 and the failure criteria
of Section 2.3.2 were used. The number of series

terms is indicated in each case.

5.1 Comparison of Ultimate Loads

The observed ultimate loads are compared with ultimate loads calculated
with three different approaches in Table 5.1. The simple approach is seen
to be just as accurate as the other two appraoches. The mean of the ratio
of the ultimate load calculated with the simple approach to that observed
is 1.02 for Z-purlins and .89 for C-purlins. The standard deviations for
these are .12 and .06, respectively. The mean and standard deviation for
all specimens are .99 and .13, respectively. The results for C-purlins are
seen to be less conservative and in excellent agreement with the full depth
approach. This is certainly a point to consider. However, in view of the
fact that there relatively fewer number of tests on C-purlins, it may
be desirable to use the simple approach which is a bit more conservative.

The most unconservative results (by 19%) for the simplified approach
were observed for Sections Z 8.053 x .063 x .25 and Z 7.93 x .115 x .25.

The discrepancy for the first section can be attributed in part to the fact
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that a premature failure might have been caused by the local buckling at a
sag rod perforation.

The convergence of solutions is studied in Table 5.2 for the effectiv
depth approach. It is seen that the most significant change in the soluti
takes place between n=1 and n=2. However, on the basis of Table 5.1, it
can be concluded that the simplified approach is just as accurate as the

more detailed calculations.

5.2 Comparison of Deflections and Stresses at Midspan

The observed horizontal and vertical deflections of the web to com-
pression flange junction are compared with those calculated in Figs. 5.1
through 5.24. The calculated and observed ultimate loads are marked by
horizontal Tines on the load axis of each figure. The correlation is seen
to be satisfactory. There is a relatively larger discrepancy between the
calculated and observed deflections at lower loads. This can be attribute
to the fact that the value of K was chosen for the ultimate 1oad condition
as explained in Section 3.1.2.

The observed and calculated values of the maximum stress which occyrs
at the web to flange junction are plotted in Figs, 5,25 trhough 5,30,
These ultimate loads are marked also on these figures. Again the correla-
tion is seen to be satisfactory.

It should be noted the graphs of this chapter were plotted using a
minicomputer. The observed and calculated results were specifieq at dis-
crete points. Straight lines were drawn between these points. For this

reason the curves have discontinuities which actually do not exist.
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that a premature failure might have been caused by the local buckling at a
sag rod perforation.

The convergence of solutions is studied in Table 5.2 for the effective
depth approach. It is seen that the most significant change in the solution
takes place between n=1 and n=2. However, on the basis of Table 5.1, it
can be concluded that the simplified approach is just as accurate as the

more detailed calculations.

5.2 Comparison of Deflections and Stresses at Midspan

The observed horizontal and vertical deflections of the web to com-
pression flange junction are compared with those calculated in Figs. 5.1
through 5.24. The calculated and observed ultimate loads are marked by
horizontal lines on the load axis of each figure. The correlation is seen
to be satisfactory. There is a relatively larger discrepancy between the
calculated and observed deflections at lower loads. This can be attributed
to the fact that the value of K was chosen for the ultimate load condition
as explained in Section 3.1.2.

The observed and calculated values of the maximum stress which occurs
at the web to flange junction are plotted in Figs. 5.25 trhough 5.30.
These ultimate loads are marked also on these figures. Again the correla-
tion is seen to be satisfactory.

It should be noted the graphs of this chapter were plotted using a
minicomputer. The observed and calculated results were specified at dis-
crete points. Straight lines were drawn between these points. For this

reason the curves have discontinuities which actually do not exist.
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5.3 Summary and Conclusions

It is seen in this chapter that the correlation between the computed
and the observed ultimate loads is excellent. The correlation between the
calculated and observed deflections is satisfactory for design purposes.
The iteration caused by the determination of the spring constant K is a
rapidly converging one. This rapid convergence can also be predicted from
Table 4.2 where it is shown that K is not too sensitive to the value of

the flange shear flow force assumed.



CHAPTER 6

SUMMARY AND CONCLUSIONS

The.behavior of C- and Z-purlins braced by roof panels was studied
for wind uplift loading. The ahalytical formulation of the behavior
included several important parameters that have not been considered pre-
viously. A brief discussion of these parameters was given in Chapter 1.

A very simple approach was developed to predict behavior. - This
approach correlated very well with thé results of a rather extensive
experimental program.

The research dealt primarily with simply supported purlins. However,
the results can readily be extended to multiple span continuous purlins
by considering the portions between the inflection points as simply
supported.

Though it was not in the original scope of the investigation, some
solutions for the intermediately braced purlins were developed.

It appears very feasible and desirable to extend the ideas developed
and used in this research to the case of gravity loading. However, in the
case of gravity loading taking proper account of the roof shear rigidity
and the behavior of stiffening 1ips is essential. The latter point is dye
to the fact that under gravity loading the lateral bending stress adds to
the vertical bending stress at the stiffening 1ip. In the case of upi1ift
loading, the lateral bending stress reduces the total stress at the
stiffening 1ip. Significant amount of unsponsored research has recently
been concluded at Cornell University on this subject. The results will pe

available shortly.

36
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Finally, the best test of the analytical approach will be by observing
the behavior of a full scale building. Only in this manner, the effect of

the interaction of many complex elements of a roof system can be evaluated.
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Table 3.2
Z-PURLIN PARAMETERS
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Table 3.4

Z-PURLIN ANALYSIS
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Table 3.6

L-PURLIN ANALYSIS
(W = 3.00 in)
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Table 3.7
C-PURLIN PARAMETRIC STUDY PROGRAM
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Table 3.7
C-PURLIN PARAMETRIC STUDY PROGRAM (CONTINUING)
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Table 3.8

C-PURLIN ANALYSIS
(W=2.0 in)

ol
¥a)

4,29 2 4 e va .18 £ L2 1.as
4,598 AT Lo 2V. 6 TR 1,83 9 T 1,89
4,50 v L 2.6 . B 1.83 .3 L g 1,81
2. EE CRE =g 5. e CED 1.85 5] BT 1.82
ALTT L L3z 7T LE3 0 1.2% 5 =P 1.z@
z.4az L3S L9315, 3 . EH L33 2E.1 -k a7
2.932 LT L35 22,3 .73 1.13 43,14 LBE 1.68%
g .3V a2 2.2 e 1.84 41,8 L BT 1.42
4.54 . D3 JEE 25,8 JEL 1,22 46.4 T 1.12
4.21 .95 =19 22,8 JES L9z 44,72 .77 o5
5.5 LB LIT O ZELE T 1,88 43,3 L B5 1,895
2,94 .26 SIE 19,2 JET L95 34,5 .51 Y
9.07 39 1,81 SH. 4 . BE 1.23 65,7 .39 1.19
2,94 . E JFE 18,2 &7 S95 34,8 51 L a7
. - - - o = = e A= - " -

Table 3.9

C-PURLIN ANALYSIS
(4 = 2.5 in)

4. ] 1.41 MR | L8 1,23 45,7 91 1.17
3. E 1,03 R gz 1,17 47.8 T 1'1;
$.30 Bk B 278 v 1.14 4e. 3 CBE I.H;
2078 SHE L 13,8 N l.1e T4 T 1'-”
a,13 23 1,88 S4.1 3z 1.45  Pz.7 .94 i

2T 97 LAT 1346 TLoo1.88 37.z2 35 ygm
4. 1% .38 1,02 I7.S S4 1,29 48,32 .91 1=
4.15 e {80 25,3 24 1.1 43,9 .91 1 1a
4. 69 a5 1.8 3.9 LB 131 49,8 b
3,53 a7 1. 680 s, 2 74 1.63 43,4 .81 1.65
5y ST 1.02 35, oT 1.17 48,9 .28 1:1;
= 57 1,00 SR 7S 1,835 37,4 .24 X-B;
3.0z 2% L I 25 1,34 TE.4 .3z L 5a
3,08 a7 1, a4 2308 Ts 1,85 T4 L84 1.a3
4,59 wT 1.atl EE S T 1A 4= 4 o e
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Table 3.10

C-PURLIN ANALYSIS
(W =1.5 1in)

£ e a3 JEE 185 .65 L399 41,4 .85 .33
 4.89 .95 L9392 z2.@ L £4 T T .80 .36
3 4,13 .94 55 13,9 .S L83 42,4 .73 P
4 2.2 a3 BB 13,7 .S4 JES 3m. 1 .54 a5
S 9,93 L HE e 9.9 22 1.83 £33, 3 89 1.685%
= 2017 LGy N 18 T2 36,5 .51 .51
7 z.55 .95 B8 13.@ 4 39 41,5 g4 .99
8 3. 46 .94 VB3 18.5 €0 JE1 39,3 .84 .92
3 4,22 38 &3 zg.o JFL O 1.87 44,2 .87 1.83

1A .73 .92 La1 23 52 LTT 41,1 7z &7

11 5.85 .35 L8z zz.m L ES 33 4.1 e .35

12 2,61 a3 a1 157 .53 7e o 33.@ 7a o
3 364 a8 .31 49,1 79 1.11 574 a5 1,63

14 2,81 a3 91 187 .53 .73 3ILm .75 .38

e e o 20 Ler 23 2 s [ 7E

Table 3.11

‘ C-PURLIN ANALYSIS
(W = 3.00 in)

1 4.61 L 1.87 33,2 55 1.36 SA.1 Tl 1. 24
2 s.87 -1 1.87 49,4 LEE 1,23 S2.9 .98 1.1%
2 5,12 =1 t.o2 =3,z 52 1.2 Sao.t .55 1.14
4 3.07 LI 1.83  Zz.7 JEI O 1.23 0 396 Te 1,13
5 &.349 E R 1.17 S B3 W57 7.2 as 1.44
& z.a7 =T 1,91 2z.4 FP1.14 0 39,3 LET 1. @5
7 4.27 .99 1,82 2.4 VB 1.36 0 49,5 e 1.24
& 4,27 .39 1,82 29,4 . 1.28 47.:3 L3z 1.1%
2 4,71 -1 1.89 35,4 % 1.3% =sz.= 93 1,28
18 4.9 =T 1.83 42,z o 1.18 54,7 a5 1. o
11 S.99 -t 1,88 41,6 LET 1L o 54,1 2 1.18
12 .44 T 1,83 25,4 81 1.12 48,3 LET 1,85
12 2,65 -1 1.16  BE. 5 LAz 1,41 Fa.zo Lan 1.34
14 3,44 =T 1.83 2.4 .51 1.12 4@.2 1,03
15 4,9¢ =1 1.84 41,5 LEZ 0 1.14 sS4, 1.11



Table 4.1
CROSS-SECTIONAL DIMENSIONS™**

Section H t W o R R1 ) Fy

(Hxtx ao) (in) (in) (in) (rad) (in) (in) (in) (ksi)
Z8 x .059 x .1 . 8 .059 1.961 .624 .49 .578 .624 66.00
£27.92 x .06 x .56* 7.92 .060 2.01 .698 .392 .300 .640 61.50
Z 8.055 x .063 x .25 8.055 .063 2.059 .873 477 .279 .602 56.89
Z7.97 x .07 x .25 7.97 .070 1.875 .698 715 .527 .766 64.60
Z8 x .075 x .25 8.00 .075 1.891 716 .738 .551 734 64.70
Z 8.031 x.088 x .25 8.031 .088 1.953 .707 .762 .461 727 63.80
Z8 x .089 x .00 8.00 .089 1.938 .751 .688 .498 .797 64.00
Z7.94 x .114 x .25 7.94 114 2.051 .831 .746 .309 .773 56.1
Z7.93 x .115 x .47* 7.93 115 1.860 .620 .805 .445 .810 65.90
Z 9.625 x .062 x .125 9.625 .062 2.147 .799 .656 .402 .875 57.44
Z 9.45 x .063 x .66%* 9.45 .063 2.030 .733 512 . 326 .600 57.3
Z 9.578 x .106 x-.0625 9.578 . 106 2.141 712 .523 .367 .602 52.90
Z 9.49 x .109 x .25* 9.49 .109 2.020 .698 .680 .34 .900 57.60
C7 x .075 x .00* 7.00 .075 1.656 1.571 .406 .406 .359 55.0
C9 x .075 x .25* 9.00 .075 1.750 1.571 .320 .306 .445 55.25
C9x.077 x 1.0* 9.00 .077 1.820 1.571 .328 .318 .420 55.25

*
A1l sections marked by an asterisk were tested at Cornell University. All others were tested
by a metal building manufacturer.

** - . 3 I3
Cross-sectional notation is illustrated in Fig. 2.4.
~ ic tha annle nf the stiffenina 1ip with the horizontal (flange).

8y



Section
Tested
(Hxt)

Z 8 x .062

Z8 x .073

Z8 x .106

Z8 x .117

Z9.5 x .065

Z9.5 x .107

C7x .07

average

€9 x .077

average

.75wu

.97

49

Table 4.2
OBSERVED VALUES OF K
(1b/in/in)

at (*)

W, 1.25wu
1.28 1.28
1.57 1.64
1.78 1.88
2.15 2.29

.97 1.01
1.62 1.69
3.10 3.17
3.00 3.10
2.80 2.96
2.29 2.38
2.80 2.82
1.63 1.71
1.63 1.67
1.51 1.60
1.48 1.56
1.56 1.64

*wu is the value of w defined
test ultimate load

NN NN NNONN NN NNN
WW WVWW Ny O O

[an M ap)

K at w_ used in the

Eva]uagion of Vacuum
Test Section:
(thxao)

x .059 x .10
x .06 x .56
x .063 x .25

[esecoel

.97 x .07 x .25
X .075 x .25

.031 x .088 x .25
x .089 x .00

.94 x 114 x .25
.93 x .115 x .47

.625 x .062 x .125
.45 x 063 x .06

.578 x .106 x -.0625
.49 x 109 x .25

7 x .075 x .00

x .075 x .25
x .077 x 1.00

O W

by Eq. 3.1-20 with q equal to vacuum
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Table 5.1

COMPARISON OF OBSERVED AND CALCULATED ULTIMATE LOADS*

Section (H x t x ao)

Z8 x .059 x .1
Z7.92 x .06 x .56
Z 8.053 x .063 x .25
Z7.97 x .07 x .25

Z8 x .075 x .25

Z 8.031 x .088 x .25

Z 8 x .089 x .00
Z7.94 x .114 x .25
Z7.93 x .115 x .47
Z9.625 x .062 x .125

Z 9.45 x .063 x .66

Z 9.578 x .106 x -.0625
Z9.49 x .109 x .25"*

* %

C7 x .075 x .00
C9 x .075 x .25
C9 x .077 x 1.0

Average
Coefficient of variation (%)

*A11 loads in 1bs/ft; all dimensions in inches.

*Failure with local buckling at a perforation for sag rods.

Test

90.

83

96.
118.
137.
165,
162.
214.
184.
119.
114.
266.
218.

7

2
35

O N O O o oy o

127.3
117.2
103.2

Simple

102

98.
105.
128.
136.
168.
174.
210.
218.
103.
102.
218.
201.

102.

D PO PO OO0 P oS

Q

102.0

94.

Ful

1

n=1

109.2
102.0

108

138.
146.
176.
181.
213.
229.
104.
103.
220.
205.

N O N BNV B BO

116.4
109.2
103.

Eff.

n=1
108

99.

102

127.
133.
154.
158.
176.
194.
105.
104.
190.
178.

106.
121.

(oo Je N S~ L T -~ O I O O

N 0

116.4

Simple Full Eff.
Test Test Test
1.12 1.20 1.19
1.19 1.23 1.20%**
1.10 1.12 1.06
1.08 1.17 1.07
0.99 1.06 0.97
1.01 1.06 0.93
1.05 1.09 0.96
0.98 1.00 0.82
1.19 1.25 1.06
0.87 0.88 0.89
0.89 0.91 0.92
0.82 0.83 0.72
0.92 0.94 0.82**
0.80 0.91 0.84
0.87 0.93 1.03
0.92 1.00 1.12
0.99 1.04 0.98

12 12 14

0§



Table 5.2

CONVERGENCE OF SOLUTION
(Effective Depth Approach)

Test Calculated Ult. Loads*
: Utt. No. of Terms Used in the Soln. Eff. (n=5)

section Load 1 2 3 4 5 ~Test
Z 8 x .059 x .1 90.7 108.0 121.2 118.8 120.0 118.8 1.31
Z7.92 x .06 x .56 83 99.6 115.2 118.8 114.0 112.8 1.36
Z 8.055 x .063 x .25 96.2 102 116.4 114 114 114 1.19
Z 7.97 x .07 x .25 118.35 127.2 138 136.8 136.8 136.8 1.16
Z 8 x .075 x .25 137.9 133.2 142.8 141.6 141.6 141.6 1.03
Z 8.031 x .088 x .25 165.8 154.8 166.8 164.4 165.6 164.4 0.99
Z 8 x .089 x .00 162.7 158.4 170.4 168.0 169.2 168.0 1.03
Z7.94 x .114 x .25 214.5 176.4 190.8 188.4 188.4 188.4 0.88
Z 7.93 x .115 x .47 184.0 194.4 206.4 205.2 205.2 205.2 1.12
Z 9.625 x .062 x .125 119.0 105.6 112.8 111.6 111.6 111.6 0.94
Z 9.45 x .063 x .66 114.0 104.4 114 111.6 112.8 111.6 0.98
Z 9.578 x .106 x-.0625 266.7 190.8 207.6 204.0 205.2 205.2 0.77
Z 9.49 x .109 x .25 218.0 178.8 188.4 187.2 187.2 187.2 0.86
Average 1.05
Coefficient of variation (%) 16

*All Toads in lbs/ft; all dimensions in inches.

Ls



TEST AND

Section
(Designation
of this Report)
Z 9.45 x 063 x .66
Z 9.49 x .109 x .25
27.92 x .06 x .56

Z77.93 x.115 x .47

52

Table 5.3
SECTION DESIGNATIONS
Test
(Designation
of Ref. 1)
V5
V7
V4

V3

Section
(Designation
of Ref. 1)
A
B
C*

D*

*
The failure loads used in this report are slightly

different from those given in Ref. 1.

Some errors

in pressure recording and dead load correction in
Ref. 1 were discovered.
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//— center of rotation

Fig. 2.3 Lateral forces on the beam-column
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Fig. 2.4 Cross-sectional dimensions
beam-column section

.- The heavy lines indicate the idealized
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Fig. 2.5 Vertical deflection resulting from lateral
deflection and twist
(Also refer to Fig. 3.3)



58

. TIX TOLES
_ . —_— +
u=(a+ay) sin - +asing

L

B e
e o o S0 S0 -“-—-"--

R

)

a. Purlin with midspan bracing

u=(a+a)sin X

. hrux
o 1 + ,81a0 sin =y
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Fig. 2.6 Initial sweep and deflected shapes
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