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PREFACE

This report summarizes two studies related to the design of cold-formed steel

connections. The study topics included the creation of a test standard for determining the

strength of a screw, and the determination of the strength of a screw connection.

A standard test protocol does not exist for determining the strength of a screw.

Today, manufacturers use test protocols developed for their products. Thus, there is no

consistency in defming the structural performance of a screw. A test standard has been

developed. The standard used as its model the American Society of Testing and

Material's F 606, Standard Test Methods for Determining the Mechanical Properties of

Externally and Internally Threaded Fasteners and Rivets. Tests have been conducted to

show the practicality of the proposed test standard.

The connection strength equations in the AISI design specification are based

primarily on tests of single- and double-screw connection tests. Also, design assumes

that the connection strength is proportional to the number of screws. The connection

strength study considered the variation of connection strength with the number of screws,

the screw center-to-center spacing, and the location of the screws in the connection.

This experimental study demonstrated that connection strength increased with

additional screws in the connection, but the increase was at a rate less than a multiple of

the single screw strength.

Current design specifications do not account for the pattern formed by the screws

in a connection. This study showed that the screw pattern has a minor effect on the

structural performance, but may be neglected for the purposes of design.
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Finally, this experimental study detennined that the connection strength decreased

with a decrease in the center-to-center spacing of the screws.

This report is based on a thesis submitted to the Faculty of the Graduate School of

the University of Missouri-Rolla in partial fulfillment of the requirements for the degree

of Masters of Science in Civil Engineering.

Technical guidance for this investigation was provided by the American Iron and

Steel Institute's Subcommittees on Test Procedures (S. R. Fox, Chairman) and

Connections (M. Golvin, Chainnan). The Subcommittees' guidance is gratefully

acknowledged. Thanks are also extended to H. H. Chen, D. F. Boring, and S. P.

Bridgewater, AISI staff, for their assistance. Steel sheet used for the experimental phase

of this study was provided by Dietrich Industries.
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1. INTRODUCTION

1.1 GENERAL

Self-drilling screws are externally threaded fasteners which, when driven with a

screw gun, drill their own hole and fonn their own threads in steel sheet. Studies have

been perfonned to develop a standard test for detennining both the tensile and the shear

strength of screws, and to obtain a better understanding of the strength of cold-fonned

steel lap connections fonned with self-drilling screws in varying numbers and patterns.

1.2 STANDARD TEST

There exists no standard for testing screw strength, as exists for testing bolt

strength. For bolts, the standard is ASTM F 606-95b "Standard Test Methods for

Detennining the Mechanical Properties ofExternally and Internally Threaded Fasteners,

Washers, and Rivets" (ASTM, 1995). The American Iron and Steel Institute's Cold­

Formed Steel Design Manual (AISI, 1996) gives design provisions for detennining the

strength of a screw connection, but gives no guidance on defining the screw tensile and

shear capacities. Because of the lack of a test standard for screw strength, manufacturers

of screws have devised their own procedures for detennining the strength of their own

products. This leads to possible inconsistency in strength from one manufacturer to

another, and leaves the design engineer with no objective standard by which to compare

screws from different manufacturers.

In this study, ASTM F 606-95b (ASTM, 1995) was used as a pattern by which to

develop a procedure for testing screws. A literature survey was perfonned to detennine

the various test methods used by screw manufacturers. Proposed test procedures were
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developed and tested to detennine their practicality. A written test method was created

that is suitable for adoption by the American Iron and Steel Institute and the American

Society for Testing and Materials. Procedures were developed for defming screw

strength in tension, shear, and combined tension and shear.

1.3 CONNECTION STRENGTH

Screw connection strength equations in the current American Iron and Steel

Institute's Cold-Formed Steel Design Manual (AISI, 1996) are based on a data base of

over 3500 tests. Because the test parameters involved are broad, there is much scatter in

the data, and the design equations were consequently conservatively developed.

This study has focused on design parameters typically found in residential

construction in the United States. Patterns, spacing, and number of screws were varied to

detennine their effect on connection strength. Previously, screw patterns and spacing had

not been studied extensively. Design equations for establishing the connection strength

have been developed.



2. REVIEW OF LITERATURE

2.1 GENERAL

The following sections review literature pertinent to this study. For the standard

test, documents investigated include recognized performance standards, manufacturer test

procedures, and available literature. For connection strength, referenced documents

include the work of Daudet (1996), Rogers and Hancock (1997), and Breyer (1993).

2.2 STANDARD TEST

Listed are various sources that outlined testing procedures already in use for

determining the mechanical properties of screws.

2.2.1. Society of Automotive Engineers J78 (SAE, 1979). SAE 178 "Self

Drilling Tapping Screws" (SAE, 1979) addresses mechanical requirements for self­

drilling screws, as well as dimensional, material, process, and performance requirements.

The tests listed in this specification focus on torsional strength, rather than tensile or

shear strengths. The main strength test is the Torsional Strength Test (torque required to

fail a screw). In this test, the screw threads are clamped such that they are not crushed,

and at least two full threads are left exposed above the clamping device. A calibrated

device is used to apply torque until failure, the failure torque is called the torsional

strength of the screw.

2.2.2. American Society for Testing and Materials F606-95b (ASTM, 1995).

The applicable ASTM standard for fasteners is "Standard Test Methods for Determining

the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, and

Rivets" (ASTM, 1995). The standard sets forth procedures for determining mechanical
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properties of threaded fasteners, such as hardness, tension strength, torsion strength, and

shear strength. This "7andard does not apply to screws because the tests pertaining to

strength involve th, ~:;; of a nut that threads onto the bolt.

2.2.3. MIL-STD-1312-8A (DOD, 1984). The Military Standard "Fastener Test

Methods - Method 8, Tensile Strength" addresses tensile strength for any structural

fastener, and is therefore broad in scope. Tension test fixtures are recommended. Load

rates are specified as a function of the diameter of the fastener to be tested (e.g., a 0.25

inch diameter fastener has a load rate of 5 lb/min). This standard does not apply to

screws because the tests pertaining to strength involve the use of a nut that threads onto

the bolt.

2.2.4. American Iron and Steel Institute fAlSI, 1996b). The American Iron and

Steel Institute's document, "Test Methods for Mechanically Fastened Cold-Formed Steel

Connections" (AISI, 1996b) outlines a lap-joint shear test. The shear test involves lapping

two sheets together and connecting them with a self-drilling screw. The assembly is put

into a tension testing machine and a uniaxial tension force is applied. Various tension

tests are also specified for determining pull-over and pull-out of a screw. However, the

test method does not provide guidance for determining the tension or shear strength of a

screw.

2.2.5. Manufacturers' Test Methods. Test procedure information was provided

by several manufacturers. The previously mentioned documents SAE J78 (SAE, 1979),

ASTM F606 (ASTM, 1995), or the AISI "Test Methods for Mechanically Fastened Cold­

Formed Steel Connections" (AISI, 1996) were often cited as references by manufacturers.
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ITW Buildex's standard is titled, "Work Instruction QWI 10.6 - Lab Instructions for

Mechanical Properties Testing ofBuildex Fasteners" (ITW Buildex, 1995). Buildex

specifies its own fixtures and testing rate. Referenced tests include: pull-out, shear, pull­

over, torsion, and tension. The tension test includes a bottom plate that the screw threads

are driven or threaded into, and a top fixture that allows the screw head to bear against it.

The assembly is placed into a tension testing machine and the screw is tested to failure.

The shear test consists of two test plates that are lapped, the screw is driven through the

plates, and the assembly is placed into a tension testing machine and the screw is tested to

failure.

Another manufacturer standard was provided by Vicwest titled "Vicwest Fasteners

Manual" (Sommerstein, 1996). This standard included fixtures for testing pull-over, pull­

out, and shear strength of screws. The shear test involved lapping two sheets of steel and

connecting them with a self-drilling screw. The screw is tested to failure in a tension

testing machine. No tension test was given.

2.2.6. Luttrell (1996). Luttrell wrote a preliminary, unpublished report called,

"Deck Attachment with No. 12 Screws Under Combined Loading" (Luttrell, 1996). His

study focused on screws attaching deck sections in uplift situations. In such situations the

fastener experiences combined tension and shear forces. A test frame was devised that

involved attaching a piece of steel deck to a steel channel section, and loading the

assembly at an angle to achieve combined tension and shear through the connector.

2.2.7 Yu (1991). Yu's textbook gives a good overview of the behavior of bolted

connections, which is a good background to understanding screwed connection behavior.



6

Failure modes are defmed, which include longitudinal shear failure of the sheet, bearing

failure of the sheet, tensile failure of the sheet, and shear failure of the bolt.

2.3 CONNECTION STRENGTH

The references listed below present information on screw and bolted connection

strength.

2.3.1. Daudet (1996). Daudet's work is summarized in his Master's Thesis, titled,

"Self-Drilling Screw Connections in Low Ductility Light Gage Steel" (Daudet, 1996).

Daudet investigated double-lap and single-lap shear connections that used self-drilling

screws. The steel used in the study included both normal and low ductility sheets. The

failure modes that were investigated included edge tearing, bearing, tilting/bearing, and

screw shear. The test results were used to create design equations.

Daudet studied both single- and two-screw connections. In the study, a decrease in

strength per screw, as much as 14%, was found for two-screw connections as compared

to single-screw connections. Daudet hypothesized two reasons for this behavior. The

first was that lifting of screws was observed when two screws were placed parallel to the

loading direction, which increased the load eccentricity on the screws. The second reason

was possible misplacement of screws, moving the center of gravity of the connection

away from the center of gravity of the connected sheets.

2.3.2. Rogers and Hancock (1997). Rogers and Hancock's work is summarized in

their report "Screwed Connection Tests of Thin G550 and G300 Sheet Steels" (Rogers

and Hancock, 1997). Single-lap connections were investigated for different thicknesses

of steel sheet with either two- or four-screw patterns. Failure modes investigated
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included bearing, tilting, and bearing/tilting. The effect of anisotropy was also considered

by milling test sheets from the parent material longitudinally, transversely, and

diagonally.

2.3.3. Breyer (1993). In timber design, the concept of a "group action factor" is

used to account for the fact that in a connection with multiple bolts, the bolts at the ends

of a longitudinal line carry more load per bolt than the intermediate bolts (Breyer, 1993).

The "group action factor" reduces the connection strength, and is predominantly a

function of the number of fasteners in a line parallel to the direction of loading. Lesser

factors include stiffness ratio ofmembers being joined, fastener diameter, fastener

spacing parallel to direction of force, and the fastener load/slip modulus.

2.3.4. American Iron and Steel Institute fAlSI, 1996a). The American Iron and

Steel Institute's document, "Specification for the Design of Cold-Formed Steel Structural

Members" (AISI, 1996a), outlines current design equations for connections made with

screws. The equations for connection shear, with the two steel sheets joined being the

same thickness, is taken as the smaller of equations (2-1) and (2-2).

Pns =2.7tdFu

Pns = nominal shear strength per screw

t = thickness of steel sheet

d = nominal screw diameter

Fu =tensile strength of steel sheet

(2-1)

(2-2)





3. TENSILE AND SHEAR STRENGTH OF SCREWS

3.1 GENERAL

The research to establish a standard test method for determining the screw strength

involved defming test procedure concepts and validating the concepts for practicality and

reliability. A total of 28 tension tests, 16 shear tests, 24 torsion tests, and 4 combined

shear and tension tests were performed. The different fixtures and test methods that were

tried, and which were deemed to be most practical, are discussed herein. The proposed

test protocol, "Standard Test Methods for Determining the Mechanical Properties of

Screws", is given in Appendix A. Appendix B contains details for test fixtures that were

fabricated as part of this research. Test results and parameters are listed in Appendix C.

The proposed standard test for self-drilling screws was modeled after ASTM F606

(ASTM, 1995), and focuses on the tension test. The product hardness and proof load

tests were not adopted, as well as ASTM F606 information on internally threaded

fasteners, washers, and rivets. Also, tension testing of machined test specimens was not

adopted because screws are typically not large enough to have specimens machined from

them. Wedge tension testing was adopted in a modified form as a combined tension and

shear test. ASTM F606's testing speed, the greater of 0.1 in (2.5 mm) per minute or 500

pounds (approximately 2 kN) per minute, was followed.

A correlation between product hardness and tensile strength was considered, but

rejected. Correlation between hardness and ultimate tensile strength can be found in

ASTM A370 (ASTM,1997). However, due to case hardening of the screw, its cross­

section contains a variation in hardness. Thus it is difficult to assign a single hardness

value that can then be used to correlate to a screw's tensile strength. Micro-hardness
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testing would have had to be performed, and considering the small cross-section of a

screw, and because the micro-hardness testing apparatus is not readily available to most

manufacturers, hardness testing was not included in the proposed screw test standard.

The shear test method was adopted from the American Iron and Steel Institute's

document "Test Methods for Mechanically Fastened Cold-Formed Steel Connections"

(ArSr, 1996b). The report protocol was adopted from this document as well.

3.2 UNIAXIAL TENSION TEST

Two test methods were examined for determining the tensile strength of a screw.

One method involved a two-piece fixture designed to hold the screw, with one piece

holding the head, and the other holding the threads. The other test method, in which the

threads of the screw are clamped in the hydraulic grips of the testing machine, eliminates

the need for the bottom fixture. The testing machine used was a Materials Test System

(MTS) 880 (Figure 3.1). Electronic data acquisition was employed, and the maximum

applied load was recorded as the strength of the screw.

The test fixture and setup using the two-piece fixture may be seen in Figure 3.2,

with a photo given in Figure 3.3. The fixtures' dimensions are given by Figures B.l and

B.2 in Appendix B. The fixtures were made from mild steel. The disadvantage of this

design was that for each screw thread size and type, a unique bottom fixture needed to be

fabricated. The top fixture had a hole just large enough to allow the screw threads to pass

through. This maximized the bearing area for the screw head. The top fixture was

clamped in the jaws of the tension testing machine. The bottom fixture was threaded
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Figure 3.1 Photo of Materials Test System 880 Tension Testing Machine

onto the thread end of the screw, with a minimum of four threads left exposed between

the top and bottom fixtures. The bottom fixture was also clamped in the jaws of the

tension testing machine. The assembly was subjected to a uniaxial tension force until the

screw fractured into two pieces.

The alternate tension test method involved clamping the threads directly in the

tension testing machine's jaws. The tension testing machine used had textured jaw

surfaces that allowed good gripping of the screw threads, and conservative test results

were obtained. Premature failure may occur if care is not taken to prevent crushing of the

screw threads. A comparison of tension tests with and without the use of the bottom
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fixture are given in Table 3.1. The average strength with the bottom fixture is 3926 Ibs.

and,without the bottom fixture it is 37931bs, which gives a conservative 3.5 %

difference.

Front
Cross Section

Side
Cross Section

Jaws of Tension7gMaChine

Figure 3.2 Cross Section of the Tension Test Setup

Table 3.1 Tension Tests With and Without Bottom Fixture
Test # Failure Using

Load (lbs) Bottom
Fixture?

t23 3966 Y
t24 3886 y
t26 3837 N
t27 3664 N
t28 3878 N

Note: #IO-16xl-I/2" Traxx hex head screws.
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Figure 3.3 Photo of Tension Test Setup

A load rate was selected, as determined by the rate of separation of the testing

machine heads, limited to the greater ofO.! in/min (2.5 mm/min) or the rate caused by a

loading rate of 500 pounds/min (approximately 2 leN/min). This load rate is consistent

with the procedures prescribed by ASTM F 606-95b "Standard Test Methods for

Determining the Mechanical Properties ofExternally and Internally Threaded Fasteners,

Washers, and Rivets" (ASTM, 1995). Stroke control was used during the experimental

study because it allowed the machine heads to be stationary during setup. No attempt was

made to create a tensile strength design equation based on these tests. The sole purpose

of conducting the tests was to verify that the test method was reliable and consistent, as

well as easily applied.



13

3.3 SHEAR

Two different test methods were used for testing screws in shear. One method

involved a two-piece fixture (Figures 3.4 and 3.5) that had a pre-drilled hole into which

the screw was inserted. The fixture dimensions are given by Figure B.3 in Appendix B.

In the other test method, the screw drilled its own hole into two steel sheets that were of

sufficient thickness to prevent bearing failure ofthe sheet. This was to ensure that the

screw failed in shear before any other mode of failure could occur.

Figure 3.4 Photo of Shear Test Setup Fixtures
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Grips of Tension
Testing Machine

Grips of Tension
Testing Machine

Front

Figure 3.5 Shear Test Setup Fixtures

Side

One problem with the test fixture ofFigure 3.5 was that the screw tilted during the

test (Figure 3.6), so that the screw actually experienced combined tension, shear, and

bending. This was possible because the holes in the fixture were just large enough to
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allow the screw threads to pass through without engagement. Typically, screw tilting

reached as much as 30 degrees from the horizontal during testing, and the plates separated

as much as 1/8" before failure of the screw (Figure 3.6). The tilting occurred very early

in the test, before much load was applied. At failure the screw would break into three

pieces (Figure 3.7), with the middle piece becoming larger as more pennanent bend was

introduced into the test fixtures.

Figure 3.6 Screw Tilting and Plate Separation During Shear Test

Screws were tested using the test fixture ofFigure 3.5 in several combinations

(Figure 3.8). A single screw was tested, both with the head flush against the fixture face
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(Figure 3.8 - #1) and backed out from the face enough to prevent the head from touching

the face during the test (about 1/4" - Figure 3.8 - #2). Two screws were tested flush

Figure 3.7 Screw Breakage During Shear Test

against the face, inserted the same direction (Figure 3.8 - #3) and inserted in opposite

directions (Figure 3.8 - #4). Two screws were also tested backed away from the face of

the fixture, inserted the same direction (Figure 3.8 - #5). Test results are given in Table

3.2.

Testing two screws instead of a single screw did not yield twice the strength when

the screws were flush against the face of the fixture. One screw would hold the majority

of the load until it failed, then the remaining screw would take the load. This resulted in
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two distinct peak loads during testing double screws flush against the fixture face. When

two screws were backed away from the fixture face, they tended to act in unison and the

connection achieved near twice the strength of a single screw test. Statics would say that

each screw in both cases should have seen the same load. The difference in behavior of

the two screw tests may be due to experimental error and slight deviations in the screw

cross section and material properties.

I 2 3 4 5

Figure 3.8 Screw Positions for Shear Testing

Thus the logical testing procedure, which used two steel sheets joined together by

the screws to be tested (Figures 3.9 and 3.10) was determined to be the best test fixture.

The advantage of this was that the screw was placed into the sheets in the same manner

that it would be used in a real connection, Le. it drilled its own hole and tapped its own

threads. This more accurately simulated the actual condition in the field. As long as the
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sheet thickness was adequate to prevent a tilting or bearing failure of the screw, the screw

failed in shear. Screw spacing and edge distance were selected to prevent tearout failures.

Figure 3.9 Photo of Shear Test Setup Using Two Steel Sheets

Using the test setup as shown in Figure 3.10 gave more consistent failure loads

(Table 3.3) than did the fixture of Figure 3.5 (Table 3.2). Tests were performed with both

single- and two-screw connections. The per-screw strength was consistent between the

single- and two-screw tests, and on the average the two-screw test gave a seven percent

lower per screw strength. Due to the conservative nature of the two-screw test, a two­

screw test was pennitted in the standard test protocol. Standard dimensions for the test



specimen were taken from "Test Procedures for use with the 1996 Edition of the Cold-

Formed Specification" (AlSI, 1996b).

Grips of Tension
Testing Machine

19

o
o

Front

Shim

Grips OfTensi~
Testing Mach:: ~

Side

Figure 3.10 Shear Test Setup Using Two Steel Sheets
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f Sh T t U ° PI t F O tT bl 32 Sa e . ummaryo ear es S SlOg a e IX ure

Test # Failure Setup Control: Rate:
Load (Ibs) ** S = Stroke Stroke (in/min)

L=Load Load (Ibs/min)

sl 2080 1 S 0.036
s2 2210 & 2490* 2 S 0.036
s3 1020 1 L 9400
s4 1460 1 L 330
s5 1000 1 L 330
s6 2100 2 L 330
s7 1860 3 L 330
s8 4120 4 L 330
s9 3680 4 S 0.018

s10 2670 5 S 0.18
sl1 1980 5 S 0.18

* Two distinct peak loads attained - load sharing was minimal.
** See Figure 3.8 for defmition of setup.
Note: The above is for round head screws with square drive.

f Sh T t U ° T St I Sh tT bl 33 Sa e ° ummary 0 ear es s SlOg wo ee ee S

Test # Failure # of Strength Rate:
Load (Ibs) Screws per screw Stroke (in/min)

(Ibs)

s12 2973 2 1487 0.1
s13 3100 2 1550 0.1
s14 1534 1 1534 0.1
s15 1756 1 1756 0.1
s16 1590 1 1590 0.1

Note: #10-16xl-l/2" Traxx hex head screws
Sheet steel was 3.25 inch x 7.63 inch x 0.072 inch
Fy = 66 ksi Fu = 71 ksi
Screw spacing = 2 inch
Edge distance in the line of force = 1 inch

3.4 COMBINED SHEAR AND TENSION

The combined shear and tension test study consisted of an investigation of two

different test methods. The first method used the same test fixture that was used for the
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tension test. The assembly was inserted into the tension testing machine at an angle

(Figure 3.11). Representative test values are shown in Table 3.4. Variation of failure

loads, and the limited number of tests conducted, suggest that further study of this method

may be warranted.

Fixtures
to Hold
Screw

theta

I~eta, ',:1S:

Figure 3.11 Combined Shear and Tension Test Setup

Note. #1O-16x1-112 Traxx hex head screws.

Table 3.4 Combined Shear and Tension Test
Test # Failure Angle from Rate:

Load (lbs) Vertical Stroke
(deerees) (in/min)

stl 3599 8 0.1
st2 3953 8 0.1
st3 3690 18 0.1
st4 2770 18 0.1

"

The second test method was taken from Luttrell (1996). The test setup is given by

Figures 3.12, 3.13, and 3.14.
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Screw
-------..,

L .. _. __ +. ~ _

Channel

Figure 3.12 Combined Shear and Tension - Deck Assembly

Pomt

II

'" /

Loadingr Frame

J
/ ""
~ Lift

Figure 3.13 Combined Shear and Tension - Loading Frame

As shown by Figure 3.12, a steel deck section was attached to a channel section

using the screw that was to be tested in combined shear and tension. Figure 3.13 shows

the loading frame, which was sized to support the steel deck section. Figure 3.14 shows
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Loading Frame

Section A-A

Figure 3.14 Combined Shear and Tension - Test Setup

the final assembly. The steel deck was placed inside of the loading frame, and the

channel was anchored by means of a bolt through a hole in the side of the channel. A

load was applied through the lift points, thus putting the screw into combined shear and

tension. This test models the type of loading that is most likely to occur in an actual

structure. The deck section must be thick enough to prevent pull-out and pull-over

failures. The bolt hole in the channel must line up with the line of force applied to the

screw. The "theta" angle (Figure 3.14) determined the components of "T", the tension

force supplied by the testing machine, that were tension and shear on the screw. The

angle may be varied to vary the proportions of tension and shear on the screw.

No tests were performed with this setup during this study, however Luttrell

provided test data, verifying the test procedure.
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3.5 TORQUE - TENSION CORRELATION

For screws too short to test in tension using the fixtures of Section 3.2, a means was

needed by which to determine the tensile strength. Two concepts were pursued. Each

concept relates tension strength of the screw to some other more easily measurable

property of the screw. The two concepts considered were the use of screw hardness and

use of the screw torsion strength.

Relating screw hardness to tensile strength is a technique that may be currently used

for determining the bolt tensile strength (ASTM, 1995). The screw is case hardened to

make the outside of the screw durable during the drilling and tapping. This case

hardening creates a variation in hardness through the cross-section that is difficult to

quantify. Several hardness measurements would be necessary across the cross-section of

the screw shank. The shank of a screw is small in diameter, and therefore hardness

testing would require the use of micro-hardness testing equipment, which is not readily

available. To quantify the hardness requires making a metallurgical mount ofthe screw

cross-section. After metallographically polishing the mount, a scanning electron

microscope, or an optical microscope, would be used to measure the case depth. Then

using the rule of mixtures, that is proportioning hardnesses weighted by the area to which

they apply, an average hardness value could be calculated for the screw cross-section.

This hardness value could then be correlated to the tension strength of the screw, using

ASTM A 370-97a (ASTM, 1997) or by multiplying the Brinell hardness number by 500.

The use of hardness is impractical, so a more efficient method was sought. A

limited study was performed to correlate the tensile strength of the screw to the torque

required to break the screw in a torsion test. The torsion test consisted of placing the
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screw in a vice, which clamped the screw threads sufficiently to prevent rotation of the

screw. Care was taken to prevent crushing of the screw threads when clamped in the

vice. A torque wrench was used to twist the head of the screw, which projected above the

vice until the screw failed in torsion. The torsion at failure, which was the maximum,

torsion that the screw withstood, was called the torsion strength.

Three screw types were investigated, and the results of the 17 tests are listed in

Appendix C. The average of the test results are listed in Table 3.5, along with the

torsion/tension ratio.

Table 3.5 Tension vs. Torsion Correlation
Screw Mean Tensile Mean Torsion Torsion/
Type Tensile Strength Torsion Strength Tensile

Strength COY Strength COY Ratio
(lbs) (in-Ibs) ((in-Ib)/Ib)

#12-12x3" 2997 0.01 96.25 0.03 0.032
#10-16x 1-1 /2" 2886 0.10 86.75 0.06 0.030

#12-14x3" 3852 0.06 136.5 0.04 0.035

During the torsion tests, the screws tended to break either near the head or where

the screw threads were clamped near the top of the vice. The clamping location was

varied between near the top and near the bottom of the threaded shank ofthe screw. The

torsion at failure, however, was consistent regardless of the location of clamping. The

average torsion/tension ratio ranged from 0.032 to 0.035, with coefficients of variation

from 0.01 to 0.10. A ratio of 0.035 was recommended in the standard test (Appendix A)

in order to yield a conservative estimate of the tension strength.



4. RESULTS FOR CONNECTION STRENGTH

4.1 GENERAL

Screw connection strength equations in the current American Iron and Steel

Institute's Cold-Formed Steel Design Manual (AISI, 1996) are based on a data base of

over 3500 tests (Pekoz, 1990). Because the test parameters involved are broad, there is

much scatter in the data, and the design equations were conservatively developed.

This study has focused on design parameters typically found in residential

construction in the United States. Patterns, spacing, and number of screws were varied to

determine their effect on connection strength. Previously, screw patterns and spacing had

not been studied extensively. Design equations for establishing the connection strength

have been developed.

The connection strength study involved testing of 200 single lap connections of

normal ductility steel sheets. Three sheet thicknesses (Appendix E, Table E.l) were

considered. Three self drilling screw sizes, #8, #10, and #12 were studied. Unique to

this research was the study of the influence of the number of screws, geometric pattern

formed by the screws, and the spacing of the screws. The number of screws in a

connection varied from 1 to 12 and formed 27 different geometric patterns. Two different

screw spacings were investigated, 2d and 3d, d being the outer diameter of the screw

threads. The effect of stripped screws on connection strength was also studied.

Appendices D through M detail the sheet and screw dimensions, sheet material

properties, test data and patterns, and graphs.

Bearing failure was the failure mode that was the focus of this study. Currently the

American Iron and Steel Institute (AISI, 1996) specifies a minimum of 3d spacing, d
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being the outer diameter of the screw threads. In this study, 2d spacing was a lower

bOWld because screw heads interfered with each other at spacings less than this. Edge

distances as specified by the Cold-Formed Steel Design Manual (AISI, 1996) were

maintained (1.Sd transversely and 3d longitudinally).

4.2 TEST SPECIMEN

Figures 4.1 and 4.2 show the general test setup. Sheets were always 12 inch long,

and a three inch length was clamped inside the jaws of the tension testing machine. Two

sheet widths were used - 1-7/8 inch and 2-7/8 inch.

Three different sizes of self-drilling screws were used, and each screw size

determined the minimum spacings required (for screw dimensions see Appendix D,

Tables D.S through D.8). For longitudinal and transverse spacing of screws, Section E3.l

ofSpecification/or the Design a/Cold-Formed Steel Structural Members (AISI, 1996)

was referenced. According to the specification (AISI, 1996), screw spacing and

longitudinal edge distance parallel to the direction of force (Figure 4.1), must not exceed

3d, where d is the outside diameter of the screw. Transverse edge distance must not be

less than I.Sd according to the AISI specification (AISI, 1996).

The screw pattern was centered transversely on the sheet, with the first row of

screws occurring at the minimum longitudinal edge distance from the edge of the sheet.

The minimum transverse edge distances were met or exceeded. Screw spacing was

measured transversely and longitudinally, not diagonally. Diagonal spacing met or

exceeded the minimum screw spacing.
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Figure 4.1 General Test Setup for Connection Tests

To fabricate a test specimen, a 24 inch long sheet was cut in half to form two 12

inch long sheets that would be screwed together. The sheet was cut in half with a chop

saw. The cutting introduced heat into the test sheet, therefore the cut ends of the 12 inch

sheets, when the connection was tested, were placed in the grips of the tension testing
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machine, rather than being used in the area ofthe connection. Thus, the cutting

procedure did not affect the connection strength.

Figure 4.2 Connection Test Setup

One 12 inch sheet was marked with the screw pattern. The two 12 inch sheets

were lined up on a flat surface, clamped and placed in a vice to prevent gaps between the
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sheets. A screw gun with variable torque control was used to insert the screws. The

variable torque control was used to prevent screw stripping. The screw drilled its own

hole, after which the screw threads drove the screw into the sheets until the head ofthe

screw bore snugly against the sheet.

4.3 TEST PROCEDURE

The connected sheets were placed into a Materials Test System 880 (MTS) testing

machine and loaded until failure occurred. A three inch length at each end ofthe sheet

was clamped by the machine's jaws. The machine then automatically applied a stroke

rate of 0.1 inch per minute, and recorded the applied load. The test was continued until a

failure load was reached. Connection strength was defmed as the maximum load at

failure.

4.4 GENERAL RESULTS

When fracture occurred, it almost always occurred in the sheet that had the screw

threads exposed, rather than the sheet against the screw head. Maybe this occurred

because when the screws tilted, which occurred early in the test, part of the head would

bear against the sheet, spreading the load over a wider area. Therefore, the sheet that had

only the screw threads bearing against it had a smaller bearing area. Figure 4.3 shows

examples ofconnection behavior that were encountered. From left to right in this figure,

the behaviors are screw shear, bearing failure of the sheet, fracture of the sheet between

the screws, and cupping ofthe material around the connection.
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Figure 4.3 Behavior of Connections

When there were several rows of screws, fracture occurred through the row

closest to the jaws ofthe testing machine.

Bearing failures and tilting with bearing were the desired failure mode. Typically,

for larger number of screws, the sheet would fracture. For the 16 gage sheet, when the

number of screws was small, one or two, failure was by bearing and then shear of the

screws. If fracture if the sheet was experienced in the two inch wide sheet, then a three

inch wide sheet was used to allow for testing of greater number of screws. Some tests of

connections with two inch and three inch sheet widths were perfonned in which the screw

pattern was identical to demonstrate that the connection strength was independent of the

sheet width.
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Strength per screw was calculated and is summarized in Appendix F. A

connection with one screw had a higher strength than the strength per screw for a multiple

screw connection with the same screw and steel sheet size. To quantify this effect, a

"Group Effect" was created that normalized connection strength with respect to single

screw strength. This "Group Effect" is the strength per screw divided by the connection

strength for a single screw connection. If all screws in a connection acted and contributed

equally, the "Group Effect" would be 1.0. Current design equations are based on a single

screw connection, and the strength of multiple screw connections is assumed to be a

direct multiple of the single screw connection strength. This assumption would give a

"Group Effect" of 1.0, that is, any number of screws in a connection would have the same

strength per screw as a similar single-screw connection. The "Group Effect" calculated

from the data shows that this assumption is not valid.

4.5 EFFECT OF PATTERN

A total of 27 different geometric screw patterns were tested. The screw patterns and

test results may be seen in Appendix F. Table 4.1 shows data for some four screw

patterns, and is arranged in order of strength.. Figure 4.4 shows the patterns. As

indicated by the "Group Effect" in Table 4.1, varying the screw pattern did not

significantly vary the strength of the connection. These "Group Effect" values were

within +/- 7% ofthe average. A general trend can be seen: with the exception of pattern 4E,

the more rows of screws the connection had, the higher strength the connection had. A row

is defmed as a line of screws transverse to the direction of loading. This generality makes

sense conceptually because more rows of screws gives more rotational stability to the
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T bl 4 1 T . I R I :t F S P tta e . YPlca esu ts or our crew a erns
Pattern Connection Connection Group 0/0 from

Strength Strength Effect Mean
(Ibs) per

screw (Ibs)
4C 1492 373 0.71 -4.1
4A 1506 377 0.72 -3.2
4A 1524 381 0.72 -2.0
4B 1559 390 0.74 0.2
4B 1563 391 0.74 0.5
4E 1583 396 0.75 1.8
4D 1663 416 0.79 6.9

Note: N20 Sheets, #8 Screw, 3d Spacing

• •
• •

•• •
•

• • • •

4C

4A
4B

•
•
•
•

•• • •

4E

4D

Figure 4.4 Screw Patterns for Four Screws
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connection. That is, when the connection is loaded, loading is eccentric because the

sheets lap each other. This eccentricity causes the connection to rotate. More rows of

screws cause the connection to be more stable against rotation. Less rotation can translate

into more strength. When the connection rotates, the screws tilt, and instead ofbeing in

shear, the screws are put into tension and shear. This causes the screws to tend to pull out

of the steel sheets rather than bear on them, which gives less strength to the connection.

Figure 4.5 gives shows the amount of connection rotation that was common in this study.

Figure 4.5 Common Connection Rotation
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The "Group Effect" is calculated by dividing a connection's "Connection Strength

per screw" by the average of the connection strength values for a single-screw connection

that has the same sheet thickness and screw size. To illustrate this, the fIrst value in

Table 4.1 will now be calculated. From Table F.3 in Appendix F, the connection strength

values for N20 sheets, #8 screw, 3d spacing, and pattern lA are 519 and 5341bs. The

average of these is 523.5 Ibs. Dividing the "Connection Strength per screw" for pattern

4C in Table 4.1 above, by the average just calculated, one gets 373/523.5, or 0.71, which

is the "Group Effect" given in Table 4.1.

The trend of more strength for more rows of screws was seen repeatedly, for

example for the two-screw patterns 2A and 2B (Tables 4.2,4.3, and 4.4). Figure 4.6

shows the patterns. Pattern 2A generally had less strength than pattern 2B. When

connections had the 2A pattern the screws tended to pull out of the sheet, if the test was

allowed to progress that far. Generally tests were terminated when a defmite peak was

reached in loading. The 2B pattern offered more resistance to rotation, and therefore

developed better structural performance.

Table 4.2 Effect of Number of Rows on Connection Strength #1
Pattern Strength Strength Group

(lbs) per Effect
screw Obs)

2A 1146 573 0.83
2A 1197 599 0.87
2B 1188 594 0.86
2B 1281 641 0.93

Note: N18 Sheets, #8 Screw, 3d Spacing - 2 Screw Patterns
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Table 4.3 Effect of Number of Rows on Connection Strength #2
Pattern Strength Strength Group

(lbs) per Effect
screw (lbs)

2A 749 375 0.71
2A 789 395 0.75
2B 900 450 0.85
2B 844 422 0.80

Note: N20 Sheets, #8 Screw, 3d Spacing - Two Screw Patterns

Table 4.4 Effect of Number of Rows on Connection Strength #3
Pattern Strength Strength Group

(lbs) per Effect
screw (lbs)

2A 2652 1326 0.87
2A 2697 1349 0.89
2B 2835 1418 0.93
2B 2812 1406 0.92

Note: N16 Sheets, #10 Screw, 3d Spacing - Two Screw Patterns

• • •
•

2A

2B

Figure 4.6 Screw Patterns for Two Screws

Another phenomenon that occurred, which was pattern dependent, was the failure

of a connection in which the screw pattern did not take up a significant portion of the
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sheet width. An example of this is shown in Figure 4.7 where pattern IOD does not take

up as much of the sheet width as compared to pattern lOA. This is also seen in Figure 4.8

where l2C does not take up as much of the sheet width as compared to 12A. Data

comparing these are shown in Tables 4.5 and 4.6. Both of these examples involve

fracture, not bearing, failures. Based on the generality developed above, one would

expect more strength from the lOD and 12C patterns because there are more rows of

screws. But, because the patterns lOD and 12C were narrow with respect to the sheet

width, the sheet "cups" under load. That is, the edges of the sheet curled around the

screw pattern, so that both lapped sheets curl away from each other (see Figure 4.3, far

right specimen). This cupping was caused by the sheet stretching more in the vicinity of

the screws, and less at the edges of the sheet.

• •
• •
• •
• •
• •

lOA

IOD

Figure 4.7 Screw Patterns for 10 Screws
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Figure 4.8 Screw Patterns for 12 Screws

Table 4.5 Effect of Cupping - lOA vs. lOD Patterns
Pattern Strength

(lbs)
lOA 3329
10D 3067

Note: N20 Sheets, #8 Screw, 3d Spacing

Table 4.6 Effect of Cupping - l2A vs. l2C Patterns

Pattern Strength
(lbs)

l2A 3768
l2C 2686

Note: N20 Sheets, #12 Screw, 3d Spacing
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This same cupping behavior was seen in a bearing failure for an 8-screw

connection - see Figure 4.9 and Table 4.7.

......
1'0....

------------- ---------- --------

• • • • • •
• • • • • •

• •
• •

8A

8D

Figure 4.9 Screw Patterns for S Screws

Table 4.7 Effect of Cupping - SA vs. SD pattern
Pattern Strength

(lbs)
8A 3570
8A 3656
8D 3272

Note: N20 Sheets, #12 Screw, 3d Spacing

A summarizing statement would be that, in a screwed lap connection, more rows

of screws lends rotational stability, and therefore more strength to a connection, unless

the screw pattern is narrow when compared to the sheet widths that are connected.

Overall, when bearing failures occurred however, pattern played little role in the strength

of the connection. Strength values were within +/- 10% ofthe average for a given
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number of screws in a connection. This +/- 10% can be seen in Appendix F by

comparing the "Group Effect" values for a given number of screws in any given chart.

This 10% variation is easily achieved in screwed connection tests as a variation in

experimental results, and is therefore not considered significant.

4.6 EFFECT OF NUMBER OF SCREWS

Accepted design practice is to assume that if a connection has four screws, it will

be four times as strong as a connection with one screw, as long as the sheets being joined

do not reach fracture first. For all tests performed, the strength per screw in a connection

diminished as the number of screws increased. Figure 4.10 shows a typical relationship

between the connection strength and the number of screws.

Connection Strength
N20 Sheets - #12 Screws - 3d Spacing

5000

,.-.,
ell

.J::J 4000-'-"
t
t:: 3000Q)
I-<.....
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t::

20000.-.....
(,)
Q)

2 10000
u

o -
1 2 3 4 5 6 7 8 9 10

Number of Screws

Figure 4.10 Effect of Number of Screws on Connection Strength
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As shown by Figure 4.10, the constant slope of the trend line indicates a constant

increase in connection strength, but does not give a doubling of connection strength when

the number of screws is doubled. A complete set of graphs for all tests may be found in

Appendices H, I, and J.

The "Group Effect" is defmed as the ratio of the connection strength per screw to

the average strength for a single screw connection of the same sheet thickness and screw

size. Table 4.8 shows a typical data set, including the "Group Effect" for each connection

(data for all tests is given in Appendix F). The "Group Effect" provides an indication of

the ability of the fastener group to share the load. Graphically, the relationship between

the "Group Effect" and the number of screws is shown by Figure 4.11. This graph shows

the diminishing strength per screw as the number of screws increases. A complete set of

"Group Effect" graphs for all tests may be found in Appendices K, L, and M.

OS 3dSTable 4.8 Data for N16 Sheets, #1 crew, lpaCID

Pattern Number Strength Strength Group
of (lbs) per Effect

Screws screw (lbs)

1A 1 1534 1534 1.01

lA 1 1509 1509 0.99

2A 2 2652 1326 0.87

2A 2 2697 1349 0.89
2B 2 2835 1418 0.93
2B 2 2812 1406 0.92-..
3A 3 3596 1199 0.79
4A 4 4559 1140 0.75
5B 5 5247 1049 0.69
5C 5 5321 1064 0.70
7A 7 7203 1029 0.68
8B 8 7622 953 0.63
8D 8 7466 933 0.61
9C 9 8094 899 0.59
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N16 sheet - No. 10 Screw - 3d Spacing
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Figure 4.11 Group Effect vs. Number of Screws

4.7 EFFECT OF SCREW SPACING

Screw center-to-center spacing was tested at both 3d and 2d, where d is the

outside diameter of the screw threads in the connection. The lower limit of the study was

chosen as 2d because at this spacing the heads came in close contact with each other. A

sample of the test results are given by Figure 4.12, where the effect of 2d spacing is

compared to 3d spacing. A complete set of graphs may be found in Appendix H. It can

be seen from the graphs that a closer spacing of screws resulted in a lower connection

strength.

4.8 EFFECT OF STRIPPED SCREWS

This study did not focus on stripped screws, but some screw stripping did occur.

Stripping occurs as a screw is being driven into the lapped sheets. When the screw head
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makes contact with the sheet, if the screw continues to spin instead of being drawn snug,

it is called a "stripped" screw. Thirteen cases of stripped screws occurred where direct

comparison to an identical unstripped connection could be made. The connections with

stripped screws were as strong as the identical connection without stripped screws.

Table 4.9 gives examples of stripped screw connections. More examples can be

found in Appendix F.

Connection Strength
N16 sheets - #8 Screws
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1 2 3 4 5 6 7
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Figure 4.12 Effect of Screw Spacing on Connection Strength

4.9 DESIGN EQUATION

A design equation was sought that would allow calculation of a connection

strength based on a single-screw strength equation. The general form of the equation is

shown in Equation (4-1).
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P-nPR- 1 (4-1)

where:

n = number of screws in a connection

PI = strength for a single screw connection

R = reduction factor that accounts for the "Group Effect"

T bl 4 9 EU t f St' d Sa e . ec 0 nppe crews
Pattern Strength Number of Screws Number of

(lbs) in Connection Stripped Screws
2A 749 2
2A 789 2 1
2B 844 2
2B 900 2 1
4A 1524 4
4A 1506 4 1
8A 2859 8 1
8A 2906 8 2
9A 2896 9 2
9A 2998 9 2

Note: N20 Sheets, #8 Screw, 3d Spacing

The equation for PI is based on the research of Minkin (1998) and is given by

equation (4-2).

(4-2)

where:

Fu = ultimate tensile strength of steel sheets being joined

t = thickness of sheets being joined

d = nominal screw diameter
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The R factor was derived based on all of the "Group Effect" data for test specimens

having a center-to-center spacing of 3d or greater. As discussed in Section 4.5, the

"Group Effect" was shown to be a function of the number of screws in the connection.

Figure 4.13 shows the graph of all 3d data for this connection strength study.

3d Spacing
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Figure 4.13 Group Effect vs. Number of Screws for 3d Spacing

The best fit curve for Figure 4.13 is given as Equation (4-3).

(
0.467)

R3d = 0.535 + j;; s 1.0 (4-3)

where:

R3d = reduction factor that accounts for the "Group Effect" for s ~ 3d

s = screw center-to-center spacing
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d = nominal screw diameter

n = number of screws in connection

A parametric study was conducted to assess the influence of other parameters that

may affect the group performance. This study plotted RtestIR3d against several parameters

including screw thread outer diameter (d), sheet thickness (t), screw spacing (s),

longitudinal and transverse edge distances, steel sheet ultimate tensile strength (Fu), ratio

of transverse edge distance to sheet width (e/w), ratio of connection area (area bounded

by screw pattern) to lapped sheet area (area of sheet overlap), and ratio of transverse edge

distance to screw thread outer diameter. The results of the parametric study are given by

Figures 4.14 through 4.22. Upon review ofthese figures, no significant trends can be

seen (all trendlines center along the Rtest/R3d = 1.0).

RtestIRJd vs. d
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Figure 4.14 RtestIR3d vs. d
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"Group Effect" was shown to be a function of the number of screws in the connection.
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Figure 4.13 Group Effect vs. Number of Screws for 3d Spacing

The best fit curve for Figure 4.13 is given as Equation (4-3).

(
0.467)

R3d = 0.535+ ~ S 1.0 (4-3)

where:

R3d = reduction factor that accounts for the "Group Effect" for s ~ 3d

s = screw center-to-center spacing



46

d = nominal screw diameter

n = number of screws in connection

A parametric study was conducted to assess the influence of other parameters that

may affect the group performance. This study plotted Rtest/R3d against several parameters

including screw thread outer diameter (d), sheet thickness (t), screw spacing (s),

longitudinal and transverse edge distances, steel sheet ultimate tensile strength (Fu), ratio

of transverse edge distance to sheet width (e/w), ratio of connection area (area bounded

by screw pattern) to lapped sheet area (area of sheet overlap), and ratio of transverse edge

distance to screw thread outer diameter. The results of the parametric study are given by

Figures 4.14 through 4.22. Upon review ofthese figures, no significant trends can be

seen (all trendlines center along the Rtest/R3d = 1.0).
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RtestlR3d VS. t
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RtestlR3d VS.# ofTransverse Rows of Screws in Connection
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Figure 4.17 RtesJRJd VS. Number of Transvene Rows in Connection
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RiestlR3d vs.Fu
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RtestlR3d VS. (Conn Area)/(Lap Area)
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The center-to-center spacing ofthe screw did influence the connection

perfonnance. The 2d screw spacing gave a greater "Group Effect" than 3d screw spacing.

The graph for the 2d spacing "Group Effect" is given by Figure 4.23.

2d Spacing
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Figure 4.23 Group Effect vs. Number of Screws for 2d Spacing

The best fit curve for Figure 4.23 is given as Equation (4-4).

(
0.702)R2d = 0.318+ ~ s 1.0 (4-4)

where:

R2d = reduction factor that accounts for the "Group Effect" for s < 3d

s = screw center-to-center spacing

d = nominal screw diameter
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n = number of screws in connection

Dividing Equation (4-3) by Equation (4-4) gives the curve in Figure 4.24. This figure

indicates that the center-ta-center spacing of the screws could influence the capacity by as

much as 20%.
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Figure 4.24 R3dIR2d vs. Number of Screws

The best fit curve for Figure 4.24 is given as Equation (4-5).

0330
RM = 0.697 + .J"il

where:

RM = reduction factor that modifies 3d spacing to 2d spacing effect

s =screw center-to-center spacing

(4-5)
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d = nominal screw diameter

n = number of screws in connection

Given the above equations, two possible sets of design equations are proposed.

The first design model is given in Equations (4-6) through (4-9), the second design model

is given in Equations (4-10) through (4-14).

Design Modell:

where:

n = number of screws in a connection

(4-6)

P j = strength for a single screw connection = F)d(2.013 : + 1.56) (4-7)

R = reduction factor for the connection "Group Effect"

for s ~ 3d, R =R3d

for 2d < s < 3d, R = ~d

(
0.467)

R3d = 0.535 + J;. ~ 1.0 (4-8)

R2d =(0.318+ 0~2) ~1.0 (4-9)

Fu = ultimate tensile strength of steel sheets being joined

t =thickness of sheets being joined

d = nominal screw diameter

s =center-to-center spacing of the screws
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Design Model 2:

Ifs ~ 3d, (4-10)

where:

n = number of screws in a connection

(4-11)

PI = strength for a single screw connection = Futd(2.013 : + 1.56) (4-12)

R3d = reduction factor for the connection "Group Effect" for 3d spacing

(
0.467)

R3d = 0.535+~ s 1.0

RM = reduction factor that modifies 3d spacing to 2d spacing effect

0.330
RM =0.697+ ~

Fu = ultimate tensile strength of steel sheets being joined

t = thickness of sheets being joined

d = nominal screw diameter

s = center-to-center spacing of the screws

(4-13)

(4-14)

These design models are compared with the data found in this study, as well as the

data of Daudet (1996), and Rogers and Hancock (1997). The current AISI equations

(AISI, 1996) are also evaluated for the same data. PtestlPcalc is calculated, where Ptest is the

actual connection strength and Pcalc is calculated using the two proposed design models,

as well as AISI design equations. Values for the mean ofPtestlPcalc are shown in Table

4.10 (the complete set OfPtestIPcalc for all data is given in Appendix N). Table 4.11 gives
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coefficients of variation for PtestlPcalc. Table 4.12 gives the calculated resistance factor (~)

for LRFD design. Table 4.13 gives the calculated factor of safety (n) for ASD. "All"

refers to all data being considered together. Breakdowns by 2d and 3d spacing are also

shown.

ti P IPfMT bl 410 Ca e ompanson 0 ean or test como

Data Number Design Design AISI
of Data Modell Model 2 Mean
Points Mean Mean

All 353 1.08 1.08 0.96
Sokol 3d 128 1.01 1.01 0.86
Sokol2d 72 1.02 1.02 0.70
Sokol All 200 1.02 1.02 0.80

Rogers & Hancock 12 1.32 1.32 1.41
Daudet 141 1.15 1.15 1.14
AIl2d 81 1.04 1.05 0.74
All 3d 272 1.09 1.09 1.02

For both design models, Table 4.10, it is seen that there is a large deviation from 1.0

for the mean values for Rogers and Hancock. One reason for this could be that the spacing of

screws in the connection ranged from 4.4d to 5.7d. It has already been discussed in this study

that the calculated strength for 2d spacing was less than that for 3d spacing. Equations were

developed for spacings less than 3d, and for spacings greater than or equal to 3d. Ifequations

were developed that took 4d or greater spacing into account, it is thought that larger calculated

strengths would be found. The large P testlPcalc ratio encountered in the Rogers and Hancock

data supports this hyPOthesis. For all data, the AISI design equations provided an acceptable

PtestlPcalc mean of0.96, however the coefficient ofvariation was 0.26.
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fC ffi' t fV . . £ P fPT bl 411 Ca e . ompanson 0 oe IClen 0 anatIon or test comp

Data Number Design Design AISI
of Data Modell Model 2 COY
Points COY COY

All 353 0.14 0.14 0.26
Sokol 3d 128 0.06 0.06 0.15
Sokol2d 72 0.07 0.07 0.19
Sokol All 200 0.06 0.06 0.19

Rogers & Hancock 12 0.22 0.22 0.21
Daudet 141 0.15 0.15 0.15
A1l2d 81 0.10 0.10 0.23
All 3d 272 0.15 0.15 0.23

Table 4.12 Summary of Phi Factor (4))

Data Modell Model 2 AISI
All 0.65 0.65 0.44

Sokol 3d 0.67 0.67 0.50
Sokol2d 0.67 0.67 0.38
Sokol All 0.67 0.67 0.44

Rogers & Hancock 0.63 0.63 0.68
Daudet 0.68 0.68 0.67
A1l2d 0.67 0.67 0.36
All 3d 0.64 0.64 0.51

Table 4.13 Summary of Factor of Safety (0)
Data Model 1 Model 2 AISI
All 2.47 2.47 4.80

Sokol 3d 2.39 2.39 4.56
Sokol2d 2.39 2.38 5.92

Sokol All 2.38 2.38 5.16

Rogers & Hancock 2.56 2.56 4.57

Daudet 2.36 2.36 3.29

All2d 2.40 2.40 4.39

All 3d 2.49 2.49 3.13



57

4.10 PHI FACTOR AND FACTOR OF SAFETY

Derivation of the phi factor ,<I>, and factor of safety, n, for use in LRFD and ASD

design equations is based on Chapter F of the Specification for the Design of Cold-

Fonned Steel Structural Members (AISI, 1996). <I> is defined by Equation (4-15). A

sample calculation is given for the "all" data entry given in Tables 4.10 through 4.13, for

Design Modell.

where:

(4-15)

Mm = mean value of material factor, M, from AISI Table Fl for screw

connections = 1.10

Fm = mean value of fabrication factor, F, from AISI Table Fl for screw

connections = 1.00

Pm = mean value of the professional factor, P, for the tested component =

1.08

~o =target reliability index = 3.5 for connections

VM = coefficient of variation of the material factor, from AISI Table Fl for

screw connections = 0.10

VF = coefficient ofvariation of the fabrication factor, from AISI Table Fl

for screw connections = 0.10

Cp = correction factor = (1 + ..!.)~ for n ~ 4
n m-2

where:



n = number oftests = 353

m = degrees of freedom = n -1 = 352

(
1) 352therefore Cp = 1+ - = 1.009

353 352 - 2

Vp = coefficient of variation of the test results (not less than 0.065)

= 0.14 > 0.065, therefore use 0.14

VQ = coefficient ofvariation of the load effect = 0.21

e = natural logarithmic base = 2.718

therefore:

<t> = 0.65

Q is defined in Equation (4-16).

1.6
Q=-

~

This gives Q = 2.47.

4.11 DESIGN MODEL LIMITATIONS

The design models presented are limited by the following parameters:

0.030 inch ~ t ~ 0.053inch

0.165 inch ~ d ~ 0.215 inch

2d ~ s ~ 3.25d

47 ksi ~ Fu ~ 70 ksi

F
1.19 ~ _u ~ 1.62

Fy
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(4-16)





5. CONCLUSIONS

5.1 STANDARD TEST

Screw strength can depend on screw profile (head type (e.g. hex, flat), drive

configuration (e.g. Phillips, Torx), thread series, and size), specified grade, and washer

and/or sealant used. For short screws, a correlation is provided between tensile strength

and the torque required to twist off the head ofthe screw.

A standard test method for testing self-drilling screws was created. This method

addressed testing screws in tension, shear, combined tension and shear, and a torque­

tension correlation for screws too short to be tension tested. Limited testing was

performed to ascertain the consistency and practicality of different methods of screw

testing.

For tension testing, two methods were devised. The first involved a two-piece

fixture, one piece that allowed the head to be supported, the other grasped the threads.

The second method involved using the grips of the tension testing machine to grasp the

threads directly. Both test methods produced comparable tested tension strength.

For shear testing, two methods were devised. The first method used thick plates

that overlapped. The plates contained holes for inserting one or two screws to be tested.

The main problem with this fixture was that it allowed significant screw tilting and

inconsistent results. The second method used sheet steel as a disposable fixture. The

self-drilling screws connected two pieces of sheet steel together in a lap connection. This

assembly more accurately resembled the conditions that a screw would see in a

connection and provided consistent results. The sheets had to be thick enough to prevent

bearing and tilting failures.
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The combined tension and shear test involved two methods also. The first method

employed the same tension testing fixture used for tension tests, except that the fixture

was inserted into the tension testing machine at an angle. The second method was

developed by Luttrell, and involved a section of steel deck fastened to a channel. This

assembly was placed into a loading frame which could be adjusted to an angle of interest

to load the screw in combined tension and shear. No tests were run in this study using

Luttrell's method.

Finally, a torque-tension correlation was developed for screws too short to be tested

in tension. The torque test involved clamping a screw in a vice and twisting the head of

the screw using a calibrated torque wrench. The ratio of failure torque to screw tensile

strength was found to be 0.035 in-Ib/lb. An alternate method was presented that involved

finding an average hardness for the screw cross section (case hardening causes the screw

hardness to be variable). This hardness could then be related to the screw tensile strength.

A test procedure was written in language appropriate for adoption as a standard.

5.2 CONNECTION STRENGTH

Lap connections were tested in which the parameters that varied were sheet

thickness, screw size, screw pattern, number of screws, screw spacing, and stripped

screws. The focus was on bearing failures. As was already well established, thicker

sheets and larger screws give larger bearing capacities.

The main conclusions are that screw pattern does not cause a significant variation in

strength. Also, the number of screws does not give a direct multiplier of strength when

compared to single-screw strength. For example, a connection with 4 screws may only be
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3 times stronger than a connection with one screw. Also, varying the spacing of the

screws impacts the strength, as well as diminishing the multiplier of single-screw

strength.

All specimens experienced rotation at the connection (due to tilting of screws).

This meant that bearing failures were actually a combination of tilting, bearing, and then

tearing or fracture (if there are few screws, tearing tends to occur; for large numbers of

screws, fracture between screw holes occurs). Fracture was a combination of bending

and tension in the sheet. Shear was a combination of shear and tension on the screw.

Even though thicker material gives greater bearing capacity, by looking at the

"group effect" graphs, on thinner material, there is less reduction of screw strength with

additional screws. This means that each screw is participating more equally (normally the

screws at the ends of the connection work harder than the rest). This may be because the

thin material distorts more easily, and thus causes the load to be distributed more equally.

Screw pattern had an effect, but one that was so minimal as to be negligible. The

effect was that more rows gives more strength in lap connections, probably due to adding

rotational stiffness to the connection. This effect is limited to patterns that take up most

of the sheet width, as it was found that lower strengths occurred when the screw pattern

was narrow as compared to the sheet width. It is recommended that pattern be ignored in

strength calculations as it adds or subtracts minimally to the connection strength.

As the number of screws in a connection increases, the strength increases, but not as

a direct multiple of the single screw strength. That is, a connection with 4 screws is not 4

times as strong as a connection with one screw. The amount that each additional screw



adds to the connection strength is constant, as seen by the straight line in the graphs in

Appendices H, I, and J (Connection Graphs).

Screw spacing has a direct impact on the connection strength. 2d and 3d spacings

were investigated. The larger the spacing the greater the strength that occurred. At 2d

and 3d spacings, the connection strength still has a linear relationship to the number of

screws.

Stripped screws had no measurable effect on connection strength.

A design equation was developed which was statistically better than the present

AISI design equation, when applied to the connections in this study.
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6. FUTURE RESEARCH SUGGESTIONS

6.1 STANDARD TEST

If a standard tension test fixture could be developed for use industry-wide, this

would help make objective comparison ofmanufacturer's screws possible. A test fixture

that allowed a variety of screw sizes (thread pitch, shank diameter, head type) would be

ideal.

In this study, the use of a pre-drilled shear fixture did not yield reliable, consistent

results. Alternatives could include creating a double shear fixture to prevent screw

tilting, using hardened material for a fixture to prevent fixture damage and deformation,

and creating threads in the fixture that allowed the screws to be snug when screwed into

the fixture. Another solution could be to create a threaded block for the threads to be

secured into, such that the block would be snug up against one fixture face, just as the

screw head was snug against the opposite fixture face. The disadvantage with most of

these alterations was that the universality of the test fixture is lost, i.e. a separate fixture is

required for each screw thread series and diameter tested.

More work is required on the combined tension and shear test, perhaps to fmd a test

that is even simpler and more universal, and one that gives more reliable values.

More work needs to be done on the torque/tension correlation. Perhaps the

correlation will be a function of screw parameters, rather than just being constant

regardless of the screw.
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6.2 CONNECTION STRENGTH

It may be argued that the data presented in the connection strength graphs may

actually fit a parabolic shape, with the data for larger number of screws starting to taper

off. This may be occurring because at higher numbers of screws in a connection, larger

capacities are reached, and the sheet is approaching its fracture strength. Perhaps,

therefore, the failures are a combination of fracture of the sheet and bearing of the screw

on the sheet, which could cause a leveling off of the data. More connection tests could be

run, with larger numbers of screws and stronger or larger sheets to determine this effect.

More rows of screws gave more strength due to rotational stability. Is there a

limit to this increase? An area worth researching could be the effect of edge stiffeners on

the sheets that are being tested. These stiffeners could provide better rotational stability

than increased rows of screws. This may change the effect of adding rows of screws.

Spacings larger than 3d should be studied, and perhaps even spacings between 2d

and 3d. Is there a limit to spreading out screws and getting a larger connection strength?

The tensile strength of the sheets could be a factor in the effect of strength increase

with additional screws. Tests of connections that vary the tensile strength, while keeping

other factors constant could be revealing as to whether this is a factor. Also, a study of

low ductility sheet would be worthwhile.

In the screw patterns used, sometimes there were more screws at one end of the

connection than at the other. Because the line through which fracture usually is on the

sheet that has the screw threads protruding from it, patterns that are inverted versions of

those that already exist could be tested.
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Tests were run at a one stroke rate. Other tests could be run that vary the rate of

loading, to see the effect load rate has on connection strength.

When sheets are wide and screws are grouped near the middle of the longitudinal

centerline, the sheet cups around the connection. Would the connection strength be

increased if the screws were spread out? What if screws were placed near the comers of

the sheet in the connection?

Screws are put into sheets using a screw gun that has a torque setting (to prevent

stripping of screws). The screw gun has variable speed. Does the speed that the screws

are turned (for drilling the holes) impact the bearing resistance of the steel sheet near the

screw (due to the heat generated)?

Additional work could also be perfonned on the effect of stripped screws on

connection strength.





APPENDIX A

STANDARD TEST PROTOCOL
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Standard Test Methods for Determining the Mechanical Properties of Screws

I. Scope

1.1 These test methods establish procedures for conducting tests to determine the

mechanical properties of screws. The screws shall be thread-forming or thread-cutting,

with or without a self-drilling point.

1.2 Property requirements and the applicable tests for their determination are specified in

individual product standards. In those instances where the testing requirements are unique

or at variance with these standard procedures, the product standard shall specify the

controlling testing requirements.

1.3 These test methods describe mechanical tests for determining the following

properties:

Section

Axial Tension Testing of Full-Size Product 3.4

Single Shear Test .3.5

Combined Shear and Tension Test.. 3.6

1.4 This standard does not purport to address all ofthe safety concerns, ifany,

associated with its use. It is the responsibility ofthe user ofthis standard to establish
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appropriate safety and health practices and determine the applicability ofregulatory

limitations prior to use.

2. Referenced Documents

2.1 ASTMStandards:

A 370 Standard Test Methods and Defmitions for Mechanical Testing of Steel Products

E 4 Standard Practices for Force Verification of Testing Machines

E 10 Test Method for Brinell Hardness ofMetallic Materials

E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of

Metallic Materials

F 606 Standard Test Methods for Determining the Mechanical Properties of Externally

and Internally Threaded Fasteners, Washers, and Rivets.

2.2 AISI Documents:

Test Methods for Mechanically Fastened Cold-Formed Steel Connections

3. Test Methods - A test series shall be conducted on each screw profile (head type (e.g.

hex, flat), drive configuration (e.g. Phillips, Torx), thread series, and size), specified

grade, and washer and/or sealant used.

3.1 Torsion Tests - This test is intended to determine the ability of a screw to withstand a

predetermined load when applied about the axis of the screw. The test shall be performed
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by securing the thread end of the screw so that it may not rotate, ensuring that the threads

are not crushed. A calibrated torque measuring device shall apply torque to the screw at

the head of the screw. Torque required to twist the screw to failure shall be the torsion

strength.

3.2 Tension Tests - This test is intended to determine the ability of a screw to withstand a

predetermined load when applied along the axis of the screw.

3.2.1 It is required that screws be tested full size, and it is customary, when so testing, to

specify a minimum ultimate load (or stress) in pounds-force (or pounds-force per square

inch).

3.3 Screws Too Short for Tension Testing - Product lengths that do not have sufficient

threads for proper engagement and still leave complete threads exposed between the

grips, shall be deemed too short for tension testing, and acceptance shall be based on a

torsion test. If tests other than the torsion test are required, their requirements should be

referenced in the product specification. Tensile strength shall be taken as torsion strength

divided by 0.035 in-Ib/lb.

3.4 Axial Tension Testing ofFull-Size Product:

3.4.1 Test screw in a holder with the load axially applied between the head and a suitable

fixture, either of which shall have sufficient thread engagement to develop the full
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strength of the product. A sample test setup is shown in Figure 1. (Note: Threads may be

clamped directly by jaws of testing machine if screw shank is not crushed in so doing.)

screw

Fixtures
to hold. ,

.;....:.: .

y' ......Grips of
" " Testing... ~._, Machine

........

........

........

........
v

Figure A.I Standard Tension Test

3.4.2 To meet the requirements of the test described in 3.4.1, the product shall support a

load prior to fracture not less than the minimum tensile strength specified in the product

specification for its head type, drive configuration, thread series, size, washer and/or

sealant, and strength.

3.4.3 The speed oftesting as determined by the rate of separation of the testing machine

heads shall be limited to the greater of 0.1 in (2.5 mm) per minute or the rate caused by a

loading rate of 500 pounds (approximately 2 kN) per minute.

3.4.4 The maximum load applied to the specimen, coincident with or prior to screw

failure, shall be recorded as the tensile strength of the screw. At the discretion of the
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testing agency, tests need not be continued to destruction provided that the specimen

supports, without evidence of screw failure, the minimum load specified.

3.5 Single Shear Test - This test is intended to determine the ability of a screw to

withstand a predetermined load when applied transversely to the axis of the screw.

3.5.1 The specimen shall be tested using steel plates of sufficient thickness to preclude

bearing failure. Shear plates shall create a single-lap joint using two flat straps connected

with one or two fasteners. (If two fasteners are used, the total shear strength of the

connection may be divided by two to determine the shear strength for one screw.)

Suggested geometrical proportions of the test specimen are as given in Table 1, with

reference to Figures 2 and 3. The test fixture shall provide for central loading across the

lap joint. When the machine grips are adjustable or when the thickness of either strap is

less than 1/16 in. (approximately 2 mm), packing shims are not required for central

loading.

Table A.I Su ested Geometrical Pro omons - Specimen Dimensions
Screw Diameter

inch mm w e
:s; ~ (6.5)

3.5.2 The test specimen may be assembled in a shear jig or threaded into two flat sheets.

The test specimen shall be mounted in a tensile-testing machine capable of applying load

at a controllable rate. The grips shall be self-aligning and care shall be taken when
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mounting the specimen to assure that the load will be transmitted in a straight line

transversely through the test screw(s). Load shall be applied and continued until failure of

the screw(s). Speed of testing as determined by the rate of separation of the testing

machine heads shall be limited to the greater of 0.1 in. (2.5 mm) per minute or the rate

caused by a loading rate of 500 pounds (approximately 2 kN) per minute.

Grips 0

Testing Packing
Machine

<i
I

e
L

Test

screw~:~ p 16
(400)

e

w

Figure A.2 Standard Lap-Joint Shear Test - 2 Screws

3.5.3 The maximum load applied to the specimen, coincident with or prior to screw

failure, shall be recorded as the shear strength of the screw. At the discretion of the

testing agency, tests need not be continued to destruction provided that the specimen

supports, without evidence of screw failure, the minimum load specified.
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16
e (400)

w

Figure A.3 Standard Lap-Joint Shear Test - 1 screw

3.6 Combined Shear and Tension Test - This test is intended to determine the ability of a

screw to withstand a predetermined load that, when applied at an angle to the axis of the

screw, creates a combined shear and tension force in the screw.

3.6.1 Test screws in a holder with the load applied between the head and a suitable

fixture, either of which shall have sufficient thread engagement to develop the full

strength of the product. A sample test setup is shown in Figure 4, with an alternate setup

shown in Figures 5, 6, and 7.
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3.6.2 To meet the requirements of the test described in 3.6.1, the product shall support a

load prior to fracture not less than the minimum combined shear and tension strength

specified in the product specification for its head type, drive configuration, thread series,

size, washer and/or sealant, and strength.

3.6.3 The speed of testing as determined by the rate of separation of the testing machine

heads shall be limited to the greater of 0.1 in (2.5 mm) per minute or the rate caused by a

loading rate of 500 pounds (approximately 2 kN) per minute.

3.6.4 The maximum load applied to the specimen, coincident with or prior to screw

failure, shall be recorded as the combined shear and tensile strength of the screw. At the

discretion of the testing agency, tests need not be continued to destruction provided that

the specimen supports, without evidence of screw failure, the minimum load specified.

theta Fixtures
to Hold

" Screw

Figure A.4 Standard Combined Shear and Tension Test
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Figure A.S Alternate Combined Shear and Tension Test - Deck Assembly
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Figure A.6 Alternate Combined Shear and Tension Test - Loading Frame
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Loading Frame

theta

Section A-A

Figure A.7 Alternate Combined Shear and Tension Test - Test Setup

4. Report

4.1 The objectives and purposes of the test series shall be stated at the outset of the report

so that the necessary test results such as the maximum load per fastener, the flexibility of

the connection, and the mode of failure are identified.

4.2 The type oftests, the testing organization, and the dates on which the tests were

conducted shall be included in the documentation.

4.3 The test unit shall be fully documented, including:

1. the measured dimensions of each specimen (e.g., thread a.D., thread J.D.,

threads per inch, head dimensions, screw length, etc.),

2. identification data for the screws and accessories such as washers (screw data

shall include the name of the manufacturer, designation or type, dimensions,
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number of threads, unthreaded length or imperfect threads below head, and

the major and minor diameters in the threaded region),

3. the details of fastener application including predrilling, tightening torque, and

any unique tools used in the operation, and

4. Additional data shall indicate the drill-point diameter and length of flutes if

self-drilling screws are used. Otherwise, the diameter of the pilot drill used

shall be stated. Washers or washer-head data shall include diameter, thickness,

material, and if present the sealant data.

4.4 The test set-up shall be fully described including the testing machine, the specimen

end grips or supports.

4.5 The test procedure shall be fully documented including the rate of loading and the

load increments.

4.6 In accordance with the test objectives stated by the responsible engineer, the report

shall include a complete documentation of all applicable test results for each specimen

such as the load-defonnation curve, the maximum load, and the mode of failure.
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Figure B.t Screw Tension Test - Top Fixture
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Figure B.2 Screw Tension Test - Bottom Fixture
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Figure B. 3 Screw Shear Test Fixture
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Table C.1 Summary of Tension Tests (round head screws with square drive - #12-
13x1-1I4

Test # Failure Rate:
Load (Ibs) Stroke (in/min)

tI 3587 0.036
t2 2090 0.009
t3 3305 0.018
t4 2603 0.018
t5 2308 0.036
t6 3454 0.051
t7 1932 0.051
t8 2911 0.036
t9 2932 0.036

Table C.2 Summary of Tension Tests (bl
Test # Failure Rate:

Load (Ibs) Stroke (in/min)
tIO 2978 0.036
tIl 3000 0.036
t12 3013 0.036

Avg. 2997
COY 0.01

ue #12-12x3" hex head screws)

0-16x1-1I2" Traxx hex head screws)Table C.3 Summary of Tension Tests (#1
Test # Failure Rate:

Load (Ibs) Stroke (in/min)
t13 2818 0.1
t14 2799 0.1
tIS 3160 0.1
tl6 3187 0.1
tl7 2468 0.1

Avg. 2886
COY 0.10



Table C.4 Summary of Tension Tests Using Fixture (#12-14x3" Traxx hex head
screws)

Test # Failure Rate:
Load (lbs) Stroke (in/min)

tI8 3809 0.1
tI9 3785 0.1
t20 4099 0.1
t21 3548 0.1
t22 4020 0.1

Avg. 3852
COY 0.06
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1 2 3 4 5

Figure C.l Setups for Shear Testing Using Fixture
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Table C.S Summary of Shear Tests Using Fixture (round bead screws with square
drive)

Test # Failure Setup Control: Rate:
Load (lbs) # S = Stroke Stroke (in/min)

L=Load Load (Ibs/min)

sl 2080 1 S 0.036

s2 2210 & 2490* 2 S 0.036

s3 1020 1 L 9400
s4 1460 1 L 330
s5 1000 1 L 330
s6 2100 2 L 330
s7 1860 3 L 330
s8 4120 4 L 330
s9 3680 4 S 0.018
slO 2670 5 S 0.18
sll 1980 5 S 0.18

* Two distinct peak loads attained - load sharing was minimal.

d Sh t St IfSh T t U· LT bl C 6 Sa e . ummary 0 ear es s smg api~e ee ee
Test # Failure # of Strength Rate:

Load (Ibs) Screws per screw Stroke (in/min)
(lbs)

s12 2973 2 1487 0.1
s13 3100 2 1550 0.1
s14 1534 1 1534 0.1
sIS 1756 1 1756 0.1
s16 1590 1 1590 0.1

Note: #10-16xl-1I2" Traxx hex head screws. Sheet steel is 3' wide, 0.072" thick.

Table C.7 Torque Test (blue #12-12x3" hex head screws
Test # Failure Clamped Broke

Load (in-Ibs) Near: Near:
q1 95 top head
q2 95 top head
q3 95 bottom head
q4 100 bottom head

Avg. 96.25
COY 0.03



Table C.S Torque Test (#10-16x1-1I2" Traxx hex head sc
Test # Failure Clamped Broke

Load (in-Ibs) Near: Near:
q5 90 top head
q6 92.5 top head
q7 82.5 bottom head
q8 77.5 bottom head
q9 87.5 top head
q10 82.5 top head
qll 90 top head
q12 92.5 bottom bottom
q13 87.5 bottom bottom
q14 85 bottom bottom
Avg. 86.75
COY 0.06

Table C.9 Torque Test (#12-14x3" Traxx hex head screw
Test # Failure Clamped Broke

Load (in-Ibs) Near: Near:

q15 132.5 top bottom

q16 145 top bottom

q17 135 top bottom

q18 140 top bottom

q19 140 top bottom

q20 130 bottom bottom

q21 130 bottom bottom

q22 135 bottom bottom

q23 140 bottom bottom

q24 137.5 bottom bottom

Avg. 136.5
COY 0.04

rews)

s)
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Table C.IO Combined Shear and Tension Test (#IO-16x1-1I2" Traxx hex head
screws)

Test # Failure Angle from Rate:
Load (lbs) Vertical Stroke

(degrees) (in/min)

stl 3599 8 0.1
st2 3953 8 0.1
st3 3690 18 0.1
st4 2770 18 0.1
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Table c.n Tension Tests With and Without Bottom Fixture (#IO-16xl-1I2" Traxx
hex head screws)

Test # Failure Using Rate:
Load (lbs) Bottom Stroke

Fixture? (in/min)
t23 3966 Y 0.1
t24 3886 Y 0.1
t25 3218* N 0.1
t26 3837 N 0.1
t27 3664 N 0.1
t28 3878 N 0.1

* Jaws smashed threads in this test, causing premature failure.
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SCREW AND SHEET MEASUREMENTS
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The screws listed in Tables D.1 through DA were used in the Standard Test portion

of this study. The tests in which they were used are listed in Appendix C. A sample of

10 screws was usually taken to get a representative value for the screw dimensions. The

only exception to this is in Table D.1, where only 2 screws were available. The final line

of the tables gives the average of all measured values.

A legend of the heading symbols follows (refer to Figures D.I and D.2):

"Screw": gives screw number in the table.

"HT": head thickness.

"H": distance across flats ofhex head screws.

"W": head washer diameter or head diameter on round head screws.

"d": thread outer diameter.

"TD": screw drill tip maximum diameter.

"L": screw length from bottom ofhead to end of screw tip.

"TL": approximate length of screw drill tip.

"TPI": screw threads per inch.

TL

Figure D. 1 Hex Head Screw Dimensions
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Figure D. 2 Round Head Screw Dimensions

Table D.1 Blue Hex Head #12-12 x 3
Screw HT (in) H (in) W (in) d (in) TD (in) L (in) TL (in) TPI

1 0.176 0.256 0.385 0.214 0.137 2.85 0.25 12.5
2 0.185 0.254 0.378 0.217 0.128 2.87 0.25 12.5

AV2. 0.181 0.255 0.382 0.216 0.133 2.86 0.25 12.5

Table D 2 Traxx Hex Head #10-16x1-l/2.
Screw HT (in) H (in) W (in) d (in) TD (in) L (in) TL (in) TPI

1 0.149 0.309 0.394 0.185 0.157 1.47 0.31 16
2 0.147 0.308 0.404 0.187 0.159 1.47 0.31 16

3 0.149 0.309 0.397 0.185 0.155 1.47 0.31 16

4 0.152 0.308 0.398 0.187 0.158 1.46 0.31 16

5 0.138 0.308 0.414 0.187 0.149 1.46 0.31 16

6 0.138 0.308 0.398 0.187 0.149 1.47 0.31 16

7 0.136 0.309 0.405 0.186 0.151 1.47 0.31 16

8 0.148 0.311 0.402 0.185 0.161 1.46 0.31 16

9 0.149 0.308 0.401 0.185 0.160 1.47 0.31 16

10 0.150 0.308 0.401 0.185 0.159 1.47 0.31 16

AV2. 0.146 0.309 0.401 0.186 0.156 1.47 0.31 16
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Table D 3 Traxx Hex Head #12-14x3.
Screw HT (in) H (in) W (in) d (in) TD (in) L (in) TL (in) TPI

1 0.182 0.314 0.422 0.214 0.177 2.98 0.375 14

2 0.182 0.318 0.423 0.216 0.176 2.97 0.375 14

3 0.181 0.315 0.425 0.217 0.176 2.99 0.375 14
4 0.180 0.311 0.423 0.216 0.177 2.97 0.375 14
5 0.184 0.314 0.422 0.213 0.177 2.97 0.375 14
6 0.182 0.312 0.421 0.213 0.178 2.97 0.375 14
7 0.183 0.312 0.422 0.215 0.178 2.97 0.375 14
8 0.180 0.312 0.420 0.214 0.175 2.99 0.375 14
9 0.183 0.311 0.415 0.214 0.177 2.97 0.375 14
10 0.179 0.313 0.415 0.215 0.175 2.97 0.375 14

Avg. 0.182 0.313 0.421 0.215 0.177 2.98 0.375 14

d' #12 13 1 1/4T bl D 4 R d h d 'tha e . oun ea WI square rive - x -
Screw HT (in) W (in) d (in) TD (in) L (in) TL (in) TPI

1 0.083 0.525 0.235 0.129 1.25 0.25 13
2 0.083 0.520 0.231 0.130 1.25 0.25 13
3 0.080 0.522 0.239 0.130 1.25 0.25 13
4 0.082 0.517 0.231 0.130 1.24 0.25 13
5 0.082 0.523 0.235 0.130 1.25 0.25 13
6 0.082 0.528 0.235 0.130 1.26 0.25 13
7 0.081 0.522 0.232 0.130 1.26 0.25 13
8 0.081 0.529 0.234 0.128 1.26 0.25 13
9 0.081 0.525 0.235 0.129 1.25 0.25 13
10 0.081 0.523 0.236 0.129 1.25 0.25 13

Avg. 0.082 0.523 0.234 0.130 1.25 0.25 13
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Tables D.5 through D.8 are for screws used in the Connection Tests. The tests in

which they were used are listed in Appendix F "Data for Connection Tests".

H H d #8 18 3/4. FT bI D 5 Da e . 'ynamlc astener ex ea - x
Screw HT (in) H (in) W (in) d (in) TD (in) L (in) TL (in) TPI

1 0.129 0.249 0.330 0.165 0.140 0.75 0.21 17.5
2 0.130 0.248 0.331 0.165 0.137 0.73 0.21 17.5
3 0.140 0.249 0.328 0.165 0.134 0.74 0.21 17.5
4 0.138 0.248 0.334 0.166 0.136 0.75 0.21 17.5
5 0.128 0.249 0.340 0.166 0.138 0.74 0.21 17.5
6 0.127 0.250 0.330 0.165 0.135 0.74 0.21 17.5
7 0.140 0.248 0.334 0.166 0.134 0.73 0.21 17.5
8 0.133 0.249 0.328 0.166 0.135 0.73 0.21 17.5

9 0.133 0.249 0.326 0.165 0.135 0.75 0.21 17.5

10 0.131 0.249 0.330 0.165 0.135 0.73 0.21 17.5

Avg. 0.133 0.249 0.331 0.165 0.136 0.74 0.21 17.5

H H d #10 16 3/4. F tT bI D 6 Da e 'ynamlc as ener ex ea - x.
Screw HT (in) H (in) W (in) d (in) TD (in) L (in) TL (in) TPI

1 0.140 0.308 00400 0.186 0.153 0.74 0.25 15.5

2 0.144 0.308 00402 0.186 0.155 0.73 0.25 15.5

3 0.141 0.310 00402 0.186 0.154 0.73 0.25 15.5

4 0.140 0.310 00403 0.186 0.153 0.73 0.25 15.5

5 0.142 0.307 00402 0.186 0.156 0.74 0.25 15.5

6 0.140 0.314 00401 0.186 0.156 0.74 0.25 15.5.

7 0.142 0.309 00405 0.185 0.155 0.74 0.25 15.5

8 0.136 0.310 00402 0.187 0.154 0.73 0.25 15.5

9 0.140 0.310 00403 0.186 0.154 0.73 0.25 15.5

10 0.141 0.309 0.392 0.186 0.155 0.74 0.25 15.5

Avg. 0.141 0.310 0.401 0.186 0.155 0.74 0.25 15.5
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H H d #12 14 x 3/4. F tT bl D 7 Da e 'ynamlc as ener ex ea -
Screw HT (in) H (in) W (in) d (in) TD (in) L (in) TL (in) TPI

1 0.182 0.312 0.411 0.216 0.176 0.72 0.35 14

2 0.181 0.312 0.417 0.215 0.178 0.73 0.35 14

3 0.179 0.313 0.416 0.215 0.177 0.73 0.35 14

4 0.181 0.313 0.417 0.213 0.177 0.73 0.35 14
5 0.182 0.312 0.411 0.216 0.177 0.73 0.35 14
6 0.182 0.312 0.419 0.215 0.178 0.73 0.35 14
7 0.181 0.312 0.411 0.216 0.177 0.73 0.35 14
8 0.181 0.313 0.417 0.216 0.178 0.73 0.35 14
9 0.182 0.314 0.418 0.216 0.178 0.73 0.35 14
10 0.178 0.312 0.418 0.216 0.177 0.73 0.35 14

Avg. 0.181 0.313 0.416 0.215 0.177 0.73 0.35 14

Table D.8 Grabber Hex Head #12-14 x 3/4 (part number X12075H3)
Screw HT (in) H (in) W (in) d (in) TD (in) L (in) TL (in) TPI

1 0.183 0.308 0.417 0.215 0.178 0.76 0.35 14
2 0.182 0.311 0.418 0.215 0.179 0.75 0.35 14
3 0.183 0.312 0.413 0.215 0.177 0.75 0.35 14
4 0.182 0.311 0.420 0.215 0.182 0.75 0.35 14
5 0.183 0.309 0.416 0.216 0.179 0.76 0.35 14
6 0.184 0.308 0.415 0.215 0.180 0.76 0.35 14
7 0.184 0.308 0.418 0.215 0.178 0.75 0.35 14
8 0.184 0.309 0.418 0.214 0.183 0.75 0.35 14
9 0.182 0.309 0.421 0.214 0.181 0.75 0.35 14
10 0.184 0.308 0.421 0.215 0.182 0.76 0.35 14

Avg. 0.183 0.309 0.418 0.215 0.180 0.75 0.35 14
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Steel sheets used for the connection tests came in bundles of approximately 10

each. As each bundle was opened, the top sheet was measured, and is recorded below.

Each test number includes the sheet bundle number ("N" indicates normal ductility steel,

the second number gives the sheet gage, and the number following the dash gives the

bundle number).

b b dlT bl D 9 Sh t D"a e . ee 1mensIOns )y un e
Sheet Bundle # Width (in) Thickness (in)

N16-1 1.914 0.053
N16-2 1.912 0.053
N16-3 1.913 0.053
N16-4 1.853 0.053

N16-50 2.905 0.053
N16-51 2.911 0.053
N16-52 2.901 0.053
N16-53 2.907 0.053
N18-1 1.913 0.040
N18-2 1.913 0.040

N18-3 1.911 0.040

N18-4 1.865 0.040

N18-50 2.913 0.040

N18-51 2.912 0.040

N18-52 2.915 0.040

N20-1 1.910 0.030

N20-2 1.909 0.030

N20-3 1.908 0.030

N20-4 1.873 0.030

N20-5 1.875 0.030

N20-50 2.904 0.030

N20-5l 2.901 0.030

N20-52 2.905 0.030

N20-53 2.905 0.030

N20-54 2.898 0.030





APPENDIXE

STRESS-STRAIN GRAPHS FOR CONNECTION TESTS



96

ASTM A 370-97a, "Standard Test Methods and Definitions for Mechanical Testing of

Steel Products" (ASTM, 1997) was adhered to in the specimen testing below.

S fSh PTable E.! ummaryo eet ropertles
Sheet & Thickness Avg. Area 2" 0/0 Fy Fu

Specimen (in) Width (in2
) length elong (ksi) (ksi)

(in) after test
(in)

N16 #2 0.053 0.740 0.039 2.724 36.2 59 70
N16 #3 0.053 0.739 0.039 2.716 35.8 59 70
N18 #2 0.040 0.741 0.030 2.936 46.8 29 47
N18 #3 0.040 0.739 0.030 2.953 47.7 29 47
N20 #1 0.030 0.738 0.022 2.859 43.0 37 51
N20#2 0.030 0.738 0.022 2.813 40.7 37 51
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Stress-Strain Graph (N16, Specimen 2)
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Figure E.1 N16 Stress-Strain Graph (Specimen 2)

Stress-Strain Graph (N16, Specimen 3)
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Stress-Strain Graph (NI8, Specimen 2)
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Stress-Strain Graph (N20, Specimen 1)
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DATA FOR CONNECTION TESTS
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The tables in this section contain all ofthe data for all of the connection tests. Tests

were run with the following parameters varying:

Sheet thickness: N16 (0.053"), N18 (0.040"), and N20 (0.030"). ("N" stands for

normal ductility - no low ductility steel was used in this study).

Screw Size: #8, #10, and #12 (for screw dimensions, see Appendix D).

Spacing between screws: 2d or 3d (d being the diameter of the screw threads).

These values are rounded - for actual values, see Table F.19.

Pattern: see Figures F.l through F.12 for patterns; the number in the pattern

designation gives the number of screws in the connection.

The topics below explain the headings and terminology used in the data tables:

Pattern: gives the pattern and number of screws in the connection (see Figure F.l).

Test: Test is the unique identifier for a test specimen. An example of a test

identifier is NI6-3-11. The first three digits indicate the sheet thickness (e.g. N16

indicates normal ductility, 16 gage material). The next digits indicate the bundle number

that the specimen came from (in this example, bundle number 3) ~heets came in bundles

of about 10. Each identifier indicates the bundle that a specimen originated from

(dimensions by bundle are given in Appendix D, "Screw and Sheet Dimensions"). If a

bundle number is a single digit (e.g. 3 here), it is a nominal 2" width. If the bundle

number is in the 50's (e.g. 53), it is a nominal 3" width. The final digits give the

specimen number in a bundle, and are only used to differentiate different specimens.

Strength: This is the strength d'the connection, and is the maximum load reached

during testing.
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Strength per screw: This value is obtained by dividing the strength of the

connection by the number of screws in the connection.

Group Effect: Group effect is the strength per screw for a connection divided by

the average strength for the single screw connection listed in the table. (For example, to

get the group effect value for test N16-1-9 in Table F.1, take 1221 and divide it by the

average of 1296 and 1314). The group effect gives an indication of the strength per screw

for a connection, compared to the strength for a single screw connection. This is

computed because strength equations are currently based on single screw values.

Note: If there is an integer here, the integer refers to the screw number in the

connection that is stripped. Figure F.13 shows the numbering scheme for the screws.

The main idea is to start with the bottom left screw of the pattern (as shown in Figure F.I)

by calling this screw 1. Moving to the right and then up, screws increase in order.

"Stripped" is defmed as a screw that continues to spin after it has bottomed out against a

sheet while being inserted into a connection.

Other notes that occur are the following:

"shim": shims were used to reduce the eccentricity of the connection.

"load ctrl": load control was used (500 lbs/min). Normally stroke control was used

(0. 1in/min).

"all stripped": all screws in the connection are stripped.

"12D - 7 screws": this specimen was originally fabricated as a 12D pattern, but 7

screws were removed to make it the pattern shown in the table.

"12C - 7 screws": this specimen was originally fabricated as a 12C pattern. but 7

screws were removed to make it the pattern shown in the table.
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"frac on head side": usually if fracture occurred between screws, it occurred on the

sheet from which the screw threads protruded. Very rarely the opposite occurred,

therefore it was noted.

"Grabber screws": screws are listed in Appendix D. Most screws used in

connection tests were Dynamic Fastener brand, but a few #12 screws were made by

Grabber, and the tests that used Grabber screws are indicated. Dimensions are nearly

identical between the two manufacturers.

Failure: All connection failures had some tilting to them. Bearing failures were of

interest in this study, therefore they had to be distinguished from fracture failures. The

following failure notes are defmed:

"brg": a bearing failure - gross hole elongation.

"frac": fracture across the net section.

"brglshear": a combination of bearing failure of the sheet followed by shearing of

the screw.

"brgltear": bearing failure taken until the hole tears out of the sheet.

"brglfrac": bearing failure followed by fracture of the sheet between the screws,

followed by complete fracture of the sheet.
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Figure F. 1 Screw Pattern for 1 Screw
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Figure F. 2 Screw Patterns for 2 Screws
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Figure F. 3 Screw Pattern for 3 Screws
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Figure F. 4 Screw Patterns for 4 Screws
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Figure F. 5 Screw Patterns for 5 Screws
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Figure F. 7 Screw Patterns for 7 Screws
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Figure F. 8 Screw Patterns for 8 Screws
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Figure F. 9 Screw Patterns for 9 Screws
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Figure F. 13 Screw Numbering Scheme to Identify Stripped Screws

T bl F 1 N16 Sh t #8 S 3d Sa e . ee s, crew, ~paclDg

Pattern Test Strength Strength Group Note Failure
(Ibs) per Effect

screw (lbs)
1A N16-3-11 1296 1296 0.99 brg/shear
1A N16-50-10 1314 1314 1.01 brg/shear
2A N16-1-9 2442 1221 0.94 brg/shear
3A N16-2-1 3315 1105 0.85 brg/shear
4B N16-2-5 4191 1048 0.80 shim brg
4B N16-2-9 4410 1103 0.84 brg
5B N16-2-2 4839 frae
5B N16-51-1 5172 1034 0.79 brg
6A N16-50-9 5910 985 0.75 shim brg
6A N16-51-8 6263 1044 0.80 brg
7A N16-51-2 6597 942 0.72 brg
7A N16-51-9 6981 997 0.76 brg

8A N16-50-7 7317 915 0.70 brg

8A N16-51-5 7473 934 0.72 brg

9A N16-51-6 7470 frae

9A N16-52-1 7570 frae

10D N16-52-2 7913 frae

10D N16-51-7 7908 3 frae
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3d S#8 S8 ShTable F.2 Nt eets, crew, pacmg

Pattern Test Strength Strength Group Note Failure
(lbs) per Effect

screw (lbs)
1A N18-1-9 722 722 1.04 brg
1A N18-52-9 661 661 0.96 brg
2A N18-1-1 1146 573 0.83 brg
2A N18-2-4 1197 599 0.87 brg
2B N18-1-2 1188 594 0.86 brg
2B N18-2-5 1281 641 0.93 brg
5C N18-1-3 2555 511 0.74 brg
6A N18-4-3 2840 473 0.68 brg
6A N18-2-6 2902 484 0.70 brg
7B N18-50-1 3347 478 0.69 2 brg
7B N18-50-7 3350 479 0.69 brg
lOA N18-50-6 4300 frae
lOA N18-50-8 4307 1 frae..
11A N18-50-9 3980 I frae
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T bl F 3 N20 Sh t #8 S 3d Sa e ee s, crew, .pacmg
Pattern Test Strength Strength Group Note Failure

(lbs) per Effect
screw (lbs)

lA N20-2-10 519 519 0.99 brg
lA N20-4-9 534 534 1.01 brg
2A N20-2-5 749 375 0.71 brg
2A N20-2-6 789 395 0.75 1 brg
2B N20-2-7 900 450 0.85 1 brg
2B N20-2-8 844 422 0.80 brg
4A N20-3-1 1524 381 0.72 brg
4A N20-3-2 1506 377 0.72 1 brg
4B N20-3-3 1563 391 0.74 brg
4B N20-3-4 1559 390 0.74 brg
4C N20-50-8 1492 373 0.71 brg
4D N20-3-6 1663 416 0.79 brg
4E N20-3-8 1583 396 0.75 brg
6B N20-3-5 1975 329 0.63 brg
7B N20-2-9 2353 frae
8A N20-51-1 2859 357 0.68 4 brg
8A N20-51-6 2906 363 0.69 7,8 brg
9A N20-51-5 2896 322 0.61 6,8 brg
9A N20-51-7 2998 333 0.63 5,9 brg
lOA N20-50-9 3329 3 frae
10D N20-51-8 3067 frae
llA N20-51-9 3115 frae
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dSTable FA N16 Sheets, #10 Screw, 3 ipaCIn

Pattern Test Strength Strength Group Note Failure
(lbs) per Effect

screw (lbs)

lA NI6-4-11 1534 1534 1.01 brg/shear
lA NI6-2-10 1509 1509 0.99 brg
2A NI6-1-10 2652 1326 0.87 brg/shear
2A NI6-3-1 2697 1349 0.89 brg
2B NI6-3-2 2835 1418 0.93 brg
2B NI6-3-3 2812 1406 0.92 brg
3A NI6-2-3 3596 1199 0.79 brg
4A NI6-2-6 4559 1140 0.75 load etrl brg
5B NI6-2-4 5247 1049 0.69 brg
5C NI6-2-7 5321 1064 0.70 brg
7A N16-50-8 7203 1029 0.68 brg
8B NI6-52-3 7622 953 0.63 brg
8D NI6-52-4 7466 933 0.61 brg
9C NI6-52-5 8094 899 0.59 brg

T bl F 5 N18 Sh t #10 S 3d Sa e ee s, crew, .paCIn
Pattern Test Strength Strength Group Note Failure

(Ibs) per Effect
screw (Ibs)

lA NI8-52-8 715 715 0.97 brg
lA NI8-4-12 754 754 1.03 brg
2A NI8-1-7 1279 640 0.87 brg
2A NI8-2-7 1158 579 0.79 brg
2B NI8-2-8 1299 650 0.88 brg
2B N18-2-9 1286 643 0.88 2 brg
4A NI8-1-10 2222 556 0.76 brg
4A NI8-3-1 2310 578 0.79 brg
5B NI8-1-8 2600 520 0.71 brg
5C NI8-2-1 2743 549 0.75 brg
8A NI8-50-3 4114 514 0.70 brg
8D NI8-50-10 3790 frae
9C NI8-51-1 4029 frae
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T bl F 6 N20 Sh t #10 S 3d Sa e . ee s, crew, IpaCInI
Pattern Test Strength Strength Group Note Failure

(lbs) per Effect
screw (lbs)

1A N20-3-10 507 507 0.98 brg
1A N20-54-1 524 524 1.02 brg
2A N20-3-9 786 393 0.76 1 brg
2A N20-4-4 952 476 0.92 brg
2B N20-4-5 930 465 0.90 brg
2B N20-4-6 1005 503 0.97 brg
4A N20-4-2 1601 400 0.78 brg
4A N20-4-7 1615 404 0.78 brg
5C N20-4-3 1972 394 0.77 5 brg
5C N20-4-8 2043 409 0.79 brg
6A N20-4-1 2248 375 0.73 1,4,6 brg
lOA N20-51-3 3444 all stripped frae
lOA N20-51-4 3528 frae
llA N20-52-1 3337 frae

T bI F 7 N16 Sh t #12 S 3d Sa e ee s, crew, IpaCInI
Pattern Test Strength Strength Group Note Failure

(Ibs) per Effect
screw (lbs)

lA N16-4-9 1561 1561 0.96 brg
1A N16-1-11 1677 1677 1.04 brg
2A N16-1-4 2939 1470 0.91 brg
2A N16-3-4 2998 1499 0.93 brg
2B N16-1-1 2946 1473 0.91 brg
2B NI6-1-2 2968 1484 0.92 brg
4A N16-1-5 4890 1223 0.76 brg
4A N16-1-6 4868 1217 0.75 brg
4B N16-1-7 5064 1266 0.78 brg
4B N16-1-8 5120 1280 0.79 brg
6A N16-50-5 7179 1197 0.74 brg
6A N16-50-6 7095 1183 0.73 brg
7A N16-50-3 7896 [rae
7A N16-50-4 8084 frae
8A N16-50-1 8586 frae
8A N16-50-2 8462 frae
8D N16-52-6 8257 1032 0.64 brg
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3d S#12 SI F 8 N18 ShTab e . eets, crew, ~pacm

Pattern Test Strength Strength Group Note Failure
(lbs) per Effect

screw (lbs)

1A N18-52-7 811 811 1.03 brg
1A N18-3-10 759 759 0.97 brg
2A N18-1-4 1445 723 0.92 brg
2A N18-3-2 1246 623 0.79 brg
2B N18-1-5 1388 694 0.88 brg
2B N18-3-3 1450 725 0.92 brg
4B N18-3-4 2570 643 0.82 brg
4B N18-3-5 2533 633 0.81 brg
5C N18-3-6 3021 604 0.77 brg
5C N18-3-7 3040 608 0.77 brg
7B N18-50-4 4030 576 0.73 brg
7B N18-51-2 4032 576 0.73 brg
8A N18-50-5 4668 584 0.74 brg
8A N18-51-3 4734 592 0.75 brg
8D N18-51-4 4205 526 0.67 brg
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T bl F 9 N20 Sh t #12 S 3d Sa e ee s, crew, IpaC1D1
Pattern Test Strength Strength Group Note Failure

(lbs) per Effect
screw (Ibs)

1A N20-5-12 591 591 1.00 brg
1A N20-1-11 590 590 1.00 brg
2A N20-1-7 965 483 0.82 1, Grabber screws brg
2A N20-1-8 864 432 0.73 Grabber screws brg
2B N20-1-9 1012 506 0.86 Grabber screws brg
2B N20-1-10 1010 505 0.86 Grabber screws brg
4A N20-1-1 1762 441 0.75 Grabber screws brg
4A N20-1-2 1860 465 0.79 Grabber screws brg
4B N20-1-3 1737 434 0.74 Grabber screws brg
4B N20-1-4 1737 434 0.74 Grabber screws brg
5A N20-2-1 2197 439 0.74 12D - 7 screws brg

Grabber screws
5A N20-2-2 2142 428 0.73 12D - 7 screws, 4 brg

Grabber screws
5C N20-2-4 2489 498 0.84 12C - 7 screws brg

Grabber screws

6A N20-50-6 2739 457 0.77 brg

6A N20-50-7 2610 435 0.74 brg

6B N20-1-5 2573 429 0.73 Grabber screws brg

6B N20-1-6 2530 422 0.71 Grabber screws brg

7A N20-50-4 3360 480 0.81 brg

7A N20-50-5 3329 476 0.81 brg

8A N20-50-2 3570 446 0.76 brg

8A N20-50-3 3656 457 0.77 brg

8D N20-52-2 3272 409 0.69 brg

12A N20-50-1 3768 7, Grabber screws frac

12C N20-2-3 2686 12, Grabber screws [rac
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2d S#8 SFlO N16 ShTable eets, crew, ipacm

Pattern Test Strength Strength Group Note Failure
(Ibs) per Effect

screw (lbs)
lA NI6-3-11 1296 1296 0.99 brg/shear

lA NI6-50-10 1314 1314 1.01 brg/shear
2A NI6-3-6 2348 1174 0.90 brg/shear
2A NI6-3-7 2274 1137 0.87 brg/shear
4A NI6-3-8 3841 960 0.74 brg/frac
4A NI6-3-9 3679 920 0.70 brg/frac
6A NI6-52-7 5288 881 0.68 brg/frac
6A NI6-52-8 5239 873 0.67 brg/frac
8A NI6-52-9 6034 754 0.58 brg/frac
8A NI6-53-1 5959 745 0.57 brg/frac

T bl F 11 N18 Sh t #8 S 2d Sa e . ee s, crew, ~pacml

Pattern Test Strength Strength Group Note Failure
(Ibs) per Effect

screw (Ibs)
lA NI8-1-9 722 722 1.04 brg
lA NI8-52-9 661 661 0.96 brg
2A NI8-3-8 1230 615 0.89 brg/tear
2A NI8-4-1 1146 573 0.83 brg/tear
4A NI8-3-9 1934 484 0.70 brg/frac
4A NI8-4-2 1865 466 0.67 brg/frac
6A NI8-51-5 2585 431 0.62 brg/frac
6A NI8-51-6 2543 424 0.61 brglfrac
8A NI8-51-7 3181 398 0.58 brglfrac
8A NI8-51-8 3085 386 0.56 brglfrac
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T bl F 12 N20 Sh t #8 S 2d Sa e . ee s, crew, lpacm
Pattern Test Strength Strength Group Note Failure

(Ibs) per Effect
screw (Ibs)

lA N20-2-10 519 519 0.99 brg
lA N20-4-9 534 534 1.01 brg
2A N20-5-4 791 396 0.75 brg/tear
2A N20-52-3 819 410 0.78 1 brg/tear
4A N20-5-5 1402 351 0.67 2 brg/frac
4A N20-52-4 1442 361 0.68 2 brg/frac
6A N20-52-5 1883 314 0.60 brg/frac
6A N20-52-6 1910 318 0.60 brg/frac
8A N20-52-7 2442 305 0.58 brg/frac
8A N20-52-8 2313 289 0.55 brg/frac

2d S#10 ST hi F 13 N16 Sha e . eets, crew, ,pacmg

Pattern Test Strength Strength Group Note Failure
(Ihs) per Effect

screw (Ibs)

lA NI6-4-11 1534 1534 1.01 brg/shear

lA NI6-2-10 1509 1509 0.99 brg

2A NI6-3-10 2469 1235 0.81 brg/tear

2A NI6-4-1 2615 1308 0.86 brg/tear

4A NI6-4-2 3809 952 0.63 brg/frac

4A NI6-4-3 3894 974 0.64 brg/frac

6A NI6-53-2 5244 874 0.57 brg/frac

6A NI6-53-3 5106 851 0.56 brg/frac

8A NI6-53-4 6157 770 0.51 brg/frac

8A NI6-53-5 5741 718 0.47 brg/frac
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2d S#10 SN18 ShTable F.14 eets, crew, ~pacmg

Pattern Test Strength Strength Group Note Failure
(Ibs) per Effect

screw (lbs)
1A N18-52-8 715 715 0.97 brg

1A N18-4-12 754 754 1.03 brg

2A N18-4-8 1212 606 0.83 brg/tear

2A N18-4-9 1252 626 0.85 brg/tear
4A N18-4-10 1817 454 0.62 brg/frac
4A N18-4-11 2038 510 0.69 brg/frac
6A N18-52-3 2582 430 0.59 brg/frac
6A N18-52-4 2577 430 0.58 brg/frac
8A N18-52-5 3174 397 0.54 brg/frac
8A N18-52-6 3169 396 0.54 brg/frac

T bl F 15 N20 Sh t #10 S 2d Sa e . ee s, crew, ,pacmg
Pattern Test Strength Strength Group Note Failure

(lbs) per Effect
screw (lbs)

1A N20-3-10 507 507 0.98 brg
1A N20-54-1 524 524 1.02 brg
2A N20-5-6 861 431 0.84 brg/tear
2A N20-53-4 859 430 0.83 brg/tear
4A N20-5-7 1397 349 0.68 brg/frac
4A N20-53-5 1432 358 0.69 brg/frac
6A N20-52-9 2044 341 0.66 brg/frac
6A N20-53-1 1956 326 0.63 brg/frac
8A N20-53-2 2320 290 0.56 brg/frac
8A N20-53-3 2412 302 0.58 brg/frac
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T bl F 16 N16 Sh t #12 S 2d Sa e . ee s, crew, ipacmg
Pattern Test Strength Strength Group Note Failure

(Ibs) per Effect
screw (Ibs)

1A N16-4-9 1561 1561 0.96 brg
1A N16-1-11 1677 1677 1.04 brg
2A N16-4-8 2718 1359 0.84 brgltear
2A N16-4-5 2993 1497 0.92 brg/tear
4A N16-4-6 4039 1010 0.62 brglfrae
4A N16-4-7 4227 1057 0.65 brg/frae
6A N16-53-6 5586 931 0.58 brglfrae
6A N16-53-7 5726 954 0.59 frae on head side brg/frae
8A N16-53-8 6437 805 0.50 brglfrae
8A N16-53-9 6464 808 0.50 brglfrae

2d S#12 ST bl F 17 N18 Sha e . eets, crew, ~pacmg

Pattern Test Strength Strength Group Note Failure
(Ibs) per Effect

screw (Ibs)

1A N18-52-7 811 811 1.03 brg

1A N18-3-1O 759 759 0.97 brg

2A N18-4-4 1501 751 0.96 brgltear

2A N18-4-5 1371 686 0.87 brgltear

4A N18-4-6 2048 512 0.65 brg/frae

4A N18-4-7 1976 494 0.63 brglfrae

6A N18-51-9 2892 482 0.61 brglfrae

6A N18-52-1 2770 462 0.59 brglfrae

8A N18-51-1O 3322 415 0.53 brglfrae

8A N18-52-2 3345 418 0.53 brglfrae
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Table F.18 N20 Sheets, #12 Screw, 2d Spacing
Pattern Test Strength Strength Group Note Failure

(Ibs) per Effect
screw (Ibs)

lA N20-5-12 591 591 1.00 brg
lA N20-1-11 590 590 1.00 brg
2A N20-5-8 977 489 0.83 brg/tear
2A N20-5-9 1022 511 0.87 brg/tear
4A N20-5-10 1452 363 0.61 frac on head side brg/frac
4A N20-5-11 1573 393 0.67 brg/frac
6A N20-53-6 2316 386 0.65 frac on head side brg/frac
6A N20-53-7 2310 385 0.65 frac on head side brg/frac
8A N20-53-8 2667 3"" 0.56 brg/frac' ,

8A N20-53-9 2672 334 0.57 brg/frac

Explanation of Table F.19:

For each of the three screw sizes used in connection tests, edge distances and

screw spacings were described in terms of d, the screw thread outer diameter. The

American Iron and Steel Institute Cold-Formed Steel Design Specification sets as

minimums 1.5d for transverse edge distance, and 3d for longitudinal edge distance and

screw spacing. Transverse edge distance was kept at a minimum of 1.5d (usually

transverse edge distance greatly exceeded this). Longitudinal edge distance was kept at

3d, and screw spacing was either 2d or 3d. When these quantities were calculated, the

amount would be rounded up to the nearest 1/16" for practicality in marking sheets and

placing screws, as well as to create a reasonable tolerance for screw placement. Due to

this round up, longitudinal edge distance and screw spacing slightly exceed 2d and 3d,

which is the purpose of Table F.l9. The headings are described below:

"Screw": screw size.

"d (in)": outer diameter of screw threads.

"1.5d actual": actual 1.5d.
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"I.5d used": the value of 1.5d that was adhered to.

"2d actual": actual 2d.

"2d used": the value of 2d that was adhered to.

"2d Ratio": actual ratio of adhered 2d to d.

"3d actual": actual 3d.

"3d used": the value of 3d that was adhered to.

"3d Ratio": actual ratio of adhered 3d to d.

d Ed D'tST hI F 19 Sa e . crew ~paclDg an e IS ances
Screw d (in) l.Sd l.Sd 2d 2d 2d 3d 3d 3d

actual used actual used Ratio actual used Ratio
#8 0.165 0.248 1/4 0.331 3/8 2.27 0.496 1/2 3.03

#10 0.186 0.279 5/16 0.372 3/8 2.02 0.558 9/16 3.02
#12 0.215 0.323 3/8 0.431 7/16 2.03 0.646 11/16 3.20





APPENDIX G

EQUATIONS FOR CONNECTION TESTS
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Equation (G-l) is the general form used for best fit lines in the Connection Graphs

of Appendices H, I, and J. The values of the constants are given in table G.l.

S=an+b

where:

S = connection strength (lbs)

a = constant (lbs/screw) = slope of line in graph

n = number of screws in connection

b = constant (lbs) = y-intercept on graph (at 0 screws)

(G-l)

Equation (G-2) is the general form used for best fit lines in the Group Effect Graphs

of Appendices K, L, and M. The values of the constants are given in table G.2.

d
R=c+ ~

where:

(G-2)

R = group effect (ratio of connection strength per screw to strength of single

screw connection)

c = constant

n = number of screws in connection

d = constant
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f E fTable G 1 Co tants ~ B t F"t C" ns or es I onnec Ion ,qua IOns
Sheet Screw Screw a b r2

Thickness Size Spacing
(gage) (#)

16 8 3d 877 639 0.991
18 8 3d 434 308 0.997
20 8 3d 315 239 0.987
16 10 3d 828 1021 0.990
18 10 3d 482 286 0.997
20 10 3d 355 193 0.990
16 12 3d 991 922 0.986
18 12 3d 531 324 0.992
20 12 3d 430 105 0.983
16 8 2d 678 878 0.980
18 8 2d 345 446 0.992
20 8 2d 265 290 0.995
16 10 2d 631 1159 0.986
18 10 2d 343 489 0.991
20 10 2d 267 309 0.990
16 12 2d 683 1274 0.976
18 12 2d 356 583 0.982
20 12 2d 302 347 0.985
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Eft E fTable G.2 Constants for Best Fit Group ect ;Qua Ions

Sheet Screw Screw c d r2

Thickness Size Spacing
(gage) (#)

16 8 3d 0.588 0.432 0.926

18 8 3d 0.496 0.516 0.935

20 8 3d 0.478 0.486 0.832
16 10 3d 0.425 0.620 0.939
18 10 3d 0.530 0.466 0.917
20 10 3d 0.574 0.433 0.758
16 12 3d 0.515 0.521 0.904
18 12 3d 0.577 0.427 0.873
20 12 3d 0.609 0.344 0.656
16 8 2d 0.397 0.630 0.950
18 8 2d 0.345 0.676 0.963
20 8 2d 0.332 0.655 0.984
16 10 2d 0.239 0.785 0.976
18 10 2d 0.294 0.724 0.974
20 10 2d 0.364 0.646 0.984
16 12 2d 0.256 0.781 0.938
18 12 2d 0.287 0.758 0.915
20 12 2d 0.344 0.668 0.959



APPENDIX H

CONNECTION GRAPHS - 3D VS. 2D SPACING



The purpose of this appendix is to show the effect of 2d versus 3d spacing. In all

cases, 2d spacing gives lower capacity for the same sheet thickness and number of

screws. See Appendix G for best fit equations,
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APPENDIX I

CONNECTION GRAPHS - BY SHEET THICKNESS
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The purpose of this appendix is to demonstrate that screw size has little impact on

the connection strength. In the graphs below, the sheet size and screw spacing remain

constant for each graph, only the screw size varies. See Appendix G for best fit

equations.
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CONNECTION GRAPHS - BY SCREW SIZE
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This appendix shows that connection strength varies strongly with sheet thickness.

However, as will be made clear in Appendix M, the group effect does not vary with sheet

thickness. See Appendix G for best fit equations.
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GROUP EFFECT GRAPHS - 3D VS. 2D SPACING
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The group effect graphs of this appendix demonstrate that the group effect is a

function of the screw spacing, 2d spacing giving a larger reduction in strength than 3d

spacing. See Appendix G for best fit equations.
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This appendix shows that the group effect is not significantly affected by the screw

size. See Appendix G for best fit equations.
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This appendix indicates that the group effect does not vary significantly with a

change in sheet thickness. See Appendix G for best fit equations.
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See Equations (4-6) through (4-9) for Design Model I, and Equations (4-10)

through (4-14) for Design Model 2.

T t d t Computed StrengthT bl N I Ski 3d D t Ca e o 0 a a- omparlD2 es e 0

Test Modell Model 2 AlSI

P test/Pcomn P test/Pcomn P testlPcomn

NI6-3-11 0.96 0.96 0.89

NI6-50-10 0.97 0.97 0.90

N16-1-9 1.04 1.04 0.84

N16-2-1 1.02 1.02 0.76

NI6-2-5 1.01 1.01 0.72

NI6-2-9 1.06 1.06 0.76

NI6-51-1 1.03 1.03 0.71

NI6-50-9 1.00 1.00 0.68

N16-51-8 1.06 1.06 0.72

N16-51-2 0.98 0.98 0.65

NI6-51-9 1.04 1.04 0.68

NI6-50-7 0.97 0.97 0.63

NI6-51-5 0.99 0.99 0.64

NI8-1-9 1.14 1.14 1.13

NI8-52-9 1.04 1.04 1.03

NI8-1-1 1.04 1.04 0.89

NI8-2-4 1.09 1.09 0.93
NI8-1-2 1.08 1.08 0.93
NI8-2-5 1.17 1.17 1.00
N18-1-3 1.08 1.08 0.80
NI8-4-3 1.03 1.03 0.74
NI8-2-6 1.05 1.05 0.75

NI8-50-1 1.06 1.06 0.75
N18-50-7 1.06 1.06 0.75
N20-2-10 1.07 1.07 1.15
N20-4-9 1.10 1.10 1.18
N20-2-5 0.89 0.89 0.83
N20-2-6 0.94 0.94 0.87
N20-2-7 1.07 1.07 1.00
N20-2-8 1.00 1.00 0.93
N20-3-1 1.02 1.02 0.84
N20-3-2 1.01 1.01 0.83



Test Modell Model 2 AISI
P testlPcomo P test/Pcomo P testlPcomo

N20-3-3 1.05 1.05 0.86

N20-3-4 1.04 1.04 0.86

N20-50-8 1.00 1.00 0.83

N20-3-6 1.11 1.11 0.92

N20-3-8 1.06 1.06 0.88

N20-3-5 0.93 0.93 0.73

N20-51-1 1.05 1.05 0.79

N20-51-6 1.07 1.07 0.80

N20-51-5 0.96 0.96 0.71

N20-51-7 0.99 0.99 0.74

N16-4-11 1.04 1.04 0.99

N16-2-10 1.02 1.02 0.98

N16-1-10 1.04 1.04 0.86

N16-3-1 1.06 1.06 0.87

N16-3-2 1.11 1.11 0.92

N16-3-3 1.10 1.10 0.91

N16-2-3 1.01 1.01 0.77

N16-2-6 1.01 1.01 0.74

N16-2-4 0.96 0.96 0.68

N16-2-7 0.97 0.97 0.69

N16-50-8 0.98 0.98 0.67

N16-52-3 0.92 0.92 0.62

N16-52-4 0.91 0.91 0.60

N16-52-5 0.88 0.88 0.58

N18-52-8 1.03 1.03 1.05

N18-4-12 1.08 1.08 1.11

N18-1-7 1.06 1.06 0.94

N18-2-7 0.96 0.96 0.85

N18-2-8 1.08 1.08 0.95

N18-2-9 1.07 1.07 0.94

N18-1-10 1.04 1.04 0.82

N18-3-1 1.08 1.08 0.85

N18-1-8 1.00 1.00 0.76

N18-2-1 1.06 1.06 0.81

N18-50-3 1.05 1.05 0.76

N20-3-10 0.95 0.95 1.06

N20-54-1 0.98 0.98 1.09

N20-3-9 0.85 0.85 0.82
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Test Model 1 Model 2 AlSI
P testlPcomn P testlPcomn P testlPcomo

N20-4-4 1.03 1.03 0.99

N20-4-5 1.00 1.00 0.97

N20-4-6 1.08 1.08 1.05

N20-4-2 0.97 0.97 0.83

N20-4-7 0.98 0.98 0.84

N20-4-3 0.99 0.99 0.82
N20-4-8 1.02 1.02 0.85
N20-4-l 0.96 0.96 0.78
N16-4-9 0.95 0.95 0.94
N16-l-ll 1.02 1.02 1.01
N16-l-4 1.04 1.04 0.88
N16-3-4 1.06 1.06 0.90
N16-l-l 1.04 1.04 0.89
N16-l-2 1.05 1.05 0.89
N16-l-5 0.97 0.97 0.73
N16-l-6 0.97 0.97 0.73
N16-l-7 1.00 1.00 0.76
N16-l-8 1.02 1.02 0.77

N16-50-5 1.01 1.01 0.72
N16-50-6 0.99 0.99 0.71
N16-52-6 0.90 0.90 0.62
N18-52-7 1.04 1.04 1.11
N18-3-l0 0.97 0.97 1.04
N18-l-4 1.07 1.07 0.99
N18-3-2 0.92 0.92 0.85
N18-l-5 1.03 1.03 0.95
N18-3-3 1.07 1.07 0.99
N18-3-4 1.07 1.07 0.88
N18-3-5 1.05 1.05 0.86
N18-3-6 1.04 1.04 0.83
N18-3-7 1.05 1.05 0.83

N18-50-4 1.03 1.03 0.79
N18-51-2 1.04 1.04 0.79
N18-50-5 1.07 1.07 0.80
NI8-51-3 1.08 1.08 0.81
N18-51-4 0.96 0.96 0.72
N20-5-12 0.98 0.98 1.15
N20-l-11 0.97 0.97 1.14
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Test Modell Model 2 AISI
P testlPcomo P testlPcomo P testIPcomo

N20-1-7 0.92 0.92 0.93
N20-1-8 0.82 0.82 0.84
N20-1-9 0.97 0.97 0.98

N20-1-10 0.96 0.96 0.98
N20-1-1 0.95 0.95 0.85
N20-1-2 1.00 1.00 0.90
N20-1-3 0.93 0.93 0.84
N20-1-4 0.93 0.93 0.84

N20-2-1 0.98 0.98 0.85

N20-2-2 0.95 0.95 0.83

N20-2-4 1.11 1.11 0.96

N20-50-6 1.04 1.04 0.88

N20-50-7 0.99 0.99 0.84

N20-1-5 0.98 0.98 0.83

N20-1-6 0.96 0.96 0.82

N20-50-4 1.11 1.11 0.93

N20-50-5 1.10 1.10 0.92

N20-50-2 1.05 1.05 0.86

N20-50-3 1.08 1.08 0.89

N20-52-2 0.96 0.96 0.79

Mean 1.01 1.01 0.86

C.O.V. 0.06 0.06 0.15
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See Equations (4-6) through (4-9) for Design Mode! I. and b ..J.uation-; (4-10 I

through (4-14) for Design Model 2.

T t d t Computed StrengthCdable N.2 Sokol 2 Data - omparmg es e 0

Test Modell Model 2 AISI

P testlPcomo P testlPcomo P testlPcomo

N16-3-6 1.07 1.08 0.81

N16-3-7 1.03 1.05 0.78

N16-3-8 1.06 1.07 0.66

N16-3-9 1.02 1.03 0.63

N16-52-7 1.08 1.08 0.60

N16-52-8 1.07 1.07 0.60

N16-52-9 0.99 0.98 0.52

N16-53-1 0.97 0.97 0.51

N18-3-8 1.19 1.20 0.96

N18-4-1 1.11 1.12 0.89

N18-3-9 1.14 1.15 0.75

N18-4-2 1.10 1.11 0.73

N18-51-S 1.12 1.12 0.67

NI8-S1-6 1.10 1.11 0.66

N18-51-7 1.11 1.10 0.62

N18-S1-8 1.07 1.07 0.60

N20-5-4 1.00 1.01 0.87

N20-52-3 1.03 1.05 0.91

N20-S-S 1.08 1.09 0.78

N20-52-4 1.11 1.12 0.80

N20-52-5 1.07 1.07 0.69

N20-52-6 1.08 1.08 0.70

N20-52-7 1.11 1.10 0.68

N20-52-8 1.05 1.04 0.64

N16-3-10 1.03 1.04 0.80

N16-4-1 1.09 1.10 0.85

N16-4-2 0.97 0.98 0.62

N16-4-3 0.99 1.00 0.63
NI6-53-2 0.98 0.98 0.56

NI6-53-3 0.96 0.96 0.55

NI6-53-4 0.92 0.92 0.50
N16-53-5 0.86 0.86 0.46

T



Test Modell Model 2 AISI
P tesrIPcamp P tesrIPcomo P tesrIPcomo

N18-4-8 1.07 1.08 0.89
N18-4-9 1.10 1.12 0.92

N18-4-1O 0.97 0.98 0.67
NI8-4-11 1.09 1.10 0.75

N18-52-3 1.02 1.02 0.63

N18-52-4 1.02 1.02 0.63

N18-52-5 1.01 1.00 0.58

N18-52-6 1.00 1.00 0.58

N20-5-6 0.99 1.00 0.90

N20-53-4 0.98 0.99 0.89

N20-5-7 0.97 0.98 0.73

N20-53-5 1.00 1.01 0.75

N20-52-9 1.05 1.05 0.71

N20-53-1 1.01 1.01 0.68

N20-53-2 0.95 0.95 0.60

N20-53-3 0.99 0.99 0.63

N16-4-8 1.02 1.03 0.82

N16-4-5 1.12 1.13 0.90

N16-4-6 0.92 0.93 0.61

N16-4-7 0.96 0.97 0.64

N16-53-6 0.94 0.94 0.56

N16-53-7 0.96 0.96 0.57

NI6-53-8 0.87 0.86 0.48

NI6-53-9 0.87 0.86 0.49

NI8-4-4 1.18 1.19 1.02

NI8-4-5 1.08 1.09 0.94

NI8-4-6 0.98 0.99 0.70

NI8-4-7 0.94 0.95 0.67

NI8-51-9 1.02 1.02 0.66

NI8-52-I 0.98 0.98 0.63

NI8-5I-IO 0.94 0.93 0.57

NI8-52-2 0.94 0.94 0.57

N20-5-8 0.99 1.00 0.95

N20-5-9 1.04 1.05 0.99

N20-5-IO 0.90 0.90 0.70

N20-5-II 0.97 0.98 0.76

N20-53-6 1.05 1.06 0.75

N20-53-7 1.05 1.05 0.75
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N20-53-8 0.97 0.97 0.65
N20-53-9 0.97 0.97 0.65

Mean 1.02 1.02 0.70
CO.V. 0.07 0.07 0.19

See Equations (4-6) through (4-9) for Design Model 1, and Equations (4-10)

through (4-14) for Design Model 2.

T t d to Computed StrengthkD t CdHRTable N.3 0 ers an ancoc a a- ompanng es e

Pattern Screw Modell Model 2 AISI
PtestlPcomo P tutlPcomo PtestlPcomn

S2L-L 8-8x12 1.15 1.15 1.21

S2T-L 8-8x12 1.24 1.24 1.31

S4S-L 8-8x12 1.25 1.25 1.17

S2L-L 10-16x16 1.15 1.15 1.28

S2T-L 10-16x16 1.22 1.22 1.36

S4S-L 10-16x16 1.29 1.29 1.27

S2L-L 10-16x20 1.72 1.72 1.91

S2T-L 10-16x20 1.67 1.67 1.85

S4S-L 10-16x20 1.93 1.93 1.91

S2L-L 12-24x20 1.07 1.07 1.24
S2T-L 12-24x20 0.98 0.98 1.13
S4S-L 12-24x20 1.22 1.22 1.25

Mean 1.32 1.32 1.41
CO.V. 0.22 0.22 0.21



See Equations (4-6) through (4-9) for Design Modell, and Equations (4-] 0)

through (4-14) for Design Model 2.

ed StrengthT d CT bl N 4 Ddt D t Ca e . au e a a- omparID2 este to omput
Test Modell Model 2 AISI

P testlPcomo P testlPcomo P testlPcomp

PNI-lOTl-S I-I 1.24 1.24 lAO

PNI-lOTI-SI-2 1.21 1.21 1.37

PNI-IOTI-SI-3 1.27 1.27 1.44

PN2-lOTI-SI-I 1.10 1.10 1.13

PN2-1 OTI-S 1-2 1.23 1.23 1.26

PN2-IOTI-SI-3 1.19 1.19 1.22

PN3-IOTI-S I-I 1.13 1.13 1.07

PN3-lOTI-SI-2 1.06 1.06 1.0 I

PN3-lOTI-SI-3 1.07 1.07 1.02

PNI-12TI-SI-l 1.30 1.30 1.53

PNI-12Tl-SI-2 1.18 1.18 lAO

PNI-12Tl-S 1-3 1.28 1.28 1.51

PN2-12Tl-S 1-1 1.45 1.45 1.54

PN2-12TI-SI-2 1.42 1.42 1.51

PN2-12TI-SI-3 1.31 1.31 1.39

PN3-12TI-S I-I 1.18 1.18 1.15

PN3-12TI-SI-2 1.19 1.19 1.17

PN3-12TI-SI-3 1.15 1.15 1.12

PNI-lOT3-S1-1 1.15 1.15 1.30

PNI-I OT3-S 1-2 1.12 1.12 1.27

PNI-I OT3-S 1-3 1.00 1.00 1.14

PN2-l OT3-S I-I 1.03 1.03 1.06

PN2-1 OT3-S 1-2 0.99 0.99 1.02

PN2-1 OT3-S 1-3 1.08 1.08 1.11

PN3-1 OT3-S I-I 1.01 1.01 0.96

PN3-1 OT3-S 1-2 0.99 0.99 0.94

PN3-1 OT3-S 1-3 0.98 0.98 0.93

PNI-12T3-S1-1 0.92 0.92 1.08

PNI-I2T3-SI-2 0.96 0.96 1.13

PNI-12T3-SI-3 0.88 0.88 1.03

PN2-12T3-S 1-1 1.05 1.05 1.12

PN2-12T3-S1-2 0.98 0.98 1.03



Test Model 1 Model 2 \ISI

P testIPcomo P testlPcomo P testlPcomo

PN2-12T3-S1-3 1.08 1.08 1.15

PN3-12T3-S1-1 0.99 0.99 0.97

PN3-12T3-S1-2 1.00 1.00 0.97

PN3-12T3-S1-3 0.91 0.91 0.89

PNl-25T3-S1-1 1.02 1.02 1.25

PNl-25T3-S1-2 1.02 1.02 1.26

PNl-25T3-S1-3 1.01 1.01 1.25

PN2-25T3-S 1-1 0.93 0.93 1.03

PN2-25T3-S1-2 0.89 0.89 0.99

PN2-25T3-S1-3 0.93 0.93 1.02
PN3-25T3-S1-1 0.93 0.93 0.94

PN3-25T3-S1-2 0.96 0.96 0.97
PN3-25T3-S1-3 0.99 0.99 1.00
PN4-25T3-S1-1 1.02 1.02 0.96
PN4-25T3-S1-2 1.03 1.03 0.96
PN4-25T3-S1-3 1.03 1.03 0.96
TNI-I0TI-SI-1 1.21 1.21 1.38
TNI-10Tl-S1-2 1.27 1.27 1.44
TNI-I0TI-SI-3 1.06 1.06 1.21
TN2-10Tl-Sl-l 1.13 1.13 1.16
TN2-1 OTl-S 1-2 1.20 1.20 1.22
TN2-10Tl-SI-3 1.18 1.18 1.21
TN3-1 OTl-S 1-1 1.09 1.09 1.05
TN3-lOTl-SI-2 1.10 1.10 1.05
TN3-lOTl-S1-3 1.06 1.06 1.01
TNI-12Tl-S1-1 1.39 1.39 1.65
TNl-12Tl-S 1-2 1.27 1.27 1.51
TNI-12Tl-S1-3 1.24 1.24 1.46
TN2-12Tl-Sl-l 1.22 1.22 1.29
TN2-12Tl-SI-2 1.29 1.29 1.36
TN2-12T1-Sl-3 1.26 1.26 1.33
TN3-12Tl-S1-1 1.15 1.15 1.13
TN3-12T1-Sl-2 1.17 1.17 1.14
TN3-12T1-S1-3 1.16 1.16 1.14
TNI-I0T3-S1-1 1.05 1.05 1.19
TNl-1 OT3-S 1-2 1.13 1.13 1.28
TNl-10T3-S1-3 1.00 1.00 1.13
TN2-1 OT3-S 1-1 1.07 1.07 1.09
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Test Modell Model 2 AISI
P testlPcomo P testlPcomo P testlPcomo

TN2-1 OT3-S 1-2 1.07 1.07 1.09
TN2-10T3-S1-3 0.98 0.98 1.00
TN3-1 OT3-S 1-1 1.02 1.02 0.97

TN3-1 OT3-S 1-2 0.98 0.98 0.93

TN3-1 OT3-S 1-3 1.01 1.01 0.96

TNI-12T3-S1-1 0.91 0.91 1.08

TNI-12T3-S1-2 0.97 0.97 1.14

TNI-12T3-S1-3 0.88 0.88 1.04

TN2-12T3-S 1-1 0.98 0.98 1.04

TN2-12T3-S 1-2 1.02 1.02 1.08

TN2-12T3-S1-3 0.97 0.97 1.02

TN3-12T3-S1-1 1.04 1.04 1.02

TN3-12T3-S 1-2 1.00 1.00 0.98

TN3-12T3-S1-3 0.94 0.94 0.93

TNl-25T3-S1-1 1.07 1.07 1.33

TNI-25T3-S1-2 1.04 1.04 1.29

TNI-25T3-S1-3 0.99 0.99 1.23

TN2-25T3-S 1-1 0.91 0.91 1.00

TN2-25T3-S 1-2 0.86 0.86 0.94

TN2-25T3-S 1-3 0.84 0.84 0.93

TN3-25T3-S 1-1 0.93 0.93 0.95

TN3-25T3-S 1-2 0.92 0.92 0.94

TN3-25T3-S1-3 0.93 0.93 0.94

TN4-25T3-S 1-1 0.93 0.93 0.88

TN4-25T3-S 1-2 0.92 0.92 0.87

TN4-25T3-S 1-3 0.92 0.92 0.87

278TNI-12Tl-S2T-l 1.26 1.26 1.28

278TNI-12Tl-S2T-2 1.25 1.25 1.27

278TNI-12Tl-S2T-3 1.36 1.36 1.37

278TN2-12Tl-S2T-l 1.46 1.46 1.33

278TN2-12Tl-S2T-2 1.39 1.39 1.27

278TN2-12Tl-S2T-3 1.40 1.40 1.28

278TN3-12Tl-S2T-l 1.46 1.46 1.24

278TN3-12Tl-S2T-2 1.44 1.44 1.23

278TN3-12Tl-S2T-3 1.45 1.45 1.24

PNI-I0TI-S2L-1 1.30 1.31 1.20

PNI-I0TI-S2L-2 1.29 1.30 1.19

PNI-I0TI-S2L-3 1.16 1.18 1.07



Test Modell Model 2 AISI

P testlPcomD P testlPcomD P testlPcomo

PN2-1 OT 1-S2L-1 1.25 1.27 1.05

PN2-10T1-S2L-2 1.39 1.40 1.16

PN2-10T1-S2L-3 1.22 1.24 1.02

PN3-10T1-S2L-1 1.20 1.21 0.93

PN3-10T1-S2L-2 1.20 1.21 0.92

PN3-10T1-S2L-3 1.17 1.19 0.91

PNl-12T1-S2L-1 1.46 1.46 1.49

PNl-12T1-S2L-2 1.52 1.52 1.55

PNl-12T1-S2L-3 1.43 1.43 1.46

PN2-12T1-S2L-1 1.36 1.36 1.25

PN2-12Tl-S2L-2 1.38 1.38 1.27

PN2-12T1-S2L-3 1.39 1.39 1.28

PN3-12T1-S2L-1 1.31 1.31 1.11

PN3-12T1-S2L-2 1.24 1.24 1.05

PN3-12T1-S2L-3 1.10 1.10 0.93

PNl-12T1-S3L-1 1.38 1.38 1.32

PNl-12T1-S3L-2 1.36 1.36 1.29

PNl-12T1-S3L-3 1.43 1.43 1.36

PN2-12T1-S3L-1 1.30 1.30 1.12

PN2-12T1-S3L-2 1.32 1.32 1.13

PN2-12T1-S3L-3 1.30 1.30 1.12

PN3-12Tl-S3L-1 1.30 1.30 1.02
PN3-12Tl-S3L-2 1.30 1.30 1.02
PN3-12T1-S3L-3 1.33 1.33 1.05

278TNl-12Tl-S4-1 1.36 1.36 1.22
278TNl-12T1-S4-2 1.41 1.41 1.27
278TNl-12T1-S4-3 1.41 1.41 1.26
278TN2-12Tl-S4-1 1.20 1.20 0.97
278TN2-12Tl-S4-2 1.23 1.23 1.00
278TN2-12T1-S4-3 1.25 1.25 1.01
278TN3-12T1-S4-1 1.31 1.31 1.00
278TN3-12T1-S4-2 1.36 1.36 1.03
278TN3-12T1-S4-3 1.31 1.31 0.99

Mean 1.15 1.15 1.14
C.O.V. 0.15 0.15 0.15
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