

Missouri University of Science and Technology Scholars' Mine

AISI-Specifications for the Design of Cold-Formed Steel Structural Members Wei-Wen Yu Center for Cold-Formed Steel Structures

01 Apr 2015

# Load Bearing Clip Angle Design

American Iron and Steel Institute

Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-aisi-spec

Part of the Structural Engineering Commons

#### **Recommended Citation**

American Iron and Steel Institute, "Load Bearing Clip Angle Design" (2015). *AISI-Specifications for the Design of Cold-Formed Steel Structural Members*. 151. https://scholarsmine.mst.edu/ccfss-aisi-spec/151

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in AISI-Specifications for the Design of Cold-Formed Steel Structural Members by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

C

# Load Bearing Clip Angle Design

**RESEARCH REPORT RP15-2** 

APRIL 2015 (UPDATED MARCH 2016)

Committee on Specifications for the Design of Cold-Formed Steel Structural Members



**American Iron and Steel Institute** 

The material contained herein has been developed by researchers based on their research findings. The material has also been reviewed by the American Iron and Steel Institute Committee on Specifications for the Design of Cold-Formed Steel Structural Members. The Committee acknowledges and is grateful for the contributions of such researchers.

The material herein is for general information only. The information in it should not be used without first securing competent advice with respect to its suitability for any given application. The publication of the information is not intended as a representation or warranty on the part of the American Iron and Steel Institute, or of any other person named herein, that the information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of the information assumes all liability arising from such use.

# UNIVERSITY OF NORTH\*TEXAS

# Load Bearing Clip Angle Design

Report No. UNT-GP6351

By

Cheng Yu, PhD Associate Professor

Mohamad Yousof, Mahsa Mahdavian Research Assistants

A Research Report Submitted to the American Iron and Steel Institute

April 8, 2015

Department of Engineering Technology University of North Texas Denton, Texas 76207

### ABSTRACT

The report presents a comprehensive research project aimed at developing design methods for three limit states of cold-formed steel clip angles: shear, compression, and pull-over of the screw connections. For each limit state, a test program was conducted to investigate the behavior, strength, and deflection of the clip angles. The test results were compared with existing design methods for members similar to, but not exactly the same as, cold-formed steel clip angles. It was found that none of the existing methods worked well for the tested clip angles, therefore new design methods were developed for each of the three limit states studied in the project. LRFD and LSD resistance factors and ASD safety factors were provided to apply to the proposed design equations for nominal strength.

# **Table of Contents**

| Abstract                                                                                   | i       |
|--------------------------------------------------------------------------------------------|---------|
| 1 Objectives                                                                               | 1       |
| 2 Shear Strength of Clip Angles                                                            | 1       |
| 2.1 Test Setup and Test Procedure                                                          | 1       |
| 2.2 Test Specimens                                                                         | 2       |
| 2.3 Test Results                                                                           | 4       |
| 2.4 Comparison with AISC Design Method                                                     | 7       |
| 2.5 Proposed Shear Design Method for CFS Clip Angles without Consideration of Deformation. | f<br>10 |
| 2.6 Critical Elastic Buckling Solution                                                     | 14      |
| 2.7 Proposed Shear Design Method for CFS Clip Angles with Consideration of Deformation     | f<br>15 |
| 2.8 Alternative Shear Design Method for CFS Clip Angles with Consideration of Deformation  | f<br>19 |
| 3 Compression Strength of Clip Angles                                                      | 21      |
| 3.1 Test Setup and Test Procedure                                                          | 21      |
| 3.2 Test Specimens                                                                         | 22      |
| 3.3 Test Results                                                                           | 24      |
| 3.4 Comparison with AISI Design Methods                                                    | 26      |
| 3.5 Proposed Comparison Design Method for CFS Clip Angles                                  | 28      |
| 3.6 Critical Elastic Buckling Solution for Plate Column                                    | 32      |
| 4 Pull-Over Strength of Screw Connections                                                  | 33      |
| 4.1 Test Setup and Test Procedure                                                          | 33      |
| 4.2 Test Specimens                                                                         | 33      |
| 4.3 Test Results                                                                           | 35      |
| 4.4 Comparison with AISI Design Method                                                     | 37      |
| 4.5 Proposed Pull-Over Strength for CFS Clip Angles                                        | 38      |
| 5 Conclusions and Future Research                                                          | 41      |
| 6 Acknowledgements                                                                         | 42      |
| 7 References                                                                               | 42      |
| Appendix 1 – Failure Modes of Invalid Tests                                                | 43      |
| Appendix 2 – Detailed Dimensions of Clip Angles                                            | 44      |
| Appendix 3 – Draft Design Provisions                                                       | 49      |

# **1 OBJECTIVES**

The objective of this project was to investigate the behavior of load-bearing cold-formed steel (CFS) clip angles and then develop appropriate design methods for their use when subjected to three different loading conditions. Three limit states were considered in the research: (1) transverse shear capacity of the cantilevered leg; (2) axial compression capacity of the cantilevered leg; and (3) pull-over strength of fasteners on the anchored leg.

# **2 SHEAR STRENGTH OF CLIP ANGLES**

The shear test program was aimed at identifying the failure mechanism and determining the shear strength of the cantilevered leg of CFS clip angles subjected to in-plane transverse shear forces. The test setup ensured the failure would occur in the clip angle, and fastener failures were prevented. The test results were initially compared with the double coped beam design procedure found in the AISC Steel Construction Manual (AISC, 2011). It was found that large variations existed between the test results and those determined using the AISC methodology. A new design method was proposed that would more accurately predict the shear strength of the CFS clip angles than other previous methods. To address the deflection limit, a design method with consideration of the deformation limit was also developed.

### 2.1 Test Setup and Test Procedure

The test programs were performed in the Structural Testing Laboratory at the Discovery Park of the University of North Texas. The entire test apparatus was constructed on a structural reaction frame. Figures 2.1 and 2.2 show the overall view and close-up view of the shear test setup respectively.





Figure 2.1: Overall view of shear test setup Figure 2.2: Close-up view of shear test setup

In each shear test, two identical clip angles were used in the specimen assembly. The cantilevered leg of each clip angle was fastened to a 54 mil or 118 mil 20 in. long CFS stud column (one clip on each side of the column) using No. 14-14×1 self-drilling self-tapping screws. The other leg of the clip angle (anchored leg) was fixed to a loading plate by No. 10-24×1 Button Head Socket Cap (BHSC) screws. The loading plate was made of  $\frac{1}{2}$  in. thick structural steel which had pre-drilled holes to accommodate the BHSC screw connections. The 20 in. long CFS stud column was fixed to a set of specially designed steel fixtures on both ends by No. 14 screws as shown in Figures 2.1 and 2.2. The stud column was made of two identical CFS stud members face-to-face welded together by spot welds along the flanges. For 54 mil and thinner clip angles, a 54 mil stud column was used. For 68 mil and thicker clip angles, a 118 mil stud column was used. The upper end of the loading plate was constrained by two lateral supports, as shown in Figure 2.2, so that the out-of-plane movement of the loading plate was prevented.

A 50 kip universal compression/tension load cell was installed between the hydraulic rod and the mechanical grip. A position transducer was used to measure the vertical displacement of the loading plate. The data acquisition system consisted of a PC with Labview and a National Instruments<sup>®</sup> unit (including a PCI6225 DAQ card, a SCXI1100 chassis with SCXI1520 load cell sensor module and SCXI1540 LVDT input module). The applied force and the clip angle displacement were measured and recorded instantaneously during the test. An 8 in. stroke hydraulic cylinder was used to apply the shear load to the clip angle. The cylinder was supported by a hydraulic system with a built-in electrical servo valve to control the hydraulic flow rate.

The shear tests were conducted in a displacement control mode. In each test, the hydraulic cylinder moved the loading plate upwards at a constant speed of 0.3 in. per minute. The selected loading speed was found satisfactory for achieving the desired failure mode of test specimens meanwhile allowing accurate readings of displacement and load measurement devices. The testing speed was slow enough to have no effect to the test results.

#### 2.2 Test Specimens

The research focused on failures in the clip angles, therefore the tests that failed in other modes such as fastener failures were not included in the analyses. The shear test program included a total of 33 valid shear tests with the thickness range of the clip angles between 33 mil and 97 mil. The failure modes of invalid tests are provided in Appendix 1. All the clip angles in the research project had pre-punched holes for screw installation. For the shear tests, No. 14-14×1 self-drilling self-tapping screws were used on the cantilevered leg of clip angles. No. 10-24×1 BHSC screws were used on the anchored leg of clip angles. The screws were placed uniformly along the line of the holes and the two end holes were always used for screws. Table 2.1 lists the measured dimensions related to the proposed shear design method, tested material properties, and the number of screws used in each clip angle. The detailed dimensions of the clip angles are provided in Appendix 2. The test specimens were manufactured by Simpson Strong-Tie Company. The test specimen designations used in this test program were the same as the original product labels from the manufacturer. In Table 2.1, the L measures the flat length of the cantilevered leg between the center of the first line of screws and the bend line. The thickness, t, is the uncoated thickness of materials. The yield stress  $F_y$ , and tensile strength,  $F_u$ , were obtained from coupon tests following

ASTM A370 Standard Test Method and Definitions for Mechanical Testing of Steel Products (2014). Figure 2.3 illustrates the measured dimensions.

| Test                                               | L (in ) | B (in ) | t (in ) | F <sub>w</sub> (ksi) | F <sub>2</sub> (ksi) | No. of<br>Screws   | No. of<br>Screws      |
|----------------------------------------------------|---------|---------|---------|----------------------|----------------------|--------------------|-----------------------|
| Label                                              | _ ()    | - ()    | . ()    | - y ()               | - u (~-)             | C-leg <sup>1</sup> | on A-leg <sup>2</sup> |
| S1 #4                                              | 1.394   | 3.020   | 0.0584  | 45.7                 | 50.1                 | 4                  | 4                     |
| S1 #5                                              | 1.394   | 3.020   | 0.0584  | 45.7                 | 50.1                 | 4                  | 4                     |
| S3 #1                                              | 1.391   | 5.230   | 0.0584  | 45.7                 | 50.1                 | 3                  | 7                     |
| S3 #2                                              | 1.391   | 5.230   | 0.0584  | 45.7                 | 50.1                 | 3                  | 7                     |
| S4 #3                                              | 1.401   | 7.497   | 0.0349  | 49.9                 | 55.8                 | 3                  | 10                    |
| S4 #4                                              | 1.401   | 7.497   | 0.0349  | 49.9                 | 55.8                 | 3                  | 10                    |
| S5 # 3                                             | 1.415   | 7.520   | 0.0465  | 46.4                 | 51.2                 | 3                  | 5                     |
| S5 # 4                                             | 1.415   | 7.520   | 0.0465  | 46.4                 | 51.2                 | 3                  | 5                     |
| S6 #1                                              | 2.422   | 3.004   | 0.0465  | 46.4                 | 51.2                 | 2                  | 4                     |
| S6 #2                                              | 2.422   | 3.004   | 0.0465  | 46.4                 | 51.2                 | 2                  | 4                     |
| S7 #1                                              | 2.362   | 3.021   | 0.1006  | 45.6                 | 60.0                 | 8                  | 8                     |
| S7 #3                                              | 2.362   | 3.021   | 0.1006  | 45.6                 | 60.0                 | 8                  | 8                     |
| S8 #3                                              | 2.387   | 5.254   | 0.0465  | 46.4                 | 51.2                 | 3                  | 7                     |
| S8 #4                                              | 2.387   | 5.254   | 0.0465  | 46.4                 | 51.2                 | 3                  | 7                     |
| S8 #5                                              | 2.387   | 5.254   | 0.0465  | 46.4                 | 51.2                 | 3                  | 3                     |
| S9 #2                                              | 2.389   | 7.540   | 0.0349  | 49.9                 | 55.8                 | 3                  | 10                    |
| S9 #3                                              | 2.389   | 7.540   | 0.0349  | 49.9                 | 55.8                 | 3                  | 10                    |
| S10 #1                                             | 2.387   | 7.497   | 0.0584  | 45.7                 | 50.1                 | 3                  | 10                    |
| S10 #2                                             | 2.387   | 7.497   | 0.0584  | 45.7                 | 50.1                 | 3                  | 10                    |
| T1a #1                                             | 2.418   | 1.747   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| T1a #2                                             | 2.418   | 1.747   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| T1b #1                                             | 2.038   | 1.747   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| T1b #2                                             | 2.038   | 1.747   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| T1b #3                                             | 2.038   | 1.747   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| T3 #1                                              | 1.523   | 1.753   | 0.0584  | 45.7                 | 50.1                 | 2                  | 2                     |
| T3 #2                                              | 1.523   | 1.753   | 0.0584  | 45.7                 | 50.1                 | 2                  | 2                     |
| T3 #3                                              | 1.523   | 1.753   | 0.0584  | 45.7                 | 50.1                 | 2                  | 2                     |
| T4 #2                                              | 2.394   | 1.751   | 0.0698  | 54.8                 | 66.7                 | 2                  | 4                     |
| T4 #3                                              | 2.394   | 1.751   | 0.0698  | 54.8                 | 66.7                 | 2                  | 4                     |
| T5a #1                                             | 2.431   | 1.751   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| T5a #2                                             | 2.431   | 1.751   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| T5b #1                                             | 2.276   | 1.751   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| T5b #2                                             | 2.276   | 1.751   | 0.0349  | 49.9                 | 55.8                 | 2                  | 2                     |
| Note: 1- the cantilevered leg; 2- the anchored leg |         |         |         |                      |                      |                    |                       |

Table 2.1: Properties of clip angles in the shear test program



Figure 2.3: Measured dimensions

#### 2.3 Test Results

For each specimen configuration, a minimum of two tests were conducted. If the difference in the peak load between the first two tests was greater than 10% of the average result, a third test would be performed. In the shear test program, two failure modes were observed. For thin clip angles with large aspect ratios (L/B > 0.8), a lateral-torsional buckling mode dominated the behavior and failure mechanism. Figure 2.4 shows the test curve and the lateral-torsional failure mode of a 33 mil clip angle (T5a#2). For thick clip angles with small aspect ratios (L/B < 0.8), a local buckling failure could be observed. The observed failure mode for each test is provided in Table 2.2. Figure 2.5 shows the test results of a 33 mil clip angle with an aspect ratio of 0.45. Figure 2.6 shows the test results of a 97 mil clip angle. Local buckling failure can be observed in Figures 2.5 and 2.6. In Figure 2.4, the test label was later revised from T5#2 to T5a#2.



Figure 2.4: Test result of clip angle T5a #2



Figure 2.5: Test result of clip angle S8 #3



Figure 2.6: Test result of clip angle S7 #1

The test results are provided in Table 2.2 in which  $V_{test}$  is the peak load per clip angle and  $V_{1/8}$  is the maximum load per clip angle in the deflection range between 0 and 1/8 in. The deflection,  $\Delta$ , is the displacement of the loading plate at the peak load.  $\Delta$  can be considered as the average vertical deflection of the clip angles as two identical angles were used in each test.

| Test<br>Label                                                              | V <sub>test</sub> (lbs) | Δ (in.) | V <sub>1/8</sub> (lbs) | Failure<br>Mode |  |
|----------------------------------------------------------------------------|-------------------------|---------|------------------------|-----------------|--|
| S1 #4                                                                      | 2594                    | 0.523   | 1102                   | L               |  |
| S1 #5                                                                      | 2767                    | 0.685   | 781                    | L               |  |
| S3 #1                                                                      | 3794                    | 0.401   | 1521                   | L               |  |
| S3 #2                                                                      | 3753                    | 0.343   | 1710                   | L               |  |
| S4 #3                                                                      | 2581                    | 0.198   | 2230                   | L               |  |
| S4 #4                                                                      | 2445                    | 0.098   | 2445                   | L               |  |
| S5 # 3                                                                     | 3534                    | 0.294   | 2344                   | L               |  |
| S5 # 4                                                                     | 3488                    | 0.318   | 1936                   | L               |  |
| S6 #1                                                                      | 1050                    | 0.362   | 586                    | L               |  |
| S6 #2                                                                      | 983                     | 0.297   | 665                    | L               |  |
| S7 #1                                                                      | 4339                    | 0.608   | 1540                   | L               |  |
| S7 #3                                                                      | 4319                    | 0.532   | 1066                   | L               |  |
| S8 #3                                                                      | 2054                    | 0.259   | 1284                   | L               |  |
| S8 #4                                                                      | 1912                    | 0.236   | 1236                   | L               |  |
| S8 #5                                                                      | 2048                    | 0.286   | 1182                   | L               |  |
| S9 #2                                                                      | 1787                    | 0.225   | 1429                   | L               |  |
| S9 #3                                                                      | 1670                    | 0.197   | 1293                   | L               |  |
| S10 #1                                                                     | 3268                    | 0.359   | 1521                   | L               |  |
| S10 #2                                                                     | 3421                    | 0.256   | 2051                   | L               |  |
| T1a #1                                                                     | 288                     | 0.119   | 288                    | LTB             |  |
| T1a #2                                                                     | 328                     | 0.198   | 280                    | LTB             |  |
| T1b #1                                                                     | 358                     | 0.211   | 307                    | LTB             |  |
| T1b #2                                                                     | 315                     | 0.198   | 261                    | LTB             |  |
| T1b #3                                                                     | 373                     | 0.225   | 261                    | LTB             |  |
| T3 #1                                                                      | 845                     | 1.248   | 421                    | LTB             |  |
| T3 #2                                                                      | 967                     | 1.264   | 495                    | LTB             |  |
| T3 #3                                                                      | 932                     | 0.831   | 462                    | LTB             |  |
| T4 #2                                                                      | 1028                    | 1.109   | 429                    | LTB             |  |
| T4 #3                                                                      | 993                     | 0.904   | 476                    | LTB             |  |
| T5a #1                                                                     | 319                     | 0.109   | 319                    | LTB             |  |
| T5a #2                                                                     | 359                     | 0.260   | 279                    | LTB             |  |
| T5b #1                                                                     | 250                     | 0.100   | 250                    | LTB             |  |
| T5b #2                                                                     | 303                     | 0.228   | 237                    | LTB             |  |
| Note: L – local buckling failure; LTB – lateral-torsional buckling failure |                         |         |                        |                 |  |

Table 2.2: Results of shear tests

#### 2.4 Comparison with AISC Design Method

The AISC Steel Construction Manual (AISC, 2011) does not provide a design method for clip angles, however the double coped beam, shown in Figure 2.7 has similar loading and boundary conditions as those for the CFS clip angles. Therefore the AISC design provision for the double coped beam was adopted as a reference design method in this research. The nominal shear strength of a double coped beam, R, can be expressed as the following:

$$R = (F_{cr}S_{net})/e \tag{2.1}$$

where  $F_{cr}$  is the elastic buckling stress,  $S_{net}$  is the net section modulus, e is the width of the coped flange. The AISC design manual lists two methods for calculating  $F_{cr}$ .



Figure 2.7: Loading and boundary conditions for a double coped beam (AISC Design Manual, Figure 9-3)

Method A:

$$F_{cr} = 0.62 \pi E \frac{t_w^2}{ch_0} f_d \le F_y$$
(2.2)

where,

$$f_{\rm d} = 3.5 - 7.5 \left(\frac{d_c}{d}\right)$$

$$d_c = \text{cope depth at the compression flange}$$
(2.3)

Method B:

 $F_{\rm cr} = F_{\rm y} \, Q \tag{2.4}$ 

where,  

$$Q = 1 \text{ for } \lambda \le 0.7$$

$$= (1.34 - 0.486 \lambda) \text{ for } 0.7 < \lambda \le 1.41$$

$$= (1.30 / \lambda^2) \text{ for } \lambda > 1.41$$
(2.5)

$$\lambda = \frac{h_0 \sqrt{F_y}}{10 t_w \sqrt{475 + 280 \left(\frac{h_0}{c}\right)^2}}$$
(2.6)

The definitions of the notations used in above equations can be found in AISC (2011).

Method B was considered as more conservative than Method A. The shear test results were compared with the AISC double coped beam design methods. In Table 2.3,  $R_a$  is the AISC predicted shear strength using Method A for  $F_{cr}$ ,  $R_b$  is the predicted strength using Method B for  $F_{cr}$ . Figure 2.8 illustrates the comparison between the shear test results and the AISC design methods. Both AISC methods do not provide good agreements with test results. On average, Method A yields unconservative predictions and both methods' predicted values have large variations from the test results. It can be concluded that the AISC double coped design provision was not appropriate for the shear strength of the CFS clip angles; a new design method was needed.

| Test Label | V <sub>test</sub> /R <sub>a</sub> | V <sub>test</sub> /R <sub>b</sub> |
|------------|-----------------------------------|-----------------------------------|
| S1 #4      | 0.992                             | 1.057                             |
| S1 #5      | 1.058                             | 1.127                             |
| S3 #1      | 0.483                             | 0.537                             |
| S3 #2      | 0.478                             | 0.532                             |
| S4 #3      | 0.515                             | 0.502                             |
| S4 #4      | 0.488                             | 0.476                             |
| S5 #3      | 0.304                             | 0.355                             |
| S5 #4      | 0.300                             | 0.350                             |
| S6 #1      | 0.829                             | 1.367                             |
| S6 #2      | 0.776                             | 1.279                             |
| S7 #1      | 1.602                             | 1.602                             |
| S7 #3      | 1.635                             | 1.635                             |
| S8 #3      | 0.706                             | 1.312                             |
| S8 #4      | 0.657                             | 1.222                             |
| S8 #5      | 0.704                             | 1.309                             |
| S9 #2      | 1.002                             | 1.498                             |
| S9 #3      | 0.936                             | 1.400                             |
| S10 #1     | 0.399                             | 0.599                             |
| S10 #2     | 0.418                             | 0.627                             |
| T1a #1     | 0.825                             | 1.275                             |
| T1a #2     | 0.941                             | 1.453                             |
| T1b #1     | 0.873                             | 1.280                             |
| T1b #2     | 0.768                             | 1.126                             |
| T1b #3     | 0.911                             | 1.335                             |
| T3 #1      | 1.039                             | 1.039                             |
| T3 #2      | 1.189                             | 1.189                             |
| T3 #3      | 1.146                             | 1.146                             |
| T4 #2      | 1.350                             | 1.380                             |
| T4 #3      | 1.304                             | 1.333                             |
| T5a #1     | 0.911                             | 1.416                             |
| T5a #2     | 1.030                             | 1.601                             |
| T5b #1     | 0.674                             | 1.021                             |
| T5b #2     | 0.817                             | 1.238                             |
| Mean       | 0.550                             | 1.110                             |
| St. Dev.   | 0.491                             | 0.385                             |
| COV        | 0.893                             | 0.346                             |

Table 2.3: Comparison of test results with AISC design methods



Figure 2.8: Comparison of shear test results with AISC design methods

# 2.5 Proposed Shear Design Method for CFS Clip Angles without Consideration of Deformation

A design method for determining the nominal shear strength without consideration of deformation of CFS clip angles was developed using the peak load results from the shear test program. The design method was based on the methodology of the Direct Strength Method (Schafer and Peköz, 1998) which used the yield strength and the critical elastic buckling solution of the entire CFS member to predict the ultimate strength. The proposed shear strength method without consideration of deformation is listed as follows:

Nominal shear strength

$$V_n = 0.17\lambda^{-0.8}F_y Bt \le 0.35F_y Bt \tag{2.7}$$

where 
$$\lambda = \sqrt{\frac{F_y}{F_{cr}}}$$
 - slenderness ratio (2.8)

$$F_{cr} = \frac{k\pi^2 E}{12(1-\mu^2)} \left(\frac{t}{B}\right)^2 - \text{ critical elastic buckling stress}$$
(2.9)

E - modulus of elasticity of steel, 29500 ksi

 $\mu$  - Poisson's ratio for steel, 0.3

$$k = 2.569 \left(\frac{L}{B}\right)^{-2.202}$$
 - buckling coefficient (2.10)

- t design thickness of clip angle
- B depth of clip angle as shown in Figure 2.3
- *L* flat width of clip angle, distance between the center of first line of screws to the bend line as shown in Figure 2.3.

The above equations shall be valid within the following range of parameters and boundary conditions:

Clip angle design thickness: 33 mils to 97 mils,

Clip angle design yield strength: 33 ksi to 50 ksi,

L/B ratio: 0.18 to 1.40,

The fastener pattern shall allow full engagement of the cantilevered leg in bearing the shear load.

The comparison between the test results and the calculated nominal shear strength by the proposed design method is listed in Table 2.4 and illustrated in Figure 2.9. It can be seen that the proposed method has a good agreement with the test results, and it indicates that the concept of Direct Strength Method approach works for determining the shear strength of CFS clip angles.

The LRFD and LSD resistance factors and the ASD safety factors for the proposed shear design method were calculated following Chapter F of the North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100, 2012). Two types of components listed in Table F1 of AISI S100, Flexural Members – Shear Strength and Connections Not Listed Above, were chosen for the statistical analysis. The results are listed in Table 2.5.

| Test Label | λ     | V <sub>test</sub> (lbs) | V <sub>n</sub> (lbs) | $V_{test}$ / $V_y$ | $V_{test}$ / $V_n$ |
|------------|-------|-------------------------|----------------------|--------------------|--------------------|
| S1 #4      | 0.570 | 2594                    | 2146                 | 0.322              | 1.209              |
| S1 #5      | 0.570 | 2767                    | 2146                 | 0.344              | 1.289              |
| S3 #1      | 0.538 | 3794                    | 3893                 | 0.272              | 0.975              |
| S3 #2      | 0.538 | 3753                    | 3893                 | 0.269              | 0.964              |
| S4 #3      | 0.914 | 2581                    | 2389                 | 0.197              | 1.080              |
| S4 #4      | 0.914 | 2445                    | 2389                 | 0.187              | 1.023              |
| S5 # 3     | 0.669 | 3534                    | 3801                 | 0.218              | 0.930              |
| S5 # 4     | 0.669 | 3488                    | 3801                 | 0.215              | 0.918              |
| S6 #1      | 1.328 | 1050                    | 878                  | 0.162              | 1.196              |
| S6 #2      | 1.328 | 983                     | 878                  | 0.152              | 1.120              |
| S7 #1      | 0.591 | 4339                    | 3590                 | 0.313              | 1.209              |
| S7 #3      | 0.591 | 4319                    | 3590                 | 0.319              | 1.203              |
| S8 #3      | 1.235 | 2054                    | 1627                 | 0.181              | 1.262              |
| S8 #4      | 1.235 | 1912                    | 1627                 | 0.169              | 1.175              |
| S8 #5      | 1.235 | 2048                    | 1627                 | 0.181              | 1.259              |
| S9 #2      | 1.643 | 1787                    | 1502                 | 0.136              | 1.190              |
| S9 #3      | 1.643 | 1670                    | 1502                 | 0.127              | 1.112              |
| S10 #1     | 0.940 | 3268                    | 3570                 | 0.164              | 0.915              |
| S10 #2     | 0.940 | 3421                    | 3570                 | 0.171              | 0.958              |
| T1a #1     | 1.930 | 288                     | 306                  | 0.094              | 0.941              |
| T1a #2     | 1.930 | 328                     | 306                  | 0.108              | 1.072              |
| T1b #1     | 1.599 | 358                     | 356                  | 0.117              | 1.006              |
| T1b #2     | 1.599 | 315                     | 356                  | 0.103              | 0.885              |
| T1b #3     | 1.599 | 373                     | 356                  | 0.123              | 1.048              |
| T3 #1      | 0.664 | 845                     | 1103                 | 0.181              | 0.766              |
| T3 #2      | 0.664 | 967                     | 1103                 | 0.207              | 0.877              |
| T3 #3      | 0.664 | 932                     | 1103                 | 0.199              | 0.845              |
| T4 #2      | 1.002 | 1028                    | 1137                 | 0.154              | 0.904              |
| T4 #3      | 1.002 | 993                     | 1137                 | 0.148              | 0.873              |
| T5a #1     | 1.941 | 319                     | 305                  | 0.104              | 1.046              |
| T5a #2     | 1.941 | 359                     | 305                  | 0.118              | 1.177              |
| T5b #1     | 1.805 | 250                     | 324                  | 0.082              | 0.772              |
| T5b #2     | 1.805 | 303                     | 324                  | 0.099              | 0.935              |
|            |       | Mean                    |                      |                    | 1.034              |
|            |       | St. Dev.                |                      |                    | 0.148              |
| COV        |       |                         |                      |                    | 0.143              |

Table 2.4: Comparison of shear test results with the proposed design method



Figure 2.9: Comparison of shear test results with proposed design method

|                | Considered as                      | Considered as   |
|----------------|------------------------------------|-----------------|
|                | Flexural Members                   | Connections Not |
|                | <ul> <li>Shear Strength</li> </ul> | Listed Above    |
| Quantity       | 33                                 | 33              |
| Mean           | 1.034                              | 1.034           |
| Std. Dev.      | 0.148                              | 0.148           |
| COV            | 0.143                              | 0.143           |
| M <sub>m</sub> | 1.10                               | 1.10            |
| Vm             | 0.10                               | 0.10            |
| F <sub>m</sub> | 1.00                               | 1.00            |
| Pm             | 1.034                              | 1.034           |
| $V_{\rm f}$    | 0.05                               | 0.15            |
| β (LRFD)       | 2.5                                | 3.5             |
| β (LSD)        | 3.0                                | 4.0             |
| V <sub>Q</sub> | 0.21                               | 0.21            |
| φ (LRFD)       | 0.86                               | 0.57            |
| φ(LSD)         | 0.70                               | 0.46            |
| $\Omega$ (ASD) | 1.87                               | 2.78            |

Table 2.5: Resistance factors and safety factors for the proposed shear design method

#### 2.6 Critical Elastic Buckling Solution

The development of the equation of the buckling coefficient k (Eq. 2.10) is based on the results of an elastic buckling analysis carried out using the commercially available software ABAQUS (2013). Figure 2.10 shows the boundary conditions and loading prescribed in the finite element models. The two loaded edges are simply supported, and the other two unloaded edges are free. Uniform shear loading is applied to one loaded edge. Figure 2.11 shows an example of the elastic buckling analysis. Figure 2.12 and Table 2.6 present the comparison of the ABAQUS results with Eq. 2.10.



Figure 2.10: ABAQUS model

Figure 2.11: ABAQUS result



Figure 2.12: Comparison of buckling coefficient, k

| L/B            | ABAQUS  | Eq. 2.10 |  |  |  |
|----------------|---------|----------|--|--|--|
| L, D           | Results | 24.2.10  |  |  |  |
| 0.1            | 373     | 409      |  |  |  |
| 0.12           | 250     | 274      |  |  |  |
| 0.15           | 158     | 167      |  |  |  |
| 0.2            | 88.8    | 88.9     |  |  |  |
| 0.3            | 39.0    | 36.4     |  |  |  |
| 0.4            | 21.5    | 19.3     |  |  |  |
| 0.5            | 13.5    | 11.8     |  |  |  |
| 0.6            | 8.82    | 7.91     |  |  |  |
| 0.7            | 6.03    | 5.63     |  |  |  |
| 0.8            | 4.33    | 4.20     |  |  |  |
| 0.9            | 3.25    | 3.24     |  |  |  |
| 1              | 2.52    | 2.57     |  |  |  |
| 1.5            | 0.984   | 1.05     |  |  |  |
| 1.75           | 0.698   | 0.749    |  |  |  |
| 2              | 0.521   | 0.558    |  |  |  |
| 3              | 0.218   | 0.229    |  |  |  |
| 4              | 0.120   | 0.121    |  |  |  |
| 5              | 0.0756  | 0.0742   |  |  |  |
| $R^2 = 0.9992$ |         |          |  |  |  |

Table 2.6: Comparison of k values

# 2.7 Proposed Shear Design Method for CFS Clip Angles with Consideration of Deformation

The shear test results indicated that most of the CFS clip angles reached their peak loads at relatively excessive deformation, i.e., greater than the serviceability deflection limit of 1/8 in. specified in ICC-ES AC261 (2011). Therefore a design method for determining the nominal shear strength of CFS clip angles with consideration of the deformation limit needed to be developed. The proposed design method for deformation limit was based on the concept of elastic shear deformation of a plate element. If one assumed a plate deformed in its elastic stage under a shear force, then the shear force could be given in terms of the plate's (cantilevered leg of a clip angle) geometric factor, Bt/L. The proposed design method for the nominal shear strength (lb, N) of CFS clip angles considering a 1/8 in. deformation limit is as follows:

$$V'_n = 9000 \, \alpha \left(\frac{Bt}{L}\right) \le V_n$$
 (2.11)  
where

 $\alpha = 1$  lb/in. for US customary units

= 0.175 N/mm for SI units

- t design thickness of clip angle, in. [mm]
- B depth of clip angle, in. [mm], as shown in Figure 2.3

- *L* flat length of clip angle, in. [mm], distance between the center of the first line of screws to the bend line as shown in Figure 2.3.
- $V_n$  nominal shear strength without considering deformation, lb [N], Eq. 2.7

The same parametric ranges in Section 2.4 apply to the above equations.

The comparison between the test results and the calculated nominal strength by the proposed design method is listed in Table 2.7 and shown in Figure 2.13. It can be seen that the proposed method has a good agreement with the test results.

The LRFD and LSD resistance factors and the ASD safety factors for the proposed shear design method considering deformation were calculated following Chapter F of AISI S100 (2012). Two types of components listed in Table F1, Flexural Members – Shear Strength and Connections Not Listed Above, were chosen for the statistical analysis. The results are listed in Table 2.8.

| deformation limit |        |                        |           |                |  |  |
|-------------------|--------|------------------------|-----------|----------------|--|--|
| Test Label        | Bt/L   | V <sub>1/8</sub> (lbs) | V'n (lbs) | $V_{1/8}$ /V'n |  |  |
| S1 #4             | 0.1265 | 1102                   | 1139      | 0.968          |  |  |
| S1 #5             | 0.1265 | 781                    | 1139      | 0.685          |  |  |
| S3 #1             | 0.2196 | 1521                   | 1976      | 0.770          |  |  |
| S3 #2             | 0.2196 | 1710                   | 1976      | 0.865          |  |  |
| S4 #3             | 0.1869 | 2230                   | 1683      | 1.325          |  |  |
| S4 #4             | 0.1869 | 2445                   | 1683      | 1.453          |  |  |
| S5 #3             | 0.2470 | 2344                   | 2223      | 1.054          |  |  |
| S5 #4             | 0.2470 | 1936                   | 2223      | 0.871          |  |  |
| S6 #1             | 0.0576 | 586                    | 519       | 1.130          |  |  |
| S6 #2             | 0.0576 | 665                    | 519       | 1.282          |  |  |
| S7 #1             | 0.1287 | 1540                   | 1158      | 1.330          |  |  |
| S7 #3             | 0.1287 | 1066                   | 1158      | 0.920          |  |  |
| S8 #3             | 0.1023 | 1284                   | 920       | 1.395          |  |  |
| S8 #4             | 0.1023 | 1236                   | 920       | 1.343          |  |  |
| S8 #5             | 0.1023 | 1182                   | 920       | 1.285          |  |  |
| S9 #2             | 0.1103 | 1429                   | 992       | 1.440          |  |  |
| S9 #3             | 0.1103 | 1293                   | 992       | 1.302          |  |  |
| S10 #1            | 0.1834 | 1521                   | 1650      | 0.921          |  |  |
| S10 #2            | 0.1834 | 2051                   | 1650      | 1.243          |  |  |
| T1a #1            | 0.0252 | 288                    | 227       | 1.267          |  |  |
| T1a #2            | 0.0252 | 280                    | 227       | 1.233          |  |  |
| T1b #1            | 0.0299 | 307                    | 270       | 1.140          |  |  |
| T1b #2            | 0.0299 | 261                    | 270       | 0.967          |  |  |
| T1b #3            | 0.0299 | 261                    | 270       | 0.967          |  |  |
| T3 #1             | 0.0672 | 421                    | 605       | 0.697          |  |  |
| T3 #2             | 0.0672 | 495                    | 605       | 0.819          |  |  |
| T3 #3             | 0.0672 | 462                    | 605       | 0.763          |  |  |
| T4 #2             | 0.0510 | 429                    | 459       | 0.934          |  |  |
| T4 #3             | 0.0510 | 476                    | 459       | 1.036          |  |  |
| T5a #1            | 0.0252 | 319                    | 227       | 1.402          |  |  |
| T5a #2            | 0.0252 | 279                    | 227       | 1.230          |  |  |
| T5b #1            | 0.0269 | 250                    | 242       | 1.034          |  |  |
| T5b #2            | 0.0269 | 237                    | 242       | 0.981          |  |  |
|                   | Me     | an                     |           | 1.092          |  |  |
|                   | St. D  | ev.                    |           | 0.230          |  |  |
|                   | 0.210  |                        |           |                |  |  |

Table 2.7: Comparison of shear test results with the proposed design method considering deformation limit



Figure 2.13: Comparison of shear test results with the proposed design method considering deformation limit

|                | deformation            |                        |  |  |  |  |
|----------------|------------------------|------------------------|--|--|--|--|
|                | Considered as Flexural | Considered as          |  |  |  |  |
|                | Members – Shear        | Connections Not Listed |  |  |  |  |
|                | Strength               | Above                  |  |  |  |  |
| Quantity       | 33                     | 33                     |  |  |  |  |
| Mean           | 1.092                  | 1.092                  |  |  |  |  |
| Std. Dev.      | 0.230                  | 0.230                  |  |  |  |  |
| COV            | 0.210                  | 0.210                  |  |  |  |  |
| M <sub>m</sub> | 1.10                   | 1.10                   |  |  |  |  |
| Vm             | 0.10                   | 0.10                   |  |  |  |  |
| F <sub>m</sub> | 1.00                   | 1.00                   |  |  |  |  |
| Pm             | 1.092                  | 1.092                  |  |  |  |  |
| V <sub>f</sub> | 0.05                   | 0.15                   |  |  |  |  |
| β (LRFD)       | 2.5                    | 3.5                    |  |  |  |  |
| β (LSD)        | 3.0                    | 4.0                    |  |  |  |  |
| VQ             | 0.21                   | 0.21                   |  |  |  |  |
| φ (LRFD)       | 0.81                   | 0.53                   |  |  |  |  |
| φ(LSD)         | 0.65                   | 0.41                   |  |  |  |  |
| $\Omega$ (ASD) | 1.97                   | 3.02                   |  |  |  |  |

 Table 2.8: Resistance factors and safety factors for shear design with consideration of deformation

# 2.8 Alternative Shear Design Method for CFS Clip Angles with Consideration of Deformation

The shear design method for considering the deformation is essentially an assessment of the serviceability of the CFS clip angles. An alternative shear design method with consideration of deformation was developed by using the lower bound of the test results shown in Figure 2.13.

The alternative design method for the nominal shear strength (lb, N) of CFS clip angles considering a 1/8 in. deformation limit is as follows:

$$V'_n = 6300 \, \alpha \left(\frac{Bt}{L}\right) \le V_n$$
 (2.12)  
where  
 $\alpha = 1$  lb/in. for US customary units  
 $= 0.175$  N/mm for SI units

- *t* design thickness of clip angle, in. [mm]
- B depth of clip angle, in. [mm], as shown in Figure 2.3
- *L* flat length of clip angle, in. [mm], distance between the center of the first line of screws to the bend line as shown in Figure 2.3.
- $V_n$  nominal shear strength without considering deformation, lb [N], Eq. 2.7

The same parametric ranges in Section 2.4 apply to the above equations.

The comparison between the test results and the calculated nominal strength by the proposed alternative design method shown in Figure 2.14. It was suggested that the serviceability could be checked using the alternative design equation (Eq. 2.12) without a resistance factor or a safety factor.



Figure 2.14: Comparison of shear test results with the proposed alternative design method considering deformation limit

# **3 COMPRESSION STRENGTH OF CLIP ANGLES**

The compression test program was to investigate the compression capacity of the clip angle fastened to CFS members. The test results were compared with (1) the AISI gusset plate design method found in the North American Steel Framing Standards – Truss Design (AISI S214, 2012), (2) the axial compression member design method found in the North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100, 2012), and (3) the web crippling design method also found in AISI S100 (2012). There was no good agreement with any of the three existing AISI design methods when the test results were compared, therefore a new design method was developed to determine the nominal compression strength of CFS clip angles.

#### 3.1 Test Setup and Test Procedure

Figure 3.1 shows the setup for the compression tests. The anchored leg of the CFS clip angle was fixed to a steel base fixture by No. 10-24×1 Button Head Socket Cap (BHSC) screws. The cantilevered leg of the clip angle was fastened to a 54 mil or 118 mil 20 in. long CFS stud member using No. 14-14×1 self-drilling self-tapping screws. For clip angles with a thickness of 54 mil or less, a 54 mil stud member was used. For clip angles with a thickness 68 mil or greater, a 118 mil stud member was used. The CFS stud member was fixed to a steel loading plate through two lines of No. 14 screws. Four hold-downs, two on each side, were used as lateral supports to prevent the out-of-plane movement of the stud member. A position transducer was used to measure the vertical displacement of the loading plate. A universal compression/tension load cell was installed on the end of the hydraulic rod and connected to the loading plate on the other end. Figure 3.2 illustrates the loading direction and the measured dimensions.



Figure 3.1: Test setup for compression tests



Figure 3.2: Loading direction and measured dimensions for compression tests

The data acquisition system and the hydraulic loading system were the same as used in the shear tests. The compression tests were conducted in a displacement control mode. In each test, the hydraulic cylinder moved the loading plate downwards at a constant speed of 0.3 in. per minute. The loading rate was the same as used in shear tests since it was found that the selected loading rate worked well for the clip angle specimens. The strength and deformation of clip angles under static compression loads were successfully captured by the apparatus, and the testing speed was slow enough to have no impact to the test results.

#### 3.2 Test Specimens

The compression test program included a total of 36 tests with the clip angles' thickness range between 33 mil and 118 mil. The measured dimensions and tested material properties are provided in Table 3.1. The definitions of the measured dimensions in Table 3.1 are the same as those defined in the shear test program, Section 2.2. Additional dimensions of the clip angles can be found in Appendix 2. All the pre-punched holes in each clip angle were used for screw connections.

| Test<br>Label | L (in.) | B (in.) | t (in.) | F <sub>y</sub> (ksi) | F <sub>u</sub> (ksi) |
|---------------|---------|---------|---------|----------------------|----------------------|
| S1 #1 C       | 1.382   | 3.020   | 0.0584  | 45.7                 | 50.1                 |
| S1 #2 C       | 1.382   | 3.020   | 0.0584  | 45.7                 | 50.1                 |
| S1 #3 C       | 1.382   | 3.020   | 0.0584  | 45.7                 | 50.1                 |
| S2 #1 C       | 1.351   | 3.001   | 0.1352  | 49.6                 | 53.2                 |
| S2 #2 C       | 1.351   | 3.001   | 0.1352  | 49.6                 | 53.2                 |
| S3 #1 C       | 1.391   | 5.230   | 0.0584  | 45.7                 | 50.1                 |
| S3 #2 C       | 1.391   | 5.230   | 0.0584  | 45.7                 | 50.1                 |
| S3 #3 C       | 1.391   | 5.230   | 0.0584  | 45.7                 | 50.1                 |
| S4 #1 C       | 1.401   | 7.497   | 0.0349  | 49.9                 | 55.8                 |
| S4 #2 C       | 1.401   | 7.497   | 0.0349  | 49.9                 | 55.8                 |
| S5 #1 C       | 1.415   | 7.520   | 0.0465  | 46.4                 | 51.2                 |
| S5 #2 C       | 1.415   | 7.520   | 0.0465  | 46.4                 | 51.2                 |
| S5 #3 C       | 1.415   | 7.520   | 0.0465  | 46.4                 | 51.2                 |
| S6 #1 C       | 2.422   | 3.004   | 0.0465  | 46.4                 | 51.2                 |
| S6 #2 C       | 2.422   | 3.004   | 0.0465  | 46.4                 | 51.2                 |
| S6 #3 C       | 2.422   | 3.004   | 0.0465  | 46.4                 | 51.2                 |
| S7 #1 C       | 2.328   | 3.021   | 0.1006  | 45.6                 | 60.0                 |
| S7 #2 C       | 2.328   | 3.021   | 0.1006  | 45.6                 | 60.0                 |
| S7 #3 C       | 2.328   | 3.021   | 0.1006  | 45.6                 | 60.0                 |
| S8 #1 C       | 2.387   | 5.254   | 0.0465  | 46.4                 | 51.2                 |
| S8 #2 C       | 2.387   | 5.254   | 0.0465  | 46.4                 | 51.2                 |
| S8 #3 C       | 2.387   | 5.254   | 0.0465  | 46.4                 | 51.2                 |
| S9 #1 C       | 2.388   | 7.540   | 0.0349  | 49.9                 | 55.8                 |
| S9 #2 C       | 2.388   | 7.540   | 0.0349  | 49.9                 | 55.8                 |
| S9 #3 C       | 2.388   | 7.540   | 0.0349  | 49.9                 | 55.8                 |
| S10 #1 C      | 2.387   | 7.497   | 0.0584  | 45.7                 | 50.1                 |
| S10 #2 C      | 2.387   | 7.497   | 0.0584  | 45.7                 | 50.1                 |
| S10 #3 C      | 2.387   | 7.497   | 0.0584  | 45.7                 | 50.1                 |
| T2 #1 C       | 2.370   | 1.749   | 0.1352  | 49.6                 | 53.2                 |
| T2 #2 C       | 2.370   | 1.749   | 0.1352  | 49.6                 | 53.2                 |
| T3 #1 C       | 1.523   | 1.753   | 0.0584  | 45.7                 | 50.1                 |
| T3 #2 C       | 1.523   | 1.753   | 0.0584  | 45.7                 | 50.1                 |
| T4 #1 C       | 2.394   | 1.751   | 0.0698  | 54.8                 | 66.7                 |
| T4 #2 C       | 2.394   | 1.751   | 0.0698  | 54.8                 | 66.7                 |
| T6 #1 C       | 2.336   | 1.748   | 0.1352  | 49.6                 | 53.2                 |
| T6 #2 C       | 2.336   | 1.748   | 0.1352  | 49.6                 | 53.2                 |

Table 3.1: Properties of clip angles in the compression test program

#### 3.3 Test Results

For each specimen configuration, a minimum of two tests were conducted. If the difference in the peak load between the first two tests was greater than 10% of the average result, a third test would be performed. The test program showed that the flexural buckling was the primary failure mode for the tested clip angles under compression. Figure 3.3 shows the results of a 97 mil clip angle. Figure 3.4 shows the results of a 33 mil clip angle. The tests results are provided in Table 3.2.



Figure 3.3: Test results of S7 #1C





Figure 3.4: Test results of S9 #2C

| Test<br>Label | P <sub>test</sub> (lbs) | $\Delta$ (in.) |
|---------------|-------------------------|----------------|
| S1 #1 C       | 1906                    | 0.049          |
| S1 #2 C       | 1556                    | 0.074          |
| S1 #3 C       | 1714                    | 0.068          |
| S2 #1 C       | 7219                    | 0.206          |
| S2 #2 C       | 7870                    | 0.213          |
| S3 #1 C       | 2537                    | 0.052          |
| S3 #2 C       | 2819                    | 0.150          |
| S3 #3 C       | 2533                    | 0.076          |
| S4 #1 C       | 2437                    | 0.059          |
| S4 #2 C       | 2214                    | 0.078          |
| S5 #1 C       | 4714                    | 0.118          |
| S5 #2 C       | 3656                    | 0.090          |
| S5 #3 C       | 3983                    | 0.235          |
| S6 #1 C       | 1097                    | 0.037          |
| S6 #2 C       | 1465                    | 0.053          |
| S6 #3 C       | 1551                    | 0.053          |
| S7 #1 C       | 4380                    | 0.088          |
| S7 #2 C       | 3877                    | 0.129          |
| S7 #3 C       | 4058                    | 0.077          |
| S8 #1 C       | 2313                    | 0.059          |
| S8 #2 C       | 1722                    | 0.051          |
| S8 #3 C       | 1714                    | 0.055          |
| S9 #1 C       | 1675                    | 0.054          |
| S9 #2 C       | 1416                    | 0.102          |
| S9 #3 C       | 1561                    | 0.039          |
| S10 #1 C      | 5087                    | 0.115          |
| S10 #2 C      | 4348                    | 0.120          |
| S10 #3 C      | 4105                    | 0.095          |
| T2 #1 C       | 4426                    | 0.164          |
| T2 #2 C       | 4354                    | 0.173          |
| T3 #1 C       | 1042                    | 0.072          |
| T3 #2 C       | 1144                    | 0.068          |
| T4 #1 C       | 1784                    | 0.080          |
| T4 #2 C       | 1649                    | 0.076          |
| T6 #1 C       | 4680                    | 0.178          |
| T6 #2 C       | 4470                    | 0.171          |

Table 3.2: Results of compression tests

#### 3.4 Comparison with AISI Design Methods

The peak loads from the compression tests were compared with the predicted nominal strength by (1) the gusset plate design in AISI S214 (2012), (2) the axial compression member design in AISI S100 (2012), and (3) the web crippling design in AISI S100 (2012). The test-to-predicted ratios are listed in Table 3.3 and illustrated in Figure 3.5. In Table 3.3,  $P_{AISI-G}$  is the predicted strength by the gusset plate design,  $P_{AISI-C}$  is the predicted strength by the compression member design, and  $P_{AISI-W}$  is the predicted web crippling strength assuming a C section subjected to Interior Two-Flange Loading with flanges fastened to the support.

It can be seen in Figure 3.5 that the predicted strengths are not in agreement with the test results. For clip angles with an aspect ratio, L/B, greater than 0.3, the three design methods yielded consistently higher strength than the test results. A new design method for the compression strength of CFS clip angles was needed. The analysis also showed that the gusset plate design and the compression member design yielded similar results, particularly for clip angles with an aspect ratio (L/B) less than 0.8. For clip angles with an aspect ratio greater than 0.8, the compression member design yielded consistently higher results than the gusset plate design, and the difference increased as the L/B ratio got larger.

| Test<br>Label | $P_{test} / P_{AISI-G}$ | $P_{test} / P_{AISI-C}$ | $P_{test} / P_{AISI-W}$ |
|---------------|-------------------------|-------------------------|-------------------------|
| S1 #1 C       | 0.321                   | 0.322                   | 1.029                   |
| S1 #2 C       | 0.262                   | 0.263                   | 0.869                   |
| S1 #3 C       | 0.289                   | 0.290                   | 0.958                   |
| S2 #1 C       | 0.365                   | 0.359                   | 0.525                   |
| S2 #2 C       | 0.398                   | 0.391                   | 0.429                   |
| S3 #1 C       | 0.385                   | 0.386                   | 0.472                   |
| S3 #2 C       | 0.428                   | 0.429                   | 0.442                   |
| S3 #3 C       | 0.385                   | 0.385                   | 0.391                   |
| S4 #1 C       | 0.918                   | 0.923                   | 0.409                   |
| S4 #2 C       | 0.834                   | 0.838                   | 1.365                   |
| S5 #1 C       | 1.059                   | 1.061                   | 1.240                   |
| S5 #2 C       | 0.821                   | 0.823                   | 1.617                   |
| S5 #3 C       | 0.894                   | 0.897                   | 1.254                   |
| S6 #1 C       | 0.309                   | 0.277                   | 0.500                   |
| S6 #2 C       | 0.412                   | 0.371                   | 0.668                   |
| S6 #3 C       | 0.436                   | 0.392                   | 0.707                   |
| S7 #1 C       | 0.417                   | 0.320                   | 1.241                   |
| S7 #2 C       | 0.369                   | 0.283                   | 0.948                   |
| S7 #3 C       | 0.386                   | 0.296                   | 0.705                   |
| S8 #1 C       | 0.535                   | 0.540                   | 0.702                   |
| S8 #2 C       | 0.398                   | 0.402                   | 0.317                   |
| S8 #3 C       | 0.397                   | 0.400                   | 0.348                   |
| S9 #1 C       | 0.629                   | 0.639                   | 0.332                   |
| S9 #2 C       | 0.532                   | 0.540                   | 0.307                   |
| S9 #3 C       | 0.586                   | 0.595                   | 1.061                   |
| S10 #1 C      | 0.743                   | 0.746                   | 1.001                   |
| S10 #2 C      | 0.635                   | 0.638                   | 0.353                   |
| S10 #3 C      | 0.599                   | 0.602                   | 0.385                   |
| T2 #1 C       | 0.578                   | 0.378                   | 0.240                   |
| T2 #2 C       | 0.568                   | 0.371                   | 0.236                   |
| T3 #1 C       | 0.263                   | 0.224                   | 0.253                   |
| T3 #2 C       | 0.289                   | 0.246                   | 0.242                   |
| T4 #1 C       | 0.411                   | 0.269                   | 0.627                   |
| T4 #2 C       | 0.380                   | 0.248                   | 0.697                   |
| T6 #1 C       | 0.606                   | 0.399                   | 0.626                   |
| T6 #2 C       | 0.579                   | 0.381                   | 1.366                   |
| Mean          | 0.512                   | 0.470                   | 0.691                   |
| St. Dev.      | 0.201                   | 0.220                   | 0.384                   |
| COV           | 0.393                   | 0.467                   | 0.557                   |

Table 3.3: Comparison of test results with AISI design methods



Figure 3.5: Comparison of test results to existing AISI design methods

#### 3.5 Proposed Design Method for CFS Clip Angles

The compression tests showed that the CFS clip angles behaved in a similar manner as a plate columns, where the global/flexural buckling dominated the failure mechanism. The proposed design method for the compression strength of CFS clip angles was developed considering the column theory of the AISI design which expresses the column strength as a function of slenderness (KL/r). For a pin-pin supported plate column,  $\frac{KL}{r} = \frac{\sqrt{12}L}{t}$ . The proposed compression design is listed as follows:

The nominal compression strength

$$P_n = F_n A_q \tag{3.1}$$

where

$$A_g = B't \tag{3.2}$$

$$F_n = 0.0028\lambda^{1.44}F_{cr} \le 0.4F_y \tag{3.3}$$

$$\lambda = \frac{L}{t} \tag{3.4}$$

$$F_{cr} = \frac{k\pi^2 E}{12(1-\mu^2)} \left(\frac{t}{L}\right)^2 - \text{critical elastic buckling stress (Houbolt and Stowell, 1950)} (3.5)$$

- E modulus of elasticity of steel, 29500 ksi
- $\mu$  Poisson's ratio for steel, 0.3
- k buckling coefficient can be found by interpolation in Table 3.4
  - = 0.90 as a conservative value

- t design thickness of clip angle
- B' shall be taken as the lesser of the actual clip angle width (Figure 2.3) or the Whitmore section width (Figure 3.6)
- L flat width of clip angle, distance between the first line of screws to the bend line as shown in Figure 2.3

The above equations are valid within the following range of established test parameters:

Clip angle design thickness: 33 mils to 118 mils

Clip angle design yield strength: 33 ksi to 50 ksi

L/B ratio: 0.18 to 1.40



Figure 3.6: Whitmore section width

| L/B | k     |
|-----|-------|
| 0.1 | 0.993 |
| 0.2 | 0.988 |
| 0.3 | 0.983 |
| 0.4 | 0.978 |
| 0.5 | 0.973 |
| 0.6 | 0.969 |
| 0.7 | 0.964 |
| 0.8 | 0.960 |
| 0.9 | 0.956 |
| 1   | 0.952 |
| 1.5 | 0.938 |
| 2   | 0.929 |

| Table 3.4: | Theoretical k | values |
|------------|---------------|--------|
|------------|---------------|--------|

Table 3.5 lists the comparison between the test results ( $P_{test}$ ) and the predicted strength by the proposed design method ( $P_n$ ). In Table 3.5,  $F_{test}$  is the applied stress,  $F_{test} = P_{test} / (Bt)$ . Figure 3.7 shows the comparison

| Test label | L/t   | F <sub>cr</sub> (ksi) | F <sub>test</sub> / F <sub>cr</sub> | P <sub>test</sub> / P <sub>n</sub> |
|------------|-------|-----------------------|-------------------------------------|------------------------------------|
| S1 #1 C    | 23.67 | 46.40                 | 0.233                               | 0.873                              |
| S1 #2 C    | 23.67 | 46.40                 | 0.190                               | 0.713                              |
| S1 #3 C    | 23.67 | 46.40                 | 0.209                               | 0.786                              |
| S2 #1 C    | 9.99  | 260.78                | 0.068                               | 0.887                              |
| S2 #2 C    | 9.99  | 260.40                | 0.074                               | 0.967                              |
| S3 #1 C    | 23.82 | 46.27                 | 0.180                               | 0.667                              |
| S3 #2 C    | 23.82 | 46.27                 | 0.199                               | 0.741                              |
| S3 #3 C    | 23.82 | 46.27                 | 0.179                               | 0.666                              |
| S4 #1 C    | 40.10 | 16.39                 | 0.568                               | 0.996                              |
| S4 #2 C    | 40.10 | 16.39                 | 0.516                               | 0.905                              |
| S5 #1 C    | 30.44 | 28.44                 | 0.474                               | 1.238                              |
| S5 #2 C    | 30.44 | 28.44                 | 0.368                               | 0.960                              |
| S5 #3 C    | 30.44 | 28.44                 | 0.401                               | 1.046                              |
| S6 #1 C    | 52.12 | 9.42                  | 0.834                               | 1.004                              |
| S6 #2 C    | 52.12 | 9.42                  | 1.114                               | 1.341                              |
| S6 #3 C    | 52.12 | 9.42                  | 1.179                               | 1.419                              |
| S7 #1 C    | 23.14 | 47.85                 | 0.301                               | 1.167                              |
| S7 #2 C    | 23.14 | 47.85                 | 0.267                               | 1.033                              |
| S7 #3 C    | 23.14 | 47.85                 | 0.279                               | 1.081                              |
| S8 #1 C    | 51.38 | 9.85                  | 0.962                               | 1.182                              |
| S8 #2 C    | 51.38 | 9.85                  | 0.716                               | 0.880                              |
| S8 #3 C    | 51.38 | 9.85                  | 0.713                               | 0.876                              |
| S9 #1 C    | 68.35 | 5.60                  | 1.134                               | 0.924                              |
| S9 #2 C    | 68.35 | 5.60                  | 0.959                               | 0.781                              |
| S9 #3 C    | 68.35 | 5.60                  | 1.057                               | 0.861                              |
| S10 #1 C   | 40.88 | 15.66                 | 0.742                               | 1.267                              |
| S10 #2 C   | 40.88 | 15.66                 | 0.634                               | 1.083                              |
| S10 #3 C   | 40.88 | 15.66                 | 0.599                               | 1.022                              |
| T2 #1 C    | 17.53 | 81.68                 | 0.229                               | 1.324                              |
| T2 #2 C    | 17.53 | 81.68                 | 0.225                               | 1.302                              |
| T3 #1 C    | 26.08 | 37.50                 | 0.272                               | 0.886                              |
| T3 #2 C    | 26.08 | 37.50                 | 0.298                               | 0.971                              |
| T4 #1 C    | 34.31 | 21.31                 | 0.685                               | 1.505                              |
| T4 #2 C    | 34.31 | 21.31                 | 0.633                               | 1.392                              |
| T6 #1 C    | 17.28 | 84.12                 | 0.235                               | 1.389                              |
| T6 #2 C    | 17.28 | 84.12                 | 0.225                               | 1.327                              |
| Mean       |       |                       |                                     | 1.041                              |
| St. Dev.   |       |                       |                                     | 0.232                              |
|            | 0.223 |                       |                                     |                                    |

Table 3.5: Comparison of test results with the proposed design method



Figure 3.7: Comparison of test results with the proposed design method

The LRFD and LSD resistance factors and the ASD safety factors for the proposed compression design method were calculated following Chapter F of the AISI S100 (2012). Two types of components: Concentrically Loaded Compression Members and Connections Not Listed Above, listed in Table F1 were chosen for the analyses. The results are listed in Table 3.6.

|                  | Considential   | Consident data  |
|------------------|----------------|-----------------|
|                  | Considered as  | Considered as   |
|                  | Concentrically | Connections Not |
|                  | Loaded Members | Listed Above    |
| Quantity         | 36             | 36              |
| Mean             | 1.041          | 1.041           |
| Std. Dev.        | 0.232          | 0.232           |
| COV              | 0.223          | 0.223           |
| M <sub>m</sub>   | 1.10           | 1.10            |
| Vm               | 0.10           | 0.10            |
| F <sub>m</sub>   | 1.00           | 1.00            |
| Pm               | 1.0241         | 1.027           |
| $V_{\mathrm{f}}$ | 0.05           | 0.15            |
| β (LRFD)         | 2.5            | 3.5             |
| β (LSD)          | 3.0            | 4.0             |
| VQ               | 0.21           | 0.21            |
| φ (LRFD)         | 0.76           | 0.49            |
| φ(LSD)           | 0.60           | 0.38            |
| $\Omega$ (ASD)   | 2.11           | 3.26            |

Table 3.6: Resistance factors and safety factors for the proposed compression design method

#### 3.6 Critical Elastic Buckling Solution for Plate Column

The proposed compression design method required the elastic buckling solution of a plate column which has been solved analytically by Houbolt, J. C. and Stowell, E. Z. (1950), Eq. 3.5. However a closed-form equation was not available for the buckling coefficient, k. Table 3.4 lists the theoretical values for k, and Figure 3.8 shows the theoretical solution of k. It is recommended to determine the buckling coefficient, k, using Table 3.4 by interpolation. However the k value can be conservatively chosen to be 0.9.



Figure 3.8: Theoretical solution for the buckling coefficient, k

# **4 PULL-OVER STRENGTH OF SCREW CONNECTIONS**

The pull-over test program investigated the pull-over strength of fasteners on the anchored leg of the clip angle. Initial confirmatory tests showed that the tested pull-over strength was significantly less than the predicted values that were determined using AISI S100 (2012). Therefore additional specimens were tested in order to develop an appropriate design method for the pull-over strength of screws used in CFS clip angles.

#### 4.1 Test Setup and Test Procedure

The test setup for the pull-over strength was identical to the compression test setup except that (1) the hydraulic cylinder moved the loading plate upwards to apply a tension force to the cantilevered leg of the clip angle, (2) No. 8 or No. 14 self-drilling self-tapping screws were used to anchor the clip angles to the steel base fixture, and (3) a 118 mil steel backing sheet (shown in Figure 4.1) was used at the bottom side the structural steel base to hold the screws in place to ensure the occurrence of the pull-over failure mode.



Figure 4.1: Close-up view of the pull-over test setup

The data acquisition system and the hydraulic loading system were the same as used in the shear and compression tests. The pull-over tests were conducted in a displacement control mode at a constant speed of 0.3 in. per minute. The loading rate was the same as shear and compression tests.

#### 4.2 Test Specimens

The test program focused on the pull-over failure of the screws on the anchored leg of the clip angles. Tests that failed in other modes such as screw pull-out failures, screw shear failures, etc. were not included in the analyses. The failure modes of invalid tests can be found in Appendix 1. All the pre-punched holes in the cantilevered leg of the tested clip angles were used by No. 14 screws to prevent undesired failures. The number of screws used in the anchored leg varied. A total of 38 valid pull-over tests were conducted. Table 4.1 lists the measured dimensions, screw configurations, and tested material properties. The definitions of L, B, and t in Table 4.1 are same as those defined in the shear and compression test programs. The  $d'_w$  is the measured hex washer head integral washer diameter.

|                     |             | 1           | 1             | . 0                              |                               | 1 0         |                      |                      |
|---------------------|-------------|-------------|---------------|----------------------------------|-------------------------------|-------------|----------------------|----------------------|
| Test Label          | L (in.)     | B (in.)     | t (in.)       | $d_{w}^{\prime}\left( in. ight)$ | No. of<br>Screws <sup>1</sup> | Screw Type  | F <sub>y</sub> (ksi) | F <sub>u</sub> (ksi) |
| S1 #2 P No 8        | 1.394       | 3.020       | 0.0584        | 0.322                            | 4                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| S1 #3 P No 8        | 1.394       | 3.020       | 0.0584        | 0.322                            | 4                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| S3 #1 P No 8        | 1.391       | 5.230       | 0.0584        | 0.322                            | 3                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| S3 #2 P No 8        | 1.391       | 5.230       | 0.0584        | 0.322                            | 3                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| S4 #1 P No 8        | 1.401       | 7.497       | 0.0349        | 0.322                            | 4                             | 8-22x1 1/4  | 49.6                 | 53.2                 |
| S4 #2 P No 8        | 1.401       | 7.497       | 0.0349        | 0.322                            | 4                             | 8-22x1 1/4  | 49.6                 | 53.2                 |
| S4 #3 P No 8        | 1.401       | 7.497       | 0.0349        | 0.322                            | 4                             | 8-22x1 1/4  | 49.6                 | 53.2                 |
| S5 #1 P No 8        | 1.415       | 7.520       | 0.0465        | 0.322                            | 4                             | 8-22x1 1/4  | 46.4                 | 51.2                 |
| S5 #2 P No 8        | 1.415       | 7.520       | 0.0465        | 0.322                            | 4                             | 8-22x1 1/4  | 46.4                 | 51.2                 |
| S5 #3 P No 8        | 1.415       | 7.520       | 0.0465        | 0.322                            | 4                             | 8-22x1 1/4  | 46.4                 | 51.2                 |
| S5 #4 P No 8        | 1.415       | 7.520       | 0.0465        | 0.322                            | 4                             | 8-22x1 1/4  | 46.4                 | 51.2                 |
| S6 #1 P No 8        | 2.422       | 3.004       | 0.0465        | 0.322                            | 4                             | 8-22x1 1/4  | 46.4                 | 51.2                 |
| S6 #2 P No 8        | 2.422       | 3.004       | 0.0465        | 0.322                            | 4                             | 8-22x1 1/4  | 46.4                 | 51.2                 |
| S8 #1 P No 8        | 2.387       | 5.254       | 0.0465        | 0.322                            | 3                             | 8-22x1 1/4  | 46.4                 | 51.2                 |
| S8 #2 P No 8        | 2.387       | 5.254       | 0.0465        | 0.322                            | 3                             | 8-22x1 1/4  | 46.4                 | 51.2                 |
| S9 #1 P No 8        | 2.389       | 7.540       | 0.0349        | 0.322                            | 4                             | 8-22x1 1/4  | 49.6                 | 53.2                 |
| S9 #2 P No 8        | 2.389       | 7.540       | 0.0349        | 0.322                            | 4                             | 8-22x1 1/4  | 49.6                 | 53.2                 |
| S9 #3 P No 8        | 2.389       | 7.540       | 0.0349        | 0.322                            | 4                             | 8-22x1 1/4  | 49.6                 | 53.2                 |
| S9 #4 P No 8        | 2.389       | 7.540       | 0.0349        | 0.322                            | 4                             | 8-22x1 1/4  | 49.6                 | 53.2                 |
| S10 #1 P No 8       | 2.387       | 7.497       | 0.0584        | 0.322                            | 4                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| S10 #2 P No 8       | 2.387       | 7.497       | 0.0584        | 0.322                            | 4                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| S10 #3 P No 8       | 2.387       | 7.497       | 0.0584        | 0.322                            | 4                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| T1b #2 P No 8       | 2.038       | 1.747       | 0.0349        | 0.322                            | 2                             | 8-22x1 1/4  | 49.6                 | 55.8                 |
| T1b #3 P No 8       | 2.038       | 1.747       | 0.0349        | 0.322                            | 2                             | 8-22x1 1/4  | 49.6                 | 55.8                 |
| T3 #1 P No 8        | 1.523       | 1.753       | 0.0584        | 0.322                            | 2                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| T3 #2 P No 8        | 1.523       | 1.753       | 0.0584        | 0.322                            | 2                             | 8-22x1 1/4  | 45.7                 | 50.1                 |
| T5a #1 P No 8       | 2.431       | 1.751       | 0.0349        | 0.322                            | 2                             | 8-22x1 1/4  | 49.6                 | 55.8                 |
| T5a #2 P No 8       | 2.431       | 1.751       | 0.0349        | 0.322                            | 2                             | 8-22x1 1/4  | 49.6                 | 55.8                 |
| T5b #1 P No 8       | 2.276       | 1.751       | 0.0349        | 0.322                            | 3                             | 8-22x1 1/4  | 49.6                 | 53.2                 |
| T1a #1 P No 14      | 2.418       | 1.747       | 0.0349        | 0.493                            | 2                             | 14-15x1 1/4 | 49.6                 | 53.2                 |
| T1a #2 P No 14      | 2.418       | 1.747       | 0.0349        | 0.493                            | 2                             | 14-15x1 1/4 | 49.6                 | 53.2                 |
| T1b #1 P No 14      | 2.038       | 1.747       | 0.0349        | 0.493                            | 2                             | 14-15x1 1/4 | 49.6                 | 53.2                 |
| T1b #2 P No 14      | 2.038       | 1.747       | 0.0349        | 0.493                            | 2                             | 14-15x1 1/4 | 49.6                 | 53.2                 |
| T3 #1 P No 14       | 1.523       | 1.753       | 0.0584        | 0.493                            | 2                             | 14-15x1 1/4 | 45.7                 | 50.1                 |
| T3 #2 P No 14       | 1.523       | 1.753       | 0.0584        | 0.493                            | 2                             | 14-15x1 1/4 | 45.7                 | 50.1                 |
| T5b #1 P No 14      | 2.276       | 1.751       | 0.0349        | 0.493                            | 2                             | 14-15x1 1/4 | 49.6                 | 53.2                 |
| T5b #2 P No 14      | 2.276       | 1.751       | 0.0349        | 0.493                            | 2                             | 14-15x1 1/4 | 49.6                 | 53.2                 |
| T5b #3 P No 14      | 2.276       | 1.751       | 0.0349        | 0.493                            | 2                             | 14-15x1 1/4 | 49.6                 | 53.2                 |
| Note: 1 – the screw | ws refer to | the those u | used on the a | nchored leg                      |                               |             |                      |                      |

Table 4.1: Properties of clip angles in the pull-over test program

#### 4.3 Test Results

For each specimen configuration, a minimum of two tests were performed. If the difference in the peak load between the first two tests was greater than 10% of the average result, a third test would be conducted. Figure 4.2 shows a pull-over test on a 33 mil clip angle; it represents the typical behavior observed in this test program for a CFS clip angle subjected to a tension force. Two No. 8 self-drilling screws were used to fasten the clip angle to the test bed while two No. 14 self-drilling screws were used to fasten the cantilevered leg of the clip angle to the loading stud member. In the pull-over test, the clip angle demonstrated three different stages of behavior. The initial stage had relatively small stiffness, the tension resistance was provided by the bending capacity of the angle. As the cantilevered leg was continuously being pulled up, the tensile strength of the clip angle began to contribute to the resistance of the applied force and later became the primary load bearing mechanism. At this stage, the stiffness of the clip angle increased significantly. The clip angle finally failed by the pull-over failure at the No. 8 screws; the anchored leg of the clip angle separated from the test bed and the tension strength dropped instantly after the pull-over failure occurred. In all the pull-over tests, excessive deformation was observed before the clip angle reached its tension capacity.



Figure 4.2: Typical behavior of a clip angle under tension

The test results are listed in Table 4.2 in which the  $P_{test}$  is the peak load per screw,  $\Delta$  is the vertical deflection of the cantilevered leg corresponding to the peak load.

| Test Label     | P <sub>test</sub> (lbs) | $\Delta$ (in.) |
|----------------|-------------------------|----------------|
| S1 #2 P No 8   | 1485                    | 1.007          |
| S1 #3 P No 8   | 1377                    | 1.037          |
| S3 #1 P No 8   | 1118                    | 1.040          |
| S3 #2 P No 8   | 1015                    | 0.982          |
| S4 #1 P No 8   | 738                     | 1.066          |
| S4 #2 P No 8   | 569                     | 0.859          |
| S4 #3 P No 8   | 805                     | 0.999          |
| S5 #1 P No 8   | 953                     | 1.085          |
| S5 #2 P No 8   | 800                     | 1.086          |
| S5 #3 P No 8   | 1158                    | 1.026          |
| S5 #4 P No 8   | 1061                    | 1.054          |
| S6 #1 P No 8   | 1041                    | 0.961          |
| S6 #2 P No 8   | 1079                    | 1.038          |
| S8 #1 P No 8   | 853                     | 1.048          |
| S8 #2 P No 8   | 847                     | 1.020          |
| S9 #1 P No 8   | 590                     | 1.043          |
| S9 #2 P No 8   | 508                     | 0.940          |
| S9 #3 P No 8   | 723                     | 0.938          |
| S9 #4 P No 8   | 659                     | 1.075          |
| S10 #1 P No 8  | 1046                    | 1.114          |
| S10 #2 P No 8  | 1176                    | 1.081          |
| S10 #3 P No 8  | 1243                    | 1.124          |
| T1b #2 P No 8  | 503                     | 1.034          |
| T1b #3 P No 8  | 570                     | 0.941          |
| T3 #1 P No 8   | 1015                    | 1.432          |
| T3 #2 P No 8   | 989                     | 1.374          |
| T5a #1 P No 8  | 529                     | 0.892          |
| T5a #2 P No 8  | 469                     | 0.874          |
| T5b #1 P No 8  | 751                     | 0.962          |
| T1a #1 P No 14 | 860                     | 0.726          |
| T1a #2 P No 14 | 834                     | 0.725          |
| T1b #1 P No 14 | 818                     | 0.919          |
| T1b #2 P No 14 | 788                     | 1.065          |
| T3 #1 P No 14  | 1273                    | 1.439          |
| T3 #2 P No 14  | 1347                    | 1.569          |
| T5b #1 P No 14 | 844                     | 1.007          |
| T5b #2 P No 14 | 966                     | 1.036          |
| T5b #3 P No 14 | 777                     | 1.085          |

Table 4.2: Results of the pull-over tests

#### 4.4 Comparison with AISI Design Method

The pull-over strengths obtained from the tests were compared with the pull-over strength calculated in Section E4.4.2 of AISI S100 (2012). The results are listed in Table 4.3. The test results are on average 50.3% of the predicted pull-over strength by AISI S100 with small standard deviation.

| Test label     | $P_{test} / P_{AISI}$ |
|----------------|-----------------------|
| S1 #2 P No 8   | 0.526                 |
| S1 #3 P No 8   | 0.488                 |
| S3 #1 P No 8   | 0.528                 |
| S3 #2 P No 8   | 0.479                 |
| S4 #1 P No 8   | 0.411                 |
| S4 #2 P No 8   | 0.317                 |
| S4 #3 P No 8   | 0.448                 |
| S5 #1 P No 8   | 0.414                 |
| S5 #2 P No 8   | 0.348                 |
| S5 #3 P No 8   | 0.503                 |
| S5 #4 P No 8   | 0.461                 |
| S6 #1 P No 8   | 0.453                 |
| S6 #2 P No 8   | 0.469                 |
| S8 #1 P No 8   | 0.495                 |
| S8 #2 P No 8   | 0.491                 |
| S9 #1 P No 8   | 0.328                 |
| S9 #2 P No 8   | 0.283                 |
| S9 #3 P No 8   | 0.403                 |
| S9 #4 P No 8   | 0.367                 |
| S10 #1 P No 8  | 0.370                 |
| S10 #2 P No 8  | 0.416                 |
| S10 #3 P No 8  | 0.440                 |
| T1b #2 P No 8  | 0.534                 |
| T1b #3 P No 8  | 0.606                 |
| T3 #1 P No 8   | 0.719                 |
| T3 #2 P No 8   | 0.701                 |
| T5a #1 P No 8  | 0.562                 |
| T5a #2 P No 8  | 0.498                 |
| T5b #1 P No 8  | 0.557                 |
| T1a #1 P No 14 | 0.625                 |
| T1a #2 P No 14 | 0.606                 |
| T1b #1 P No 14 | 0.595                 |
| T1b #2 P No 14 | 0.573                 |
| T3 #1 P No 14  | 0.589                 |
| T3 #2 P No 14  | 0.623                 |
| T5b #1 P No 14 | 0.614                 |
| T5b #2 P No 14 | 0.702                 |
| T5b #3 P No 14 | 0.565                 |
| Mean           | 0.503                 |
| St. Dev.       | 0.109                 |
| COV            | 0.217                 |

Table 4.3: Comparison of test results with AISI design method

#### 4.5 Proposed Pull-Over Strength for CFS Clip Angles

With simple modifications to the existing AISI design method, a design method for the pull-over strength of CFS clip angles can be developed. The new design method is listed as follows.

The nominal pull-over strength of sheet per screw

$$P_{nov} = 0.75t_1 d'_w F_{u1} \tag{4.1}$$

where

- $d'_w$  = effective pull-over diameter determined in accordance with Section E4.4.2 of AISI S100 (2012)
- $t_1$  = design thickness of member in contact with screw head or washer
- $F_{\mu 1}$  = tensile strength of member in contact with screw head or washer

The parameter range of the tested specimens are:

Clip angle design thickness: 33 mils to 54 mils

Clip angle design yield strength: 33 ksi to 50 ksi

Screw size: No. 8 or No. 14

Since the limit state is the pull-over failure of the screw connections, the parameter limits of the clip angles in this test program do not apply to the pull-over strength of screw connections. Therefore, it is recommended that the existing limits specified in Section E4.4.2 of AISI S100 (2012) shall apply to the proposed pull-over design equations.

A comparison between the test results and the proposed design method is listed in Table 4.4. The LRFD and LSD resistance factors and the ASD safety factors for the proposed pull-over design method were calculated following Chapter F of AISI S100 (2012). The type of component listed in Table F1, Screw Connections – Pull-Over, was chosen for the statistical analysis. The results are listed in Table 4.5. The calculated resistance factors are close to the AISI values: 0.52 vs. 0.50 for the LRFD resistance factor and 0.42 vs. 0.40 for the LSD resistance factor.

| Test label     | P <sub>test</sub> / P <sub>nov</sub> |
|----------------|--------------------------------------|
| S1 #2 P No 8   | 1.051                                |
| S1 #3 P No 8   | 0.975                                |
| S3 #1 P No 8   | 1.055                                |
| S3 #2 P No 8   | 0.959                                |
| S4 #1 P No 8   | 0.821                                |
| S4 #2 P No 8   | 0.633                                |
| S4 #3 P No 8   | 0.896                                |
| S5 #1 P No 8   | 0.829                                |
| S5 #2 P No 8   | 0.696                                |
| S5 #3 P No 8   | 1.007                                |
| S5 #4 P No 8   | 0.922                                |
| S6 #1 P No 8   | 0.905                                |
| S6 #2 P No 8   | 0.938                                |
| S8 #1 P No 8   | 0.989                                |
| S8 #2 P No 8   | 0.982                                |
| S9 #1 P No 8   | 0.657                                |
| S9 #2 P No 8   | 0.566                                |
| S9 #3 P No 8   | 0.805                                |
| S9 #4 P No 8   | 0.733                                |
| S10 #1 P No 8  | 0.741                                |
| S10 #2 P No 8  | 0.833                                |
| S10 #3 P No 8  | 0.881                                |
| T1 b #2 P No 8 | 1.068                                |
| T1 b #3 P No 8 | 1.211                                |
| T3 #1 P No 8   | 1.438                                |
| T3 #2 P No 8   | 1.401                                |
| T5a #1 P No 8  | 1.123                                |
| T5a #2 P No 8  | 0.997                                |
| T5b #1 P No 8  | 1.114                                |
| T1a #1 P No 14 | 1.250                                |
| T1a #2 P No 14 | 1.212                                |
| T1b #1 P No 14 | 1.189                                |
| T1b #2 P No 14 | 1.146                                |
| T3 #1 P No 14  | 1.178                                |
| T3 #2 P No 14  | 1.246                                |
| T5b #1 P No 14 | 1.227                                |
| T5b #2 P No 14 | 1.404                                |
| T5b #3 P No 14 | 1.129                                |
| Mean           | 1.005                                |
| St. Dev.       | 0.208                                |
| COV            | 0.207                                |

Table 4.4: Comparison of test results with the proposed design method

|                | Considered as     |
|----------------|-------------------|
|                | Screw Connections |
|                | – Pull-Over       |
| Quantity       | 38                |
| Mean           | 1.005             |
| Std. Dev.      | 0.208             |
| COV            | 0.207             |
| M <sub>m</sub> | 1.10              |
| Vm             | 0.10              |
| $F_m$          | 1.00              |
| Pm             | 1.005             |
| $V_{\rm f}$    | 0.10              |
| β (LRFD)       | 3.5               |
| β (LSD)        | 4.0               |
| VQ             | 0.21              |
| φ (LRFD)       | 0.52              |
| $\phi$ (LSD)   | 0.42              |
| $\Omega$ (ASD) | 3.05              |

Table 4.5: Resistance factors and safety factor for the proposed pull-over design method

### **5 CONCLUSIONS AND FUTURE RESEARCH**

Three series of tests on CFS clip angles were conducted to investigate the behavior, strength, and deflection for three limit states: shear of clip angle, compression of clip angle, and pull-over of clip angle screw connection. The test results were compared with existing design methods in AISI and AISC documents for members similar, but not same as the clip angles. It was found that none of the existing methods provided reasonable predictions for the nominal strength of clip angles for those three limit states. New design methods for determining the nominal strength of the CFS clip angles were developed for the three limit states respectively.

For the shear strength, two design methods were proposed: nominal shear strength without consideration of deformation, and nominal shear strength with consideration of deformation. For the compression design, since a majority of the specimens reached their peak loads at a deflection less than the deflection limit of 1/8 in., a single design method was proposed. For the pull-over of screw connections, it was found that the existing pull-over design method in AISI S100 (2012) could be applied to clip angle applications with a reduction factor of 0.5.

The LRFD, LSD resistance factors and the ASD safety factors for the proposed design methods were calculated using Chapter F of AISI S100 (2012).

Draft specification language for the three proposed design methods are provided in Appendix 3 of this report.

The following subjects can be considered in the future research efforts:

- Clip angles using welded connections In this research, screw connections were used in all tested clip angles. The clip angles using welded connections may demonstrate different behavior and strength. Additional tests on clip angles with welds can be conducted to verify the proposed design methods.
- The fastener pattern effects on the clip angles The specimens used in this research had predrilled holes for screws, and the holes were uniformly distributed along the width of the clip angle in one line or two. The screw pattern may have effects on the behavior and strength of clip angles, additional research is needed to study the screw pattern's impact.
- Serviceability of clip angles subjected to tension In the pull-over test program of this research, the ultimate strength of screw's pull-over failure was focused on. It was found that the clip angles yielded significant amount of deflection before their ultimate strength was reached. The stiffness and strength of the clip angles under tension within the service deflection limit can be included in the future research.
- Reliability of proposed design equations for clip angles In the shear and compression test programs of this research, fastener's failures were prevented, and the clip angles failed in the cantilevered legs. Members' failures were achieved. The proposed design equations for shear and compression might be appropriate

to use a reliability index for members when the resistance factors and safety factors were determined. However if one considered the clip angle as a connector that shall have higher reliability than a structural member, a reliability index for connections shall be used. Furthermore, when the clip angles were used in the secondary structural components of a building such as curtain walls, a reliability index smaller than that for the primary structural components might be reasonable. A comprehensive study on the reliability issue of the design methods is needed to ensure safe and efficient use of CFS clip angles.

#### **6 ACKNOWLEDGEMENTS**

The sponsorship of American Iron and Steel Institute and the test materials donation by Simpson Strong-Tie Company, Inc. and Hilti, Inc. are gratefully acknowledged. The technical advising provided by the AISI project monitoring task group is highly appreciated. The authors would also like to thank UNT undergraduate students, Derrick Nathan, Emmanuel Velasco, and Tom Kalisky for their assistance in the test programs.

### **7 REFERENCES**

ABAQUS (2013). ABAQUS 6.13, Dassault Systemes. www.abaqus.com.

- AISC (2011). "AISC Steel Construction Manual, 14<sup>th</sup> Edition," American Institute of Steel Construction, Chicago, IL.
- AISI S100 (2012). "North American Specification for the Design of Cold-Formed Steel Structural Members, 2012 Edition," American Iron and Steel Institute, Washington, DC.
- AISI S214 (2012). "North American Standard for Cold-Formed Steel Framing Truss Design 2012 Edition," American Iron and Steel Institute, Washington, DC.
- ASTM A370 (2014). "A370-14 Standard Test Methods and Definitions for Mechanical Testing of Steel Products," American Society for Testing and Materials, West Conshohocken, PA.
- ICC-ES AC261 (2011). "AC261 Acceptance Criteria for Connectors Used with Cold-Formed Steel Structural Members, Approved October 2011," International Code Council Evaluation Service, Brea, CA.
- Houbolt, J. C., Stowell, E. Z. (1950). "Critical Stress of Plate Columns" Technical Note 2163, National Advisory Committee for Aeronautics, Washing, DC, August 1950.
- Schafer, B.W., Peköz, T. (1998). "Direct Strength Prediction of Cold-Formed Steel Members using Numerical Elastic Buckling Solutions," *Proceedings of the 14th International Specialty Conference on Cold-Formed Steel Structures*, St. Louis, MO, USA.

# **APPENDIX 1 – FAILURE MODES OF INVALID TESTS**

| Test Label | Failure Mode                                    |
|------------|-------------------------------------------------|
| S1 #1      | Screw shear failure                             |
| S1 #2      | Screw shear failure                             |
| S1 #3      | Screw shear failure                             |
| S4 #1      | Hydraulic servo not ON                          |
| S4 #2      | Screw shear failure                             |
| S4 #4      | Buckling on anchored leg, only 2 screws used    |
| S5 # 1     | Screw shear failure                             |
| S5 # 2     | Screw shear failure                             |
| S7 #2      | Screw shear failure                             |
| S8 #1      | Only 2 screws used, C leg not fully constrained |
| S8 #2      | Only 2 screws used, C leg not fully constrained |
| S9 #1      | Hydraulic servo not ON                          |
| T4 #1      | Screw shear failure                             |

Table A1-1 Failure modes of invalid shear tests

Table A1-2 Failure modes of invalid pull-over tests

| Test Label     | Failure Mode                     |  |
|----------------|----------------------------------|--|
| S1 #1 P No 8   | One screw not installed properly |  |
| T1 b #1 P No 8 | Hydraulic problem                |  |

# **APPENDIX 2 – DETAILED DIMENSIONS OF CLIP ANGLES**

| Specimen Label | r (in.) |
|----------------|---------|
| S1             | 0.156   |
| S2             | 0.250   |
| S3             | 0.156   |
| S4             | 0.125   |
| S5             | 0.125   |
| S6             | 0.141   |
| S7             | 0.250   |
| S8             | 0.156   |
| S9             | 0.141   |
| S10            | 0.172   |
| T1a            | 0.125   |
| T1b            | 0.125   |
| T2             | 0.250   |
| Т3             | 0.156   |
| T4             | 0.172   |
| T5a            | 0.125   |
| T5b            | 0.125   |
| Т6             | 0 141   |

Table A2-1 Measured outside corner radii

The following figures present the nominal dimensions of the clip angles. Note that the cantilevered leg is on the left side of the bend line.









Type T1a 20ga., GR33



20ga., GR33









#### **APPENDIX 3 – DRAFT DESIGN PROVISIONS**

#### (1) Shear Strength without Consideration of Clip Angle Deformation

When deformation of the clip angle is not a design consideration, the nominal shear strength [resistance],  $V_n$ , of clip angles shall be calculated as follows:

$$V_n = 0.17\lambda^{-0.8}F_y Bt \le 0.35F_y Bt$$
(Eq. A3-1)

where

$$\lambda = \sqrt{\frac{F_y}{F_{cr}}}$$
(Eq. A3-2)

$$F_{cr} = \frac{k\pi^2 E}{12(1-\mu^2)} \left(\frac{t}{B}\right)^2$$
(Eq. A3-3)

E - modulus of elasticity of steel, 29500 ksi

 $\mu$  - Poisson's ratio for steel, 0.3

$$k = 2.569 \left(\frac{L}{B}\right)^{-2.202}$$
 (Eq. A3-4)

- $F_v$  = specified minimum yield strength
- t = design thickness of clip angle
- B = width of cantilevered leg measured parallel to the applied shear force
- *L* flat length of cantilevered leg measured from the center of the first line of fasteners to the bend line.
- $\Omega = 2.80$  for ASD
- $\phi = 0.55$  for LRFD
  - = 0.45 for LSD

The above equations shall be valid within the following range of parameters and boundary conditions:

Clip angle design thickness: 33 mils to 97 mils

Clip angle design yield strength: 33 ksi to 50 ksi

L/B ratio: 0.18 to 1.40

The fastener pattern shall allow full engagement of the cantilevered leg in bearing the shear load.

#### (2) Shear Strength with Consideration of Clip Angle Deformation

When deformation of the clip angle is a design consideration, the nominal shear strength [resistance],  $V_n$ , of clip angles shall be calculated in accordance with this section. In addition, the available strength shall not exceed the nominal shear strength obtained in accordance with Section (1).

$$V_n = 9000 \,\alpha \left(\frac{Bt}{L}\right) \tag{Eq. A3-5}$$

where

 $\alpha = 1$  lb/in. for US customary units

= 0.175 N/mm for SI units

 $\Omega = 3.00$  for ASD

 $\phi = 0.55$  for LRFD

= 0.40 for LSD

The above equations shall be valid within the following range of parameters and boundary conditions:

Clip angle design thickness: 33 mils to 97 mils

Clip angle design yield strength: 33 ksi to 50 ksi

L/B ratio: 0.18 to 1.40

The fastener pattern shall allow full engagement of the cantilevered leg in bearing the shear load.

#### (3) Compression Strength

The nominal compression strength [resistance],  $P_n$ , of the clip angle shall be calculated as follows:

$$P_n = F_n A_g \tag{Eq. A3-6}$$

where

 $A_a = B't \tag{Eq. A3-7}$ 

$$F_n = 0.0028\lambda^{1.44}F_{cr} \le 0.4F_y \tag{Eq. A3-8}$$

$$\lambda = \frac{L}{t}$$
(Eq. A3-9)

$$F_{cr} = \frac{k\pi^2 E}{12(1-\mu^2)} \left(\frac{t}{L}\right)^2$$
(Eq. A3-10)

- E modulus of elasticity of steel, 29500 ksi
- $\mu$  Poisson's ratio for steel, 0.3
- k = buckling coefficient can be determined by interpolation in Table A3-1
  - = 0.90 as a conservative value
- B' = shall be taken as the lesser of the actual clip angle width or the Whitmore section width, which shall be determined using a spread-out angle of 30 degrees along both sides of the connection, beginning at the first row of fasteners in the cantilevered leg of the clip angle
- $\Omega = 3.25$  for ASD
- $\phi$  = 0.50 for LRFD

= 0.40 for LSD

The above equations shall be valid within the following range of parameters:

Clip angle design thickness: 33 mils to 118 mils

Clip angle design yield strength: 33 ksi to 50 ksi

L/B ratio: 0.18 to 1.40

| L/B | k     |
|-----|-------|
| 0.1 | 0.993 |
| 0.2 | 0.988 |
| 0.3 | 0.983 |
| 0.4 | 0.978 |
| 0.5 | 0.973 |
| 0.6 | 0.969 |
| 0.7 | 0.964 |
| 0.8 | 0.960 |
| 0.9 | 0.956 |
| 1   | 0.952 |
| 1.5 | 0.938 |
| 2   | 0.929 |

| Table A3-1: Theoretical k value |
|---------------------------------|
|---------------------------------|

#### (4) Pull-Over

The nominal pull-over strength [resistance],  $P_{nov}$ , shall be calculated as follows:

$$P_{nov} = 0.75t_1 d'_w F_{u1} \tag{Eq. A3-11}$$

where

- $d'_w$  = effective pull-over diameter determined in accordance with Section E4.4.2 of AISI S100 (2012)
- $t_1$  = design thickness of member in contact with screw head or washer
- $F_{u1}$  = tensile strength of member in contact with screw head or washer

 $\Omega = 3.00$  for ASD

#### $\phi = 0.50$ for LRFD

= 0.40 for LSD

All the requirements for screws in Section E4 of AISI S100 shall apply to the above equations.



American Iron and Steel Institute 25 Massachusetts Avenue, NW Suite 800 Washington, DC 20001 www.steel.org



Research Report RP15-2