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ABSTRACT 

In structural design, the material properties of steels and 

strengths of cold-formed steel members are affected by strain rate. 

the 

Two 

subjects were investigated experimentally and analytically in this study. 

They are 1) effect of strain rate on mechanical properties of sheet steels 

in tension and compression, and 2) structural strengths of stub columns and 

beams subjected to dynamic loads. 

Three sheet steels with nominal yield strengths ranging from 3$ to 100 

ksi were studied under different strain rates. A total of 124 tensile coupons 

and 54 compressive coupons were tested in this phase of study. The structural 

strengths of 37 stub columns and 30 beam specimens fabricated from 35XF sheet 

steel were investigated in the second phase of this study under different 

strain rates. The results showed that the material properties as well as 

the strengths of the structural members increased with the strain rate. The 

amount of increase was found to be dependent on the material yield strengths 

and the strain rates used in the tests. 

The effective width approach included in the current AISI Automotive 

Steel Design Manual was utilized for the evaluation of member strengths using 

static and dynamic yield stresses corresponding to the strain rates used in 

the tests. Good agreement was achieved between the predicted and tested 

member strengths when using the dynamic yield stresses in the comparison. 
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I. INTRODUCTION 

A. GENERAL 

During recent years, automotive manufacturers have produced 

lighter vehicles for the purpose of achieving fuel economy. To 

accomplish the construction of such automobiles, high strength sheet 

steels with various yield strengths up to 190 ksi have been used for 

1-9 
auto parts and structural components. 

In order to provide some technical ass istance for the des ign of 

such high strength steels, the first edition of the "Guide for 

Preliminary D~sign of Sheet Steel Automotive Structural Components" was 

10 
issued by American Iron and Steel Institute CAISI) in February 1981.-

In view of the fact that the design information contained in this 

document can be used only for sheet steels with yield strengths of up 

to 80 ksi, a research project has been conducted at the University of 

Missouri-Rolla (UMR) since 1982 to study the structural strength of 

automotive components using high strength sheet steels. In the first 

phase of the UMR program, typical mechanical properties and 

representative stress-strain curves were established by a series of 

static tests for different grades of sheet steels with yield strengths 

ranging from 49 to 164 -ksi. The second phase of the UMR project was 

directed toward the web crippling strength of beam webs and the strength 

of members consisting of fiat and curved elements. The research findings 

d · . t 11- 20 I dd" were presente ln ten progress repor s. n a ltlon, the effective 

design widths of high strength cold-formed steel members were also 
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investigated. 21 Some of the research results were used in 
the first 

edition of the AISI Automotive Steel Design Manual published in 

1986. 22 This manual brings together material properties, product 

design, and manufacturing information to make the most effective use 

of sheet steels with yield strengths of up to 140 ksi. 

Because the previous UMR studies were limited only to the tests 

subject to static loads and it is well known that the yield strength, 

tensile strength, and the stress-strain relationship of sheet steels 

as well as the strengths of structural members are affected by the rate 

of strain used for the tests, additional research work was conducted 

at the University of Missouri-Rolla since May, 1988'. The research 
. 

23-25 
findings were presented in three progress reports and are summarized 

in this thes is. 

B. PURPOSE OF INVESTIGATION 

The main purpose of this investigation was to study the effect of 

strain rate on mechanical properties of sheet steels and on the strengths 

of steel beams and stub columns fabricated from 3SXF sheet steel. Because 

the current effective width formulas used to predict the ultimate 

strengths of stiffened and unstiffened elements were derived from the 

results of static tests, the primary goals of this study were to 

determine the adequacy of these effective width formulas for the design 

of structural members subjected to dynamic loads. 
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C. SCOPE OF INVESTIGATION 

This study was primarily involved with the experimental 

determination of the dynamic material properties of three selected sheet 

steels with nominal yield strengths ranging from 35 to 100 ksi under 

different strain rates. The strain rates ranged from 0.0001 to 1.0 

in./in./sec. All tests were performed at UMR' s Engineering Research 

Laboratory by using the new MTS 880 Test System. The test data developed 

from the material coupon tests were used for the evaluation of stub 

column and beam tests, for which the specimens were fabricated from 35XF 

sheet steel and were tested under different strain rates. Both the stub 

columns and beams consisted of stiffened and unstiffened compression 

elements. In the current experimental investigation, a limited range 

of width-to-thickness ratios was covered for both stiffened and 

unstiffenedelements. The ranges of wit ratios were from 26.92 to 76.64 

for stiffened elements, and from 8.93 to 20.87 for unstiffened elements. 

As an initial step of this investigation, numerous publications 

and research reports related to the effect of strain rate on mechanical 

properties of sheet steels and on the structural strengths of axial and 

flexural steel memebers were reviewed in d~tail. 

a summary of the review of literature. 

Chapter II contains 

In Chapter III, the experimental study of the dynamic mechanical 

properties of the selected sheet steels and the structural behavior of 

cold-formed steel members consisting of stiffened and unstiffened 

elements tested under different strain rates are presented. Details 
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of test specimens, test procedure, and test results are presented in 

this chapter. 

The material and structural member test results are evaluated in 

Chapter IV. Comparisons of the predicted and tested structural member 

loads are also provided in this chapter. Finally, the research findings 

are summarized in Chapter V. 
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II. REVIEW OF LITERATURE 

A. GENERAL 

In the early portion of the study, many publications and research 

papers conc~rning effect of strain rate on the strengths of materials and 

structural members were reviewed. Section II. B includes a review of 

mechanical properties of sheet steels. In this section a summary of other 

research findings related to the effect of s.train rate on mechanical 

properties of metals in tension and compression is presented. 

The available literature on the effective width design formulas for 

stiffened and unstiffened compression elements under static loads is 

described in Section II.C. This section also includes the effect of strain 

rate and dynamic loads on structural strengths of flexural and axially 

loaded members. 

B. MATERIALS 

The mechanical properties of sheet steels are rev iewd in Sect ion 

II.B.l with an emphasis on engineering and true stress-strain curves. The 

effect of strain rate on tensile and compressive mechanical properties 

of steel, stainless steel and aluminum is presented in Section II.B.2. 
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1. Mechanical Properties of Sheet Steel. 

a. Engineering Stress-Strain Curves. The stress-strain curve is 

the relationship between the stress and the corresponding strain. For 

engineering stress-strain curves, the stress f , is measured by the 

load, P divided by the original, unreduced area, A o 
of the 

specimen, i. e. 

f = P / A o 
(2.1) 

The engineering strain, E, is the difference between the original, 

unreduced gage length, e 
o 

and the deformed length, e , divided by the 

original length, Le. 

E = (t-t ) / (t ) o 0 
(2.2) 

For high strength sheet steels, the two basic types of engineering 

stress-strain (f-e) curves are gradual and sharp yielding as shown in 

Figure 2.1 26 The classification of the f-e curve is based on the 

yielding behavior of the steel. As a general rule, hot-rolled sheet steels 

tend to be sharp yielding (Figure 2.1(a)) while those sheet steels that 

are cold-rolled or cold reduced in thickness are gradual yielding (Figure 

2.l(b)). 

Sharp yielding steels typically exhibit an upper and lower yield 

paint (points A and B in Figure 2.1(a), respectively). Because the upper 

yield point is much more sensitive to strain rate, specimen alignment, 

and shape of the tested cross-section than the lower yield point, the 

lower yield point is customarily used to represent the yield stress of 

sharp yielding sheet steels subject to static loading27 ,28 
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Fig. 2.1 Stress-Strain Curves of Carbon Steel Sheets 12 
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In view of the fact that gradual yielding steels do not have such 

an obvious yield point, their yield strength is defined by either an 

offset method or the strain-under-load method as described in AST!1 

Standard A370. The offset method. consists of drawing a straight line 

parallel to the initial linear portion of the f-E curve at a given strain 

offset. For this study, an offset of 0.2 percent strain was chosen. Using 

this method, the intersection of the straight line and the f -E curve 

defines the yield strength as shown in Figure 
26 2.2(a) . The 

strain-under-Ioad method defines the yield point as the stress 

corresponding to some fixed value of strain. The strain usually chosen 

is 0.5 percent as shown in Figure 2.2(b)26. 

The slope of the linear portion of the f-E diagram is known as the 

modulus of elasticity, E. The point beyond which the f-E curve becomes 

nonlinear is called the proportional limit (point A in Figure 2.1(b)). 

For sheet steels, whether they are gradual or sharp yielding, the 

proportional limit may be determined by the 0.01 percent offset method 

in exactly the same manner that the yield stress was defined for gradual 

yielding sheet steels, except that the offset is now only 0.01 percent. 

Once the specimen is strained beyond the y ie Id pOint, the load 

carrying capacity of the steel continues to increase slightly in spite 

of the fact that the cro~s-sectional area of the specimen is continually 

decreasing. Since engineering stress is calculated based on the original 

area, there must be some other phenomenon occuring that causes the 

increase in load carrying capacity. This phenomenon is commonly referred 

to as work hardening or strain hardening and may be explained by 

d 27 islocation theory The rate of strain hardening is high at the onset 
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of yielding. However, as the strain is increased, the amount of strain 

hardening decreases to the point where it can no longer offset the 

continuous reduction of specimen area. At that point the maximum possible 

stress or ultimate strength, F 
u 

is reached in the steel. Further 

elongation of the tensile specimen results in localized straining of a 

1 h k k · 29 small portion of the gage engt nown as nec lng The necked region 

continues to decrease in area at a faster pace than the strain hardening, 

which results in a decrease in the total load that the specimen can 

withstand. This unloading results in all areas of the specimen, other than 

the neck~d region, being unloaded back into the elastic range while the 

stress in the necked area continues to increase until fracture 27 . 

A material property that is dependent on the strain that a material 

can withstand uP" until fracture is ductility. Ductility is common ly 

defined by two methods. They are 

a) 

b) 

total elongation (percent) = 100*( t
f

- to)/to ' and 

reduction in area (percent) = lOO*(A -Af)/A o 0 

(2.3) 

(2.4) 

In the above equations, the f subscripts denote the values at fracture 

Although standard values are usually used for t and' A , it is important 
o 0 

to realize that either method of measuring ductility will give varying 

l "f d d l' 27 resu ts 1 non-stan ar va ues of ~ and A are used . 
o 0 

Another important material property yet to be discussed is the 

capability of a material to absorb energy without fracture. Energy 

absorption is especially important in the design of structures such as 

automobile components, highway guard rails, and machinery guards 30 For 

a particular material the energy absorption is given by the area under 

the stress-strain curve from zero loading to fracture. Therefore the 



11 

amount of absorption depends not only on the yield and ultimate strength 

but on the total elongation of the material as well. 

Figure 2.3
26 

illustrates the effect on the stress-strain curve of 

stressing a given sheet steel beyond the yield stress and then removing 

the load before failure. As shown by curve 2 of Figure 2.3, if the load 

is removed at point C along the stress-strain curve, then the unloading 

path foliows a line very nearly the slope of the elastic portion of the 

stress-strain diagram. The elastic strain, E , recovered upon unloading 
e 

from point C is equal to the stress at C, f , divided by the modulus 
c 

of elasticity, E, or E = f IE . The permanent set or plastic strain, 
e c 

E ,is represented by the line AD. Curve 3 represents the stress-strain 
p 

curve if reloading occurs immediately and Curve 4 if reloading occurs 

after strain aging. It can be seen that, if the material is immediately 

reloaded (Curve 3), strain hardening produces an increase in apparent 

yield strength and a decrease in ductility as compared to the virgin 

material. If reloading occurs after a period of time, a phenomenon known 

as strain aging occurs (Curve 4) which results in an even higher value 

of yield stress and tensile strength; however, the ductility decreases 

even more. 

If the reloading from pOint D is opposite the original loading (e.g. 

compression instead of tension) as shown in Figure 2.4
30 

the new value 

of the yield point G might be lower than the original yield point B. Also, 

if this load is reversed so tha):. the load is now in the origina I 

direction, the yield point H may be lower than the original yield point 

B. This effect was observed by Johann Bauschinger, of Germany, in 1886 

30 
and is commonly referred to as the Bauschinger Effect 
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b. True Stress-Strain Curves. The exact or true stress, a, in a 

tensile test is equal to the load, P, divided by the actual area, A, as 

follows: 

a = P / A (2.5) 

As the load increases and thus the cross-sectional area decreases, the 

corresponding true stress will be greater than the engineering stress 

computed for the same loading. Since there is no appreciable change in 

area in the elastic range, the true and engineering stresses are 

practically identical. However, as the stress reaches the. inelast ic 

range, the strain increases and thus the area decreases much more for a 

given stress increase than in the elastic range. Therefore, the difference 

between true and engineering stresses become apparent in the inelastic 

range as can be seen· in Figure 2.527 By comparing the shape of the true 

and engineering stress-strain diagrams in the inelastic range, it can be 

seen that the difference between the two curves continually increases with 

increasing strain. It is also interesting to note that the true stress 

steadily increases up to fracture. This type of continuous increase of 

the a-E curve seems much more logical than the engineering curve because 

it is difficult to imagine the stress actually decreasing in a material 

that is tested from zero load to fracture. 

The true stress and strain may be related to the engineering stress 

and strain by assuming constancy of volume of the specimen. In other 

words, the initial volume, 

volume, At. Thus 

A t = A t o 0 

A o 

A f , should be equal to the instantaneous 
00 

(2.6) . 

(t / (t (l+e) 
o 0 
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(2.7) 
A = A 1(1+E) 

o 

Therefore the true stress, 0, may be given as 

a = PIA = P (l+E)1 Ao= f(l+E) 
(2.8) 

The true or natural strain, 
E', can be determined from the 

differential increment of strain, dE', as 

dE' = dtlt 

where e is the actual length to which dt is added. 

elongation becomes 

E fe df 

l f a 
= t 

In (T) = 
o 

In (1 + E ) 

(2.9) 

The total unit 

t 2.10 ) 

Equations 2.8 and 2.10 obviously may be used in converting from 

- d . 28 
engineering stress and strain to true stress an stra1n After necking, 

the above equations are not valid. Since the length changes within the 

gage length are now localized in the necked region, the engineering 

strain, which assumes a uniform strain over the gage length, cannot be 

used to calculate the true stress and natural strain. An alternate method 

for computing the true stress in the necked region is described by Hosford 

and Caddel on page 53 of Ref. 27. 

From inspecting the above equations for stress and strain, it can 

be seen that for very small strains, such as those occuring in the elastic 

range, the engineering and true stresses and strains will be practically 

the same. Therefore, for properties such as yield stress and modulus of 

elasticity, the engineering values should be sufficiently accurate. 

However, for studies using stress-strain data in the plastic range, "the 
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true stress and strain are more meaningful than engineering stress and 

" 27 " straln " 

2. Strain Rate. Strain rate (E")is the rate of change of strain 

(E) with respect to time (t) : 

E = dE / dt (2 . .11) 

where E can be either the engineering or the true strain. For a constant 

strain rate experiment, the strain rate is simply the total strain divided 

by the duration of the test
31 

: 

E' = E / t (2.12) 

The unit of strain rate is the inverse of time sec- 1 

For the design of economical and safer cars, understanding of the 

effects of impact Joading, controlled crash and energy absorption on 

automobile components is essential. Since these design considerations 

involve dynamic loading, the effects of strain rates on the mechanical 

properties of the sheet steels must be known in order for the engineer 

to design a safe and efficient vehicle and moreover to reduce the need 

for conducting expensive full-scale dynamic testing 1 

a. Strain Rate Dynamic Testing. Some considerations in strain rate 

dynamic testing have been summarized by Lindholm
32 

as shown 

2.1 32 . At strain rates of the order of 10- 6 to 10 - 5 sec- 1 

in Table 

the creep 

behavior of a material is the primary consideration, usually at elevated 

temperature for metals, for which the creep-type laws are used to describe 

I b h . 33 
the mechanica e aVlor . At a higher strain rate, in the range of 

-4 -3-1 
10 to 10 sec, the uniaxial tension, compression, or quasistatic 



Table 2.1 Dynamic Aspects of Mechanical Testing32 

10~ 10'" 10~ Characteristic time (sec) 

o 10 8 100 10" 106 Strain rate (sec-I) 

, 
Creep 

Constant load 
or 

uress machine 

Strain vs. lime 
or creep rate 

recorded 

I 

I 
I 
I 
I 
I 
I 

Quasistatic 

Hydraulic or 
screw machine 

COilstant strain­
rate test 

. ~ ~ 
~ .' ~ Intermediate ~ Bar 
~ Strain-rate: impact , . , ' , ' , ' 

~ , , 
~ , , , , 

; I I 
• Pneumatic I Mechanical I 
I or I or I 

mechanical explosive 
• machines' impact I 
• I ! 
• I .. · . 
I M h' I I I ec amcal I I 

resonance in Elastic-
• specimen I plastic wave I 
• and I propagation I 
• machine I' I 
H I I 

-, 

High-velocity 
plate impact 

Ligllt-gas gun 
or 

explosive 
driven 

plate impitCt 

Shock-wave 
propagation 

Inertll forces neglected n lnefti. fcm:es important 

Isothermal Adiabatic 

Plane stress Plane strain 

I ncreasing stress levels -

Usual method 
of loading 

Dynamic 
considerations 

in testing 

16 
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stress-strain curve obtained from constant strain-rate test is used to 

describe the material behavior. "Although the quasistatic stress-strain 

curve is often treated as an inherent property of a material, it is a 

valid description of the material only at the strain rate at which the 

test was conducted. When higher strain rates are encountered, the stress-

strain relationships may change, and alternate testing techniques have 

to be employed. Constant strain-rate tests can be performed with 

specialized testing apparatus at strain rates up to approximately 10
4 

-1 -1 2 -1 
sec The range of strain rates from 10 to 10 sec. is genera lly 

referred to as the intermediate or medium strain-rate condition. It is 

within this condition that strain- rate effects first become a 

consideration in most metals, although the magnitude of such effects may 

be quite small or even nonexistent in some cases
33 

Strain rates of 10 3 

-1 
sec or higher are generally treated as the range of high strain-rate 

response, although there are no precise definitions as to strain-rate 

conditions and care must be taken in evaluating the test data to note the 

actual strain rates rather than the terminology. It is within the high 

strain-rate condition tbat inertia and wave-propagation effects first 

become important in interpreting experimental data. At these high rates, 

care must be taken to distinguish between average values of stress and 

strain and local values that may be the result of one or more 

high-intensity stress waves propagating through a material. At the strain 

5 -1 
rate of 10 sec or higher, it is generally dealing with sho~k waves 

propagating through materials that are. in a state of uniaxial strain. At 

these very high rates and the associated very short time scale involved, 

h ad · ·d· b . 33 t erm ynam~c cons~ eratlons ecome Important Table 2.2
34 

shows the 
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Table 2.2 

T 
. 34 

Experimental Techniques for High Strain Rate est~ng 

Mode 

Compression 

Tension 

Shear 

Applicable Strain 
Rate, sec- 1 

~ 0.1 
0.1 to 100 
0.1 to 500 
200 to 104 

104 to 105 

~ 0.1 
0.1 to 100 
100 to 104 

104 

~ 105 

~ 0.1 
0.1 to 100 
10 to 1000 
100 to 104 

103 to 104 

104 to 10 7 

Table 2.3 

Testing Technique 

Conventional load frames 
Special servohydraulic frames 
Cam plasometer and drop test 
Hopkinson pressure bar 
Taylor impact test 

Conventional load frames 
Special servohydraulic frames 
Hopkinson pressure bar 
Expanding ring 
Flyer plate 

Conventional shear test 
Special servohydraulic frames 
Torsional impact 
Hopkinson (Kolsky) bar 
Double-notch ~hear and punch 
Pressure-shear plate impact 

Values of Strain Rate Sensitivity Exponent, m, and Constant 

C of Yield Strength of the Tested Materials41 

Material m In C 

HRAK-AR 0.045 10.72223 
HRAK-Ann+TR 0.056 10.58935 
HSLA-40 0.045 10.74515 
HSLA-45-1 0.035 10.94544 
HSLA-45-2 0.024 10.83534 
HSLA-50 0.026 10.98135 
HSLA-80-1 0.020 11.36871 
HSLA-80-2 0.018 11.40914 
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experimental techniques that are used for various strain rate conditions 

in compression, tension, and shear testing. Unfortunately, there are no 

standardized procedu~es for high strain rate tests. Many different 

machines, specimen configurations, and measuring devices have been used. 

This makes a comparison of the test results of different investigators 

difficult and often makes it impossible to compare the properties of a 

group of materials since the behavior of a material is quite often 

influenced by the experimental conditions. It is important that the true 

behavior be studied by different methods to isolate any excessive 

influence of the technique and to verify the validity of the data 35 . 

b. Effect of Strain Rate on Mechanical Properties. The effect of 

. -
strain rate on mechanical properties varies for each material. These 

general trends are well known, but because the magnitude of the change 

in properties with strain rate is so varied for each material, no general 

quantitative theory exists that satisfactorily predicts the mechanical 

b h f . 1 ·d 33 e avior 0 mater1a s over a W1 e range 

For most materials, mechanical properties tend to increase at higher 

strain rates. The following sections discuss the effect of strain rate 

on mechanical properties of structural and high strength sheet steels, 

stainless steels, and aluminum. 

i) Structural Steels and High Strength Steels. The effect of the 

strain rate on the mechanical behavior of mild steel has long been a 

subject of interest to researchers since the beginning of this century. 

Figure 2.636 shows stress-strain curves obtained from structural steels 

tested at various strain rates. Clearly, the yield strength of the 
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material increases as the strain rate increases. This is the most 

consistently observed effect of strain rate on material properties. 

Historically, Ludwik was the first to study the effect of the speed 

of streching upon the stress at which a metal yields 37 He found a 

logarithmic relation between the stress at which a metal yields and the 

strain rate as early as 1909. 

In 1925, Korber and Storp compared impact tests with ordinary static 

tests for various metals 37 . These tests showed a considerable increase 

in the yield stress in the more rapid tests. 

The effect of changing the speed of deformation on various metals 

was studied by Prandtl and his associates in 193237 . Their results were 

in agreement with the relation found by. Ludwik. 

In 1937, Winlock and Leiter investigated the effect of the strain 

rate upon the yielding of deep-drawing sheet stee1 38 Their results showed 

that the yield stress and the corresponding elongation were considerably 

affected by the strain rate. The ultimate strength was also influenced 

but to a smaller extent than the yield strength. 

I h 940 M . . 39 d' d hI' h . b . n tel s, anJo~ne stu ~e t e re at~ons ~ps etween straln 

rate, temperature, and the material properties of mild steels. Figure 

illustrates the true yield stresses at various strains for a 

low-carbon steel at room temperature. It can be seen that between strain 

rates of 10- 6 sec- 1 and 10- 3 sec- 1 yield stress increases only by 10%. 

Above the strain rate of 1.0 sec- 1 however, the same increase of strain 

rate doubles the yield stress. For the data shown in Figure 2.7, at every 

level of strain, the flow stress increases with increasing strain rate. 

However, a decrease in strain-hardening rate is exhibited at higher strain 
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rate. The results of the combined effects of strain rate and temperature 

at 200
0

, and 6000 C are shown in Figures 2.8 to 2.10
39

, 

respe<;.tively. At the highest temperature of 600
0 

C, yield strength 

increases with increasing strain-rate, but strain hardening increases 

(rather than decreases) with increasing strain rate. At intermediate 

temperatures shown in Figures 2.8 and 2.9, however, regions of negative 

strain rate sensitivity are visible; that is, under certain conditions 

of strain , strain rate, and temperature , the flow stresses of carbon 

steels decrease with an increase in strain rate. This is in contrast with 

the usual strain rate effect40 . 

Based on the research findings presented in Refs. 27 and 41, the true 

stress in metals may be determined by the strain rate as follows: 

(~.' 13) 

where 

cr = true stress 

E = true st~ain rate 

m = strain rate sensitivity exponent 

C = material constant 

In Equation (2.13), it is possible to determine the value of "m" from 

tensile tests by changing the stral.·n t dd 1 ra e su en y and by measuring the 

instantaneous change in stress. This technique is illustrated in Figure 

42 
2.11 . By applying Equation (2.13) to two different strain rates and 

eliminating C, 42 we have 

According to Hosford and Caddel27 
(2.14) 

, the magnitude of "m" for most metals 

is usually between 0 and 0.03. The value of C depends on the strain rate, 
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temperature and the type of materia127 . For a given material, the values 

of C and m can be determined empirically. For example, the resulting 

magnitudes of C and m obtained from Chatfield and Rote's tests are listed 

in Table 2.341 . It is interesting to note from Table 2.3 that the m values 

range from 0.018 to 0.056, which are slightly exceeding the range of m 

values given by Hosford. As expected, the values of In C (and thus C) 

increase as the yield strength increases. However, the m values show a 

steady decrease with the increasing yield strength. An analysis of the 

results given in Table 4 of Chatfield and Rote's 
, 41 

report seems to 

indicate that the increase in C is offset by the decrease in m values. 

such that the total increase in yield strength for a given strain rate 

remains approximately the same regardless of the material strength, 

Another useful relationship between the true stress and strain rate 

27 
is given by Hosford as: 

(2, 15) 

where 0
1 

and O
2 

are the true stresses corresponding to strain rate E'l 

and E'2' respectively. Therefore, E'l and m are known, then O2 

can be found for any desired value of E'2' 

If the strain rate sensitivity of a material is known as a design 

parameter, the engineer may use this property to his advantage and thus 

a more economical design may be obtained. For example, an automotive 

engineer may take advantage of the increased yield point Cif available) 

caused by the high strain rate associated with impact when he designs a 

part to withstand impact loading without permanent deformation
41 

In 1955, Alder and Phillips43 studied the combined effects· of strain 

rate and temperature on compressive mechanical properties of steel, 
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curves were determined for these 
copper, and aluminum. The stress-strain 

. t in the range from 1 to 40 
three materials at constant true stra1n ra es 

The maximum compressive strain was 50% for temperatures 
in./in./sec. 

9300 to 1200° C. The tests were conducted us ing the cam 
ranging from 

d L 8 . 
plastometer compression machine which was designed by Orwan an as 1n 

1950. Table 2.4 presents their experimental results, for steels'at various 

strains, strain rates, and temperatures. It can be observed from this 

table that increase in strain rate or decrease in temperature resulted 

in an increase in the stress at any given compression strain. Alder and 

Phillips used Eq. (2.13) for the stress-strain rate relationship. The 

values of Eq. (2.13) constants C and m obtained from Alder and Phillips' 

work are given in Tables 2.5 and 2.6, respectively. It can be seen that 

m tends to increase while C decreases and/or the temperature increases. 

44 In 1957, Cook used the cam plastometer machine to determine the 

,) 

compressive yield strengths for twelve different types of steel at 900 , 

1000°, 1100°, and 1200° C combined with constant strain rates of 1.5, 8, 

40, and 100 in./in./sec. The experimental results obtained from this 

investigation for low, medium and high carbon steels are given in Figs. 

2.12 through 2.14, respectively. These curves illustrate the 

relationships between yield strengths and natural strains for three 

steels tested at different temperatures and strain rates. It is observed 

from the results of Cook and Alder and Phillips that the yield strengths 

of steels increase as the strain rate increases and/or the temperature 

decreases. However, a noticeable feature of many of the curves of this 

investigation is the drop in yield strength at high strains which is 

contributed, as Cook concluded, to the predominance of thermal softening 
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Table 2.4 

Effect of Strain Rate and Temperature on the Stress 

Required to Compress Stee143 

Speci- Sttalu A.Ter~ Stress (loa Ib./in. l ) to' Oompress : 
men Temp .• Rate, Dia., ·0. eec:.-I 
mID. 10% 20% 30% ~O% 60% 

18 I 18 slow • 77'5 92·0 98·0 102 105 

12 930 4·35 18·6 22·3 23·5 23·9 24·1 
7·4 19·0 22·9 25·1 26·4 26·2 

12·9 20·9 24·0 25·8 27·0 27·1 
23·1 21·6 25·3 27'4 28·6 29·4 

12 1000 4·35 14·8 18·3 20·0 20·7 20·1 
18 4·35 14·8 17·9 19·6 20·8 20·3 
12 7·4 16·4 19·2 21·0 22·1 22·0 
18 7·4 15·5 18·6 20·8 22·3 22·2 
12 12·9 16·9 19·7 21·4 22·6 22·8 
12 23·1 18·6. 21·6 22·9 23·9 24'4 

18 1060 4·35 12·8 15·2 16·6 17·1 16·3 
7·4 13·6 16·0 17·9 18·7 IS'5 

12·9 14'5 16·9 18·6 19·9 20·2 
23·1 15·4 18·4 20·3 21·7 22·1 

18 1135 4·35 11·0 12·9 13·8 13·8 13·1 
7·4 11·6 13·6 14·8 15·3 14·7 

12·9 12·4 14·5 15·8 16·7 16·9 
23·1 13·6 15·9 17·4 18·3 18·5 

18 1200 4·35 9·0 10,6 11·0 10·9 10·1 
7·4 9·5 10·9 11·7 11·8 11·2 

12·9 10·2 11·6 12'5 12·7 12'5 
23·1 10·9 12·6 13·7 14·3 14·0 
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Table 2.5 
43 

Values of C for Steels Using Equation (2.13) 

I 

Value of C for:. Compression of: I 
Temp., I 

°C. I 
(1)o/~ 50% I 10% 20~~ 30010 

l , 
20·9 20·9 930 10·3 19·4: 20·4: 

1000 13·0 15·6 17-3 18·0 16-9 

1060 10-9 12·9 14:·0 1~'4 13·6 

1135 9·1 10-5 ll-:! It·O 9·9 

1200 
I 7-6 g-ti g-8 8·3 7-6 

l 

Table 2.6 

Values of m for Steels Using Equation (2.13)43 . 

V&1ue of ~!or a Compression of: 
Temp_~ 

OC. 
10% 20% 300;0 40% 50% 

930 0·088 0·084 0-094 0·099 0·105 
1000 0·108 0·100 0·090 0·093 0-122 
1060 0·112 0·107 0·117 0·127 . 0·150 
1135 0·123· 0·129 0·138 0·159 0-198 
1200 0·116 0·122 0·14:1 0-173 0-196 

28 
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of the steels over strain hardening as the compression proceeds. 

Comparison of the three curves shown in Figs. 2.12 to 2.14 for the three 

carbon steels also reveals that the tendency for the stress to drop 

increases with the steel carbon content. 

By using the Split Hopkinson method, Davies and 
45 

Hunter 

investigated in 1963 the dynamic compressive mechanical behavior of some 

metals including steel. The compressive loading cycles was of 30 

micro-seconds duration which generated strain rates in the range of 1,000 

to 10,000 in./in./sec. The results obtained from this investigation 

indicated that the ratio of the dynamic to static yield strength of the 

mild steel used is 2.6. 

In 1963, United St~tes Steel Corporation46 conducted numerous tests 

on high-strength, low-alloy steels (COR-TEN and TRI-TEN) for the purpose 

of studying the effects of the strain rate and temperature on the tensile 

properties of these steels. The tests were conducted at strain rates of 

3 x 10- 5 in./in./sec, 5 x 10- 3 in./in./sec., and 1.0 in./in./sec at 

temperature of -50° F, 75° F (room temperature), and 6000 F. The results 

obtained from this investigation indicated that as the strain rate was 

increased at -500 F and at 75° F, the tensile strength and the 0.2 percent 

offset yield strength increased as shown in Figs. 2.15 and 2.1646 . 

However, as the strain rate increased at 6000 F, the tensile strength 

decreased. The ductility of the COR-TEN steel, as measured by percent 

elongation and reduction of area, did not appear to be strain- ra te 

sensitive at -50
0 

F and room temperature, but at 6000 F, the reduction 

of area for the fastest rate was higher than that for the slowest rate. 
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The percent elongation of the TRI-TEN steel appeared to be somewhat 

strain-rate dependent, decreasing slightly as the strain rate increased. 

In 1974, 41 Chatfield and Rote completed a comprehensive report 

concerning the influence of strain rate on the mechanical properties of 

high strength, low alloy (HSLA) steels. In this study six different HSLA 

steels were tested with yield strengths ranging from 40 to 80 ksi. They 

also tested three different aluminum alloys for comparison with the HSLA 

steels. Approximate strain rates used were 0.008, 0.8, 8.0 and 80. 

in./in./sec. All tests were performed at room temperature. Figure 

shows the relationship between yield and tensile strengths. 

uniform elongation and strain rate for a typical HSLA steel. 

As can be seen from Fig. 2.-17, the yield and tensile strengths both 

increase substantially with increasing strain rate while the uniform 

elongation, which is the strain- at the onset of the necking, decreases 

slight ly. This indicates that the total elongation is relatively 

independent of strain rate. It is, therefore, expected that the absorbed 

energy of the HSLA steel also increases with increasing strain rates. Such 

an increase in absorbed energy is obviously desirable for the automotive 

components. 

In 1982, Watanabe47 studied the yield behavior of low-carbon sheet 

steels at room temperature under the strain rates of 10-
4 

to 10-
1 

sec-
1 

using an Instron type machine. The results showed another break point of 

- 3 -1 
the dependence of the yield stress on the strain rate of 3 x 10 sec , 

, -1 -1 
which is different from Manjoine s strain rate of 10 sec as shown in 

Fig. 2.1847 This means that the dependence of yield stress, yield point 

elongation, and tensile strength on the strain rate in the range of high 
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strain rate above 3 x 10-
3 -1 

sec is larger than that at lower strain 

rates. Figure 2.18 also shows that the yield stress is more sensitive 

to strain rate as compared with the tensile strength. 

Also in 1982, Peterson, Schwabe, and Fertis
48 

conducted experiments 

to measure the effect of strain rate on the tensile properties of SA-106 

carbon steel pipe. It was observed that the increase in the strain rate 

from 4x 10 -4 to 4 sec -1 raised the yield strength by approximate ly 30 

percent as illustrated in Fig. 2.19. 

49 . In 1983, Sachdev and Wagoner found that the strain rate sensitiv~ty 

m is strongly dependent on the strain rate for steel . This investigation 

included four types of steel: an interstitial free (Ir:) steel, a hot 

rolled, plain carbon steel (RR), and two high strength steels one with a 

ferr i te-pear 1i te microstructure (RSLA) and the other with a 

ferrite-martensite (DP) microsttucture. A new equation was developed to 

49 
correlate the strain-rate sensitivity and the strain rate as follows : 

b 
.a 

m = E (2.16) 

In the above equation, a and b are constants to be determined from tests. 

Figure 2.20
49 

shows the strain-rate sensitivity index, m, for the steels 

tested as a function of strain rate. The curves represent the best fits 

for Equation (2.16) for the steels tested under the selected strain rate 

range. The best fit coefficients obtained from these curves are given in 

49 Table 2.7 a long with the m-values. Note that for each steel the 

strain-rate sensitivity is well-characterized by the new equation. 

50 
In 1984, Meyer conducted tension tests on high strength sheet 

steels at strain rates between 5xlO-4 sec- 1 and 5 3 -1 xlO sec . Figure 2.21 

shows the stress-strain curves of the tested steel at different strain 
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Table 2.7 

Standard Strain Rate Sensitivity 

49 
and New Strain Rate Parameters 

Material m b a 

IF 0.011 0.039 0.150 

HR 0.008 0.029 0.134 

HSLA 0.004 0.010 0.102 

DP 0.003 0.013 0.149 

Table 2.8 

Strain Rate Sen~itivity for Different Microstructures 

- 5 -1 
Determined by Strain Rate Jump Tests at 6.7 x 10 sec , 

-4 -1 -3-1 6.7 x 10 sec ,and 6.7 x 10 sec (Ref. 51) 

Microstructures m 
low to intermediate 

strain rate 

m 
intermediate to high 

strain rate 

Co Id-rolled 
Normalized 
Martensitic 
Tempered martensitic 
Ferrite-carbide 

0.002 
0.002 
0.003 
0.003 
0.003 

0.004 
0.004 
0.005 
0.006 
0.005 
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rates. It is observed from this figure that both yield and ultimate 

tensile strengths are increased with the increasing strain rate. However, 

the ductility decreased when the strain rate increased from 5 x 10-4 

-1 3-1 
sec to 2 x 10 sec 3 -1 At higher strain rates above 2 x 10 sec ,the 

material becomes more ductile again. 

Recently, 51 Nagorka conducted an experimental investigation to 

observe the effect of microstructure and strain rate on the stage III 

strain hardening and ductility of dual-phase steels. The five types of 

steels included in this investi&.ation were cold-rolled, norma lized. 

martensitic, tempered martensitic, and ferrite-carbide. 51 Table 2.8 

lists the values of the strain rate sensitivity for the five steels 

studied. The m values were calculated for low to intermediate strain rates 
. 

- 5 -1 --4 - 1 (6.7 x 10 sec to 6.7 x 10 sec) and intermediate to high strain 

-4 -1 -3-1 
rates (6.7 x 10 sec to 6.7 x 10 sec ). Based on the m values given 

in this table, Nagorka concluded that the strain rate sensitivities of 

various microstructures are the same for any given strain rate and 

increase with increasing strain rate. These observations indicate that m 

is insensitive to changes in microstructures. Also, it was concluded from 

this study that the uniform elongation increases slightly with increaSing 

strain rate for most of the microstructures tested, whereas post-uniform 

elongation increases significantly with increasing strain rate. 

Another very important mechanical property is the modulus of 

elasticity, E. Norris, et al., state in Ref. 36 that, based on a limited 

number of tests on ordinary structural carbon steel, the modulus of 

elasticity is unaffected by strain rates. 
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ii) Stainless Steels. 
Albertini and Montagnani

52 
have conducted 

tests on three austenitic stainless steels (AISI types 304, 
304L and 

52 
3~7). The results of these tests are presented in Figs. 2.22 to 2.24 , 

which indicate an increase in yield and ultimate strengths for all 

materials when the strain rate increases. However, decreases in the total 

elongations are exhibited. 

In 1984, Hopkinson split-bar tests were performed on type 21-6-9 

austenitic stainless steels from ambient temperature to 1023° K by Kassner 

d B . h 53 an re~t aupt 
2 4 -1 

These high strain rate tests ( 10 to 10 sec ) were 

-4 -1 
compared with lower strain rate tests (10 sec ). The results as 

shown in Figure 2.2553 indicate that the strain-rate sensitivity of this 

type of stainless steel is not strongly dependent on the strain rate. The 

value of m was determined to be 0.03846 by measuring the slo~~ of the 

indicated best-fit line. 

iii) Aluminum. Structural aluminums were found to be less strain 

rate sensitive than steels. Figure 2.2654 shows the data obtained for 

1 60 
-3 -1 3-1 o -0 aluminum. Between strain rates of 10 sec and 10 sec , the 

stress at 2t plastic strain increases by less than 20t. Another contrast 

to the behavior of steel as demonstrated in Fig. 2.26 is that strain 

hardening increases with increasing strain rate. Reference 55 summarizes 

several data sets relating to the yield stress dependence on strain rate 

in steel and aluminum (F'gs. 2.27 and 2.2~55). Th ~ e comparison shows that 

for aluminum, the effect on yield stress is less significant and occurs 

only at extremely high strain rates. Note the difference in vert.ical 

scales in Figs. 2.27 and 2.28. 
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Aldet and Phillips43 also performed compression tests on aluminum 

to study the combined effects of strain rate and temperature using the 

cam plastometer compression testing machine. The compression tests on 

aluminum were conducted under the strain rate range of 1 to 40 

in./in./sec. combined with temperatures ranging from -190° C to 550° C. 

Figure 2.29 shows typical stress versus logarithmic strain rate curves 

at various temperatures. It is observed from this figure that the stress 

at a given strain increases as the strain rate increases and/or the 

temperature decreases. Table 2.9 presents the experimental results for 

aluminum. The values of C and m according to Equation 2.13 are given in 

Tables 2.10 and 2.11, respectively. No drop in stress was observed at 

high strains as in the case of steel. 

Commercially pure aluminum specimens 56 
were tested by Hockett in 

1959 at room temperature using the cam plstometer compression testing 

machine at three strain rates of 0.23, 0.455, and 1.46 in./in./sec. From 

the measurements of load and time throughout each test, true stress versus 

true strain curves were plotted. These curves fit an equation of the form: 

BE a = A (1 - e ) + C E (2.17) 

where a is the true stress, E is the true strain, A, B, and Care 

parameters determined from the tests, and e is the base of natural 

logarithm. The parameters A and C were found to be dependent upon 

temperature and strain rate, increasing with decreasing temperature and 

with large increases in strain rate. The parameter B was found to be 

essentiall~ independent of temperature, but a large increase of strain 

rate produces an increase in B. Table 2.12 presents the values of the 

parameters A, Band C as a result of the compression tests conducted on 
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Table 2.9 

Effect of Strain Rate and Temperature on the Stress 

Required to Compress Aluminum 43 

-
Specl- Strain .A Terage Stress (10' Ib./in..I) to Compreas : 

I$ .. t.cb 
men Temp~ Hate, Dis., ·C. 
mm. 1eC.- l 

10% 20% 30% -40% ~O~:. 

b 12 -190 4·38 28'1 34·1 33·9 32·2 31'6 
b 12 -120. 4·38 18·6 22·4 24·7 26·3 27'8 

b I 12 - 75 4·38 li'4 20·9 23·0 24'5 25'8 
& I 

18 -, - 75 4·38 16·0 19·5 ·21·5 23·0 24'1 

18 18 8low- 12·9 15·4 17·0 18·8 20,5 & 

& 18 1·34 14'7 17·2 19·0 20·7 22'1 
a 18 2·31 1~'9 17·6 19·5 21·1 22·6 
a 18 4·38 14·1 17·0 19·2 21·0 22·4 
b 12 4·38 14'5 17·2 19·2 20·6 21'9 
& 18 i·15 14·6 17·5 19·5 21·3 22·9 
a 18 12·9 15·1 17·9 19·8 21·5 23·0 
b 12 12·9 15·0 17·9 19·7 21·1 22'3 
& 18 23·1 15·3 18·2 20·1 21·8 23·1 
a 18 39·3 15'1 18·1 20·1 22·0 23·3 

a 18 150 1·34 11·4- 13·5 14·9 16·0 16'9 
2·31 11'5 13·8 15·3 16·3 17'2 
4·38 11'9. 14·1 15·6 16·7 li'8 
7-15 12·0 14·2 15'7 17·1 17-9 

12·9 12·0 14·2 15·9 17·3 18·2 
23·1 12·1 14·2 15·8 1;,2 18'4 
39·3 12'1 14·3 16·0 17·4 18-5 

a 18 250 1·34 9·2 10·6 11·5 12·1 12'5 
2·31 9·4 10·7 11·6 12·2 12·6 
4·38 9'5 11·0 12·1 12·7 13·1 
7·15 9·6 n·l 12·1 12·9 13·1 . 

12·9 9·8 11·6 12·6 13·3 13·6 
23·1 9'8 11·5 12·6 13·4 13·8 

& 18 350 1·34 6·3 7·0 7·3 7·5 7'5 
2·31 6·3 7·1 7·6 7·8 7·9 
4·38 6·8 '·7 8·2 8·5 8·6 
'-1St 6·7 7·6 8·2 . 8·6 8·7 

12'9 7'0 8·1 8·6 g·O . 9'1 
23-1 7·3 8.-3 . -900 9·4 9-7 
39·3 7-7 8·8 9·5 10-0 10'2 
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Metal 

Al 

Yetal 

AI 

Table 2.10 
43 

Values of C for Aluminums Using Equation (2.13) 

Valae ot C tor a. Compression 01: 
Temp., 

°0. 
10% 2~;' 30% 41)% 50% 

18 14·6 17·1 18·9 20·6 22·0 
ISO 11·4 13·5 15-0 16·1 17-0 
250 9·1 10-5 11·4 11·9 12-3 
350 6·3 6·9 7·2 7·3 7-4 
450 3·9 4·3 4:·5 4·4 4-3 
550 ,).C) ..... 2'4 2·5 2-4 2-4 

Table '2.11 

Values of m for Aluminums Using Equation (2.13)43 

VaJue of mfor a Compression ot : 
Temp_, 

OC. 
10% 20% 30% 40% 50~o 

18, 0-013 0·018 0·018 0-018 - 0·020 
150 0-022 0·022 0-021 0-024 0-026 
250 0·026 0·031 0·035 0·041 0·041 
350 0·055 0·061 0·073 0·084 0-038 
450 0·100 0·098 0·100 0·116 0·130 
550 0·130 0·130 0·141 0·156 0-155 
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Suain Rate, i, 
per s.ec 

2.30 X 10-1 .... 

".05 X 10-1 .••. 

1.46 ........... 

Table 2.12 

Results of Compression Tests on Commercially Pure Aluminum 
at Constant Strain Rate, Based on Equation (2.17)56 

Stand- Stand- Stand-Varianct of Stanuard Fint ard De- Second a~.d pc- Tbird ard Dc. 
F' 2 Deviation Param- Param- vaalaon Part.m-

It. " 01 Fil, 'I cter, A viation cter, B of B. cter, C viation 
of A,IA IB ole. Ie 

--
347 103 689.2 11 303 237 -25.92 1.46 13 49G 473 

2 496 161 1 579.2 11 662 637 -19.12 2.M 13 220 1 221 
2 749 815 1 685.3 10 972 515 -22.49 2.80 15 760 1 037 

Nwn-
ber o. 

Poiou 
• 
70 
89 

124 

VI ..... 
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commercially pure aluminum at constant true strain rates along with the 

statistical parameters,which were obtained from fitting the experimental 

data to Equation 2.17. 

Tests in compression and tension for a large number of metals under 

57 
high strain rates were performed by Lindholm and Yeakley in 1968. Figure 

2.30 shows stress-strain curves for 1100-0 aluminum in both tension and 

compression at various strain rates. The lower strain rate tests were 

performed on a standard Instron testing machine and the rest of -the tests 

were performed using the Split Hopkinson Pressure Bar. For the comparison 

between the tension and compression data, all values of stress, strain, 

and strain rate are true values. It has been observed from the. results 

of many tests that for very low strain rates, the stress levels in tension 

and compression agree well, although the increase in flow stress with 

increasing strain rate differs in detail. Figure 2.31 shows a number of 

compression stress-strain data for 6061-T6 aluminum alloy, for which the 

wide variation in strain rate appears to have negligible effect on the 

stress levels. This is found to be true for other high-strength aluminum 

alloys according to Lindholm and Yeakley. As a result, the equivalence 

of the data obtained from the Split Hopkinson Pressure Bar with that 

obtained at low strain rates from an Instron machine indicates that wave 

propagation and inertia forces are' not contributing any significant error 

to the measurements in the dynamic tests. 

A large amount of the available data has been reviewed by Lindholm 

58 
and Bessy The materials teste~ include several commercial aluminum 

alloys. The data cover strain rates from 10- 5 to about 10 3 sec-I. The 

strain rate sensitivity was found to be constant over a large range of 
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strain rates. Figures 2.32 to 2.3458 show the effect of plastic strain 

rate on the flow stress at a constant true strain and a constant 

temperature. In some cases, rate independent behavior is observed at low 

strain rates. In general, the value of m was found to increase with 

increasing strain rate. From these figures, it can be seen that the flow 

stress may be related to the strain and strain rate over the wide range 

of strain rates by the following equation59 

(2. 18) 

where cr (E) is the stress-strain relation at unit strain rate. o . 

Green and Maiden60 have conducted two compression tests on two types 

of aluminums, 6061-T6 and 7075-T6. The range of the strain rates was from 

0.03 sec- 1 to 560 sec-I. Figure 2.35 60 shows the stress strain data of 

7075-T6 at various strain rates. It is apparent from the results of these 

tests that both aluminums are not sensitive to the change in the strain 

rate. 

33 Figure 2.36 shows a method of comparing the previous investigation 

data in terms of a rate-sensitivity parameter versus the static flow 

stress. The parameter is the increase in flow stress from a static test 

to a dynamic test at a given strain divided by the static flow stress and 

the log of the difference in strain rates. It represents the percentage 

increase in stress per unit of log strain rate. It is shown from this 

figure that the degree of rate sensitivity is increased as material 

strength is decreased, or as purity increases. 

c. Strain-Rate History Effect. In addition to the effect of 

strain rate on the mechanical properties of materials, the history of 
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strain rates. Figures 2.32 to 2.3458 show the effect of plastic strain 

rate on the flow stress at a constant true strain and a constant 

temperature. In some cases, rate independent behavior is observed at low 

strain rates. In general, the value of m was found to increase with 

increasing strain rate. From these figures, it can be seen that the flow 

stress may be related to the strain and strain rate over the wide range 

of strain rates by the following equation59 

(2.18) 

where a (E) is the stress-strain relation at unit strain rate. o . 

Green and Maiden60 have conducted two compression tests on two types 

of aluminums, 6061-T6 and 7075-T6. The range of the strain rates was from 

-1 -1 60 0.03 sec to 560 sec . Figure 2.35 shows the stress strain data of 

7075-T6 at various strain rates. It is apparent from the results of these 

tests that both aluminums are not sensitive to the change in the strain 

rate. 

Figure 2.3633 shows a method of comparing the previous investigation 

data in terms of a rate-sensitivity parameter versus the static flow 

stress. The parameter is the increase in flow stress from a static test 

to a dynamic test at a given strain divided by the static flow stress and 

the log of the difference in strain rates. It represents the percentage 

increase in stress per unit of log strain rate. It is shown from this 

figure that the degree of rate sensitivity is increased as material 

strength is decreased, or as purity increases. 

c. Strain-Rate History Effect. In addition to the effect of 

strain rate on the mechanical properties of materials, the history of 
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t a g iven strain and strain rate. 
loading can affect the flow stresses a 

A number of investigators have examined the loading history to 

determine its contribution to the mechanical behavior 

characteristics. A technique that has achieved popularity over the last 

decade is the jump test or more properly the incremental strain-rate 

test, for which a specimen is subjected to a slow rate of loading followed 

33 rate . by a very high loading 

Incremental as well as interrupted ( prestrained) tests are most 

useful too~s for the' study of strain-rate history effects in metal, 

especially if the change in strain-rate covers several orders of 

magnitude, say from quasi-static to dynamic or vice versa, in order to 

submit the material in question to the most critical and demanding 

d
., 61 con ~t~ons . 

The early experiments involved with dynamic strain rates and 

intended for a study of strain-rate history are those of Lindholm
59 

Figures 2.37 to 59 2.39 show Lindholm's results for cyclic loading 

of aluminum. It is evident that the stress in dynamic tests following 

a static pre-loading is not equal to the stress found at the same strain 

in all dynamic loading ( as shown by the dotted line) This difference 

is due to strain rate history. In addition, Lindholm wondered if the 

result was influenced by the dwell-time at zero load To investigate 

this question he loaded a specimen dynamically to 8 percent strain, 

unloaded, and then reloaded dynamically. The result, as shown in Fig. 

2.39, shows a history effect for a dwell-time of three minutes, while 

for a dwell-time of 450 micro seconds none can be seen. 
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Sirakashi and Usui
62 

tested three materials over a large range of 

temperatures. Jumps in strain rate were made -3 -1 
from 10 sec to four 

different dynamic strain rates. Figures 2.40 and 2.41 62 show the effect 

of alteration of strain rate upon the flow stress. In Fl'g 2 40 P . t . . , Oln 

A is 
o 

reached with a constant strain rate of 10- 3 sec- 1 The strain 

rate is then changed to 103 sec- 1
. Two dotted curves in the figure are 

stress strain curves with a constant strain rate. It may be seen in the 

figure that the flow stress does not reach the value at point A
2

, which 

lies on the dotted curves with 
3 -1 constant strain rate of 10 sec , 

in spite of the alteration of strain rate. The same situation may be seen 

in Fig. 2.41, where the 
3 -1 

strain rate is changed from 10 sec to 

-1 
sec at point B . These results clearly show that the history of strain 

o 

rate is another factor which has an effect upon the flow stress. In other 

words, the flow stress will be different depending upon the strain rate 

history, which the material has experienced, even if strain, strain rate 

and temperature are all the same at the moment considered. The effect 

of strain rate history may be attributed to the "memory" of strain rate 

which has been stored in the material, probably as a change in structure. 

The most extensive series of jump tests is probably that of Eleiche 

and Campbell conducted in 197663 . These investigators tested copper, 

titanium and mild steel. The tests were performed over a range of 

temperatures and strains up to 60% in shear. They concluded that copper 

is sensitive to strain rate history, while titanium and steel are less 

sensitive to history, but more sensitive to direct effects of strain rate 
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Jump tests to higher strain rates using 1020 hot rolled steel and 

1080 cold rolled steel were performed by Wilson et a1 64 in 1979. See 

Figures 2.42 and 2.4364 . Both steels, 1020 hot rolled steel, and 1080 

coIled rolled steel show a strong strain rate sensitivity and 

insensitivity to strain rate history. 

A recent experimental study of the strain rate history effect on 

the tensile strength of AISI type 316 stainless steel using interrupted 

testing was conducted by Eleiche, Albertini, and Montagnani61 in 1985. 

True stress-true strain curves resulting from their interrupted 

testing accompanied by a strain rate change from 0.004 to - 1 500 sec 

at various values of strain are presented in Fig. 2.4461 . Also plotted 

are curves showing the variation of the temperature rise in each 

specimen during the corresponding dynamic deformation. The investigated 

prestrain range was from 0.0047 in.jin to 0.3048 in.jin. It can be seen 

from this figure that a well-defined yield point exists whose level is 

much higher than that reached in the quasi-static prestraining. For small 

prestrains, this yield stress level is very close to the flow stress 

level reached at the same strain in a test conducted entirely at the 

dynamic rate (curve B in Fig. 2.44). The conclusion of this study was 

that even though stainless steel is known to be strain-rate 

sensitive, it has been shown that it is insensitive to strain-rate 

history, within the range of strain rate covered in the tests and 

at ambient temperature. 
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C. STRUCTURAL MEMBERS 

This part of the literature survey covers both theoret ica 1 and 

experimental work for the following two major subjects: 

1. The structural behavior of stiffened and unstiffened compression 

element.s under static loads presented in Section II.C .1. 

2. The response of structural members to dynamic loads discussed in 

Section II.C.2 which focuses on those cases related to flexural and 

axially loaded members for the purpose of studying the effect of strain 

rate due to dynamic loads on the structural strengths of these members. 

1. Structural Behavior of Compression Elements Under Static Loads. . 
The analytical solutions of the elastic local buckling strengths of both 

stiffened and unstiffened compression elements are presented in Section 

II.C.1.a. The buckling stress in the inelastic range is discussed in 

Section II.C.l.b. In Section II.C.l.c, the theoretical background of the 

postbuckling behavior of rectangular stiffened and unstiffened 

compression elements is briefly reviewed. The development of effective 

width formulas for the prediction of the maximum strength of stiffened 

and unstiffened compression elements is presented in Section II. C. l.d. 

Also presented in this section are the effective ~idth formulas used in 

the current AISI Cold Formed Steel Design Manual65 and AISI Automotive 

Design Manual. 22 

a. Elastic Local Buckling of Flat Compression Elements. The elastic 

local buckling behavior of thin elements is governed by a differential 
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equation based on the small deflection theory of plates. The analytical 

solution for the critical buckling stress of plates is available from 

solving the differential equation by using the energy method. 66 ,67 

Timoshenko66 has presented a series of solutions of plate buckling for 

several different types of compression elements, considering various 

boundary conditions. Figure 2.45 shows differentsructural members with 

stiffened and unstiffened compression elements. 

The methods of determining the critical buckling stresses of 

compression elements are summarized in Sections II.C.1.a.i and 

II.C.1.a.ii for stifferied and unstiffened elements, respectively. 

i) Stiffened Elements. The critical buckling stress of compression 

elements can be determined by solving the following differential 

equation. This equation was originally derived by Saint Venant in 

1883. 68 

( 2.19 ) 

where w = lateral deflection of the plate 

q = lateral uniform load applied to the plate 

t = thickness of the plate 

D = Et3/(12(1- .u2
)) 

E = modulus of elasticity 

.u = Poisson's ratio = 0.3 for steel 

f ,f = stress components normal to the edges of the plate and 
x y 



(a) Members with Unstiffened 

Compression Elements 

68 

(b) Members with Stiffened 

Compression Elements 

Fig. 2.45 Structural Members with Stiffened and Unstiffened Elements 26 



lying in the x-y plane 

Txy = shear stress component on the edges of the plate in the 

x-z and y-z plane 

69 

The solution of Eq. 2.19 for a rectangular plate simply supported 

on four edges, as shown in Fig. 2.46, is given in Eq. 2.20. 

( 2.20) 

The.value of k, as shown in Fig. 2.47, depends on the magnitude of 

the aspect ratio (a/w) of the plate and the number of half sine waves in 

the direction of compression. In Fig. 2.47, it is noted that the value 

of k is equal to four for a square plate and for any plate with an aspect 

ratio equal to an integer. In addition, for a long plate with an aspect 

ratio larger than four, the value of k approaches to four. Therefore, a 

minimum value of k equal to four is conservatively used in practical 

design without considering the rotational restraint along the unloaded 

edges. 

ii) Unstiffened Elements. The same governing Equation (2.20) can 

also be used for unstiffened plates, as shown in Fig. 2.48, which are 

simply supported on three edges and the other edge free. Solving Eq. 

(2.20) by satisfying the unstiffened plate boundary conditions, one can 

obtain the following expression for the critical buckling stress of 

unstiffened compression elements in which the buckled plate has only one 
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half sine wave in the direction of compression regardless of the length 

of plate 

2 
f 

_ k:r D 
cr - 2 

tw 

\ 2.21 \ 

in which k is a numerical factor depending on the magnitude of the ratio 

of a/w. An approximate solution based on an energy method has been 

66 67 . . t 
presented by both Timoshenko and Bulson . The buckling coeff1C1en 

was found to be 

w 2 l-,u 
k = \ a) +6 --­

;r2 
( 2.22 ) 

Figure 2.49 shows the relationship between buckling coefficient and 

aspect ratio of the rectangular unstiffened plate. Reference 67 indicates 

that the approximate solution is close to the exact solution .. Figure 2.49 

also shows that the value of k approaches a constant value of 0.425 as 

the aspect ratio of the plate approaches infinity. Poisson's ratio 11 is 

equal to 0.3. 

b. Inelastic Buckling of Flat Compression Elements. A plate may 

buckle at a stress level beyond the proportional limit of the steel when 

the flat width-to-thickness (wIt) ratio is small. The plate becomes an 

anisotropic plate when it buckles in the inelastic range. The analytical 
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study of local buckling in the inelastic range is complicated because of 

the anisotropic nature of the material. However, analytical 

investigations of plates that buckled in the inelastic range have been 

. 69-73 
cons~dered by numerous researchers. A brief discussion of plate 

buckling in the inelastic range is presented in this section. 

In 1924, Bleich69 extended the theory of flat plate stability into 

the inelastic range by considering the plate as an anisotropic type and 

by introducing a reduced modulus into Eq. (2.20). He assumed that the 

reduced modulus is effective only for strips of a plate in the direction 

of the compressive stress, whereas the elastic modulus remains valid for 

strips in the direction perpendicular to the compression stress. 

The following equation for the buckling stress in the inelastic range 

is in terms of the elastic buckling stress (f ) and the plasticity cr e 

reduction factor, ~. 

2 
~k:r E ( 2.23 ) 

In Eq. (2.23), ~ = vlEt/E , which is the plasticity reduction factor 

for a simply supported plate subjected to uniform compressive stresses 

in one direction. 

c. Post-Buckling Behavior of Flat Compression Elements. Some 

one-dimensional structural members, such as columns, normally fail at or 
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slightly below the theoretical critical buckling load. However, 

compression flanges of thin-walled structural members, with relatively 

large wit ratios as shown in Fig. 2.45, can continue to carry increasing 

loads after the onset of local buckling of the compression elements. This 

phenomenon is well-known as the post-buckling strength of a plate. 

The deflected shape of a stiffened compress ion element in the 

post-buckling range can be visualized from a grid model as shown in Fig. 

2.50. The transverse bars, which are anchored at the sides of the grid, 

act as tie rods to support the deflection of the longitudinal struts. 

This means that the membrane stresses developed in the transverse 

direction in the real stiffened plate act as hoop stresses, which restrain 

the lateral displacements caused by the longitudinal load. 

Because of the transverse membrane stresses and the resulting 

redistribution of stress occurring in the plate, additional load may be 

carried by the plate after the critical buckling load is reached. In a 

stiffened plate, the stress distribution is uniform prior to its buckling 

as shown in Fig. 2.51(a). After buckling, the stress distribution is 

nonuniform while the load continues to increase as shown in Fig. 2.51(b). 

The redistribution of stress will continue until the stress at the 

supported edges reaches the yield stress of the steel. Failure normally 

occurs when the edge stress reaches the yield point of the material as 

shown in Fig. 2.51(c). 

Because the membrane stresses are developed in the transverse 

direction and because the deflection of the plate is usually much larger 

than its thickness after buckling, small deflection theory of plate 
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bending, which was used to derive the critical local buckling stress of 

plates, can not be applied for the post-buckling range. For these 

reasons, the large deflection theory of plates is used for the analysis 

of plates in the post-buckling range. 

In 1910,74 von Karman developed large deflection equations for 

plates in the post-buckling range by taking the membrane stresses into 

account. The differential equation is given by Timoshenko in the 

66 
fo llow ing form: 

,2 ,2F 
II (I) /) --+-­
JxJy ax2 

-"-"-' ? 24 ,2 1 ,2 ( _. ) 
liy 

where F is a stress function. The median fiber stresses are defined as 

follows: 

2 
f _1..L. y- , 

Jx 2 
( 2.25 ) 

This equation has been used by many researchers to study the 

post-buckling behavior of square plates. The exact solution for Eq. 

(2.24) is very difficult because this equation is a fourth order, 

nonlinear differential equation. Approximate solutions for the 

differential equation have been proposed by Schnadel, 7S Timoshenko, 66 

76 77 78 
Cox, Marguerre, and Levy. They used the energy method and assumed 
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a wave form of the deflected plate to study the post-buckling behavior 

of the plate. 

An approximate solution of the differential equation based on the 

large deflection theory was found to be too difficult for use in practical 

design because of its complexity. Therefore, the effective width design 

formulas are currently empirical in nature. In the past, the effective 

width concept has been successfully used for the prediction of 

post-buckling strengths of stiffened and unstiffened compression 

elements. The development of Winter's formulas is reviewed in the 

following section. 

d. Development of Effective Width Formulas. In 1932,79 von Karman 

introduced a concept of "Effective Width" to determine the ultimate 

strength of thin metal sheets in aeronautical structures. In his 

approach, it was assumed that the entire load is carried by two effective 

strips with a uniformly distributed stress equal to the edge stress, 

f
max

' as shown in Fig. 2.52, instead of using the full width of the 

compression element with actual, nonuniform stress distribution. 

To extend the use of the effective width formula for practical design 

of plates with small wit ratios and for stress levels lower than the yield 

point, in the 1940s Winter80 - 82 performed extensive tests for the 

compression flanges of cold-formed steel sections at Co~nell University. 

Based on his test results, Winter derived effective width formulas for 

the design of both stiffened and unstiffened compression elements under 

uniform compression as follows: 



78 

fm01 2 

I· 

. 26 Fig. 2.52 Effective Design Width of a Stiffened Compression Element 
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Fig. 2.53 Effective Design Width of an Unstiffened Compression Element 26 
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(1) Stiffened Elements: 

( 2.26 ) 

or 

b = [ / ffcr (1 -O. 2SJ ffcr ) 1 w . 
'v max max 

( 2.27 ) 

This equation is similar to von Karmam's equation given in Reference 

77 with t~e addition of an empirical correction factor which accounts for 

the effect of initial imperfections of compression elements. The 

correction factor is 

( 2.28 ) 

(2) Unstiffened Elements: 

b = O. 8t / f E [1 - 0 .202( ~ ) / f E ]. 
~ rna ~ rna 
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The effective width of unstiffened compression elements can be 

calculated from Eq. (2.29), in which the post-buckling strength of 

unstiffened elements is considered. In this approach, the entire load 

is assumed to be carried by an effective strip with a uniformly 

distributed stress equal to the edge 'stress, f ,as shown in Fig. 2.53, max 

instead of using the full width of the compression element with a varying 

83-85 stress distribution. Additional research conducted by Kalyanaraman 

at Cornell University has shown good agreement with Eq. (2.37). 

It is noted that Eqs. (2.26) and (2.29) depend not only on the edge 

stresses but also on the wit ratio. Because the maximum edge stress, 

f max ' was introduced for Fy ' these two equations can be applied to any 

range of stress levels. 

The effective width approach has been used for the design of 

stiffened compression elements since 1946, whereas the reduced allowable 

stress method was used for the design. of unstiffened compression elements 

until the AISI Specification was revised in 1986. 

Equation (2.26) was used for· the design of cold-formed steel 

structural members until 1968. Based on the accumulated design experience 

with a restudy of original and additional test results, the following less 

conservative and more accurate equation was recommended for determination 

of the effective width, b, of stiffened compression elements 

( 2.301 
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or 

[ 
/ fcr ( / fcr ) 1 b = '\j' f

max 
1- 0.22-V f

max 
w. ( 2.31 ) 

Equation (2.30) has been used in the AISI Specification86 since 1968 and' 

maintained in the 1980 AISI Specification87 
Based on the research 

88 conducted by Pekoz , a different format of the effective width formula, 

which is based on Eq. (2.31), is used in the 1986 AISI Design Manua1 22 . 

The same effective width formula is also used in the current AISI 

Specification for unstiffened compression elements by specifying a 

different buckling coefficient. 

In Sections B2.1 and B3.1 of the 1986 AISI Sp'ecification, the 

effective widths of stiffened and unstiffened compression elements can 

be determined by using the following equations: 

(1) For Load Capacity Determination: The effective width b for 

computing the load-carrying capacity of uniformly compressed elements can 

be determined from the following formulas: 

b=w when i. :5; 0.673, ( 2.32 ) 

b=pw when ) > 0.673, ( 2.33 ) 

where b = effective width of a compression element 

w = flat width of a compression element 
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p = (1 - 0 . 22 Ii) I). . 
( 2.34) 

~ is a slenderness factor determined as follows: 

A. = ( 2.35 ) 

where f = the edge stress 

E = modulus of elasticity, 29500 ksi 

k = plate buckiing coefficient 

= 4 for stiffened elements supported by a web on each 

longitudinal edge 

= 0.43 for unstiffened elements supported by a web on a 

longitudinal edge and free on the other. 

(2) For Deflection Determination: The effective widths bd 
in 

computing deflections shall be determined fr.om the following formulas: 

when ). ~ 0.673, ( 2.36 ) 

when A. > 0.673, 

where w = flat width of a compression element 

p = reduction factor determined by either of the following 

two procedures: 



(1) Procedure I. 

A low estimate of the effective width may be obtained 

from Eqs. (2.34) and (2.35) where fd is substituted for 

f and defined as the computed compressive stress in 

the element being considered (calculations are based 

on the effective section at the load for which 

deflections are determined). 
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(2) Procedure II. 

p = 1 

For stiffened elements supported by a web on each 

longitudinal edge an improved estimate of the effective 

width can be obtained by calculating p as follows: 

when I ~ 0.673 ( 2.38 ) 

p = (1. 358 - 0.461 1 ). ) 1 i. when 0.673 < i. < ic ( 2.39 ) 

p = (0.41 + 0.59..}Fy/f --: 0.221 A) / A ( 2.40 ) 

where ic = 0.256 + 0 . 328(w/t)(..}F yJE ). ( 2.41 ) 

and i. is as defined by Eq. (2.35) except that fd is substituted for f. 

For the uniformly compressed unstiffened elements, the effective 

widths used in computing deflections shall be determined in accordance 

with Procedure I except that fd is substituted for f. 
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Based on the extensive research work sponsored by the American Iron 

and Steel Institute, the effective width approach was extended in the 1986 

AISI Specification for the design of beam webs and stiffened elements with 

stress gradient, perforated elements, and elements with edge stiffeners 

or intermediate stiffeners. Detailed information on the effective width 

formulas used for these types of elements can be found in Ref. 65. 

The effective width formulas CEq. 2.32 through 2.35) are also 

presented ip Sections 3.1.2 .1(a) and (b) of the AISI Automotive Steel 

Design Manua1 22 for steels with yield strengths up to 80 ksi. These 

equations calculate the effective widths of fully stiffened and 

unstiffened compression elements based on the effective width formulas 

used in the 1986 AISI Specification. Also included in these sections are 

the effective width formulas for steels with yield strengths higher than 

80 ksi (84 to 153 ksi) based on the recent research conducted by Pan at 

University of Missouri-Rolla in 1988. 21 In addition, Sections 3.1.2.3 and 

3.1.2.4 of the Automotive Design Manual discuss the effective width 

formulas for sections having 1) curved plate elements, and 2) curved and 

straight plate elements, respectively. The latter formulas were based on 

P k d Y , h f' d' 19 ar s an u s researc ln lngs. 

2. Response of Structural Members to Dynamic Loads. It has been a 

general practice for the structural designer to increase the live load 

for the effect of dynamic loading and to assume that the properties of 

the material he employs are unaffected by the nature of the loading. 
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Developments in several separate fields has reached a point where 

proper analysis of structural behavior under impact overload conditions 

could take place. The understanding of material properties under static 

and dynamic loading has been developed to the stage where dynamic 

stress-strain curves can be produced for common engineering materials. 

The instrumentation used in the dynamic tests has been developed to a 

degree that accurate studies can be made of high speed effects without 

the introduction of significant errors from the instrumentation itself. 

The digital computers provide a facility for studying systems too tedious 

or intractable to attempt by manual means. 89 

In this section, some of the developments used in the past research 

for the response of structures to dynamic overloads are reviewed. 

Particular attention has been directed to those items related to beams, 

and columns. 

a. Flexural Members. Flexural members subject to impact loading 

have been the subject of investigation, especially during the last three 

decades. In this section, some of these investigations will be summarized 

in chronological order. 

In 1958, Parkes 90 studied encastre beams with impact loading applied 

transversely at any point on their span. One of the main objectives of 

his work was to evaluate the effect of material strain-rate sensitivity 

on the accuracy of the analysis. Test specimens were fabricated from mild 

steel, brass and duralumin. It was found that mild.steel is the most 

sensitive to strain-rate as compared with the other two materials. The 
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correlation between theoretical and experimental results can be improved 

with taking the strain-rate sensitivity into account. 

A developement of an analysis to determine the response of a 

simply-supported beam subject to a concentrated impact load at midspan 

was presented by Ezra91 in 1958. He was actually attempting to develop a 

theory for comparison with the test results of Duwez and Clark. 92 His 

mathematical model allows the use of full-plastic moment, taking account 

of yield stress as affected by the strain-rate. The theoretical values 

show increasingly better agreements with the test results as the impact 

speed of the test increases. This indicates that the strain-rate 

sensitivity is a significant factor for the tests. 

For small-scale cantilever beams with tip mass, two series of tests 

93 were performed by Bodner and Symonds in 1962. In the first series, the 

ba&e of the cantilever was impacted against a solid support, and in the 

second the tip mass was loaded either by an explosive charge, or being 

hit by a rifle bullet. Two materials were used for the specimens. They 

were mild steel and a less strain-rate sensitive aluminum alloy. 

Theoretical results were initially obtained from the use of a simple 

"rigid-plastic" theory. Comparisons between these results and the test 

results showed that any discrepancies between the two results were 

sensibly independent of the angle of rotation of the hinge at the fixed 

support. It was concluded that strain-rate sensitivity was the on ly 

significant factor causing error, as all other factors would be dependent 

on the- rotation angle at the fixed support. To check this conclusion, 

an analysis including strain-rate effects gave good agreements with the 
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test results. An important point, that "the authors made, is that the use 

of an overall percentage increase of yield atress may lead to errors in 

some situations. 

In 1963, Rawlings 94 reported on an experimental investigation of 

strain-rate effects on yield loads for beam tests. He tested a series of 

simply supported mild-steel beams using a two-point loading system so that 

a plastic hinge could be formed in the central portion of the beam. All 

loads were applied by large falling masses. The force pulse applied to 

the beam was measured at the lever by electric-resistance strain-gages. 

Repeated tests were performed on beam specimens to investigate the 

behavior under different cycles of stress. Original specimens showed a 

marked upper yield peak for short duration, and a major amount of lower 

yield bending for long duration as shown in Fig. 2.54. The results for 

the relationship between lower yield value and the time taken to yield 

obtained from beam tests (Fig. 2. SS) showed good agreement with the 

relationship obtained from material tests. The author concluded that the 

full plastic moment is independent of the method of loading. 

Using the experimental results of Parkes, Ting
95 

developed in 1965 

a formula for cantilever beams loaded dynamically on the basis of 

rigid-plastic theory, which took into account large geometric changes. 

His results compare very favorably with Parkes' experimental results. He 

concluded that not all of the errors between the theory and experimental 

results can be attributed to strain-rate effects, as had been previously 

assumed. Ting was concerned primarily with the high-speed, low-mass 

loading causing travelling hinges. For high-mass, low-speed loading, 
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a) Typical Pulse b) Assumed Shape 

Fig. 2.54 Recorded Load Time Pulse 89 
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that characteristically causes root hinges only, the strain-rate effects 

probably do cause almost all the errors in a simple rigid-plastic theory .. 

96 
A verification of Ting 's research finding was given by Bodner ,who 

tested cantilever specimens by detonating explosive charges which were 

attached to tip masses. Both cantilevers were attached to a pendulum to 

enable the impulse to be measured. Observation of final deformed shapes 

showed large root rotations, with little evidence of travelling hinges. 

On this basis, and using time-to-yield records from strain gages attached 

to the cantilever, a simple theory with an overall correction for 

strain-rate effects gave reasonabl~ correlation with the test results. 

Cowper and Symonds found that the following simple empirical 

expression with D = 46.4 in./in./sec., and p = 5, provides a reasonable 

estimate of dynamic yield stress recorded during many dynamic uniaxial 

tensile and compressive tests under constant strain rate for mild 

98 steel: 

where '1 

'10 

D and p 

= 

= 

= 

= 

= 
. IIp 

1 + ( ~ ) 

dynamic yield stress 

static yield stress 

strain rate 

material constants. 

( 2.42 I 

The above Cowper-Symonds constitutive relation and its derivative forms 

are used almost exclusively in theoretical and numerical studies on the 
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dynamic plastic behavior of structures made from strain-rate sensitive 

materials. The universal acceptance of this equation stems from the 

observation that analytical and numerical predictions agree remarkably 

well with experimental tests on beams. 98 

99 In 1966, Aspden and Campbell were the first to conduct dynamic 

flexural tests in which transient records were taken of moment-rotation 

characteristics. They used small specimens 0.75 inches long by 0.375 

inches wide by 0.125 inches thick, supported at their ends by beams, and 

loaded as a four point loading system by a falling weight. The bending 

moment transmitted to each specimen was measured by electric resistance 

strain gages mounted on the support beam and the strain-rate at surface 

of the specimen was determined by recording the velocity of the load frame 

using an inductive transducer. They compared their high speed flexural 

test results with those obtained under dynamic compression using a 

hydraulically operated machine, and with slow speed tests in an rnstron 

machine. Moment-rotation curves obtained from double-beam oscilloscope 

traces of velocity and moment were corrected to take account of 1) the 

bending of the support beams, 2) zero errors, and 3) inertia effects 

caused by acceleration of the loading mechanism. Like Rawlings, Aspden 

and Campbell observed evidence of high initial peak moments of resistance. 

For the highest rate of strain in their beams, the dynamic 'upper yield 

moment' was about 80% higher than the corresponding moment in a low speed 

test. See Fig. 2.56 for the variation of upper and lower yield moments 

with strain-rate at surface of specimen. Aspden and Campbell noticed that 

after attaining the maximum peak moment of resistance, the value decreases 

below that would be predicted by integration of dynamic axial stresses 
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across the section as derived from test results by assuming plane sections 

remain plane. They attributed the difference of about 10% to non-uniform 

strain distribution throughout the experiment during the loading process. 

In their work, they integrated Eq. 2.42 through the thickness -of a beam 

and found that the dynamic bending moment is related to the associated 

beam curvature rate according to the expression given in Eq. 2.43. 

M 2p KH IIp 
-=1+ () 
MO 2p + 1 2D ( 2.43 ) 

where M = dynamic bending moment 

MO = uy H2 I 4 static collapse moment 

K = curvature rate 

H = thichness of the beam 

D and p = material constants obtained from Eq. 2.42. 

Recent research has been directed to analytical procedures which 

take into account more precise constitutive relationships including 

strain rate sensitivity, strain hardening, and geometric changes arising 

from over loads. In some of these studies, relatively sophisticated 

algebraic solutions have been developed, while in others, numerica 1 

procedures have been derived. 

In order to develop the methods applicable for analysis of the 

response of beams supported at the ends by immovable frictionless pins 

and loaded with a uniform impulse, Jones 100 in 1967 used the rigid-p last.ic 

theory taking ~nto account strain hardening and strain rate sensitivity. 

Equation 2.42 was used to acount for the material strain rate sensitivity. 
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d f 11 l inear relationship of the Strain hardening was assume to 0 ow a 

following form: 

(J E £ 

(JO = 1 + r-a:o- ( 2.44) 

where E/r is the equivalent modulus in the plastic range and r is the 

ratio of the slopes of the elastic and plastic portions of the 

stress-strain curve. Equations 2.42 and 2.44 were combined into the form 

shown in Eq. 2.45. 

= [1 + ( ~ ) lIP] (1 + v£) ( 2.45 ) 

where v = E / (r (JO). In his treatment of the problem, Jones allowed for 

membrane effects by adopting interaction curves for the yield condition 

of a beam element subjected to axial tension and bending. Jones 

acknowledged the difficulty of assessing the accuracy of his theory, 

because of the absence of experimental results. 

101 In 1971, Culver, Zanoni and Osgood of Carnegie-Mellon University 

reported on thin-walled beam sections subjected to dynamic loading, as 

part of a large program of dynamic loading on cold-formed steel structural 

sections. Two methods of analysis were used in this study. One is the 

linear elastic and the other is the non-linear method including local 

buckling effects. A comparison of results showed that it was sufficient 

to predict bending moments from normal linear elastic analysis 

considering local buckling effects. 
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In a paper published 102 in 1972, Symonds and Jones reviewed the 

earlier work on plastic response to impulsive loading of beams clamped 

against end rotations and axial displacements, taking account of small 

finite transverse displacements and of strain-rate dependence of the 

yield stress. New solutions were derived from rigid-plastic analysis 

which included both effects and were compared with the experimental 

results. They concluded that the strain-rate dependence of the yield 

stress can be used in the analysis because the dynamic yield stress varies 

slowly with strain rate. Therefore, an estimate of dynamic yield stress 

at one strain rate may serve as a good approximation over several decades 

of s t r a in rat e . It is then assumed that the static plastic moment and 

axial force can be replaced by dynamic values obtained by mUltiplying the 

st~tic magnitudes by a factor calculated from the strain rate at time 

t , after which the plastification of the cross section occurs. The strain 

* rates at t are taken as representative of the initial part of the motion. 

If the pattern of deformation of the structure with strain-rate sensitive 

material is the same as that for non-rate sensitive behavior, then this 

substitution of new dynamic constants can give excellent results compared 

to those obtained by numerical integration. However, if the patterns 

differ considerably, then the use of dynamic correction factors may be 

entirely inappropriate, and can lead to large errors. 

1 F 1 W b and sagartz 103,104 have More recent y, orresta, esen erg, 

developed a simple method for incorporating the approximate influence of 

material elasticity on the dynamic plastic response of beams. An exact 

elastic analysis is first undertaken for a dynamiC beam problem which 

remains valid until the maximum stress reaches yield. If the beam material 



96 

h h · . ld tess ;s calculated from the is strain-rate sensitive, t en t ~s y~e s r ~ 

Cowper-Symonds constitutive law, Eq. 2.42, using the corresponding 

strain-rate predicted by the elastic analysis. The subsequent plastic 

behavior is controlled by a constant yield stress. There was an excellent 

agreement with the peak displacements recorded during experiments on 

simply supported beams using 1018 steel, type 304 stainless steel, and 

aluminium 6061 T6 as shown in Fig. 2.57. 

b. Columns. In view of the fact that a compression member is one 

of the common structural components, its behavior unde~ impact loading 

d h d . f 'd bl . d f . 89 con itions as attracte ~nterest or a cons~ era e per~o 0 tlme. 

The analysis of column behavior under impact loading conditions 

dates back to 1933, when Koning and Taub89 derived equations describing 

the axial and transverse oscillation of pin-ended columns subjected to 

dynamic axial load. They considered loads having a rectangular pulse form, 

of magnitude less than, equal to, or greater than the static Euler load. 

However, they did not recognize the possibility of dynamic overloads. 

In the 1940s, Meier, Pian and Sidda1 89 studied the response of 

pin-ended struts subjected to impact loads. They showed that struts could 

withstand loads well above Euler load without sustaining permanent 

damage. Pian and Siddal also conducted experiments on eccentrically 

loaded struts of very high slenderness ratios and demonstrated that they 

could withstand overloads of up to seven times the Euler value. 
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Some of the most significant work on the analysis of strut behavior 

under dynamic loading is due to Hoff. l06 His analysis was directed to 

study the dynamics of the buckling of elastic columns in a rapid 

compression test. Figure 2.58 is adopted from his study which shows that 

under rapid loading the lateral displacements of the column are less than 

those calculated from static considerations. As a consequence the load, 

supported by the column can exceed the Euler load considerably. 

In 1972, Roberts 107 made an extensive theoretical and experimental 

investigation of pin-ended columns sUbjected to axial impact conditions. 

The experimental study involved the testing of mild steel columns of 

rectangular box sections. The cross sectional dimensions and the length 

of columns were selected to prOVide a range of slenderness ratios from 

100 to 400. For the high speed tests, in which the impact velocity was 

of the order 1 to 3 mis, the columns developed peak loads many times the 

Euler load, particularly for the case of columns with high slenderness 

ratios, for which the sustained compressive loads may be 20 or more times 

the Euler value. 

Axial impact on thin-wa lled columns was examined theoret ica 11y by 

Culver and Va1'dyal08 d . 1 109 b h bl h d . an exper1menta ly by Logue ,ot pu is e 1n 

1971. The theoretical work was applied to short duration impact loading 

which was defined by prescribing the time variations of the load at the 

end of the columns. Nonlinearity due to local buckling was accounted for 

by using nonlinear axial load-curvature relations derived with the aid 

of the effective width concept. The results of the analytical study were 

shown as response spectra curves which described the effect of initial 
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deflection, pulse duration, maximum dynamic load, and the static preload 

on the dynamic response. It was concluded from the experimental study 

that maximum loads in excess of the static failure loads may be carried 

dynamically. However, the failure modes for' thin-walled columns 

subjected to shock loading were not established in this study. Further 

study was suggested by the author to determine the maximum dynamic 

carrying capacity of these members. 

In 1974, Soden, AI-Hassani and Johnson 110 studied the crushing 

behavior of circular tubes under static and dynamic axial loads. The loads 

and deformations of tubes with various thicknesses were recorded and three 

failure modes were observed and studied. The majority of tubes tested 

collapsed by progressive folding into diamond shaped lobes, while thick 

tubes failed by collapsing into circumferential rings. The initial 

failure loads and post-buckling loads for various modes of deformation 

were predicted theoretically. All stresses increased with increasing 

strain rate. Figure 2.59 shows the variation of first maximum stress and 

mean post-buckling stress for tubes with thickness to diameter ratio equal 

to 0.067. 

W' b' k,lll 1erz 1C l. has studied the dynamic crushing strength of 

strain-rate sensitive box columns. The main purpose of his study was to 

~dentify material and geometrical parameters in the problem of impact 

loading for sheet metal and to derive an expression for the strain rate 

correction factor. As a particular structural component, a straight 

rectangular box column was considered to be representive of front or rear 

longitudinal members of an automobile body. He stated that during a 
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vehicle collision the strain rates in the zones of localized deformation 

can be of the order of 10 to 100 in/in/sec. Consequently, dynamic forces 

in compressed mild steel members are much greater than static ones. An 

approximate analysis was presented to determine dynamic strength and 

energy absorption of axially loaded thin-walled box columns. In this 

analysis, the dynamic compressive force is a product of a static crushing 

strength of· the column and a strain-rate correction factor. The 

strain-rate correction factor was found to be dependent on the initial 

impact velocity and parameters describing the sensitivity of the material 

to strain rate. He compared his analytical solution with the results of 

experimental work conducted by Ohkubo, Akamatsu, and Shirasawa 112 on 

closed-hat section members and the experimental work of Wimmer l13 on box 

sections. Wierzbicki concluded that in order to validate his theory, a 

much wider range of sectional dimensions and impact velocities is needed. 

Wierzbicki and Abramowicz
l14 

used a simple method to calculate the 

dynamic correction factor for thin-walled strain-rate sensitive 

structures. For the experiments run at two crushing speeds VI and V2 

with associated strain rates £1 and £2, the correponding ratio of mean 

crushing forces P 1 and P 2 is equal to the dynamic correction factor m m 

given as follows: 

R 
P 1 

m 

P 2 
m 

( 2.46 ) 

where Ii is the material strain-rate sensitivity calculated from the 

following equation: 
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103 

( 2.47 ) 

It is observed from Eq. 2.46 that the dynamic correction factor does not 

involve any geometrical and material parameters except the constant n. 

115 In another work published in 1984, Abramowicz and Jones conducted 

84 dynamic crushing tests on thin-walled square steel tubes with various 

lengths and two different cross sections. The columns were crushed axially 

on a drop hammer rig. Approximate theoretical predictions were developed 

for the axial progressive ciushing of square box columns using a kinematic 

method of analysis. The effective crushing distance is considered in the 

analysis along with the influence of material strain-rate sensitivity. 

The theoretical study predicts four deformation modes which govern the 

behavior for different ranges of the parameter c/h (c being the width of 

a square box-section and h being the wall thickness). New asymmetric 

deformation modes were predicted theoretically and confirmed by the 

experimental tests. These asymmetric modes cause an inclination of a 

column which could lead to collapse in the sense of overall buckling even 

for relatively short columns. The following equation was presented for 

the ratio of dynamic to static mean crush force: 

( 2.48 ) 

where .x and P = constants given in Table 2.13 for different modes 
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v = impact velocity Cm/sec.). 

Equation 2.48 gave reasonable agreement with the corresponding 

experimental results of Abamowicz and Jones. 115 

Also listed in Table 2.13 are the values of constants :x and Ii used 

in Eq. 2.48 obtained from various references for calculation of the 

dynamic correction factor for thin-walled steel columns having different 

cross sections and different lengths. 



Table 2.13 

;x and fJ Values of Equation 2.48 for the Calculation 

of Dynamic Correction Factor for Thin-Walled Steel 

Columns with Various Cross-Sections 

Author and Reference 
Number 

Wierzbicki 
(Ref. 111) 

Ohkubo, Akamatsu, and 
Shirasawa (Ref. 112) 

Wimmer 
(Ref. 113) 

Abramowicz and 
Jones (Ref. 115) 

Abramowicz and 
Jones (Ref. 115) 

Abramowicz and 
Jones (Ref. 115) 

Abramowicz and 
Jones (Ref. 115) 

Cross Section 

Box Sections 

Closed Hat Sections 
(70x60x1. 2 mm) 

Box Sections 
(50x50x1. 2 mm) 

Box, Symmetric Mode 
- (37x37x1.152 mm) 

Box, Symmetric Mode 
(49x49x1.63 mm) 

Box, Asymmetric Mode 
(37x37x1.152 mm) 

Box, Asymmetric Mode 
(49x49x1.63 mm) 

0.1000 

0.0668 

0.0700 

0.183 

0.170 

0.193 

0.180 

105 

0.714 

1. 000 

0.820 

0.256 

0.256 

0.256 

0.256 
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III. EXPERIMENTAL PROGRAM 

A. GENERAL 

This chapter includes the experimental investigation of 1) material 

properties as presented in Section III.B, and 2) structural strengths of 

c6ld-formed steel members as presented in Section III.C. 

B. MATERIAL PROPERTIES 

1. Materials. Currently, numerous grades of high strength sheet 

1 
steels are commercially available for automotive structural components 

Three types of sheet steels (3SXF, SOXF, and 100XF) were selected for the 

purpose of studying the effect of strain rate on tensile and compressive 

mechanical properties of sheet steels. The chemical compos it ions for 

these sheet steels are listed in Table 3.1. 

2. Uniaxial Tests. All three virgin materials listed in Table 3.1 

were uniaxially tested in tension and compression in the longitudinal 

(parallel to the direction of rolling) and transverse (perpendicular to 

the direction of rolling) directions under three different strain rates 

of 10- 4 , 10- 2 , and 1.0 in./in./sec. Two of the three materials (SOXF and 

3SXF) were also tested in tension in both directions to determine the 

combined effects of cold-stretching and strain rate. The uniform cold­

stretchings used for the tests were 0.02 in./in.(20 mils) and 0.08 

in. / in. (80 mils). In order to determine the combined effects of strain 

rate and aging, half of the coupons (non-aged coupons) were tested in an 

average of two days after the cold stretching operation. The remaining 

half of the cold-stretched coupons (aged coupons) were tested to failure 
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Table 3.1 

Chemical Compositions of the Sheet Steels Used 

AISI Thick. C Mn P S Si V Cu Al Cb Zr 
Designa. in. 

035XF 0.085 .070 .40 .007 .017 .08 
050XF 0.077 .081 .96 .017 .003 .27 .04 
100XF 0.062 .070 .43 .006 .023 .11 .056 .064 .08 

Table 3.2 

Classification of the MTS Extensometer 

Range Maximum Strain Maximum Error ASTM Classification 
In./In. In./In. 

100% 0.50 0.00065 Between Classes B-2 and C 
50 '¥ 0.25 0.00030 Between Classes B-2 and C 10 

20 % 0.10 0.00011 Between Classes B-1 and B- 2 
10 % 0.05 0.00002 Between Classes A and B- 1 
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under different strain rates at least 30 days after the cold stretching 

operation. 

a. Tension Tests. 

i) ASTM Specifications. All tension tests followed the procedures 

outlined in the ~STM Specifications listed below: 

E8-69 

E83-67 

EI11-82 

Tension Testing of Metalic Materials 

Standard Method of Verification and Classification 

of Extensometers 

Standard Test Method for Young's Modulus, Tangent 

Modulus and Chord Modulus 

ii) Specimens. The tensile specimens tested in the longitudinal and 

transverse directions were prepared by the Machine Shop of the Department 

of Civil Engineering at the University of Missouri -Rolla. The test 

specimens were cut from the quarter points of the steel sheets as shown 

in Figure 3.1. The sketch in Figure 3.2 shows the tens ile specimen 

dimensions for the three materials (3SXF, SOXF, and 100XF). A total of 

124 coupons were tested in this phase of study. They are summarized in 

Table 3.3. 

iii) Equipment. All the specimens were tested in a 110 kips MTS 880 

Test System located in the UMR Engineering Research Laboratory. Figure 

3.3 shows the Test System along with the remaining equipment used for 

the tension tests under controlled strain rates. Other equipment used 

for the tests includes the MTS controller, the data acquisition system, 

Data General graphic monitor, Data General MV-IOOOO mini computer to store 

and manipulate the data, MTS Model No. 732.25b-20 extensometer (Fig. 
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Table 3.3 

Number of Performed Tensile Coupon Tests 

Cold-Stretched 
Condition 

Virgin Materials 

Longitudinal Tension 
( LT ) 

Transverse Tension 
( TT ) 

2% Cold-Stretched 
Non-Aged Materials 

Longitudinal Tension 
( LT ) 

Transverse Tension 
( TT ) 

8% Cold-Stretched 
Non-Aged Materials 

Longitudinal Tension 
( LT ) 

Transverse Tension 
( TT ) 

2% Cold-Stretched 
Aged Materials 

Longitudinal Tension 
( LT ) 

Transverse Tension 
( TT ) 

8% Cold-Stretched 
Aged Materials 

Longitudinal Tension 
( LT') 

Transverse Tension 
( TT ) 

Type of 
Material 

100XF-LT 
50XF-LT 
35XF-LT 

lOOXF-TT 
50XF-TT 
35XF-TT 

50XF-LT 
35XF-LT 
50XF-TT 
35XF-TT 

50XF-LT 
35XF-LT 
50XF-TT 
35XF-TT 

50XF-LT 
35XF-LT 
50XF-TT 
35XF-TT 

50XF-LT 
35XF-LT 
50XF-TT 
35XF-TT 

Number of Coupons 
Used 

7 
9 
9 
6 
9 
6 

6 
6 
2 
4 

6 
6 
4 
4 

6 
6 
4 
4 

6 
6 
4 
4 
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3.4), and IBM PS/2 Model 30 personal computer with IBM color plotter and 

NEC Pinwriter P5XL printer. 

An MTS extensometer with a 2-in. gage length was used to measure the 

strains from zero load to failure. The classification of this extensometer 

according to ASTM Designation E-83 was found to be dependent on the 

extensometer range used in the tests. Table 3.2 contains the classi-

fications of the four extensometer ranges according to the MTS transducer 

calibration data. 

The load was measured by an MTS System Model 380041-06 load cell and 

associated conditioning, which was calibrated prior to testing according 

to the procedure of the National Bureau of Standards. 

Figure 3.5 shows the MTS 880 automated test system which consists 

of four components: the load frame, the control console, the CAMAC (Com­

puter Automated Measurement and Control) data acquisition system, and 

Data General MV-lOOOO computer. The testing machine is of a servohydraulic 

closed-loop type. Figure 3.6 shows the simplified block diagram of the 

servo control loop. The moving piston is driven by a double-action hy­

draulic cylinder; so that it can operate under tension and compression. 

The fluid pressure in the chamber is controlled by a servovalve. This 

servovalve responds to the difference between the measured signal and 

the desired signal. The signal is amplified to drive the valve so as to 

remove the error. There are three main modes of operating the machine, 

commonly referred to as stroke, strain, and load. Under the stroke mode, 

the movement of the piston is the controlling variable. Under the load 

mode, it is the load acting on the specimen. Under the strain mode, it 

is the strain, as read from the extensometer. For each of these three 
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Fig. 3.4 Test Setup Showing the Attachment of Extensometer 
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modes, different time functions can be established by the function 

generator to match the application needed. Tensile tests under a constant 

strain rate can be made by setting a ramp function under the strain mode. 

The slope of this ramp is the desired strain rate. Each of these modes 

has four different ranges of operation i. e., 100%, 50%, 20%, and 10%. 

Table 3.4 summarizes the transducer ranges and the corresponding load, 

strain, or displacement values. The test results can be processed by the 

Data General mini-computer and displayed graphically as desired. The data 

acquisition used in this system conforms to the CAMAC standards. The main 

data acquisition module used in this system is a Kinetic Systems Model 

4022 Transient Recorder. The unit has 32 simultaneous sampling input 

channels at a resolution of 12 bits. The unit is capable of acquiring sets 

of data at the maximum rate of 25,000 sets of readings per second. The 

recorder has a storage capacity of 1,000,000 samples. The simultaneous 

sampling feature of the system eliminates the timing skew between data 

points. After the data has been acquired, it is downloaded into the 

computer for an~lysis. The transient recorder includes a direct readout 

for "present value" monitoring, which allows the data to be displayed in 

real-time as the test runs. 

iv) Procedure. Prior to testing, the dimensions of the tensile 

specimens were measured to the nearest 0.001 in., cleaned with acetone,and 

the gage length (2 in.) was marked in ink. The grips of the machine were 

alligned by operating the machine under stroke mode. The specimen was 

then placed in the grips such that the longitudinal axis of the specimen 

coincided with the center line of the grips. The load mode was selected 

to place the specimen in the grips before running the test. Next, the 



Table 3.4 

MTS Transducer Ranges and the Corresponding Load, 

Strain, or Displacement Values 

Transducer Range Value 

Load 100 % 100.0 Kips 
50 % 50.0 Kips 
20 % 20.0 Kips 
10 % 10.0 Kips 

Strain 100 % 0.50 In.jIn. 
50 % 0.25 In./In. 
20 % 0.10 In.jIn. 
10 % 0.05 In.jIn. 

Stroke 100 % 10.0 In. 
50 % 5.00 In. 
20 % 2.00 In. 
10 % 1.00 In. 

Table 3.5 

Function Generator Ramp Time and the 
Corresponding Strain Rate 

(Tensile Tests) 

Ramp Time 1 
sec. 

5000 
500 

50 
5 

0.5 

Strain Rate 
in./in./sec. 

0.0001 
0.001 
0.01 
0.1 
1.0 
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extensometer was attached to the specimen such that the extensometer knife 

edges lined up with the gage marks as illustrated in Figure 3.4. The 

function generator was then programmed to produce the desired ramp. The 

slope of this ramp equals to the strain rate selected for the test (see 

Fig. 3.7). Table 3.5 shows the ramp time and the corresponding 

strain-rate value. Transfer from load mode to strain mode was made before 

the test was started. For almost all the tests, load range 4, strain range 

1, and stroke range 1 were selected. As the test proceeded, the 

stress-strain graph was plotted simultaneously on the graphic display 

terminal. The stress and strain data were stored by the Data General 

computer for later plotting and determination of mechanical properties. 

A constant strain-rate is very difficult to maintain with the 

conventional testing machine, especially at high strain rate. The strain 

rate was controlled electronically by the new MTS 880 Test System, which 

allowed the exact strain rates to be performed without any difficulty. 

Figures 3.8 to 3.10 show the strain versus time curves for 

strain rates. 

different 

The cold-stretching coupons were lbaded to the desired 2% strain or 

8% strain by using strain as a control mode with a strain rate of 0.1 

in./in./sec. The span in the MTS system controller was used to stop the 

test when the desired strain was reached. 

b. Compression Tests. 

i) ASTM Specifications. The Gompression tests followed the 

procedures outlined in the ASTM Specifications listed below: 

E9-70 Standard Methods of Compression Testing of Metallic 

Materials at Room Temperature 
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Strain. in. lin. 

Ramp Time Test Stops 

Time • Seconds 

Fig. 3.7 Typical Function Generator Ramp Waveform 
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E83-67 

El11-82 

Standard Method of Verification and Classification 

of Extensometers 

Standard Test Method for Young's Modulus, Tangent 

Modulus and Chord Modulus 

124 

ii) Specimens. The compression specimens tested in the longitudinal 

and transverse directions were prepared by the Machine Shop of the 

Department of Civil Engineering at the Univer~ity of Missouri-Rolla. The 

test specimens were cut from the quarter points of the steel sheets. The 

sketch in Figure 3.11 shows the compression specimen dimensions for the 

three materials (35XF, 50XF, and 100XF). The specimen dimensions were 

selected to fit a Montgomery-Templin compression test fixture. The 

notches along one edge were for the installation of the knife edges of 

the compressometer. Special care was taken to ensure that the ends of the 

specimens were parallel and thus the same length was used for both 

longitudinal sides of the specimen. A total of 54 coupons were tested in 

this phase of study. They are summarized in Table 3.6. 

iii) Equipment. All compression tests were performed in the same 

110 kips 880 Material Test System (Figure 3.12) as described in Section 

III.B.2.a for tension tests. New MTS Compression Platens were installed 

for conducting the compression tests. The load was applied to the 

compression specimen by means of a specially made subpress (Figure 

3.13(A)). The subpress base and ram are constructed of a hardened steel 

in order to minimize their deformation when applying the load. The 

compression specimen was held in a Montgomery-Templin compression test 

fixture (Figure 3.13(B)) which contains a series of rollers that may be 

tightened against the specimen to prevent buckling. 
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Table 3.6 

Number of Performed Compressive Coupon Tests 

Direction of Type of Number of Coupons 
Testing Material Used 

Longitudinal Compression 100XF-LC 9 
( LC ) 50XF-LC 9 

35XF-LC 9 

Transverse Compression 100XF-TC 9 
( TC ) 50XF-TC 9 

35XF-TC 9 



Fig . 3.12 MTS Load Frame, MTS Controller, CAMAC Data Acquisition 
System, and Data General Graphic Display Terminal Used 
for Compression Tests 
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An MTS compressometer (Figure 3.13(C)) with a 1-in. gage length was 

used to measure strains from zero to 2 percent in.jin. A special fixture 

was designed to fit the MTS compressometer in the compression jig. The 

classification of this compressometer according to ASTM Designation E83 

was found to be dependent on the compressometer range used in the tests. 

Table 3.7 contains the classifications of four compressometer ranges 

according to the MTS transducer calibration data. The assembly of 

specimen, test fixture and subpress are shown in Figure 3.14. 

iv) Procedure. Prior to testing, the dimensions of the compressive 

specimens were measured to the nearest 0.001 in. The specimen was then 

placed in the Montgomery-Templin compression test fixture and the lateral 

roller supports of the fixture were tightened firmly against both sides 

of the specimen. Special care was taken to ensure that the specimen was 

aligned vertically in the test fixture. Next, the MTS compressometer was 

attached to one side of the test fixture such that the knife edges of the 

compressometer smoothly inserted into .the notches of the compression 

specimen. Then, with the specimen, test fixture, and compressometer 

attached together as a unit, the entire unit was placed in the compression 

subpress. A small stub is provided on each side of the bottom surface of 

the test fixture. These stubs fit into indentations on the base of the 

subpress in order to ensure proper alignment of the subpress ram with the 

specimen's longitudinal axis. The next step was to place the subpress, 

with the test fixture, compressometer, and specimen attached, between the 

compression platens of the MTS loading. frame such that the longitudinal 

axis of the subpress lined up with the centers of the platens. The 

function generator was then programmed to produce the desired ramp. Table 



Range 

100% 
50 % 
20 % 
10 % 

Table 3.7 

Classification of the MTS Compressometer 

Maximum Strain Maximum Error ASTM Classification 
in. I in. in. lin. 

0.20 0.000100 Class B-1 
0.10 0.000050 Between 
0.04 0.000012 Between 
0.02 0.000008 Class A 

Table 3.8 

Function Generator Ramp Time and the 
Corresponding Strain Rate 

(Compressive Tests) 

Ramp Time 
sec. 

200 
20 

2 
0.2 

0.02 

Strain Rate 
in. I in. I sec. 

0.0001 
0.001 
0.01 
0.1 
1.0 

Classes 
Classes 

A and 
A and 
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B-1 
B-1 



Fig. 3.14 Assembly of Compression Subpress, Jig, and Compressometer 
(Back View) 
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t · and the corresponding strain-3.8 shows the function generator ramp lme 

rate value. For all the tests, the strain mode was selected to maintain 

a constant strain rate and Range 4 was chosen for the three MTS modes 

C· L d St . a d Stroke) During the tests, the stress-strain 1. e., oa, rain, n . 

curves were plotted simultaneously on the Data General graphic terminal. 

The stress-strain data were recorded and stored by a computer for plotting 

and determination of the mechanical properties at a later time. Buckling 

of the unsupported lengths at each end of the specimen limited the ob-

tainable range of the stress-strain curves to approximately 1.8 percent. 

3. Tensile Test Results. 

a. Stess-Strain Curves. The stress-strain curves were plotted by 

using the Data General graphics software named Trendview with the 

stress-strain data recalled from the computer storage. Because the 

stresses were computed by dividing the loads by the original cross-

sectional areas of the specimens, they should be regarded as the engi-

neering stress-strain curves. Figures 3.15 through 3.17 present typical 

stress-strain curves for the three virgin materials (3SXF, 50XF, and 

lOOXF) tested in the longitudinal direction under different strain rates. 

See Ref. 23 for typical stress-strain curves of the other cases investi-

" gated in this study. For the purpose of comparison, each figure includes 

three stress-strain curves representing the test data obtained from the 

same material for different strain rates. In order to study the effect 

of aging on the mechanical properties of SOXF-LT steel, Figures 3.18 to 

3.20 compare three stress-strain"curves for 50XF-LT steel with different 

amount of cold stretching tested under a constant strain rate. 
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b. Mechanical Properties. The procedures used for determining the 

mechanical properties of sheet steels are discussed in the subsequent 

sections (Sections III.B.3.b.i through III.B.3.b.iii). The mechanical 

properties so determined ar.e the yield point F , the tensile strength 
y . 

F, and elongation in 2-in. gage length. These tested mechanical u 

properties are presented in Tables 3.9 through 3.19 for each individual 

test. Tables 3.20 through 3.25 present the average values of the 

mechanical properties for each material tested in either longitudinal 

tension (LT) or transverse tension (TT), but with different amount of cold 

stretching (i.e., virgin material, 2%, or 8%) under different strain rates 

(0.0001, 0.01, ~r 1.0 in./in./sec.). 

i) Yield Strength or Yield Point. F . The method commonly used to y 

determine the yield point of sheet steels depends on whether the 

stress-strain curve is of the gradual or sharp-yielding type. For the 

types of sheet steels tested in this phase of study, the stress-strain 

curves of the 100XF and 50XF sheet steels are the sharp-yielding type, 

while the stress-strain curves of the 35XF steel are the gradual-yielding 

type. Because the 50XF sheet steel exhibited a considerable amount of 

strain hardening, the stress-strain curves became the gradual-yielding 

type after the material was cold-stretched to a selected strain of either 

2% or 8%. 

The yield point of the sharp-yielding steel was determined as the 

stress where the stress-strain curve becomes horizontal. Typical sharp 

yielding stress-strain curves are shown in Figure 3.15 for the lOOXF steel 

in the longitudinal direction. For this case, the lower yield point is 
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Table 3.9 

Tested Mechanical Properties of 100XF Sheet Steel 

Virgin Material 

Test Strain Rate F Fu Elongation in 2- in. 
No. in. / in . / s ec. (k§i) (ksi) Gage Length (percent) 

LT-l 0.0001 122.44 122.44 9.4 
LT-2 0.0001 126.07 126.07 9.7 
LT-3 0.01 123.98 123.98 10.3 
LT-4 0.01 125.91 125.91 10.3 
LT-5 0.01 127.52 127.52 9.8 
LT-6 1.0 129.06 129.06 
LT-7 1.0 128.75 128.75 

TT-l 0.0001 138.20 138.20 4.9 
TT-2 0.0001 137.34 137.34 4.9 
TT-3 0.01 140.11 140.11 6.1 
TT-4 0.01 139.05 139.05 4.4 
TT-5 1.0 144.11 144.11 8.0 
TT-6 1.0 143.03 143.03 5.1 
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Table 3.10 

Tested Mechanical Properties of 50XF Sheet Steel 

Virgin Material 

Test Strain Rate F Fu Elongation in 2- in. 
No. in. / in. /sec. (k~i) (ksi) Gage Length (percent) 

LT-l 0.0001 49.80 73.87 29.9 
LT-2 0.0001 49.39 72.54 32.0 
LT-3 0.0001 49.32 72.51 31.0 
LT-4 0.01 51.89 75.44 27.2 
LT-5 0.01 50.83 74.07 27.4 
LT-6 0.01 52.09 75.11 26.4 
.LT-7 1.0 54.71 79.18 26.2 
LT-8 1.0 54.99 79.64 25.4 
LT-9 1.0 54.29 77.36 25.7 

TT-1 0.0001 50.38 73.73 26.8 
TT-2 0.0001 51.13 73.39 28.3 
TT-3 0.0001 50.25 73.21 24.8 
TT-4 0.01 54.22 75.26 25.9 
TT-5 0.01 52.77 74.80 26.7 
TT-6 0.01 52.64 74.16 27.0 
TT-7 1.0 56.21 79.86 28.3 
TT-8 1.0 54.31 79.85 27.9 
TT-9 1.0 -56.13 80.03 27.1 
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Table 3.11 

Tested Mechanical Properties of 50XF Sheet Steel 

2% Cold Stretched, Non-Aged Material 

Test Strain Rate F Fu Elongation in 2-in. 

No. in. / in. /sec. (k~i) (ksi) Gage Length (percent) . 

LT-1 0.0001 56.37 72.62 26.5 

LT-2 0.0001 56.44 73.41 27.5 

LT-3 0.01 58.46 74.81 25.4 

LT-4 0.01 58.88 74.20 25.7 

LT-5 1.0 63.19 80.58 26.1 

LT-6 1.0 62.16 80.06 27.9 

TT-1 0.0001 59.29 74.90 23.1 

TT-2 1.0 68.48 81.29 24.6 

Table 3.12 

Tested Mechanical Properties of 50XF Sheet Steel 

8% Cold Stretched, Non-Aged Material 

Test Strain Rate F Fu Elongation in 2- in. 
No. in . / in . / s ec . (k~i) (ksi) Gage Length (percent) 

LT-1 0.0001 71.22 73.73 24.6 
LT-2 0.0001 71.86 73.99 23.8 
LT-3 0.01 73.87 76.21 21.6 
LT-4 0.01 75.06 76.81 20.3 
LT-5 1.0 77 .00 80.77 21.6 
LT-6 1.0 78.18 81. 55 19.8 

TT-1 0.0001 72.59 74.90 20.0 
TT-2 0.0001 74.71 76.86 23.6 
TT-3 1.0 77.90 82.07 19.4 
TT-4 1.0 77.78 81. 94 17.5 
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Table 3.13 

Tested Mechanical Properties of SOXF Sheet Steel 

2% Cold Stretched, Aged Material 

Test Strain Rate F Fu Elongation in 2-in. 
No. in . / in . / s ec . (k§i) (ksi) Gage Length (percent) 

LT-1 0.0001 58.78 74.84 30.3 
LT-2 0.0001 59.68 75.31 27.7 
LT-3 0.01 60.49 76.05 26.4 
LT-4 0.01 60.55 76.27 26.7 
LT-5 1.0 63.45 81.39 
LT-6 1.0 62.97 81.16 28.8 

TT-1 0.0001 60.33 74.96 26.5 
TT-2 0.0001 60.20 75.13 28.9 
TT-3 1.0 65.43 83.62 22.1 
TT-4 1.0 64.15 82.57 22.1 

Table 3.14 

Tested Mechanical Properties of 50XF Sheet Steel 

8% Cold Stretched, Aged Material 

Test Strain Rate F Fu Elongation in 2-in. 
No. in./in./sec. (k§i) (ksi) Gage Length (percent) 

LT-1 0.0001 73.33 74.41 20.1 
LT-2 0.0001 72.94 73.21 20.0 
LT-3 0.01 72.51 74.49 22.4 
LT-4 0.01 73.80 75.92 20.5 
LT-5 1.0 75.60 77 .19 
LT-6 1.0 75.93 80.69 

TT-1 0.0001 75.06 75.41 17 .1 
TT-2 0.0001 73.54 74.49 21.5 
TT-3 1.0 78.11 81.82 19.1 
TT-4 1.0 77.26 81.47 16.4 
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Table 3.15 

Tested Mechanical Prope-rties of 35XF Sheet Steel 

Virgin Material 

Test Strain Rate F Fu Elongation in 2-in. 
No. in./ in./ sec. (k~i) (ksi) Gage Length (percent) 

LT-1 0.0001 32.42 49.22 39.7 
LT-2 0.0001 32.57 49.19 40.2 
LT-3 0.0001 33.63 49.64 36.7 
LT-4 0.01 36.42 51.68 38.1 
LT-5 0.01 36.65 52.02 36.0 
LT-6 0.01 36.12 51.59 36.5 
LT-7 1.0 42.53 56.82 41.6 
LT-8 1.0 41.87 56.48 40.2 
LT-9 1.0 42.70 56.60 40.9 

TT-1 0.0001 33.53 49.41 34.9 
TT-2 0.0001 33.49 49.19 37.5 
TT-3 0.01 36.21 50.98 39.0 
TT-4 0.01 36.57 51.10 35.3 
TT-5 1.0 43.00 55.70 36.9 
TT-6 1.0 43.47 56.15 34.1 
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Table 3.16 

Tested Mechanical Properties of 35XF Sheet Steel 

2% Cold Stretched, Non-Aged Material 

Test Strain Rate F Fu Elongation in 2-in. 
No. in. / in. /sec. (k~i) (ksi) Gage Length (percent) 

LT-1 0.0001 39.20 49.08 36.2 
LT-2 0.0001 39.89 49.86 39.3 
LT-3 0.01 42.62 52.11 31.4 
LT-4 0.01 42.29 52.44 33.5 
LT-5 1.0 47.44 57.05 39.8 
LT-6 1.0 47.20 57.05 38.7 

TT-l 0.0001 38.06 47.73 32.7 
TT-2 0.0001 38.14 48.18 34.5 
TT-3 1.0 46.36 55.81 32.1 
TT-4 1.0 46.45 56.04 37.5 

Table 3.17 

Tested Mechanical Properties of 35XF Sheet Steel 

8% Cold Stretched, Non-Aged Material 

Test Strain Rate F Fu Elongation in 2-in. 
No. in . / in . / s ec . (k~i) (ksi) Gage Length (percent) 

LT-l 0.0001 46.05 49.41 29.9 
LT-2 0.0001 46.57 49.08 29.7 
LT-3 0.01 48.54 52.00 30.0 
LT-4 0.01 49.75 52.67 29.5 
LT-5 1.0 53.23 57.72 31.5 
LT-6 1.0 52.57 56.71 38.5· 

TT-l 0.0001 44.77 47.84 29.0 
TT-2 0.0001 46.14 47.73 22.1 
TT-3 1.0 52.35 56.26 28.5 
TT-4 1.0 52.59 56.49 26.9 
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Table 3.18 

Tested Mechanical Properties of 35XF Sheet Steel 

2% Cold Stretched, Aged M.aterial 

Test Strain Rate F Fu Elongation in 2-in. 

No. in./in./sec. (k§i) (ksi) Gage Length (percent) 

LT-1 0.0001 40.02 49.32 31.8 

LT-2 0.0001 39.89 50.10 35.7 

LT-3 0.01 41.80 51. 77 37.3 

LT-4 0.01 41.25 51.16 36.1 

LT-5 1.0 47.52 56.91 35.9 

LT-6 1.0 47.28 56.80 40.9 

TT-1 0.0001 38.89 48.73 29.8 
TT-2 0.0001 39.27 48.90 31.8 
TT-3 1.0 45.02 55.78 34.3 
TT-4 1.0 45.23 55.34 32.6 

Table 3.19 

Tested Mechanical Properties of 35XF Sheet Steel 

8% Cold Stretched, Aged Material 

Test Strain Rate F Fu Elongation in 2-in. 
No. in./in./sec. (k§i) (ksi) Gage Length (percent) 

LT-1 0.0001 45.69 48.19 34.8 
LT-2 0.0001 46.61 49.11 30.7 
LT-3 0.01 48.85 51. 74 30.6 
LT-4 0.01 49.70 52.34 30.7 
LT-5 1.0 53.82 57.52 32.0 
LT-6 1.0 53.53 57.55 31. 1 

TT-1 0.0001 45.25 47.60 25.3 
TT-2 0.0001 45.64 47.65 28.7 
TT-3 1.0 50.83 55.48 28.5 
TT-4 1.0 51.25 56.01 28.1 
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Table 3.20 

Average Tested Mechanical Properties of 100XF Sheet Steel 

Longitudinal Tension, Virgin Material 

Strain Rate F Fu Elongation 
in./in./sec. (k§i) (ksi) (percent) 

0.0001 124.25 124.25 9.5 
0.01 125.80 125.80 10.2 

1.0 128.91 128.91 

Table 3.21 

Average Tested Mechanical Properties of 100XF Sheet Steel 

Transverse Tension, Virgin Material 

Strain Rate F Fu Elongation 
in./in./sec. (k§i) (ksi) (percent) 

0.0001 137.77 137. 77 4.9 
0.01 139.58 139.58 5.3 

1.0 143.57. 143.57 6.6 
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Table 3.22 

Average Tested Mechanical Properties of 50XF Sheet Steel 

Longitudinal Tension 

Amount of Cold Strain Rate F Fu Elongation 
Stretching in./in./sec. (k§i) (ksi) (percent) 

Virgin 0.0001 49.50 72.97 31.0 
Virgin 0.01 51.60 74.87 27.0 
Virgin 1.0 54.66 78.73 25.8 

2%, Non-Aged 0.0001 5,6.40 73.01 27.0 
2%, Non-Aged 0.01 58.67 74.50 25.5 
2%, Non-Aged 1.0 62.67 80.32 27.0 

8%, Non-Aged 0.0001 71.54 73.86 24.2 
8%, Non-Aged 0.01 74.47 76.51 20.9 
8%, Non-Aged 1.0 77 .59 81.16 20.7 

2%, Aged 0.0001 59.23 75.07 29.0 
2%, Aged 0.01 60.52 76.16 26.5 
2%, Aged 1.0 63.21 81. 27 28.8 

8%, Aged 0.0001 73.13 73.81 20.0 
8%, Aged 0.01 73.15 75.20 21.5 
8%, Aged 1.0 75.77 78.94 
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Table 3.23 

Average Tested Mechanical Properties of 50XF Sheet Steel 

Transverse Tension 

Amount of Cold Strain Rate F Fu Elongation 
Stretching in./in./sec. (k§i) (ks i) (percent) 

Virgin 0.0001 50.59 73.44 26.7 
Virgin 0.01 53.21 74.74 26.5 
Virgin 1.0 55.55 79.91 27.8 

2%, Non-Aged 0.0001 59.29 74.90 23.1 
2%, Non-Aged 1.0 68.48 81. 29 24.6 

8%, Non-Aged 0.0001 73.65 75.88 21.8 
8%, Non-Aged 1.0 77 .84 82.00 18.5 

2%, Aged 0.0001 60.27 75.05 27.7 
2%, Aged 1.0 64.79 83.09 22.1 

8%, Aged 0.0001 74.30 74.95 19.3 
8%, Aged 1.0 77 .69 81. 65 17.7 
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Table 3.24 

Average Tested Mechanical Properties of 35XF Sheet Steel 

Longitudinal Tension 

Amount of Cold Strain Rate F Fu Elongation 
Stretching in. / in. /sec. (k~i) (ksi) (percent) 

Virgin 0.0001 32.87 49.35 38.9 
Virgin 0.01 36.40 51. 76 36.8 
Virgin 1.0 42.37 56.63 40.9 

2%, Non-Aged 0.0001 39.55 49.47 37.7 
2%, Non-Aged 0.01 42.45 52.27 32.5 
2%, Non-Aged 1.0 47.32 57.05 39.3 

8%, Non-Aged 0.0001 46.31 49.25 29.7 
8%, Non-Aged 0.01 49.15 52.33 29.8 
8%, Non-Aged 1.0 52.90 57.21 35.0 

2%, Aged 0.0001 39.95 49.71 33.8 
2%, Aged (L01 41. 53 51. 47 36.7 
2%, Aged 1.0 47.40 56.85 38.4 

8%, Aged 0.0001 46.15 48.65 32.7 
8%, Aged 0.01 49.27 52.04 30.7 
8%, Aged 1.0 53.67 57.53 31.5 
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Table 3.25 

Average Tested Mechanical Properties of 35XF Sheet Steel 

Transverse Tension 

Amount of Cold Strain Rate F Fu Elongation 
Stretching in./in./sec. (k§i) (ksi) (percent) 

Virgin 0.0001 33.51 49.30 36.2 
Virgin 0.01 36.39 51.04 37.1 
Virgin 1.0 43.23 55.93 35.5 

2/~ , Non-Aged 0.0001 38.10 47.95 33.6 
2%, Non-Aged 1.0 46.41 55.93 34.8 

8%, Non-Aged 0.0001 45.45 47.79 25.6 
8i~ , Non-Aged 1.0 52.47 56.37 27.7 

2:~ , Aged 0.0001 39.08 48.81 30.8 
2%, Aged 1.0 45.13 55.56 33.5 

8%, Aged 0.0001 45.45 47.63 27.0 
8~~ , Aged 1.0 51.04 55.75 28.3 
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given in Table 3.9. 
The same method was used to determine the yield 

points included in Table 3.10 for the 50XF sheet steel. 

For the gradual-yielding type stress-strain curves as shown in 

Figure 3.17, the yield point of 35XF steel was determined by the 

intersection of the stress-strain curve and the straight line drawn 

parallel to the elastic portion of the stress-strain curve at an offset 

of 0.002 in.jin. A Fortran 77 code was written to determine the yield 

points presented in Tables 3.11 through 3.19 for the gradual-yielding type 

curves using the Least Square Method. 

ii) Ultimate Tensile Strength, F . The ultimate tensile strength was 
u 

determined from each of the tension tests as the maximum stress that the 

given tensile cpupon could withstand before fracture. This value was 

calculated by the computer for each test and is presented in Tables 3.9 

through 3.19. 

iii) Ductility. Ductility is a very important property of high 

strength sheet steels not only for the structural behavior of the member, 

but also for the fabrication of the desired structural shape. In this 

study, ductility was determined by the total elongation in a 2-in. gage 

length. For this method, the maximum strain recorded by the computer 

before fracture was taken as the ductility. The maximum elongation was 

also verified by placing the fractured ends of the specimen together and 

measuring the distance between the gage marks. 

4. Compressive Test Results. 

a. Stess-Strain Curves. Figures 3.21 through 3.23 present typical 

compressive stress-strain curves for the three virgin materials (35XF, 

SOXF, and 100XF) tested in the longitudinal direction under different 
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strain rates. See Ref. 24 for typical compressive stress-strain curves 

for the same materials tested in the transverse direction. For the pur-

pose of comparison, each figure includes three stress-strain curves re-

presenting the test data obtained from the same material for three 

different strain rates. 

b. Mechanical Properties. The procedures used for determining the 

mechanical properties of sheet steels are discussed in the subsequent 

sections (SeGrtions III. B. 4. b. i and III. B. 4. b. ii) . The mechanical prop-

erties so determined are the proportional limit F , and the yield point pr 

F. These tested mechanical properties are presented in Tables 3.26 
Y 

through 3.31 ~or each individual test. Tables 3.32 through 3.37 present 

the average values of the mechanical properties for each material tested 

in either longitudinal compression eLC) or transverse compression eTC) 

under different strain rates (0.0001, 0.01, or 1.0 in./in./sec.). 

i) Proportional Limit. F The proportional limit is usually de-pr 

fined as the point above which the stress-strain curve becomes nonlinear. 

Since it is often difficult to pinpoint the exact location of the true 

proportional limit, standard methods ~re normally used so that comparable 

values of proportional limit may be determined by different researchers. 

One such method that is commonly used for aircraft structures and also 

for cold-formed stainless steel members is the 0.01 percent offset method. 

For this method a straight line with a slope equal to the modulus of 

elasticity is drawn parallel to the stress-strain curve and offset such 

that it intersects the strain axis at 0.01 percent strain. The inter-

section of this line with the stress-strain curve is defined as the pro-

portional limit. 
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Table 3.26 

Tested Mechanical Properties of 100XF Sheet Steel 

Longitudinal Compression 

Test Strain Rate Fpr Fy Fpr/Fy 
No. in./in./sec. (ksi) (kS1) 

LC-1 0.0001 72.87 107.28 0.68 
LC-2 0.0001 71.17 108.23 0.66 
LC-3 0.0001 69.71 106.37 0.65 

LC-4 0.01 87.90 110.51 0.79 
LC-S 0.01 88.98 112.18 0.79 
LC-6 0.01 *-1:*-1:* 111. 08 *1:-1:-1:"'1: 

LC-7 1.0 ~':**1:** 115.16 *1:-/:-1:~': 

LC-8 1.0 ***** 116.61 _/:-/:~t:,,:': 

LC-9 1.0 ***** 112.97 -;':-!:*;':*;': 
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Table 3.27 

Tested Mechanical Properties of 100XF Sheet Steel 

Transverse Compression 

Test Strain Rate Fpr Fy Fpr/Fy 
No. in./in./sec. (ksi) (ks 1.) 

TC-1' 0.0001 103.82 123.66 0.84 
TC-2 0.0001 102.53 120.41 0.85 
TC-3 0.0001 104.63 126.91 0.82 

TC-4 0.01 113.27 126.42 0.90 
TC-5 0.01 113.18 125.14 0.90 
TC-6 0.01 113.91 126.91 0.90 

TC-7 1.0 ,,;t:~t:-/:-1: .. ':* 129.98 '1:~:** 

TC-8 1.0 ..,':-,',-,':<1:-/:* 132.62 7:-.':*;':i': 

TC-9 1.0 7:-1:*-1:'1:* 132.59 *.':*i: 
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Table 3.28 

Tested Mechanical Properties of 50XF Sheet Steel 

Longitudinal Compression 

Test Strain Rate Fpr Fy Fpr/Fy 
No. in. / in . / s ec. (ksi) (kS1) 

LC-1 0.0001 37.63 49.95 0.75 
LC-2 0.0001 39.05 49.70 0.79 
LC-3 0.0001 39.24 49.40 0.79 

LC-4 0.01 42.92 52.82 0.81 
LC-5 0.01 41. 25 52.82 0.78 
LC-6 0.01 35.99 51.90 0.69 

LC-7 1.0 ** ... 1:** 54.88 -1:-1: ... ':* 

LC-8 1.0 * ... ':-t:** 54.50 -;':';:'1:-;': 

LC-9 1.0 *-1:*** 54.99 -;':eJ:ef:-.': 
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Table 3.29 

Tested Mechanical Properties of 50XF Sheet Steel 

Transverse Compression 

Test Strain Rate Fpr Fy Fpr/Fy 
No. in./in./sec. (ksi) (kS1) 

TC-l 0.0001 38.69 51.07 0.76 
TC-2 0.0001 42.65 51.04 0.84 
TC-3 0.0001 43.19 51.13 0.84 

TC-4 0.01 50.00 53.46 0.93 
TC-5 0.01 50.47 53.38 0.94 
TC-6 0.01 51.47 53.36 0.96 

TC-7 1.0 *-f:*** 55.52 ~':-/:-;': .. '; 
TC-8 1.0 *~I:-l:""#t:'1: 55.88 ~:7:~t:-:: 

TC-9 1.0 *-1:-1:** 55.22 -J:-t:"k* 
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Table 3.30 

Tested Mechanical Properties of 35XF Sheet Steel 

Longitudinal Compression 

Test Strain Rate Fpr Fy Fpr/Fy 
No. in. / in. / s ec . (ksi) (kSl) 

LC-1 0.0001 17.76 29.95 0.59 
LC-2 0.0001 17.98 29.79 0.60 
LC-3 0.0001 17.63 29.74 0.59 

LC-4 0.01 23.15 32.50 0.71 
LC-5 0.01 17.94 31. 52 0.57 
LC-6 0.01 19.00 31. 73 0.60 

LC-7 1.0 1:**-1:* 36.69 ~':~':~: .. ': 
LC-8 1.0 -1:*.':-1:* 36.27 -;':-;':;':-;': 

LC-9 1.0 .;:** .. ':-;': 37.76 -;':-;':.':;': 



162 

Table 3.31 

Tested Mechanical Properties of 35XF Sheet Steel 

Transverse Compression 

Test Strain Rate Fpr Fy Fpr/Fy 
No. in./in./sec. (ksi) (kS1) 

TC-l 0.0001 23.48 32.76 0.72 
TC-2 0.0001 22.45 32.44 0.69 
TC-3 0.0001 23.42 32.67 0.72 

TC-4 0.01 28.60 37.95 0.75 
TC-5 0.01 30.34 36.71 0.83 
TC-6 0.01 27.26 35.40 0.77 

TC-7 1.0 *!ri:*** 43.17 -1:*-1:~': 

TC-8 1.0 1:-;':-/:-;':* 41. 00 *-;':-;':-1: 

TC-9 1.0 ***** 46.17 *-1:-;':* 



Table 3.32 

Average Tested Mechanical Properties of 100XF Sheet Steel 

Strain Rate 
in. / in. / sec. 

0.0001 
0.01 

1.0 

Longitudinal Compression 

Fpr 
, (ksi) 

Fy 
(kS1) 

71.25 107.29 
88.44 111.26 

***** 114.91 

Table 3.33 

0.66 
0.79 

**** 

Average Tested Mechanical Properties of 100XF Sheet Steel 

Strain Rate 
in./in./sec. 

0.0001 
0.01 

1.0 

Transverse Compression 

Fpr 
(ksi) 

Fy 
(kS1) 

103.66 123.66 
113.45 126.16 
****** 131. 73 

0.84 
0.90 
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Table 3.34 

Average Tested Mechanical Properties of 50XF Sheet Steel 

Strain Rate 
in. / in. /sec. 

0.0001 
O. 01 

1.0 

Longitudinal Compression 

Fpr 
(ksi) 

Fy 
(kS1) 

38.64 49.68 
40.05 52.51 

***** 54.79 

Table 3.35 

0.78 
0.76 

Average Tested Mechanical Properties of 50XF Sheet Steel 

Strain Rate 
in./in./sec. 

0.0001 
0.01 

1.0 

Transverse Compression 

Fpr 
(ksi) 

Fy 
(kS1) 

41.51 51. 08 
50.65 53.40 
*-::*** 55.54 

0.81 
0.95 
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Table 3.36 

Averag~ Tested Mechanical Properties of 35XF Sheet Steel 

Strain Rate 
in./in./sec. 

0.0001 
0.01 

1.0 

Longitudinal Compression 

Fpr 
(ksi) 

Fy 
(ks~) 

17.79 29.83 
20.03 31. 92 

***** 36.91 

Table 3.37 

0.60 
0.63 

Average Tested Mechanical Properties of 35XF Sheet Steel 

Strain Rate 
in./in./sec. 

0.0001 
0.01 

1.0 

Transverse Compression 

Fpr 
(ksi) 

Fy 
(ks ~) 

23.12 32.62 
28.73 36.69 
-,':*7:-1:* 43.45 

0.71 
0.78 
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In this study, the 0.01 percent offset method was chosen to obtain 

the values of the proportional limit for the steels tested in compression 

under the strain rates of 0.0001 and 0.01 in./in./sec. as demonstrated 

graphically in Figure 3.24 for the 35XF-TC-4 curve and listed in tables 

3.24 through 3.29. Because of the waving effect of the impact load on the 

stress-strain curves of the tests conducted at the high strain rate of 

1.0 in./in./sec., reliable values for the proportional limit were 

difficult to obtain. 

ii) Yield Strength or Yield Point, F . For the types of sheet steels 
y 

tested in this study in compression, the stress-strain curves of the SOXF 

sheet steel are the sharp-yielding type, while the stress-strain curves 

of the 35XF and 100XF steels are the gradual-yielding type. 

The yield point of the sharp-yielding steel was determined as the 

stress where the stress-strain curve becomes horizontal. Typical 

sharp-yielding stress-strain curves are shown in Figure 3.22 for the SOXF 

steel in the longitudinal direction. For this case, the lower yield point 

is given in Tables 3.28 and 3.29 for longitudinal and transverse 

directions, respectively. 

For the gradual-yielding type stress-strain curves as shown in 

Figure 3.24 for 35XF-TC-4, the yield point of 35XF steel was determined 

by the intersect~on of the stress-strain curve and the straight line drawn 

parallel to the elastic portion of the stress-strain curve at an offset 

of 0.002 in./in. A Fortran 77 code was written to determine the yield 

points presented in Tables 3.26, 3.27, 3.30 and 3.31 for the 

gradual-yielding type curves using the Least Square Method. 
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C. STRUCTURAL MEMBERS 

In cold-formed steel design, the effective width approach has b'een 

adopted in several specifications to predict the load-carrying, capacities 

of structural members in building and other cold-formed steel structures. 

Because the effective width formulas included in the current AlSI Spec-

1 22 "1 b d ificationand the Automotive Steel Design Manua are pr1mar1 y ase 

on the results of static tests of cold-formed steel members corresponding 

f . 1 1 7 10-6 . / . / 3 th b' ctive to a strain rate 0 approx1mate y . x 1n. 1n. sec. ,eo Je 

of this experimental investigation was to study whether the available 

effective design formulas using dynamic material properties can be ade-

quately used for the design of structural members subjected to dynamic 

loads. It should be noted that according to ASTM Specification E8, the 

stress rate should be 100 ksi/min. for obtaining the material static 

stress-strain curve. This stress rate could be converted to strain rate 

of 5.65 10-5 in./in./sec. by using Hooke's Law and modulus of elasticity 

of 29,500 ksi. 

In this phase of experimental investigation, 15 hat-section beams 

and 18 box-shaped stub columns were tested for the study of stiffened 

elements, while 15 channel-beams and 19 I-shaped stub columns were tested 

for unstiffened elements. The configurations of test specimens are shown 

in Figs. 3.25 and 3.26. All specimens used for this phase of study were 

fabricated from 35XF sheet steels. The stub column specimens were cold-

formed by Butler Manufacturing Company in Grandview, Missouri, while the 

beam specimens were cold-formed by Holloway Machine Company in 

Springfield, Missouri. The designation of test spcimens used in this 

study of structural members is presented i~ Table 3.38. The number of 



a. Beams 

b. Stub Columns 

Figure 3.25 Configurations of Test Specimens for Members Having 

Stiffened Compression Flanges 
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a. Beams 
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b. Stub Columns 

Figure 3.26 Configurations of Test Specimens for Members Having 

Unstiffened Compression Flanges 
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Table 3.38 

Designation of Test Specimens Used in This Study 

1st Digit 

Section Type 

Box:-Shaped Section 

Stub-Column Test 

(Fig. 3.1b) 

I-Shaped Section 

Stub-Column Test 

(Fig. 3.2b) 

Hat Section for 

Beam Test (Fig. 3.1a) 

Channel Section for 

Beam Test (Fig. 3.2a) 

1st Letter 

wit Ratio 

A- Small Ratio 

B- Medium Ratio 

C- Large Ratio 

2nd Digit 

Strain-Rate 
(in . I in . Is e c . ) 

0- 0.00001 

1- 0.0001 

2- 0.01 

3- 0.1 

2nd Letter 

Test No. 

A- 1st Test 

B- 2nd Test 
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. T bl 3 39 th ough 3 42 As shown in these tables, tests are given ~n a es· r ., 

a total of 67 specimens have been tested under different strain rates . 

. d f 10- 5 
The strain rates used in the tests var~e rom to 0.1 

in./in./sec. as given in Tables 3.39 .through 3.42. Also included in these 

tables is the actuator speed used for the tests. The ranges of wit ratios 

used in this study were from 26.67 to 76.08 for stiffened elements, and 

from 8.93 to 20.69 for unstiffened elements. 

1. Material Properties. The 35XF sheet steel used to fabricate the 

structural members is the same as that used to cut the tensile and 

compressive coupons. The mechanical properties of this sheet stee 1 in 

tens ion and compression have been established under different s tra in 

rates and included -in Section III.B. Table 3.43 gives the average values 

of mechanical properties including yield stress (F ), proportional limit 
y 

(F ), tensile strength (F ), and elongation in 2-in. gage length tested 
pI' u 

under different strain rates. The thickness of this sheet steel is 0.085 

in. Typical stre$s-strain curves for longitudinal tension and longitudi-

nal compression of this material under different strain rates were shown 

previously in Figs. 3.17 and 3.23, respectively. 

2. Beam Tests for Stiffened Elements. 

a. Specimens. Fifteen (15) beam specimens were tested to study the 

local buckling and post-buckling strengths of stiffened elements of the 

35XF steel material using different strain rates. The strain rates used 

-5 
for the tests ranged from 10 to 0.01 in./in./sec. Three different beam 

sections were used. Figure 3.27 shows the hat sections designed for the 
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Table 3.39 

Number of Performed Stub Column Tests 

Box Sections Having Stiffened Compression Elements 

Spec. No. Test Speed Strain Rate wit L/r No. of Tests 
in. Imin. (in. I in. Isec. ) Performed 

1AIA 0.072 0.0001 27.15 12.26 1 
1A1B 0.072 0.0001 27.39 12.26 1 
1A2A 7.2 0.01 26.92 12.26 1 
1A2B 7.2 0.01 27.06 12.26 1 . 
1A3A 7'2.0 0.1 27.31 12.26 1 
1A3B 72.0 0.1 27.40 12.26 1 

1BIA 0.084 0.0001 38.93 10.98 1 
IBIB 0.084 0.0001 38.17 10.98 1 
IB2A 8.4 0.01 38.86 10.98 1 
IB2B 8.4 0.01 39.10 10.98 1 
IB3A 84.0 0.1 38.86 10.98 1 
1B3B 84.0 0.1 38.96 10.98 1 

1CIA 0.09 0.0001 52.69 11. 27 1 
1CIB 0.09 0.0001 52.96 11. 27 1 
lC2A 9.0 0.01 52.20 11. 27 1 
1C2B 9.0 0.01 53.06 11. 27 1 
1C3A 90.0 0.1 53.15 11. 27 1 
1C3B 90.0 0.1 53.39 11. 27 1 

Total 18 
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Table 3.40 

Number of Performed Stub Column Tests 

I-Sections Having Unstiffened Compression Elements 

Spec. No. Test Speed Strain Rate wit L/r No. of Tests 
in. Imin. ( in . I in . ! s ec . ) Performed 

2A1A 0.054 0.0001 8.93 18.73 1 
2A1B 0.054 0.0001 9.04 18.73 1 
2A2A 5.4 0.01 8.93 18.73 1 
2A2B 5.4 0.01 9.10 18.73 1 
2A3A 54.0 0.1 8.93 18.73 1 
2A3B 54.0 0.1 8.96 18.73 1 

2B1A 0.06 0.0001 13.34 17.65 1 
2B1B 0.06 0.0001 13.41 17.65 1 
2B2A 6.0 0.01 13.40 17.65 1 
2B2B 6.0 0.01 13.37 17.65 1 
2B3A 60.0 0.1 13.34 17.65' . 1 
2B3B 60.0 0.1 13.42 17.65 1 

2COA 0.0084 0.00001 '20.69 15.64 1 
2C1A 0.084 0.0001 20.85 15.64 1 
2C1B 0.084 0.0001 20.76 15.64 1 
2C2A 8.4 0.01 20.97 15.64 1 
2C2B 8.4 0.01 20.81 15.64 1 
2C3A 84.0 0.1 20.93 15.64 1 
2C3B 84.0 0.1 20.87 15.64 1 

Total 19 
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Table 3.41 

Number of Performed Beam Tests 

Hat Sections Having Stiffened Compression Flanges 

Spec. No. Test Speed Strain Rate wit L No. of Tests 
in. Imin. (in. lin. Isec.) (in. ) Performed 

3AOA 0.023 0.00001 29.15 47 1 
3A1A 0.23 0.0001 30.00 47 1 
3A1B 0.23 0.0001 29.85 47 1 
3A2A 23.0 0.01 29.05 47 1 
3A2B 23.0 0.01 30.17 4) 1 

3BOA 0.038 0.00001 55.91 77 1 
3B1A 0.38 0.0001 55.11 77 1 
3B1B 0.38 0.0001 55.91 77 1 
3B2A 38-.0 0.01 55.82 77 1 
3B2B 38.0 0.01 55.97 77 1 

3COA 0.15 0.00001 76.17 95 1 
3C1A 1.50 0.0001 76.64 95 1 
3C1B 1.50 0.0001 76.57 95 1 
3C2A 150.0 0.01 76.62 95 1 
3C2B 150.0 0.01 76.03 95 1 

Total 15 
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Table 3.42 

Number of Performed Beam Tests 

Channel Sections Having Unstiffened Compression Flanges 

Spec. No. Test Speed Strain Rate wit L No. of Tests 
in. Imin. (in . I in . Is ec . ) (in. ) Performed 

4AOA 0.043 0.00001 9.28 41 1 
4A1A 0.43 0.0001 9.16 41 1 
4A1B 0.43 0.0001 9.16 41 1 
4A2A 43.0 0.01 9.22 41 1 
4A2B 43.0 0.01 9.03 41 1 

4BOA 0.045 0.00001 15.13 47 1 
4BIA 0.45 0.0001 15.16 47 1 
4B1B 0.45 0.0001 14.93 47 1 
4B2A 45.0 0.01 15.04 47 1 
4B2B 45.0 0.01 15.16 47 1 

4COA 0.082 0.00001 20.93 69 1 
4C1A 0.82 0.0001 20.99 69 1 
4C1B 0.82 0.0001 20.93 69 1 
4C2A 82.0 0.01 20.99 69 1 
4C2B 82.0 0.01 20.93 69 1 

Total 15 



Table 3.43 

Average Mechanical Properties of 35XF Sheet Steel used in 

the Experimental Study Under Different Strain Rates 

Strain Rate (Fy)c (Fpr)c (Fy)t (Fu\ Elongation 

in. lin. /sec. (ksi) (ksi) (ksi) (ksi) (%) 

0.0001 29.83 17.79 32.87 49.35 38.90 

0.01 31. 92 20.03 36.40 51. 76 36.8(;)-

1.0 36.91 **..,,,** 42.37 56.63 40.90 

Notes: 

177 

1) (Fy)c and (Fpr)c are based on longitudinal compression coupon 

tests. 

2) (Fy)t and (Fu)t and Elongation are determined from longitudinal 

tension coupon tests. 

3) Elongation was measured by using a 2-in. gage length. 
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study of post-buckling strength of stiffened elements. Table 3.44 gives 

the average cross-sectional dimensions of hat sections, thicknesses of 

sheet steels, wit ratios, span lengths of specimens, and failure loads. 

The width-to-thickness ratios, wit, ranged from 29.62 to 76.08. 

All steel sheets were sheared to the designed sizes before the 

specimens were formed. 

radius of 5/32 in. 

All specimens were formed with an inside bend 

b. Strain Measurements. Twelve foil strain gages were placed on 

the compression flange, tension flanges, and webs of each beam specimen 

for measuring compressive and tensile strains. Figure 3.28 shows the 

locations of strain gages, num~ered from 1 to 12, placed on beam speci­

mens. Eight strain gages (No. 3 through 8, 11, and 12) were p laced at 

the midspan of beam specimens. In addition, two paired strain gages 

((1,2) and (9,10)) were placed along the longitudinal centerline of the 

compression flange at a distance equal to the overall width of the com­

pression flange on each side of the midspan of the specimens. All three 

paired strain gages along the centerline of the compression flange were 

used to detect local buckling of the compression flange. As shown in Fig. 

3.29, the critical buckling load is determined from the load-versus­

strain diagram by using the modified strain reversal method, .which is 

discussed in Ref. 119. Strain gages (No. ~ and 6) placed along both e~ges 

of the compression flange were used to measure edge strains. The edge 

stress of stiffened elements can be determined from these strain r~adings 

using the stress-strain curve. On each side of the tension flanges, a 

strain gage (No. 11 or 12) was placed along the edge of each tension 
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Table 3.44 

Dimensions of Beam Specimens with Stiffened Flanges 

Fabricated from 35XF Sheet Steel 

Specimen BC D BT t wit L P 
u 

(in. ) (in. ) (in. ) (in. ) ( in. ) (kips) 

3AOA 2.960 1.510 . 1. 010 0.085 29.15 43.00 5.69 
3AIA 3.033 1.462 1. 012 0.085 30.00 43.00 5.43 
3AIB 3.020 1.477 1.017 0.085 29.85 43.00 5.72 
3A2A 2.952 1.515 1.020 0.085 29.05 43.00 6.31 
3A2B 3.047 1.470 1.012 0.085 30.17 43.00 6.39 

3BOA 5.235 2.445 1.235 0.085 55.91 73.00 6.38 
3BIA 5.167 2.460 1.255 0.085 55.11 73.00 6.54 
3BIB 5.235 2.435 1.230 0.085 55.91 73.00 6.49 
3B2A 5.227 2.435 1.220 0.085 55.82 73.00 6.97 
3B2B 5.240 2.440 1.232 0.085 55.97 73.00 7.63 

3COA 6.957 2.926 1.490 0.085 76.17 91. 00 6.53 
3C1A 6.997 2.947 1.483 0.085 76.64 91. 00 6.99 
3C1B 6.991 2.954 1.481 0.085 76.57 91.00 6.96 
3C2A 6.995 2.934 1.483 0.085 76.62 91. 00 7.45 
3C2B 6.945 2.945 1.485 0.085 76.03 91.00 7.42 
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Table 3.44 

Dimensions of Beam Specimens with Stiffened Flanges 

Fabricated from 35XF Sheet Steel 

Specimen BC D BT t wit L p 
u 

(in. ) (in. ) (in. ) (in. ) ( in. ) (kips) 

3AOA 2.960 1.510 1. 010 0.085 29.15 43.00 5.69 
3A1A 3.033 1.462 1.012 0.085 30.00 43.00 5.43 
3A1B 3.020 1.477 1.017 0.085 29.85 43.00 5.72 
3A2A 2.952 1.515 1.020 0.085 29.05 43.00 6.31 
3A2B 3.047 1. 470 1. 012 0.085 30.17 43.00 6.39 

3BOA 5.235 2.445 1.235 0.085 55.91 73.00 6.38 
3B1A 5.167 2.460 1.255 0.085 55.11 73.00 6.54 
3B1B 5.235 2.435 1.230 0.085 55.91 73.00 6.49 
3B2A 5.227 2.435 1.220 0.085 55.82 73.00 6.97 
3B2B 5.240 2.440 1.232 0.085 55.97 73.00 7.63 

3COA 6.957 2.926 1.490 0.085 76.17 91. 00 6.53 
3C1A 6.997 2.947 1.483 0.085 76.64 91. 00 6.99 
3C1B 6.991 2.954 1.481 0.085 76.57 91. 00 6.96 
3C2A 6.995 2.934 1.483 0.085 76.62 91.00 7.45 
3C2B 6.945 2.945 1.485 0.085 76.03 91.00 7.42 
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flange as shown in Fig. 3.28 to study the shift of the neutral axis during 

the test. Strain gages (No. 7 and 8) placed on the to'p of the webs were 

used to study the distribution of compressive stress in the web. 

c. Instrumentation and Test Procedure. All beam specimens were 

tested using the 880 Material Test System described in Section 

III.B.2.a.iii. The data acquisition system used in this study is the same 

as that used for the study of material tests. It has 64 simultaneously 

sampling input channels. Two channels were connected to the MTS machine 

to record loads and actuator displacements as the test runs. Thirty 

channels were connected to a 2120 Measurements Group Strain Gage Condi-

tioner and Amplifier System to measure the strain gage outputs. Four 

channels were connected to Daytronic Linear Variable Differential Trans-

former (LVDT) Conditioners to measure the LVDT outputs. After the data 

have been acquired, it was downloaded into the computer for analysis. A 

Data General mini-computer was used to coordinate the electronic equip­

ment and to store and analyze the test data. 

Following fabrication of the test specimen and placement of strain 

gages, the beam specimen was placed in the 880 MTS test system on the top 

of an 8-feet long W-Shape steel beam which was supported by the lower 

compression platen of the MTS machine. The test setup for beam specimens 

is shown in Figs. 3.30 and 3.31. As shown in Fig. 3.30, the beam was 

simply supported and the load was applied from the lower compression 

platen to the specimen. T-sections were used at L/8 points to support 

the beam for preventing web crippling failure". Six 1/4- in. dia., high 

strength bolts' were used' to connect each T-section to the web of the 

specimen. To prevent premature web crippling failure, one 4-in. wide 
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bearing plate and a wooden block placed between specimen webs were used 

at each end of the specimen. The tension flanges at both ends of the beam 

specimens are clamped to bearing plates. During the fabrication of 

specimens, three aluminum bars were connected to the tension flanges at 

midspan and at quarter points to prevent the hat section from opening. 

Beam deflections were measured with two LVDTs which contacted the midspan 

aluminum bar at both sides of the specimen. 

The function generator was then programmed to produce the desired 

ramp. For all the tests, the range 2 of the stroke mode (maximum stroke 

= 2.5 in.) was selected as the control mode to maintain a constant 

actuator speed. -5 
The strain rates used in the tests ranged from 10 to 

0.01 in./in./sec. and the corresponding test times ranged from 3000 to 3 

sec. 

During the tests, the applied load '. actuator displacement, strains 

from twelve strain gage outputs, and deflections from two LVDT outputs 

were recorded and stored in the CAMAC memory. The CAMAC sampling rate 

depends on the test time and varied from 5 to 25000 readings per second. 

This rate depends on the test time and was set before the test started. 

Table 3.45 gives the frequency number and the corresponding readings per 

second. Following the completion of the test, the data were downloaded 

and stored in the Data General Computer for later analysis. Each of the 

64 CAMAC channels takes 16384 data points during the test (regardless of 

the test time). The test data file occupied 2 megabytes of the DG memory. 

All specimens were loaded to failure. 

d. Test Results. For the study of post-buckling strengths of 

stiffened elements, beam specimens were designed to have various wit ra-
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Table 3.45 

The CAMAC Frequencies and the 

Corresponding Sampling Rates 

Frequency Reading Per 
Number Seconds 

0 5 
1 10 
2 25 
3 50 
4 100 
5 250 
6 500 
7 1000 
8 2500 
9 5000 

10 10000 
11 25000 
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tios for the compression flange. Local buckling of the compression flange 

can be detected from the readings of the paired strain gages located on 

the centerline of the flange. Waving of the compression flange was ob­

served as the load continued to increase beyond the buckling load. Be­

cause of the redistribution of compressive stress across the compression 

flange, the specimen failed when the maximum strength of the compression 

flange was reached. Typical failure of the beam specimen is shown in Fig. 

3.32. Failure of test specimens always occurred in the middle portion 

of the beam close to the L/8 points. 

The location of the neutral axis was determined from strain gage 

readings. Figure 3.33 shows the positions of the neutral axis. The 

neutral axis shifted away from the top flange as the load increased. As 

mentioned above, beam deflection was carefully measured at both sides of 

the midspan of the specimen. In the early stage of the slow test, beam 

deflection increased linearly corresponding to the app lied load. The 

nonlinear load-deflection relationship was noted when local buckling oc­

curred in the compression flange of the specimen. A typical strain-time 

curve for the slow strain-rate test is presented in Fig. 3.34. Typical 

load-strain curves for the paired strain gages at the middle of the 

stiffened flange are shown in Fig. 3.35. This plot is used for determi­

nation of critical buckling load. 

3. Stub Column Tests for Stiffened Elements 

a. Specimens. In this phase of experimental investigation, eighteen 

(18) stub column specimens were tested to study the effect of strain rate 
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on the local and post-buckling strengths of stiffened elements for 3SXF 

steel material. 

As shown in Fig. 3.36, box-shaped stub columns were used for this 

phase of study. All stub columns were fabricated by connecting two 

identical hat sections through, the unstiffened flanges. High strength 

bolts (1/4-in. dia.) with washers were used for the fabrication of stub 

columns. The spacing of bolts was determined on the basis of the re-

quirements of the AISI Specification. The steel sheets were sheared to 

the designed sizes of each hat section. Great care was taken when ·the 

stub-column specimens were fabricated. Both ends of the stub-column 

specimens were milled to ensure that they were flat and parallel. 

Table 3.46 gives the average cross sectional dimensions of stub­

column specimens, the measured thicknesses of sheet stee Is, and the 

failure loads. In this phase of experimental study, the wit ratios of 

stiffened elements ranged from 26.67 to 53.15. The strain rates ranged 

from 0.0001 to 0.1 in./in./sec. The webs of all hat sections were de­

signed to be fully effective. The unstiffened flanges were connected to 

satisfy the requirements of the AISI Specification. 

The lengths of stub-column specimens are also given in Table 3.46. 

In order to avoid overall column buckling, the length of each stub-column 

specimen is longer than three times the largest dimension of the cross 

section of the specimen and less than 20 times the least radius of gy­

ration as recommended in Ref. 116. This criterion was also adopted in Part 

VIr (Test Procedure) of the 1986 AISI Cold Formed Steel Design ~anual. 

b. Strain Measurements. Eight foil strain gages were used to 

measure strains at midheight of the stub column specimen. The location 
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Table 3.46 

Dimensions of Stub Columns with Stiffened Flanges 

Fabricated from 35XF Sheet Steel 

Specimen BF BW BL wit Gross Area L P u 

(in. ) (in. ) (in. ) (in .. 2) (in. ) (kips) 

1A1A 2.790 1.492 0.916 27.15 1.2060 12.03 46.12 
1A1B 2.811 1.482 0.915 27.39 1. 2060 12.02 44.89 
1A2A 2.771 1.484 0.918 26.92 1. 2010 12.03 50.02 
1A2B 2.783 1.482 0.916 27.06 1. 2060 12.03 49.29 
1A3A 2.804 1.470 0.916 27.31 1. 2009 12.03 53.54 
1A3B 2.812 1.467 0.915 27.40 1.2009 12.03 54.37 

lB1A 3.792 1.990 0.922 38.93 1. 5477 14.99 49.19 
lB1B 3.812 1.985 0.918 39.17 1. 5480 13.97 53.54 
lB2A 3.786 1. 978 0.918 38.86 1.5412 13.84 56.28 
IB2B 3.806 1.982 0.919 39.10 1. 5463 13.94 57.01 
1B3A 3.786 1. 992 0."919 38.86 1.5463 13.84 64.78 
1B3B 3.794 1.982 0.918 38.96 1.5440 13.94 60.87 

1C1A 4.961 2.523 0.919 52.69 1. 9266 15.06 56.76 
1C1B 4.984 2.513 0.922 52.96 1. 9282 15.06 56.52 
1C2A 4.920 2.524 0.920 52.20 1. 9203 14.81 61. 02 
1C2B 4.993 2.519 0.922 53.06 1. 9317 15.12 64.58 
1C3A 5.000 2.526 0.919 53.15 1. 9343 15.09 73.96 
1C3B 5.021 2.510 0.922 53.39 1. 9334 15.00 69.27 
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of strain gages, numbered from 1 to 8, is shown in Fig. 3.37. An addi-

tional eights strain gages were added only to the hat sections with large 

wit ratio (w/t= 53.15). They were placed at a distance equal to half of 

the overall width of the compression flange as shown in Fig. 3.38. The 

critical buckling load of the specimen was determined from the load-

versus-strain diagram using the modified strain reversal method as dis-

cussed in Ref. 119. The strains used in the load-versus·strain diagrams 

were obtained from the output of paired gages (No. 1,2,5,6 and 9 through 

16) located at the centerline of each flange. Additional strain gages 

attached to the edges of compression flanges were used to measure the 

maximum edge strains for stiffened elements. Prior to testing, all strain 

gages were used to align the stub-column specimen . 

. 
c. Instrumentation and Test Procedure. The 880 MTS material test 

system and the CAMAC data acquisition system used for the beam tests were 

also used for stub column tests. 

Following fabrication of the specimen and placement of strain gages, 

the stub column was placed in the MTS testing machine. At the beginning 

of the test, a small preload was applied to the specimen and the resulting 

strains were recorded for all strain gages to see whether the stra in 

distribution was uniform over the cross section of the specimen. If 

necessary, thin layers of aluminum foil were added to the ends of stub 

columns in the regions of low s~rain. This procedure was repeated until 

the strain distribution was essentially uniform over the cross section. 

Figure 3.39 shows the box-shaped stub column test setup. 

The function generator was then programmed to produce the desired 

ramp. For all tests, the stroke mode was selected as the control mode to 
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maintain a constant actuator speed which was obtained from multiplying 

the selected strain rate by the overall length of the specimen. For all 

tests, load range 1 (maximum load of 100 kips) and stroke range 4 (maximum 

displacement of 0.5 inch) were selected. Because the maximum actuator 

speed is 2.5 in./sec., a strain rate higher than 0.1 in./in./sec could 

not be obtained. The strain rates used in the tests ranged from 10- 4 to 

0.1 in./in./sec. and the corresponding test times ranged from 416 to 

0.2 sec. 

d. Test Results. The. failure mode of the specimens varied with the 

width-to-thickness ratio of the compression flange. For stiffened ele­

ments with large wit .ratios, local buckling always occurred in the elastic 

range. Due to the stress redistribution across the cross section of the 

compression flange, the edge stress of the stiffened element continued 

to increase until the maximum edge stress was reached and the specimen 

failed. For stiffened elements with moderate wit ratios, the compression 

flange normally buckled in or near the inelastic range. Y ie ld fai lure 

occurred in stiffened elements with small wit ratios, so that very little, 

if any, waving of the stiffened compression element occurred before 

failure. It was noted that the specimens with small wit ratio failed al­

ways at either top or bottom ends. The specimen with moderate wit ratio 

failed either at the end o.r at the middle or both, while the specimen with 

large wit ratio failed most of the time at or near the middle height of 

the specimen regardless of the strain rate used in the test. Figure 3.40 

shows a typical failure mode of box-shaped stub column specimens with 

moderate wit ratios. 



Figure 3.40 Failure of Stub Columns with Stiffened Flanges (Front View) 
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A typical strain-time curve for a high strain-rate test is presented 

'n F'g 3 41 Typ;cal load-strain curves for the paired strain gages at ~ ~. ., .J. 

the middle of the stiffened flange are shown in Fig. 3,42. For the pur-

pose of comparison, Figures 3.43 through 3. 4S present three typical 

load-displacement curves for the specimens having the same wit ratio but 

tested under different strain rates. 

4. Beam Tests for Unstiffened Elements. 

a. Specimens. Fifteen (15) channel-beam. specimens were tested to 

study the effect of strain rate on local and post-buckling strengths of 

unstiffened elements using 35XF steel material. Three different beam 

sections were studied. Aluminum bars were used to connect two channel 

specimens together to fabricate the beam specimen as demonstrated in 

Figure 3.46. The purpose of using the aluminum bars was to prevent the 

specimen from lateral buckling during the test. High strength, 1/4 in. 

dia. bolts were used in the fabrication of the test specimens. The cross 

section of the channel-beam specimens is also shown in Fig. 3.46. Table 

3.47 gives the average cross-sectional dimensions of channel-beam speci-

mens and the failure loads. The span lengths of beam specimens are also 

given in Table 3.47. The wit ratios of unstiffened elements ranged from 

8.93 to 20,69. 

All steel sheets were sheared to the designed sizes before the 

channel sections were formed. All specimens were formed with an inside 

bend radius of 5/32 in. 

b. Strain Measurements. Eight foil strain gages were placed at the 

midspan of the test specimen on the compression and tension flanges for 
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Figure 3.46 Cross Sections of Channel Beams Used for the Study of 

Unstiffened Elements 
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Table 3.47 

Dimensions of Beam Specimens with Unstiffened Flanges 

Fabricated from 35XF Sheet Steel 

Specimen BC D t wit L p 
u 

.( in. ) (in. ) (in. ) (in. ) (kips) 

4AOA 1.030 2.020 0.085 9.28 37.00 6.41 
4A1A 1. 020 2.007 0.085 9.16 37.00 7.15 
4A1B 1.020 2.025 0.085 9.16 37.00 7.18 
4A2A 1. 025 2.012 0.085 9.22 37.00 7.53 
4A2B 1.009 2.020 0.085 9.03 37.00 7.63 

480A 1.527 2.517 0.085 15.13 43.00 9.77 
4B1A 1.530 2.510 0.085 15.16 43.00 10.12 
481B 1.510 2.530 0.085 14.93 43.00 9.87 
482A 1.520 2.520 0.085 15.04 43.00 10.97 
4B2B 1.530 2.510 0.085 15.16 43.00 10.98 

4COA 2.020 3.020 0.085 20.93 65.00 8.49 
4CIB 2.025 3.010 0.085 20.99 65.00 8.83 
4C1C 2.020 .3.010 0.085 20.93 65.00 9.15 
4C2A 2.025 3.030 0.085 20.99 65.00 10.23 
4C2B 2.020 3.020 0.085 20.93 65.00 10.22 
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measuring compressive and tensile strains. The locations of strain gages 

(numbered from 1 to 8) placed on beam specimens are shown in Fig. 3.47. 

These paired strain gages ((1,2) and (5,6)) were used to detect local 

buckling of the compression flanges. The modified strain reversal method 

was used to determine the critical buckling load from the 10ad-versus-

strain diagram, as recommended in Ref. 119. 

Strain gages placed along the unsupported edges of the unstiffened 

compression flanges were used to measure edge strains. The edge stress 

of unstiffened elements can be determined from these strain readings using 

the stress-strain curve. Strain gages on the tension flange were used 

to study the shift of the neutral axis. 

c. Instrumentation and Test Procedure. The e~uipment and testing 

procedure were identical to those used in the beam tests for the study 

of stiffened elements as discussed in Section III.C.2.c. The test setup 

for channel-beams is shown in Figs. 3.48 and 3.49. 

The load was applied to the beam specimen by the 880 MTS machine. 

Four-inch wide bearing plates were used under the loading points and at 

the ends of specimens. The stroke range 3 with maximum displacement equal 

to 1 in. was selected to be the control mode. The strain rates used in 

-5 
the tests ranged from 10 to 0.01 in./in./sec. and the corresponding test 

times ranged from 1400 to 1.4 sec. 

-
During the tests, the applied load, actuator displacement, strains 

from eight strain gage outputs, and midspan deflections from two LVDT 

outputs were recorded at a preset frequency rate. As mentioned previously, 

the frequency rate depends on the test time. 



1 3 ('"\ I) 4 5 r----- ~------'--------r 
- - ,., I I - 1 l... _______ ,_ _ 

2 
, \ I I 

'\ / , . I 
\ I I \ 'I \ \. I 
,,, I 

1\ I' 
/ /\\\ 

I I \' 

6 

I I \ \ 

I~- - -1-/- --~ ~\ -- -, 
- I \ -

~~~-~--~~----~~------~ I \ \ 'J \:.. .. 7 8 

210 

Figllre 3.47 Locations of Strain Gages at Midspan Section of Channel 

Beams 
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d. Test Results. During the testing, waving of the compression 

flange was observed as the load continued to increase beyond the buckling 

load. Curling of the compression flanges near loading plates was observed 

in most specimens with small or moderate wit ratios. For the specimens 

with large wit ratio the curling always occured in the middle portion of 

the beam. As expected, the specimen failed between the loading points. 

The beam specimen failed when the maximum strength of the compression 

flange was reached. Possible failure by lateral buckling was prevented 

by providing lateral supports. Figure 3.50 shows typical flexural failure 

of channel-beams with unstiffened elements having large wit ratios. 

A typical strain-time curve for a medium strain-rate test is pre­

sented in Fig. 3.51. Typical load-strain curves for the paired strain 

gages at the middle of the stiffened flange are shown in Fig. 3.52. For 

the purpose of comparison, Figures 3.53 through 3.55 present three typ­

ical load-displacement curves for the specimens having the same wit ratio 

but tested under different strain rates. 

5. Stub Column Tests for Unstiffened Elements 

a. Specimens. In this study, eighteen (18) I-shaped stub-column 

specimens have been tested for the study of local buck ling and post­

buckling strength of unstiffened elements of the 35XF steel material using 

different strain rates. The strain rates used for the tests ranged from 

10-5 to 0.1 in./in./sec. Figure 3.56 shows the cross section of an 1-

shaped stub column. Table 3.48 gives the average cross-sectional dimen­

sions of stub-column specimens and the failure loads. For the unstiffened 



Figure 3.50 Typical Failure of Channel Beams with Unstiffened Flanges 
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Table 3.48 

Dimensions of Stub Columns with Unstiffened Flanges 

Fabricated from 35XF Sheet Steel 

Specimen BC D wit Gros~ Area L P u 

(in. ) (in. ) (in. 2) (in. ) (kips) 

2A1A 1.000 2.000 8.93- 0.6220 7.90 25.26 
2A1B 1.010 2.018 9.04 0.6285 7.97 25.35 
2A2A 1.000 2.040 8.93 0.6288 7.95 26.04 
2A2B 1.015 2°.002 9.10 0.6275 7.94 27.70 
2A3A 1.000 2.040 8.93 0.6288 7.98 31. 41 
2A3B 1.003 "2.014 8.96 0.6254 7.94 29.41 

2B1A 1. 375 3.025 13.34 0.9238 9.95 34.20 
2BIB 1. 381 2.981 13.41 0.9184 9.97 34.20 
2B2A 1.330 2.987 13.40 0.9190 9.96 36.30 
2B2B 1. 378 3.007 13.37 0.9217 9.94 37.52 
2B3A 1. 375 3.020 13.34 0.9229 10.01 41.67 
2B3B 1.382 3.006 13.42 0.9229 9.99 42.70 

2COA 2.000 3.000 20.69 1. 1320 14.00 36.30 
2C1A 2.014 2.976 20.85 1.1327 14.00 37.23 
2C1B 2.006 3.018 20.76 1. 1371 13.94 37.66 
2C2A 2.024 2.967 20.97 1. 1346 14.09 41. 28 
2C2B 2.010 3.015 20.81 1.1380 13.95 41. 52 
2C3A 2.020 2.970 20.93 1.1337 14.06 47.92 
2C3B 2.015 2.977 20.87 1.1332 13.91 46.16 
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flanges studied in this program, the range of wit ratios was from 8.9 to 

20.7. 

The stub-column specimens were fabricated by bonding two identical 

channels back to back. Surfaces to be joined were paper sanded and cleaned 

with methyl alcohol and bonded by a thin layer of PC-7 epoxy. The webs 

of the channels. were held together by C-clamps after glue was placed on 

the web. Thin wires with 0.002 in. dia. were placed between the specimen 

webs to maintain uniform epoxy thickness. C-clamps were released after 

24 hours. Great care was taken when the stub-columns were fabricated. 

Prior to testing, the ends of stub-column specimens were milled flat and 

parallel. 

The lengths of stub-column specimens are also given in Table 3.48. 

In order to prevent overall column buckling, the length of eacn stub 

column is longer than three times the largest dimension of the cross 

section of the specimen and less than 20 times the least radius of gy­

ration as recommended in Ref. 116. This criterion was also adopted in Part 

VII (Test Pro~edure) of the 1986 AISI Design Manual. The dimensions of 

the webs of all stub column specimens were chosen to be fully effective. 

b. Strain Measurements. Fourteen foil strain gages were used to 

measure strains at the midheight of the stub-column specimens. The lo­

cations of strain gages are showi in Fig. 3.57. The paired strain gages 

placed along the tips of compression flanges were used to determine the 

critical buckling load of stub columns. The buckling load of the specimen 

was determined from the modified strain reversal method. Strain gages 

(No.3, 4, 9, and 10) were placed at the supported edges of the com­

pression flanges to measure maximum edge strains at each load level for 
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calculating the maximum edge stress in the unstiffened flanges. Paired 

strain gages (No. 13 and 14) were placed along the centerline of the web 

to monitor any premature failure of the web. All strain gages were used 

to align the stub-column specimen. 

c. Instrumentation and Test Procedure. Equipment and test proce­

dures used in this phase were the same as those used in the stub column 

tests for stiffened elements described in Section IILC.3.c. The test 

setup for stub-column specimens with unstiffened elements is shown in Fig. 

3.58. The strain rates used in the tests ranged from 10- 5 to 0.1 

in./in./sec. and the corresponding test times ranged from 3600 to 0.2 sec. 

d. Test Results. 

During the test, no bonding failure was observed prior to the at­

tainment of the maximum load. The failure mode of stub-column specimens 

with unstiffened elements varied with the width-to-thickness ratio of the 

unstiffened compression flanges. The unstiffened flanges with large wit 

ratios showed large waving deformations, whereas the unstiffened com­

pression flanges with small wit ratios showed no noticeable waving until 

failure. A typical failure mode of stub-column specimens with unstiffened 

compression flanges is shown in Fig. 3.59. A typical strain-time curve 

for a high strain-rate test is presented in Fig. 3.60. It was observed 

during the I-shaped stub column tests that the webs of the test specimens 

showed no sign of buckling before the load reached the ultimate value. 

Typical stress-strain curves for the paired straln gages at the tip of 

the unstiffened flange are shown in Fig. 3.61. For the purpose of com-

parison, Figures 3.62 through 3.64 present three typical load-
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Figure 3.59 Typical Failure of Stub Columns with Unstiffened Flanges 
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displacement curves for the specimens having the same wit ratio but tested 

under different strain rates. 
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IV. EVALUATION OF EXPERIMENTAL DATA 

A. GENERAL 

The material test results presented earlier in Section III. Bare 

discussed in Section IV.B of this chapter with an emphasis on the effects 

of strain rate on the mechanical properties of sheet steels. The materials 

used in the coupon experimental program included virgin steels for tensile 

and compressive tests and steels with different amounts of cold stretching 

for tens ile tests only. They were tested in both longitudinal and 

transverse directions under different strain rates. The strain rates 

varied from 0.0001 to 1.0 in./in./sec. The mechanical properties of 35XF 

sheet steel developed from material tests are used later in the evaluation 

of structural member test data. 

Sections IV.C.1 through IV.C.4 of this chapter evaluate the 

experimental results of beams and stub columns fabricated from 35XF sheet 

steels and tested under different strain rates. The strain rates varied 

from 0.00001 to 0.1 in./in./sec. These sections compare the test results 

and the failure loads predicted by the current AISI Automotive Steel 

22 
Design Manual for structural members tested in this study. Also 

discussed in these sections is the effect of strain rate on the structural 

strengths of test specimens. Comparison between tested and predicted 

midspan deflections for beam tests is presented in Section IV.C.S. 
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B. EVALUATION OF MATERIAL TEST DATA 

1. Mechanical Properties. The test results indicate that all 

mechanical properties are affected by the strain rate and the amount of 

cold stretching. Tables 4.1 and 4.2 compare the dynamic mechanical 

properties determined at the strain rate of 1.0 in./in./sec. and the 

static properties determined at the strain rate of 0.0001 in./in./sec. 

The effects of strain rate on proportional limit, yield stress, and 

tensile strength are discussed in the following sections. 

a. Proportional Limit F . The proportional limits are obtained for pr 

compression tests only. The proportional limits for tensile tests could 

not be· obtained accurately because of limited number of data poin.ts 

recorded by the MTS extensometer in the linear range of the tens i Ie 

stress-strain curves. The proportional limits of sheet steels tested in 

compression increased with the strain rate. The percentage increases in 

proportional limits for the three materials studied in compression are: 

9% to 24% for 100XF steel, 4% to 22% for SOXF steel, and 14% to 24% for 

3SXF, steel when the strain rate increased from 0.0001 to 0.01 in./in./sec. 

to 1.0 in./in./sec. 

b. Yield Strength or Yield Point. F . In Tables 4.1 and 4.2, the 
y 

dynamic yield strength, (F )d' and the static yield strength, (F ) , are 
y y s 

compared by using a ratio of (F )d/(F ) . In the above expressions, y y s 

(Fy)d is the yield strength determined for the strain rate' of 1.0 

in./in./sec. while (Fy)s is the yield strength determined for the strain 

rate of 0.0001 in./in./sec. It can be seen that for all cases, the yield 

strength of sheet steel increases with the strain rate. The increases in 



Table 4.1 

Ratios of Dynamic to Static Mechanical Properties for 
Three Sheet Steels Based on Tables 3.20 to 3.25 
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Type of (FY)d/(Fy)s (Fu)d/(Fu)s (Elong·)d/(Elong·)s 
Sheet Steel 

100XF-LT-Virgin 1. 04 1.04 
100XF-TT-Virgin 1.04 1.04 

50XF-LT-Virgin 1.10 1. 08 
50XF-LT-2%, Non-Aged 1.11 1.10 
50XF-LT-8%, Non-Aged 1. 08 1.10 
50XF-LT-2%, Aged 1.07 1. 08 
50XF-LT-8%, Aged 1.04 1.07 

SOXF-TT-Virgin 1.10 1. 09 
50XF-TT-2%, Non-Aged 1.15 1.09 
50XF-TT-8%, Non-Aged 1. 06 1.08 
50XF-TT-2%, Aged 1. 07 1.11 
50XF-TT-8%, Aged 1.05 1.09 

35XF-LT-Virgin 1.29 1. 15 
35XF-LT-2%, Non-Aged 1. 20 1.15 
35XF-LT-8%, Non-Aged 1.14 1.16 
35XF-LT-2%, Aged 1.19 1.14 
35XF-LT-8%, Aged 1.16 1.18 

35XF-TT-Virgin 1. 29 1.13 
35XF-TT-2%, Non-Aged 1. 22 1. 17 
35XF-TT-8%, Non-Aged 1.15 1.18 
35XF-TT-2%, Aged 1.15 1.14 
35XF-TT-8%, Aged 1.12 ~.17 

Notes 

dynamic yield stress for the strain 
rate of 1.0 in.jin./sec. 

= static yield stress for the strain 
rate of 0.0001 in./in./sec. 

dynamic ultimate stress for the strain 
rate of 1.0 in./in./sec. 

static ultimate stress for the strain 
rate of 0.0001 in./in./sec. 

1.3 

0.8 
1.0 
0.85 
0.99 

1.04 
1. 06 
0.85 
0.80 
0.92 

1. 05 
1.04 
1.18 
1.14 
0.96 

0.98 
1.04 
1. 08 
1. 09 
1. 05 



Table 4.2 

Ratios of Dynamic to Static Compressive Yield Stresses 

for Three Sheet Steels Based on Tables 3.32 to 3.36 

Notes 

Type of 
Sheet Steel 

100XF-LC 
100XF-TC 

50XF,-LC 
50XF-TC 

35XF-LC 
35XF-TC 

1. 07 
1. 07 

1.10 
1. 09 

1.24 
1. 33 

= dynamic yield stress for the strain 
rate of 1.0 in./in./sec. 

= static yield stress for the strain 
rate of 0.0001 in./in./sec. 

235 
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yield strength for the three steels stu~ied in tension are: 4% for 100XF 

steel, 4% to 15% for 50XF steel, and 12% to 29% for 35XF steel, while the 

percentage increases in yield strength for the three steels studied in 

compression are: 7% for 100XF steel, 9% to 10% for SOXF steel, and 24% 

to 33% for 3SXF steel when the strain rate increased from 0.0001 to 1.0 

in./in./sec. It is observed from these tables that the increases in 

yield strength for the virgin materials are independent of the test 

direction (Longitudinal or Transverse). However, for 3SXF steel tested 

in compresstion the increase in yield stress in the transverse direction 

is larger than that in the longitudinal direction. It is also noted that 

the percentage increase in proportional limit obtained from compression 

testes are larger than the percentage increase in yield stress when the 

strain rate increased from 0.0001 in./in./sec. to 1.0 in./in./sec. The 

effect of the strain rate on yield strength decreases as the static yield 

120 
stress and/or the amount of cold stretching increases. Previous study 

indicated that the increase in yield strength due to cold work is caused 

mainly by strain hardening and strain aging. However, in the present 

investigation no significant increase in yield strength was observed due 

to the strain aging effect. It was also observed that strain aging has 

little or no effect on the type of stress-strain curve. 

c. Ultimate Tensile Strength, F . Similar to the effect of strain 
u 

rate on yield strength, the ultimate tensile strengths of sheet steels 

increased with the strain rate. The increases in ultimate tensile 

strengths for the three materials studied in tension are: 4% for 100XF 

steel, 7% to 11% for 50XF steel, and 13% to 18% for 35XF steel when the 

strain rate increased from 0.0001 to 1.0 . /. / ~n. ~n. sec. As mentioned in 
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Chapter III, the ultimate compressive strengths could not be obtained 

because the buckling of the unsupported lengths at each end of the 

compressive specimen limited the obtainble range of the stress-strain 

curves to approximately 1.B percent. It is noted from Table 4.1 that the 

amounts of increase in ultimate tensile strength due to the increase 

in strain rate are approximately the same for both longitudinal tension 

and transverse tension. 

2. Strain Rate Sensitivity. In the literature review, Equation 2.13 

gives the relation between the stress and the strain rate at a given 

strain as follows: 

° = C e·
m (4.1) 

By applying Equation 4.1 to two different strain-rates and eliminating C 

we have: 

m = In( °2 / °1 ) / In( e' 2 / e 1 ) (4.2) 

for two given values of the flow stress of a material at two different 

strain rates. The strain-rate sensitivity exponent m may be calculated 

by using Equation 4.2. 

Tables 4.3 and 4.4 list the values ?f the strain-rate sensitivities, 

which were calculated on the basis of Equation 4.2. The value of m1 was 

calculated for the yield strengths corresponding to the strain rates of 

0.0001 in./in./sec. and 0.01 in./in./sec., while the value of m2 was 

calculated for the yield strengths corresponding to the strain rates of 

0.01 in./in./sec. and 1.0 in./in./sec. In Table 4.3 whenever only two 

strain rates were used in the tests, the value of m3 was calculated for 

the yield strengths corresponding to the strain rates of 0.0001 



Table 4.3 

Values of Strain Rate Sensitivities m for Three Sheet 
Steels Based on the Changes of the Yield Stresses at 
Different Strain Rates, (Tensile Coupon Tests) 

Type of 
Sheet Steel 

100XF-LT-Virgin 
100XF-TT-Virgin 

50XF-LT-Virgin 
50XF-LT-2%, Non-Aged 
50XF-LT-8%, Non-Aged 
50XF-LT-2%, Aged 
50XF-LT-8%, Aged 

50XF-TT-Virgin 
50XF-TT-2%, Non-Aged 
50XF-TT-8%, Non-Aged 
50XF-TT-2%, Aged 
50XF-TT-8%, Aged 

35XF-LT-Virgin 
35XF-LT-2%, Non-Aged 
35XF-LT-8%, Non-Aged 
35XF-LT-2%, Aged 
35XF-LT-8%, Aged 

35XF-TT-Virgin 
35XF-TT-2%, Non-Aged 
35XF-TT-8%, Non-Aged 
35XF-TT-2%, Aged 
35XF-TT-8%, Aged 

Notes: 

m1 = strain rate sensitivity 
between strain rates of 

m2 = strain rate sensitivity 
between strain rates of 

m3 = strain rate sensitivity 
between strain rates of 

0.003 0.005 
0.003 0.006 

0.009 0.013 
0.009 0.014 
0.009 0.009 
0.005 0.009 
0.000 0.008 

0.011 0.009 

0.022 0.033 
0.015 0.023 
0.013 0.016 
0.008 0.029 
0.014 0.018 

0.018 0.037 

based on the changes of yield 
0.0001 and 0.01 in./in./sec. 

based on the changes of yield 
0.01 and 1.0 in. / in. /sec. 

based on the changes of yield 
0.0001 and 1.0 in. / in. isec. 

0.004 
0.004 

0.011 
0.011 
0.009 
0.007 
0.004 

0.010 
0.016 
0.006 
0.008 
0.005 

0.027 
0.019 
0.014 
0.019 
0.016 

0.028 
0.021 
0.015 
0.016 
0.013 

stress 

stress 

stress 
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Table 4.4 

Values of Strain Rate Sensitivities m for Three Sheet 

Steels Based on the Changes of the Yield Stresses at 

Different Strain Rates, (Compressive Coupon Tests) 

Type of m1 m2 Sheet Steel 

100XF-LC 0.008 0.007 
100XF-TC 0.004 0.009 

50XF-LC 0.012 0.009 
50XF-TC 0.010 0.008 

35XF-LC 0.015 0.031 
35XF-TC 0.025 0.037 

Notes: 

m = 1 

m = 2 

strain rate sensitivity based on the changes of yield stress 
between strain rates of 0.0001 in./in./sec. 
and 0.01 in./in./sec. 

strain rate sensitivity based on the changes of yield stress 
between strain rates of 0.01 in./in./sec. 
and 1.0 in./in./sec. 
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. /. / and 1.0 ;n./in./sec. From Tables 4.3 and 4.4, it can be ~n. l.n. sec. ... 

seen that, in general, the value of m in tension and compression increases 

as the strain rate increases. The strain rate sensitivity decreases 

progressively as the static yield strength level increases. For tension 

tests with different amounts of cold-stretching, the strain-rate 

sensitivity decreases as the amount of cold stretching increases. 

3. Prediction of Yield ,Strength for High Strain Rates. Figures 4.1 

through 4.6 copmare the average val~es of tensile and compressive yield 

strengths for the three materials (35XF, 50XF, and 100XF) in the virgin 

condition and tested in the longitudinal direction under different strain 

rates. The data plotted in these figures are in terms of yield stress 

vs. logarithmic strain rate. For each case, the following second degree 

polynomial was developed using the Least Square Method in the strain-rate 

range of 0.0001 to 1.0 in./in./sec. 

Y = A + B X + C X2 (4.3) 

where 

Y = yield stress 

X ='log(e') 

A, B, and C = polynomial constants. 

The polynomial parameters A, B, and C are given at the top of the 

curve for each case in Figures 4.1 through 4.6. The values of the tensile 

and compressive yield strengths of the steels used in this investigation 

at higher strain rate (larger than 1.0 and up to 1000 in./in./sec.) could 
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be extrapolated by using the equation or the curve for each individual 

case. 

In Ref. 24 the polynomial constants A, B, and C are given for other 

cases such as: ultimate tensile strengths, yield and tensile ultimate 

strengths of the three materials tested in the transverse direction, and 

yield and ultimate strengths of the three materials tested with different 

amounts of cold stretching. 

C. EVALUATION OF STRUCTURAL MEMBER EXPERIMENTAL DATA 

1. Beam Tests for the Study of Stiffened Elements. Hat sections 

have been designed and fabricated for beam tests to study the 

post-buckling strengths of stiff.ened compression elements using 35XF 

sheet steels. All beam specimens were subjected to two point loads 

located at L/8 from end supports as shown in Figs. 3.30 and 3.31. Lateral 

torsional buckling of beam specimens was not critical according to the 

design of specimens. The webs of hat-section beams were designed to be 

fully effective. The weight of the test specimen and the weight of the 

cross beam placed on the top of the specimen (approx. 70 lbs.) are small 

as compared to the ultimate loads and were neglected in the evaluation 

of test results. The tested tensile yield stress was used for computing 

Yield moment (M ) and ultimate moment eM ) for all beam specimens studied 
y u. 

in this investigation. 

a. Critical Local Buckling Strength. The compression flange of beam 

specimens may buckle locally in either the elastic or the inelastic range, 
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depending on the wit ratio' of the flange. The elastic critical local 

buckling stress of the stiffened flange subjected to uniform compression 

can be computed by using Eq. (2.25). 

2 = __ ....!:k:::;1r--=.E __ 

12(1 - ,u
2)(w/t)2 

( 2.25 ) 

where 

k = buckling coefficient 

E = modulus of elasticity 

w = width of plate 

t = thickness of plate 

J.! = Poisson 
, 

ratio. s 

If the local critical buckling stress exceeds the proportional limit, the 

stiffened flange buckles in the inelastic range. The inelastic buckling 

stress, (f )1' can be computed by using the following equation, which cr 
121 is based on the tangent modulus concept 

where 

F = yield stress of steel 
y 

F = proportional limit of steel pr 

( 4.4) 

(fcr)E = elastic local critical buckling stress defined in Eq. (2.25) 
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Therefore, the computed critical local buckling moment, (M ) cr comp' 

of a beam corresponding to the initiation of local buckling of its 

compression flange can be calculated as follows: 

= (4.5 ) 

where 

fcr = critical local buckling stress of the compression flange 

S = elastic section modulus of the full cross section 
xc 

relative to the compression flange. 

The predicted and tested critical local buckling moments of beam 

specimens are listed in columns (5) and (6) of Table 4.5, respectively. 

The predicted critical buckling moments were computed by using Eq. (4.5). 

The tested critical local buckling moments were determined from the 

product of bending arm (L/8) and one half of the tested critical local 

buckling load (P /2) as follows: 
cr 

= 
Pcr L 

16 
( 4.6 ) 

In the above equation, the tested critical local buckling loads (P ) were cr 

determined from load-strain. diagrams by using a modified strain reversal 

. method as discussed in Ref. 119. L is the span length of the beam 

specimen. The values of Sxe' fer,' Per' and L are also given in Table 4.5. 



250 

Table 4.5 

Comparison of Computed and Tested Critical Buckling Moments 
Beam Specimens with a Stiffened Flange (Based on k=4.0) 

(35XF Sheet Steel) 

Specimen S f (Pcr)test L (M ) (Mcr\est ~ xc cr cr comp 
(5) 

(in. 3) (ksi) (kips) (in. ) (in.-kips) (in.-kips) 

(1) (2) (3) (4) (5) (6) (7) 

3AOA 0.342 28.12 N/A 43.00 9.62 N/A N/A 

3A1A 0.335 28.02 N/A 43.00 9.39 N/A N/A 

3A1B 0.338 28.04 N/A 43.00 9.48 N/A N/A 

3A2A 0.343 30.22 N/A 43.00 10.36 N/A N/A 

3A2B 0.338 30.09 N/A 43.00 10.17 N/A N/A 

3BOA 1.011 23.55 5.833 73.00 23.81 26.61 1.117 
3B1A 1.010 23.73 6.214 73.00 23.97 28.35 1.183 
3B1B 1.005 23.55 5.774 73.00 23.67 26.34 1.113 
3B2A 1.003 25.66 6.106 73.00 25.74 27.86 1. 082 
3B2B 1. 009 -25.63 N/A 73.00 25.86 N/A N/A 

3COA 1. 615 18.38 5.042 91.00 29.68 28.68 0.966 
3C1A 1.635 18.16 5.291 91.00 29.69 30.10 1. 014 
3CIB 1.638 18.19 5.217 91.00 29.79 29.67 0.996 
3C2A 1.626 18.17 5.823 91.00 29.54 33.12 1.121 
3C2B 1.624 18.45 5.760 91.00 29.96 32.76 1.093 

Mean 1. 076 

Standard Deviation 0.066 
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The load versus strain diagrams of the hat sections with small wit 

ratios (3A Sections) showed no sign of critical local buckling. As 

presented in Table 4.5, most of the tested critical local buckling moments 

were greater than the predicted values. This is because a minimum value 

of 4.0 was used as the buckling coefficient for stiffened compress ion 

flanges ignoring any effect of rotational edge restraint provided by the 

adjoining webs. The mean value of nine (M )t t/(M) ratios is cr es cr comp 

equal to 1.076 with a standard deviation of 0.066. The tested critical 

local buckling loads of the hat sections with relatively large wit ratios 

(3C Sections) increased with increasing strain rate. 

It was observed from 3C beam specimens that the number of half sine 

waves in the stiffened compression flange is the same for all tests 

regardless of the strain rate used for the test. 

b. Ultimate Flexural Strength. The ultimate section strength can 

be calculated either on the basis of initiation of yielding in the 

effective section or on the basis of the inelastic reserve capacity. 

i) Yield Flexural Strength. Based on the initiation of yielding in 

the effective section, the computed yield moment, eM ) , of a beam can y comp 

be calculated by using the following equation: 

= ( 4.7 ) 

where 

= static or dynamic yield stress of steel 

= elastic section modulus of the effective section 
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calculated with the extreme compression or tension 

stress at F . 
Y 

Tables 4. 6(a) and 4. 6(b) compare the computed and tested yield 

moments. Table 4.6(a) uses static yield stress for all tests, while Table 

4.6(b) uses static or dynamic yield stress taking into account the effect 

of strain rate on yield stress value as discussed in Refs. 23. and 24. 

In these tables, the computed yield moment (M ) is listed in column y comp 

(5) for each specimen. These yield moments were calculated by using Eq. 

(4.4) with effective section moduli (S ) computed from the AISI effective 
e 

width formula. The yield stress value is listed in column (2). Note that 

this value is a constant in Table 4.6(a), but it increases with strain 

rate in Table 4.6(b). The tested yield moments listed in column (6) were 

determined from the product of bending arm (L/8) and one half.of the yield 

loads (P ) determined from load-strain diagrams as follows: 
y 

= (4.8 ) 

The tested yield load and the effective section modulus computed for the 

extreme compression or tension stress at F are also given in Tables 
y 

4.6(a) and 4.6(b). As presented in these tables, all tested yield moments 

were greater than the predicted values. As expected, the ratios of tested 

to computed yield moments listed in Table 4. 6( a) are larger than those 

listed in Table 4.6(b), because the latter table takes into account the 

effect of strain rate on yield stress. In both tables the ratio of tested 

to computed yield moments increases with strain rate for most of the 
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Table 4.6(a) 

Comparison of Computed and Tested Yield Moments 
Beam Specimens with a Stiffened Flange 

(35XF Sheet Steel) 
(Based on Static Yield Stress) 

Specimen S F (Py\est L (M ) (My)test (6) e y y comp --
(in. 3) 

(5) 
(ksi) (kips) (in. ) (in. -kips) (in. -kips) 

(1) (2) (3) (4) (5) (6) (7) 

3AOA .268 32.02 3.773 43.00 8.58 10.14 1.182 
3AIA .258 32.02 3.936 43.00 8.25 10.58 1.282 
3AIB .262 32.02 4.137 43.00 8.39 11. 12 1.325 
3A2A .271 32.02 4.799 43.00 8.68 12.90 1.486 
3A2B .260 32.02 4.844 43.00 8.32 13.02 1. 565 

3BOA .635 32.02 5.824 73.00 20.32 26.57 1. 307 
3BIA .646 32.02 4.894 73.00 20.69 22.33 1. 079 
3BIB .629 32.02 5.668 73.00 20.15 25.86 1. 283 
3B2A .626 32.02 6.511 73.00 20.04 29.71 1. 482 
3B2B .632 32.02 7.130 73.00 20.23 32.53 1.608 

3COA .924 32.02 6.038 91.00 29.58 34.34 1. 161 
3CIA .930 32.02 6.825 91.00 29.79 38.82 1. 303 
3CIB .932 32.02 6.112 91.00 29.86 34.76 1. 164 

'3C2A .925 32.02 6.873 91.00 29.61 39.09 1.320 
3C2B .930 32.02 6.684 91.00 29.78 38.01 1. 276 

Mean 1. 321 

Standard Deviation 0.148 
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Table 4.6(b) 

Comparison of Computed and Tested Yield Moments 
Beam Specimens with a Stiffened Flange 

(35XF Sheet Steel) 
(Based on Dynamic Yield Stress) 

Specimen S F (Py\est L (M ) (My)test (6) 
e y Y comp 

(5) 

(in. 3 ) (ksi) (kips) (in. ) (in. -kips) (in. -kips) 

(1) (2) (3) (4) (5) (6) (7) 

3AOA .268 32.02 3.773 43.00 8.58 10.14 1. 182 

3A1A .258 32.87 3.936 43.00 8.46 10.58 1.251 
3A1B .262 32.87 4.137 43.00 8.62 11. 12 1. 290 
3A2A .271 36.40 4.799 43.00 9.87 12.90 1.307 
3A2B .260 36.40 4.844 43.00 9.45 13.02 1. 378 

3BOA .635 32.02 5.824 73.00 20.32 26.57 1. 307 
3BIA .645 32.87 4.894 73.00 21.21 22.33 1. 053 
3B1B .629 32.87 5.668 73.00 20.66 25.86 1. 252 
3B2A .623 36.40 6.511 73.00 22.66 29.71 1.311 
3B2B .628 36.40 7.130 73.00 22.87 32.53 1.422 

3COA .924 32.02 6.038 91.00 29.58 34.34 1. 161 
3CIA .929 32.87 6.825 91.00 30.53 38.82 1. 271 
3C1B .931 32.87 6.112 91.00 30.61 34.76 1. 135 
3C2A .917 36·.40 6.873 91.00 34.33 39.09 1.139 
3C2B .922 36.40 6.684 91.00 34.52 38.01 1. 101 

Mean 1. 237 

Standard Deviation 0.102 



255 

cases. As shown in Table 4.6(a), the average value of (M) I(M) 
y test y comp 

ratios is equal to 1.321 with a standard deviation of 0.148, while in 

Table 4.6(b) the mean value of (M) I(M) ratios is equal to 1.237 y test y comp 

with a standard deviation of 0.102. 

ii) Inelastic Reserve Capacity. The inelastic reserve capacity of 

flexural members, which allows partial yielding of a cross section, is 

recognized in the 1986 AISI Automotive Design Manual. It can be used to 

predict the ultimate load capacities of flexural members provided that 

such members satisfy the specific requirements. 

The ultimate strengths of hat sections or track sections with yielded 

tension flanges may be calculated on the basis of inelastic reserve 

capacity. Figure 4.7 shows the str.ess distribution in sections with 

yielded tension flanges at ultimate moment. The following equations can 

be used to compute the values of Yc' Yt' yp' and Ytp shown in Fig. 4.1 

and the ultimate moment, Mu. For the purpose of simplicity, midline 

dimensions were used in the calculations.
26 

Yc 
yP=C 

y 

Ycp = Yc - Yp 

( 4.9 ) 

( 4.10 ) 

( 4. 11 ) 

( 4.12 ) 
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Fig. 4.7 Stress Distribution in Sections with Yielded 

Tension Flanges at Ultimate Moments 26 



where 

where 

b c = effective width of the compression flange 

bt = total width of the tension flange 

d = depth of the section 

t = thickness of the section 

C = compression strain factor for stiffened compression 
y 
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(4.13 I 

( 4.14 ) 

elements without intermediate stiffeners, which can be 

determined as follows: 

( 4. 15(b) ) 

for wIt ~ ).2 ( 4. 15(e) ) 

( 4.16 ) 
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. 1.2B 
).2 = 

.JFy/E 

( 4.17 ) 

According to the AISI Automotive Design Manual, the ultimate moments 

computed by using the inelastic reserve capacity procedure should not 

exceed the limit of: 

= ( 4.18 ) 

Tables 4.7(a) and 4.7(b) present the predicted and tested ultimate 

moments. Similar to Tables 4.6(a) and 4.6(b), Table 4.7(a) uses static 

yield stress while Table 4.7(b) uses static or dynamic yield stresS 

corresponding to the strain-rate value used in the test. It was found 

that the computed ultimate moments using Eq. (4.14) for all hat-beam tests 

exceed the values computed by Eq. (4.1B) and listed in column (5) of 

Tables 4.7(a) and 4.7(b). The tested ultimate moments were determined 

by the product of bending arm (L/B) and one half of the ultimate load 

(P )/2 as follows: 
u 

I 4.19 ) 



Table 4.7(a) 

Comparison of Computed and Tested Failure Moments Based on the 
Effective Width Formulas in the 1986 AISI Automotive Steel 
Design Manual for Beam Specimens with a Stiffened Flange 

(35XF Sheet Steel) 
(Based on Static Yield Stress) 
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Specimen Strain Rate F (Pu)test L (M ) (M ) (6) 
Y u comp u test 

(5) 
(in. / in. / sec. ) (ksi) (kips) (in. ) (in.-kips) (in. -kips) 

(1) ( 2) (3) (4) (5) (6) (7) 

3AOA 0.00001 32.02 5.69 43.00 10.73 15.29 1.425 
3A1A 0.0001 32.02 5.43 43.00 10.33 14.59 1. 412 
3A1B 0.0001 32.02 5.72 43.00 10.49 15.37 1.4bS 
3A2A 0.01 32.02 6.31 43.00 10.85 16.96 1. 563 
3A2B 0.01 32.02 6.39 43.00 10.41 17. 17 1. 649 

3BOA O.OOOO!. 32.02 6.38 73.00 25.41 29.11 1.146 
3B1A 0.0001 32.02 6.54 73.00 25.86 29.84 1.154 
3B1B 0.0001 32.02 6.49 73.00 25.17 29.61 1. 037 
3B2A 0.01 32.02 6.97 73.00 25.05 31.80 1. 176 
3B2B 0.01 32.02 7.63 73.00 25.29 34.81 1.376 

3COA 0.00001 32.02 6.53 91. 00 36.98 37.14 1. 004 

3C1A 0.0001 32.02 6.99 91.00 37.22 39.75 1. 068 

3C1B 0.0001 32.02 6.96 91.00 37.30 39.58 1. 061 

3C2A 0.01 32.02 7.45 91.00 37.02 42.37 1.144 

3C2B 0.01 32.02 7.42 91.00 37.22 42.20 1.134 

Mean 1.254 

Standard Deviation 0.200 
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Table 4.7(b) 

Comparison of Computed and Tested Failure Moments Based on the 
Effective Width Formulas in the 1986 AISI Automotive Steel 

Design Manual for Beam Specimens with a Stiffened Flange 
(j5XF Sheet Steel) 

(Based on Dynamic Yield Stress) 

Specimen Strain Rate F (Pu\est L (M ) (Mu)test (6) 
y u comp 

(5) 

(in . / in ./ s ec . ) (ksi) (kips) (in. ) (in.-kips) (in. -kips) 

(1) (2) (3) (4) (5) (6) (7) 

3AOA 0.00001 32.02 5.69 43.00 10.73 15.29 1.425 

3A1A 0.0001 32.87 5.43 43.00 10.57 14.59 1.380 

3A1B 0.0001 32.87 5.72 43.00 10.77 15.37 1. 427 

3A2A 0.01 36.40 6.31 43.00 12.34 16.96 1. 374 

3A2B 0.01 36.40 6.39 43.00 11. 81 17.17 1.454 

3BOA 0.00001 32.02 6.38 73.00 25.40 29.11 1. 146 

3B1A 0.0001 32.87 6.54 73.00 26.51 29.84 1.126 

3B1B 0.0001 32.87 6.49 73.00 25.82 29.61 1.147 

3B2A 0.01 36.40 6.97 73.00 28.32 31.80 1.123 

3B2B 0.01 36.40 7.63 73.00 28.59 34.81 1. 217 

3COA 0.00001 32.02 6.53 91.00 36.97 37.14 1.004 

3C1A 0.0001 32.87 6.99 91.00 38.16 39.75 1.042 

3C1B 0.0001 32.87 6.96 91.00 38.26 39.58 1.034 
3C2A 0.01 36.40 7.45 91.00 42.91 42.37 0.987 
3C2B 0.01 36.40 7.42 91.00 43.15 42.20 0.978 

Mean 1.191 

Standard Deviation 0.169 
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Ultimate loads were determined from the maximum loads reached during the 

tests and are listed in column (3). In both Tables 4.7(a) and 4.7(b), the 

tested ultimate moments of specimens were compared with the calculated 

ultimate moments. It is noted from column (7) of these tables that the 

ratio of the tested ultimate moment to the computed value decreases with 

increasing wit ratio. As shown in Table 4.7(a), the average value of 

(Mu)t t/(M) ratios is equal to 1.254 with a standard deviation of es u comp 

0.200, while in Table 4.6(b) the mean value of (M) I(M) ratios . u test u comp 

is equal to 1.191 with a standard deviation of 0.169. 

Figures 4.8 through 4.10 show graphica lly typical 

moment-displacement curves for 3B sections under different strain rates. 

The computed critical local buckling, yield, and ultimate moments are 

marked in these figures for comparison with the tested values and are 

obtained from Tables (4.5, 4. 6(b), and 4. 8(b», respective ly. I t is 

observed from these figures that the critical local buckling moments are 

greater than the yield moments because the stress in the compress ion 

flange at the initiation of yielding (Fig. 4.11(b» is less than the 

critical local buckling stress. The critical local buckling moments in 

these figures were calculated according to the stress distribution shown 

in Fig. 4.1l(c). 

Tables 4.8 and 4.9 were prepared to study the effect of strain rate 

on ultimate momemts of hat-beam specimens. Table 4.8 lists average 

ultimate moments. Each ultimate moment value listed in this table is the 

average of two similar tests except that for the test conducted at the 

strain rate of 0.00001 in./in./sec . for which only one test was performed 
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Strain Rate 

in . I in . Is e c . 

0.00001 
0.0001 

0.01 

Table 4.8 

Average Tested Ultimate Moments for Hat-Beam 
Specimens with a Stiffened Flange 

(35XF Sheet Steel) 

Ultimate Moment, (Mu)test' in.-kips 

29.62 

15.29 
14.98 
17.06 

wit 

56.09 

29.11 
29.72 
33.30 

Table 4.9 

76.08 

37.14 
39.66 
42.28 

Average Ulti.mate Moment Ratios for Hat-Beam 
Specimens Having Stiffened Flanges 

(35XF Sheet Steel) 

wit 

29.69 
56.09 
76.08 

Notes : 

1.02 
0.98 
0.94 

1.14 
1.12 
1.07 

(Mu)O= Average ultimate moment for the hat-beam specimens 
tested at the strain rate of 0.00001 in./in./sec. 

(Mu)1= Average ultimate moment for the hat-beam specimens 
tested at the strain rate of 0.0001 in./in./sec. 

(Mu )2= Average ultimate moment for the hat-beam specimens 
tested at the strain rate of 0.01 in./in./sec. 
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for each wit ratio. For the purpose of comparison, Table 4.9 lists the 

ratios of average ultimate moments obtained from Table 4.8. Each value 

listed in this table represents the ratio of two ultimate moments for 

tests having the same wit ratio but conducted at two different strain 

rates. It is noted from Tables 4.8 and 4.9 that the ultimate moment 

increases with strain rate for all wit ratios. The percentage increase 

of the ultimate moments for specimens having the same wit ratio is larger 

at higher strain rate as compared to this increase at lower strain rate 

for most of the cases. 

Figure 4.12 shows graphica 11y the effect of strain rate on the 

ultimate moments of the hat-beam specimens. The horizontal axis 

represents logarithmic strain rate while the vertical axis represents the 

ratio of dynamic to static ultimate moments. The tests performed at strain 

rate of 0.0001 in./in./sec. are considered to be the static loading 

condition. 

2. Stub Column Tests for the Study of Stiffened Elements. 

Box-shaped sections (Fig. 3.36) were designed and fabricated for stub 

column tests to study the post-buckling strengths of stiffened elements 

by using 35XF sheet steels. All stub columns were subjected to uniform 

compression. Overall column buckling is prevented by the design of stub 

columns. All webs of the stub columns were designed to be fully effective 

based on the 1986 AISI Automotive Design Manual. According to the same 

manual, all unstiffened elements are fully effective. The tested 

compressive yield stress was used for the evaluation of all stub column 

specimens studied in this investigation. 
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a. Critical Local Buckling Load. As discussed in Section IV.C.l.a, 

the critical local buckling stress, f , of a stiffened element can be cr 

computed by using Eq. (2.25) or Eq. (4.4), depending on the wit ratio of 

the stiffened element. Therefore, the critical local buckling loads of 

stub columns can be computed by using the following equation: 

where 

f = critical local buckling stress of stiffened element 
cr 

A = gross cross-sectional area of stub column. 
g 

( 4.20 ) 

The total ·cross-sectional areas of stub columns with stiffened 

elements are given in Table 3.46. The critical local buckling stress for 

each specimen, listed in column (1) of Table 4.10, is the average value 

of two critical local buckling stresses of stiffened compression flanges 

of stub columns. No signs of critical local buckling were observed from 

the load-strain diagrams of box-shaped stub columns with small and medium 

wit ratios CIA and lB sections). 

Table 4.10 compares the computed and tested critical local buckling 

loads for stub column specimens fabricated" from 3SXF sheet steels. The 

tested critical local" buckling loads listed in column (3) of Table 4.10 

were determined from load-strain diagrams by using a modified strain 

reversal method. The buckling coefficient used to calculate the buckling 

stress of stiffened elements in Eq. (4.4) was equal to 4.0. The mean value 

of (P) /(P) ratios is equal to 1.168 with a standard deviation 
cr test cr comp 
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Table 4.10 

Comparison of Computed and Tested Critical Buckling Loads 
Stub Columns with Stiffened Flanges (Based on k=4.0) 

(35XF Sheet Steel) 

Specimen f (Pcr)comp (Pcr)test (3) 
cr 

(ksi) (kips) (kips) (2) 

(1) (2) (3) (4) 

1A1A 28.35 34.19 N/A N/A 
1A1B 28.32 34.15 N/A N/A 
1A2A 30.30 36.39 N/A N/A 
1A2B 30.28 36.52 N/A N/A 
1A3A 32.16 38.62 N/A N/A 
IA3B 32.15 38.61 N/A N/A 

IB1A 26.79 41.46 N/A N/A 
1B1B 26.75 41.41 N/A N/A 
1B2A 28.55 44.00 N/A N/A 
lB2B 28.51 44.08 N/A N/A 
1B3A 30.22 46.73 N/A N/A 
1B3B 30.20 46.63 N/A N/A 

1C1A 24.25 46.72 50.56 1.082 
1C1B 24.20 46.66 50.90 1.091 
1C2A 25.83 49.60 58.09 1.171 
1C2B 25.63 49.51 55.94 1.130 
1C3A 26.88 51.99 66.15 1. 272 
1C3B 26.81 51.83 65.51 1.264 

Mean 1.168 

Standard Deviation 0.076 
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of 0.076. It is noted from column (4) of Table 4.10 that the ratio of 

tested to computed critical local buckling. load (P) I (P ) cr test cr comp 

increases with increasing strain rate for stub columns with relatively 

large wit ratios. 

b. Ultimate Axial Load. By using the effective width concept 

discussed in Section II.C.1.d, a stub column specimen fails when the 

maximum edge stresses in the stiffened element reaches the yield stress 

of steel. The ultimate load carrying capacities of stub columns can be 

calculated by using Eq. (4.21). 

where 

F = static or dynamic yield stress of steel 
y 

A = effective cross-sectional area of stub column for the 
e 

maximum edge stress at Fy . 

( 4.21) 

Equation (4.21) was used to calculate the failure loads of the 

specimens. In using Eq. (4.21), F values are listed in column (3) of 
y 

Tables 4.11(a) and 4.11(b). For the calculation of computed ultimate 

loads, Table 4.11(a) uses static yield stress, while Table 4.11Cb) uses 

static or dynamic yield stress, corresponding to the strain rate used in 

the test. The effective cross-sectional area of each stub column is 

listed in column (4) of Tables 4.11(a) and 4.11(b) by using the current 

AISI Automotive Design Manual and the appropriate yield stress. The 



272 

Table 4.11Ca) 

Comparison of Computed and Tested Failure Loads Based on the 

Effective Width Formulas in the 1986 AISI Automotive Steel 

Design Manual for Stub Columns with Stiffened Flanges 
(35XF Sheet Steel) 

(Based on Static Yield Stress) 

Spec. Strain Rate wit F A (P) comp (P)test (6) 
y e 

( in . I in . Is ec . ) (ksi) (in. 2 ) 
(5 ) 

(kips) (kips) 

(1) (2) (3) (4) (5) (6) (7) 

1A1A 0.0001 27.15 29.83 1. 2060 35.97 46.12 1. 28 

1A1B 0.0001 27.39 29.83 1. 2060 35.97 44.89 1. 25 

1A2A 0.01 26.92 29.83 1. 2010 35.82 50.02 1. 40 

1A2B 0.01 27.06 29.83 1. 2010 35.82 49.29 1. 38 

1A3A 0.10 27.31 29.83 1.2009 35.82 53.54 1. 49 

1A3B 0.10 27.40 29.83 1.2009 35.82 54.37 1. 52 

1B1A 0.0001 38.93 29.83 1.5477 46.17 49.19 1. 06 

1B1B 0.0001 39.17 29.83 1.5480 46.18 .. 53.54 1. 16 
1B2A 0.01 38·"86 29.83 1.5412 45.97 56.28 1. 22 
1B2B 0.01 39.10 29.83 1. 5463 46.13 57.01 1. 23 
1B3A 0.10 38.86 29.83 1.5.463 46.13 64.78 1. 40 
1B3B 0.10 38.96 29.83 1.5440 46.06 60.87 1. 32 

lelA 0.0001 52.69 29.83 1. 8135 54.10 56.76 1. 05 
1C1B 0.0001 52.96 29.83 1. 8122 54.06 56.52 1. 05 
1C2A 0.01 52.20 29.83 1. 8122 54.06 61. 02 1.13 
1C2B 0.01 53.06 29.83 1.8147 54.13 64.58 1. 19 
1C3A 0.10 53.15 29.83 1. 8164 54.18 73.96 1. 36 
1C3B 0.10 53.39 29.83 1. 8130 54.08 69.27 1. 28 

Mean 1.265 

Standard Deviation 0.139 
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Table 4.11(b) 

Comparison of Computed and Tested Failure Loads Based on the 
Effective Width Formulas in the 1986 AISI Automotive Steel 

Design Manual for Stub Columns with Stiffened Flanges 
(35XF Sheet Steel) 

(Based on Dynamic Yield Stress) 

Spec. Strain Rate wit F A (Pu)comp (Pu)test (6) y e 

(in. 2 ) 
(5) 

( in . / in . / s ec . ) (ksi) (kips) (kips) 

(1) (2) (3) (4) (5) (6) (7) 

lAlA 0.0001 27.15 29.83 1.2060 35.97 46.12 1. 28 
lAlB 0.0001 27.39 29.83 1. 2060 35.97 44.89 1. 25 
lA2A 0.01 26.92 31. 92 1. 2010 38.33 50.02 1. 30 
lA2B 0.01 27.06 31. 92 1. 20 10 38.35 49.29 1. 29 
lA3A 0.10 27.31 34.06 1.2009 40.90 53.54 1. 31 
lA3B 0.10 27.40 34.06 1. 2009 40.90 54.37 1. 33 

lBlA 0.0001 38.93 29.83 1.5477 46.17 49.19 1. 06 
1BlB 0.0001 39.17 29.83 1.5480 46.18 53.54 1. 16 
lB2A 0.01 38.86 31. 92 1. 5412 49.20 56.28 1. 14 
lB2B 0.01 39.10 31. 92 1. 5449 49.31 57.01 1. 16 
lB3A 0.10 38.86 34.06 1. 5372 52.36 64.78 1. 24 
lB3B 0.10 38.96 34.06 1.5340 52.25 60.87 1. 16 

lClA 0.0001 52.69 29.83 1.8135 54.10 56.76 1. 05 
lClB 0.0001 52.96 29.83 1.8122 54.06 56.52 1. 05 
lC2A. 0.01 52.20 31. 92 1.7977 57.38 61. 02 1. 06 
lC2B 0.01 53.06 31. 92 1.8000 57.46 64.58 1. 12 
lC3A 0.10 53.15 34.06 1.7875 60.88 73.96 1. 21 
1C3B 0.10 53.39 34.06 1. 7840 60.76 69.27 1. 14 

Mean 1.184 

Standard Deviation 0.093 
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computed failure loads of stub columns, (P ) ,are listed in column u comp 

(5) of Tables 4.11(a) and 4.11(b). The tested failure loads of 

stub-column specimens are listed in column (6) of Tables 4.11(a) and 

4.11(b). Comparisons of the computed and tested failure loads of stub 

columns are shown in column (7) of both tables. The mean values of 

( P) I(P) ratios and standard deviations are (1.265, 0.139) and u test u comp 

(1.184,0.093) for Tables 4.11(a) and 4.11(b), respectively. As expected, 

for specimens having the same wit ratio, the tested ultimate load 

increases with strain rate. The tested to computed ultimate load ratios 

in Table 4. l1(a) are higher than the corresponding values in Tab Ie 

4.11(b). Figures 4.13 through 4.15 show graphically typical 

load-displacement curves for 1B sections under different strain rates. 

The computed critical local buckling and ultimate loads are marked in 

these figures for comparison with the tested ones. 

Tables 4.12 and 4.13 were prepared to study the effect of strain rate 

on failure loads of box-shaped stub column specimens. Table 4.12 lists 

average failure loads obtained from Table 3.46. Each failure load value 

listed in this table is the average of two values obtained from similar 

tests. For the purpose of comparison, Table 4.13 shows the ratios of 

average failure loads obtained from the tests conducted at different 

strain rates. It is noted from Tables 4.12 and 4.13 that 1) the failure 

load increases with strain·rate and 2) th~ ratio of dynamic to static 

failure loads increases with increasing wit ratio. The percentage 

increase in failure loads is larger at higher strain rate as compared to 

the increase at lower strain rates. 
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Table 4.12 

Average Tested Failure Loads for Stub Column 
Specimens with Stiffened Flanges 

(35XF Sheet Steel) 

Strain Rate Failure Load, (Pu)test' kips 

in./in./sec. wit 

0.0001 
0.01 
0.1 

26.67 38.44 

45.50 51.36 
49.65 56.64 
53.95 62.82 

Table 4.13 

Ratios of Average Ultimate Loads for Stub 
Column Specimens Having Stiffened Flanges 

(35XF Sheet Steel) 

wit 

29.67 
38.44 
53.15 

1. 09 
1. 10 
1.11 

1.18 
1. 22 
1. 26 

Notes : 

53.15 

56.64 
62.80 
71.48 

(P ) = Average ultimate load for stub column specimens tested u 1 
at strain rate of 0.0001 in./in./sec. 

(Pu)2= Average ultimate load for stub column specimens tested 
at strain rate of 0.01 in./in./sec. 

CPu)3= Average ultimate load for stub column specimens tested 
at strain rate of 0.1 in./in./sec. 
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Figure 4.16 shows graphically the effect of strain rate on the 

failure loads 6f stub column spcimens. The horizontal axis represents 

logarithmic strain rate, while the vertical axis represents the ratio of 

dynamic to static failure loads. The static failure loads are 

corresponding to the tests performed at strain rate of 0.0001 in./in./sec. 

3. Beam Tests for the Study of Unstiffened Elements. As mentioned 

in Chapter III, channel beams having small wit ratios have been designed 

and fabricated to study the post-buckling strengths of unstiffened 

elements by using 35XF sheet steels. All the channel beams were subjected 

to two point loads at a distance of Lj8 from end support as shown in Figs. 

3.48 and 3.49. Lateral torsional buckling of channel beams was prevented 

by using lateral supports provided by aluminum angles connected to the 

compression flanges, as discussed in Chapter III. The webs of channel 

beam specimens were designed to be fully effective. The weight of the 

test specimen and the weight of the cross beam placed on the top of the 

specimen (approx. 70 lbs.) are small as compared to the ultimate loads 

and were neglected in the evaluation of test results. The tested tensile 

yield stress was used for computing yield moment 

specimens studied in this investigation. 

(M ) 
Y 

for all beam 

a. Critical Local Buckling Strength. The critical local buckling 

moments eM ) of channel beams can be computed by using Eq. (4.5). As 
cr 

discussed in Section IV.C.I.a, the critical local buckling stress (f ) cr 

can be computed by using Eq. (2.25) or Eq. (4.4), depending on the wit 

ratio of the compression flange. In this phase of study, a value of 0.43 
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was used as the buckling coefficient fot unstiffened flanges to calculate 

the critical local buckling stresses of compression flanges. 

The computed critical local buckling moments of channel beams, 

listed in column (5) of Table 4.14, were calculated by using Eq. (4.5). 

The critical buckling local stresses were computed by using Eq. (4.4) for 

all channel beam tests. The tested critical local buckling moments listed 

in column (6) of the same table were determined from the product of 

bending arm (L/8) and one half of the critical local buckling loads 

(P )12 as given in Eq. (4.6). The critical local buckling loads were 
cr 

determined from load-strain diagrams by using the modified strain 

reversal method. The span length of channel beams and other parameters 

(S , f , P ) fot each channel beam are given in Table 4.14. No local 
x cr cr 

buckling was observed from load-strain diagrams for channel beams with 

small and medium wit ratios. As shown in column (3) of Table 4.14, the 

tested critical local buckling load increases with strain rate. 

A comparison of the tested and predicted critical local buckling 

moments is given in Table 4.14. Note that all tested critical local 

buckling moments are greater than the computed critical local buckling 

moments. This is because a value of 0.43 was used as the buckling 

coefficient for unstiffened compression flanges ignoring any effect of 

rotational edge restraint provided by the adjoining webs. The mean value 

of ) / CM) ratios is equal to 1.405 with a standard deviation 
(Mcr test cr comp 

of 0.060. 



Specimen 

4AOA 
4A1A 
4A1B 
4A2A 
4A2B 

4BOA 
4B1A 
4BIB 
4B2A 
4B2B 

4COA 
4CIA 
4C1B 
4C2A 
4C2B 

Mean 
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Table 4.14 

Comparison of Computed and Tested Critical Buckling Moments 
Beam Specimens with Unstiffened Flanges (Based on k=0.43) 

(35XF Sheet Steel) 

S f (Pcr)test L (M) (M' ) (6) 
xc cr cr comp cr test 

t5) 
(in. 3) (ksi) (kips) (in. ) (in. -kips) (in. -kips) 

(1) (2) (3) (4) (5) (6) (7) 

0.384 28.22 N/A 37.00 10.84 N/A N/A 
0.377 28.26 N/A 37.00 10.65 N/A N/A 
0.382 28.26 N/A 37.00 10.79 N/A N/A 
0.380 30.15 N/A 37.00 11.46 N/A N/A 
0.377 30.23 N/A 37.00 11.40 N/A N/A 

0.719 25.55 N/A 43.00 18.37 N/A N/A 
0.717 25.53 N/A 43.00 18.30 N/A N/A 

. 0:717 25.66 N/A 43.00 18.40 N/A N/A 
0.717 27.22 N/A 4"3.00 19.52 N/A N/A 
0.717 Z7.14 N/A 43.00 19.46 N/A N/A 

1.153 21.64 8.22 65.00 24.95 33.39 1.338 
1.150 21. 60 8.15 65.00 24.84 33.11 1. 333 
1.148 21.64 8.63 65.00 24.84 35.06 1.411 
1.160 22.77 9.56 65.00 26.41 38.84 1.471 
1.153 22.82 9.52 65.00 26.31 38.67 1. 470 

1.405 

Standard Deviation 0.060 
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b. Ultimate Flexural Strength. For channel beams having equal 

flanges, the ultimate section strengths of such flexural members can be 

calculated on the basis of initiation of yielding of the compress ion 

flanges in the effective section. The ultimate section strengths of all 

channel beams can be calculated by using Eq. (4.7). 

As discussed earlier, the buckling coefficient of 0.43 was used in 

the 1986 AISI Automotive Design Manual to calculate the effective width 

of an unstiffened element. The computed ultimate moments of channel beams 

fabricated from 35XF sheet steels are given in Tables 4.15(a) and 4.15(b). 

The latter table uses static or dynamic yield stress depending on the 

strain rate used in the test, while the previous one uses static yield 

stress for all tests. The ultimate moments (M ) listed in column (5) u comp 

of both tables were calculated by using Eq. (4.7). Effective section 

modulus (S) was computed using the effective width formula for 
e 

unstiffened elements adopted in the current AISI Automotive Design Manual 

along with the appropriate yield stress value. The computed values of 

effective section modulus for all channel beam tests are listed in column 

(1) of both tables (4.15(a) and 4.15(b». The span lengths of channel 

beams are given in column (4) of these tables. The tested ultimate 

moments listed in column (6) of Tables 4.15(a) and 4.15(b) were 

determined from the product of the bending arms (L/8) and one half of the 

tested failure loads as given in Eq. (4.8). The tested failure load for 

each channel beam test was considered to be the maximum load the member 

can sustain during the test. The tested ultimate moments are compared 

with the computed ultimate moments in Tables 4.15(a) and 4.15(b). 
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Table 4.15(a) 

Comparison of Computed and Tested Ultimate Moments 
Beam Specimens with Unstiffened Flanges 

(35XF Sheet Steel) 
(Based on Sta·tic Yield Stress) 

Specimen S F (Pu)test L (M ) (Mu)test (6) 
e y Y comp 

(5) 

(in. 3) (ksi) (kips) (in. ) (in.-kips) (in.-kips) 

(1) ( 2) (3) (4) (5) (6) (7) 

4AOA .3837 32.02 6.41 37.00 12.29 14.82 1. 206 
4A1A .3772 32.02 7.15 37.00 12.08 16.53 1.369 
4A1B .3819 32.02 7.18 37.00 12.23 16.60 1.357 
4A2A .3801 32.02 7.53 37.00 12.17 17.41 1.430 
4A2B .3771 32.02 7.63 37.00 12.07 17.64 1.461 

4BOA .6788 32.02 9.77 43.00 21.73 26.26 1.208 
4B1A .6736 32.02 10.12 43.00 21. 67 27.20 1. 255 
4B1B .6772 32.02 9.87 43.00 21. 78 26.52 1. 218 
4B2A .6631 32.02 10.97 43.00 21. 73 29.48 1.357 
4B2B .6613 32.02 10.98 43.00 21. 67 29.51 1.361 

4COA .9515 32.02 8.49 65.00 30.47 34.49 1.132 
4C1A .9428 32.02 8.83 65.00 30.35 35.87 1.182 
4C1B .9421 32.02 9.15 65.00 30.33 37.17 1.225 
4C2A .9311 32.02 10.23 65.00 30.62 41.56 1.357 
4C2B .9263 32.02 10.22 65.00 30.47 41. 52 1.363 

Mean 1. 299 

Standard Deviation 0.096 
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Table 4.1S(b) 

Comparison of Computed and Tested Ultimate Moments 
Beam Specimens with Unstiffened Flanges 

(35XF Sheet Steel) 
(Based on Dynamic Yield Stress) 

Specimen S F (Pu)test L (M ) (Mu)test (6) e y y comp 

(in. 3) 
(5) 

. (ksi) (kips) (in. ) (in. -kips) (in. -kips) 

(1) (2) ( 3) (4) (5) (6) (7) 

4AOA .3837 32.02 6.41 37.00 12.29 14.82 1.206 
4AIA .3772 32.87 7.15 37.00 12.40 16.53 1.333 
4AIB .3819 32.87 7.18 37.00 12.55 16.60 1. 322 
4A2A .3801 36.40 7.53 37.00 13.83 17.41 1.259 
4A2B .3771 36.40 7.63 37.00 13.73 17.64 1. 285 

4BOA .6788 32.02 9.77 43.00 21.73 26.26 1.208 
4BIA .6736 32.87 10.12 43:00 22.14 27.20 1.228 
4BIB .6772 32.87 9.87 43.00 22.26 26.52 1. 191 
4B2A .6631 36.40 10.97 43.00 .. 24.14 29.48 1. 221 
4B2B .6613 36.40 10.98 43.00 24.07 29.51 1.226 

4COA .9515 32.02 8.49 65.00 30.47 34.49 1.132 
4C1A .9428 32.87 8.83 65.00 30.99 35.87 1. 157 
4C1B .9421 32.87 9.15 65.00 30.97 37.17 1. 200 
4C2A .9311 36.40 10.23 65.00 33.89 41. 56 1.226 
4C2B .9263 36.40 10.22 65.00 33.72 41. 52 1. 231 

Mean 1.228 

Standard Deviation 0.052 
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The mean value of (M) I(M) ratios and standard deviations 
u test u comp 

are (1.299, 0.096) and (1.228, 0.052) for Tables 4.15(a) and 4.15(b), 

respectively. 

As observed previously, the ratios of tested ultimate moments to the 

computed values are greater in Table 4.15(a) as compared to those ratios 

in Table 4.15(b), because the latter table took into account the effect 

of strain rate on yield stress. For specimens having the same dimensions, 

the tested ultimate load increases with the strain rate. Figures 4.17 

through 4.19 show graphically typical moment-displacement curves for 4B 

sections under different strain rates. The computed critical local 

buckling and yield moments are marked in these figures for comparison with 

the tested ones. 

Tables 4.16 and 4.17 were prepared to study the effect of s~rain rate 

on ultimate moments of channel beam specimens. Table 4.16 lists the 

average ultimate moments. Each ultimate load value listed in this table 

is the average of two values obtained from similar tests except that for 

the tests conducted at strain rate of 0.00001 in./in./sec. for which only 

one test was performed. For the purpose of comparison, Table 4.17 shows 

the ratios of ultimate moments. Each value listed in this table is the 

ratio of two ultimate moments for the specimens with the same dimensions 

but tested under different strain rates. It is observed from Tables 4.16 

and 4.17 that 1) the failure load increases with strain rate and 2) the 

percentage increase of ultimate moments is larger at higher strain rate 

in most cases. 
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Strain Rate 

in. / in. / sec. 

0.00001 
0.0001 

0.01 

Table 4.16 

Average Tested Failure Moments for Channel 
Beam Specimens with Unstiffened Flanges 

(35XF Sheet Steel) 

8.93 

14.82 
16.56 
17.53 

Failure Moment, eM) , in.-kips u test 

wit 

14.81 

26.26 
26.85 
29.48 

Table 4.17 

20.69 

34.49 
36.52 
41.54 

Ratios of Average'Ultimate Moments for Channel­
Beam Specimens Having Unstiffened Flanges 

(35XF Sheet Steel) 

wit 

8.93 
14.81 
20.69 

Notes : 

0.89 
0.98 
0.94 

1. 06 
1. 10 
1. 14 

(M ) = Average ultimate moment for channel beam specimens u 0 
tested at strain rate of 0.00001 in./in./sec. 

eM ) = Average ultimate moment for channel beam specimens u 1 
tested at strain rate of 0.0001 in./in./sec. 

(Mu )2= Average ultimate moment for channel beam specimens 
tested at strain rate of 0.01 in.lin./sec. 
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Figure 4.20 shows graphically the effect of strain rate on the 

ultimate moments of the channel beam specimens. The horizontal axis 

represents logarithmic strain rate while the vertical axis represents the 

ratio of dynamic to static ultimate moments. The tests performed at strain 

rate of 0.0001 in./in./sec. are considered to be the static loading 

conditions. 

4. Stub Column Tests for the Study of Unstiffened Elements. 

I-shaped stub columns were designed and fabricated to study the 

post-buckling strengths of unstiffened elements under different strain 

rates by using 35XF steel. All the stub columns were subjected to uniform 

compression. Overall column buckling was prevented by the design of the 

stub columns .. The thickness of the web in a stub column was twice the 

thickness of the unstiffened compression flange because the webs of stub 

columns were glued together. The tested compressive yield stress was used 

for the evaluation of all stub column specimens studied in this 

investigation. 

a. Critical Local Buckling Load. The critical local buckling load 

of a stub-column specimen with unstiffened compression elements can be 

calculated using Eq. (4.20). 

In Eq. (4.20), the critical local buckling stress of an unstiffened 

element can be calculated by using Eq. (2.25) or (4.4), depending on the 

wit ratio of the unstifferted flange. A value of 0.43 was used as the 

buckling coefficie~t to calculate the critical local buckling stresses 

of unstiffened elements in this phase of study for using Eq. (4.4). The 
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total cross-sectional areas of stub columns are given in Table 3.48. The 

critical local buckling stress listed in column (1) of Table 4.18 for each 

stub column is t.he average value of four critical local buckling stresses 

of unstiffened flanges. 

The computed and tested critical local buckling loads of specimens 

fabricated from 3SXF steel are given in columns (2) and (3) of Table 4.18, 

respectively. The tested critical local buckling loads were determined 

from load-strain diagrams by using a modified strain reversal method. 

In Table 4.18, the tested critical local buckling load for each specimen 

is the average value of four tested critical local buckling loads 

determined from unstiffened flanges. The computed critical local 

buckling loads were determined from the product of the average critical 

local buckling stresses and the total cross-sectional areas. No critical 

local buckling was observed from the load-strain diagrams of I-shaped stub 

columns with small and medium wit ratios. Note that the critical local 

buckling loads for stub columns with large wit ratios tested in the 

present investigation were underestimated by using Eq (4.20). The mean 

values of (P) I(P) ratios and standard deviations are equal 
cr test cr comp 

to 1.556 and 0.102, respectively. As shown in column (3) of Table 4.18, 

the tested critical local buckling load increases with the strain rate. 

b. Ultimate Axial Load. From the concept of the effective width 

approach, stub-column specimens reach the ultimate axial load when the 

maximum edge stresses of the unstiffened elements reach yield stresses 

of the steels. The ultimate load carrying capacities 

stub-column specimens can be calculated from Eq. (4.20). 

(P) of the 
u 



Table 4.18 

Comparison of Computed and Tested Critical Buckling Loads 
Stub Columns with Unstiffened Flanges (Based on k=0.43) 

(35XF Sheet Steel) 
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Specimen (3) 

(2) 

(ksi) (kips) (kips) 

(1) (2) (3) (4) 

2AlA 28.34 17.63 N/A N/A 

2AlB 28.30 17.79 N/A N/A 

2A2A 30.26 19.03 N/A N/A 
2A2B 30.20 18.95 N/A N/A 
2A3A 32.17 20.23 N/A N/A 
2A3B 32.16 20.11 N/A N/A 

2B1A 26.50 24.48 N/A N/A 
2B1B 26.47 24.31 N/A N/A 
2B2A 28.19 25.91 N/A N/A 
2B2B 28.21 26.00 N/A N/A 
2B3A 29.85 27.55 N/A N/A 
2B3B 29.80 27.50 N/A N/A 

2COA 21. 81 24.69 35.42 1.434 
2C1A 21. 71 24.59 36.44 1.482 
2ClB 21. 78 24.77 36.44 1. 471 
2C2A 22.78 25.85 40.40 1.563 
2C2B 22.92 26.08 40.35 l.547 
2C3A 23.70 26.87 46.95 1.747 
2C3B 23.76 26.92 44.38 1.648 

Mean 1. 556 

Standard Deviation 0.102. 
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The computed and tested failure loads of stub columns were compared 

in Tables 4.19(a) and 4.19(b). Table 4.19(a) uses static yield stress, 

while Table 4.19(b) uses static or dynamic yield stress according to the 

strain rate used in the test. Equation (4.20) was used to compute the 

failure loads listed in column (5) of both tables using appropriate yield 

stresses. The yield stress values are listed in column (3) of the same 

tables. The effective cross-sectional areas computed by using the current 

AISI Automotive Design Manual are also given in Tables 4.19(a) and 

4.19(b). 

The tested ultimate loads of stub columns are listed in column (6) 

of Tables 4.19(a) and 4.19(b). Comparisons of the computed and tested 

failure loads are listed in column (7) of these tables. The mean values 

of (P)t t/(P) ratios are 1.417 and 1.334 with standard deviations 
u es u comp 

of 0.136 and 0.070 for Tables 4.19(a) and 4.19(b) , respectively. 

As shown in these tables, the ultimate load increases with strain 

rate. Because the latter table takes into account the effect of strain 

rate on yield stress, the ratios of tested to computed fai lure loads 

listed in Table 4.19(a) are greater than that given in Table 4.19(b). 

Figures 4.21 through 4.23 show graphically typical load-displacement 

curves for 2B sections under different strain rates. The computed critical 

local buckling and ultimate loads are marked in these figures for 

comparison with the tested ones. 

Tables 4.20 and 4.21 were prepared to study the effect of strain rate 

on failure loads for I-shaped stub column specimens. Table 4.20 lists the 

average failure loads obtained from Table 3.48. Each failure load value 
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Table 4.l9(a) 

Comparison of Computed and Tested Failure Loads Based on the 
Effective Width Formulas in the 1986 AISI Automotive Steel 

Design Manual for Stub Columns with Unstiffened Flanges 
(35XF Sheet Steel) 

(Based on Static Yield Stress) 

Spec. Strain Rate wit F A (Pu)comp (Pu)test (6) 
y e 

(5) 

(in./in./sec.) (ksi) (in. 2) (kips) (kips) 

(1) (2) (3) (4) (5) (6) (7) 

2A1A 0.0001 8.93 29.83 .6220 18.55 25.26 1.36 

2A1B 0.0001 9.04 29.83 .6285 18.75 25.35 1. 35 

2A2A 0.01 8.93 29.83 .6288 18.76 26.04 1. 39 

2A2B 0.01 9.10 29.83 .6275 18.72 27.70 1.48 

2A3A 0.10 8.93 29.83 .6288 18.76 31.41 1. 67 

2A3B 0.10 8.96 29.83 .6254 18.65 29.41 1.58 

2B1A 0.0001 13.34 29.83 .9216 27.49 34.20 . 1. 24 

2B1B 0.0001 13.41 29.83 .9151 27.30 34.20 1.25 

2B2A 0.01 13.40 29.83 .9160 27.32 36.30 1.33 

2B2B 0.01 13.37 29.83 .9191 27.42 37.52 1. 37 

2B3A 0.10 13.34 29.83 .9208 27.47 41.67 1.52 

2B3B 0.10 13.42 29.83 .9195 27.43 42.70 1.56 

2COA 0.00001 20.69 29.83 .9825 29.31 36.30 1.24 

2C1A 0.0001 20.85 29.83 .9793 29.21 37.23 1.27 

2C1B 0.0001 20.76 29.83 .9860 29.41 37.66 1.28 

2C2A 0.01 20.97 29.83 .9785 29.19 41.28 1.41 

2C2B 0.01 20.81 29.83 .9857 29.40 41.52 1.41 

2C3A 0.10 20.93 29.83 .9787 29.19 47.92 1. 64 

2C3B 0.10 20.87 29.83 .9796 29.22 46.16 1.58 

Mean 1.417 

Standard Deviation 0.136 
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Table 4.19(b) 

Comparison of Computed and Tested Failure Loads Based on the 
Effective Width Formulas in the 1986 AISI Automotive Steel 

Design Manual for Stub Columns with Unstiffened Flanges 
(35XF Sheet Steel) . 

(Based on Dynamic Yield Stress) 

Spec. Strain Rate wit F A (Pu)comp (P)test (6) y e 

(in. 2) 
(5) 

(in. / in. /sec. ) (ksi) (kips) (kips) 

(1) (2) (3) (4) (5) (6) (7) 

2A1A 0.0001 8.93 29.83 .6220 18.55 25.26 1. 36 
2A1B 0.0001 9.04 29.83 .6285 18.75 25.35 1. 35 
2A2A 0.01 8.93 31. 92 .6288 20.07 26.04 1. 30 
2A2B 0.01 9.10 31. 92 .6275 20.03 27.70 1. 38 
2A3A 0.10 8.93 34.06 .6288 21.42 31. 41 1. 47 
2A3B 0.10 8.96 34.06 .6254 21. 30 29.41 1. 38 

2B1A 0.0001 13.34 29.83 .9216 27.49 34.20 1. 24 
2B1B 0.0001 13.41 29.83 .9151 27.30 34.20 1. 25 
2B2A 0.01 13.40 31. 92 .9091 29.02 36.30 1. 25 
2B2B 0.01 13.37 31. 92 .9122 29.12 37.52 1. 29 
2B3A 0.10 13.34 34.06 .9069 30.89 41.67 1. 35 
2B3B 0.10 13.42 34.06 .9049 30.82 42.70 1. 38 

2COA 0.00001 20.69 29.77 .9828 29.26 36.30 1. 24 
2C1A 0.0001 20.85 29.83 .9793 29.21 37.23 1. 27 
2C1B 0.0001 20.76 29.83 .9859 29.41 37.66 1. 28 
2C2A 0.01 20.97 31. 92 .9672 30.87 41.28 1. 34 

2C2B 0.01 20.81 31. 92 .9745 31.11 41. 52 1. 33 

2C3A 0.10 20.93 34.06 .9587 32.65 47.92 1. 47 

2C3B 0.10 20.87 34.06 .9637 32.82 46.16 1. 41 

Mean 1.334 

Standard Deviation 0.070 
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Table 4.20 

Average Tested Failure Loads for I-Shaped Stub Column 
Specimens with Unstiffened Flanges 

(35XF Sheet Steel) 

Strain Rate Failure Load, (P)t t' kips u es 

in. / in . / s ec . 

0.0001 
0.01 
0.1 

8.93 

25.30 
26.87 
30.41 

wit 

13.34 

34.20 
36.91 
42.18 

Table 4.21 

20.69 

37.44 
41.40 
47.04 

Ratios of Ultimate Loads for I-Shaped Stub Column 
Specimens Having Unstiff~ned Flanges 

Note 

(P ) = u 1 

(P ) = u 2 

(P ) = u 3 

: 

wit 

8.93 
13.34 
20.69 

Average ultimate 
tested at strain 

Average ultimate 
tested at strain 

Average ultimate 
tested at strain 

(35XF Sheet Steel) 

1.06 
1.08 
1.11 

load 
rate 

load 
rate 

load 
rate 

1. 20 
1. 23 
1. 26 

for I-shaped stub column 
of 0.0001 in./in./sec. 

for I-shaped stub column 
of 0.01 in./in./sec. 

for I-shaped stub column 
of 0.1 in. / in. / sec. 

specimens 

specimens 

specimens 

301 
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listed in this table is the average of two values obtained from similar 

tests. For the purpose of comparison, Table 4.21 shows the ratios of 

dynamic failure loads. Each value listed in this table is the ratio of 

two average failure loads for specimens having the same dimensions but 

tested under different strain rates. It is observed from Tables 4.20 and 

4.21 that 1) the failure load increases with strain rate and 2) the ratio 

of dynamic to static failure loads increases with increasing wit ratio. 

As observed previously, the percentage increase of failure load is larger 

at higher strain rates. 

Similar to the previous figures, Fig. 4.24 shows the effect of strain 

rate on the failure loads of the I-shaped stub column specimens 

graphically. The tests performed at strain rate of 0.0001 in./in./sec. 

are considered to be the static loading conditions. 

5. Deflection of Beam Specimens. As mentioned in Chapter III, the 

deflections at midspan of beam specimens (d in Fig. 4.25) were measured 

by two LVDTs located on both sides of hat and channel beam specimens as 

shown in Figs. 3.31 and 3.50. Tables 4.22 and 4.23 compare the computed 

and measured deflections under service moments for hat and channel beam 

specimens, respectively. The service moments were considered to be 60% 

of the computed yield moments and are listed in Table ~.6(b) for hat-beam 

specimens and in Table 4.l5(b) for channel beam specimens. The measured 

deflection under service moment was obtained from the moment-deflection 

curve, while the computed value was calculated by using the following 

theoretical deflection equation with effective moment of inertia: 
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Table 4.22 

Deflections under Service Moments Based on Effective Sections 
for Hat-Beam Specimens with Stiffened Flanges 

(35XF Sheet Steel) 

Specimen (Ms)test (d) test (d)comp (2) 

(3) 
(kips- in. ) (in. ) (in. ) 

(1) (2) (3) (4) 

3B1A 12.73 0.1213 0.1658 0.732 
3B1B 12.40 .0.1319 0.1661 0.794 
3B2A 13.60 0.1350 0.1830 0.738 
3B2B 13.72 0.1396 0.1827 0.764 

3COA 17.75 0.1518 0.2003 0.758 
3CIA 18.32 0.1974 0.2037 0.969 
3C1B 18.37 0.2002 0.2033 0.985 
3C2A 20.60 0.1835 0.2329 0.788 
3C2B 20.71 0.1727 0.2325 0.743 

Mean 0.808 

Standard Deviation 0.093 
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Table 4.23 

Deflections under Service Moments Based on Effective Sections 
for Channel Beam Specimens with Unstiffened Flanges 

(35XF Sheet Steel) 

Specimen (Ms)test (d)test (d)comp (2) 

(3) 
(kips-in. ) (in. ) (in. ) 

(1) (2) (3) (4) 

4AOA 7.37 0.0639 0.0620 1. 031 
4A1A 7.44 0.0609 0.0641 0.950 
4A1B 7.53 0.0715 0.0649 1.102 
4A2A 8.30 0.0542 0.0708 0.765 
4A2B 8.24 0.0471 0.0706 0.667 

4BOA 13.04 0.0511 0.0635 0.805 
4B1A 13.28 0.0491 0.0650 0.755 
4B1B 13.36 0.0445 0.0649 0.701 
4B2A 14.48 0.0588 0.0706 0.833 
4B2B 14.44 0.0527 0.0707 0.745 

4COA 18.28 0.0929 0.1097 0.847 
4C1A 18.59 0.0924 0.1126 a .821.,.: 
4C1B 18.58 0.0630 0.1127 0.559 
4C2A 20.33 0.0992 0.1227 0.808, .... 
4C2B 20.23 0.0639 0.1232 0.519 

Mean 0.833 

Standard Deviation 0.121 

(.,: ) This value was not considered in the calculation of mean and 
. standard deviation because the LVDT which measured the midspan 
deflection was not functioning properly during the test. 



where 

d = 128 E Ie 

M = moment under service load 
s 

= 0.6 (My)comp 

L = span length of beam 

E = modulus of elasticity 

I = effective moment of inertia under service moment. 
e 
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(4.22 ) 

In the above expression, Eqs. 2.46 through 2.49 (Procedure II) were 

used to calculate the effective moment of inertia for hat beam specimens, 

while Procedure I was used to calculate the effective moment of inertia 

for channel beam specimens under service moments. 

The computed and measured deflections under service moments are 

given in Tables 4.22 and 4.23 for hat and channel beam specimens, 

respectively. It is .noted from these tables that most of the measured 

deflections were less than the computed values. It has been noted that 

the ratios of measured to computed deflections decrease with increasing 

strain rate for most of the cases which means that the deflections from 

the fast tests lag behind those from the s low tests at the same load 

level. The mean values of (d)test/(d)comp ratios and standard deviations 

under service moments are equal to (0.808, 0.093) and (0.833, 0.121) for 

hat and channel beam specimens respectively. Figure 4.26 shows 

graphically a typical moment-deflection curve for hat-beam specimens, 
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while Fig. 4.27 shows a typical moment-deflection curve for channel beam 

specimens. 
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V. CONCLUSIONS 

A. GENERAL 

This study dealt with the effect of strain rate on mechanical 

properties of sheet steels and the structural strengths of cold-formed 

steel members subjected to dynamic loads. Section V.B includes a summary 

of the research findings on the effect of strain rate on material 

properties of 35XF, 50XF, and lOOXF sheet steels in tension as well as 

compression. Based on the available test data, Section V.C includes the 

conclusions drawn from the study of the effect of dynamic loads on 

structural strengths of cold-formed steel beams and stub columns 

fabricated from 35XF sheet steel. 

B. MATERIALS 

The findings of this investigation relative to material properties 

are: 

1. Proportional limitl yield strength, and ultimate strength 

increase with increasing strain rate. 

2. Yield strength is more sensitive to strain rate than ultimate 

strength. 

3. The strain rate sensitivity value is not a constant. In most cases 

it increases with increasing strain rate. 

4. The mechanical properti!s of sheet steels having low yield 

strengths are more sensitive to strain-rate effects. 

5. A second degree polynomial is well fitted to the experimental data 

for both tension and compression and can be used to predict the yield and 
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ultimate strengths at high strain rates above the range of the strain rate 

used in the tests. 

C. STRUCTURAL MEMBERS 

The findings of this investigation relative to structural members 

are: 

1. The critical local buckling strength, yield strength, and 

ultimate strength for most of the tests increased with increasing strain 

rates. The ultimate strengths showed larger increases at higher strain 

rates than at lower strain rates. 

2. The effect of strain rate on member strength was found to be 

similar to those observed from the previous study of material properties 

as affected by different strain rates. However, ratios of dynamic to 

static ultimate strengths for beams and stub columns conducted in this 

study were found to be slightly higher than those for tensile or 

compressive material yield stresses. 

3. The computed ultimate strength based on the AISI Automotive Design 

Manual, using static or dynamic yield stress, was found to be conservative 

for a 11 beam and stub column tests. The mean and standard deviation 

values for the ratios of tested to computed ultimate strengths were 

improved by using the dynamic yield stresses rather than the static value 

for all cases studied in this investigation. 

4. The computed midspan deflection under service moments are 

slightly larger than those measured from tests, except for two channe~ 

beams. 
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Future tests are suggested for a study of the effect of strain rate 

on structural strengths of cold-formed steel members fabricated from 35XF 

sheet steel using larger wit ratios than those used in previous tests. 

Future tests are also suggested to investigat.e the effect of strain rate 

on member strengths using different sheet steels with various 

width-to-thickness ratios in order to obtain the needed information for 

determining the adequacy of the current effective width design formulas 

for members subjected to dynamic loads and to establish the required 

design recommendations. 



314 

BIBLIOGRAPHY 

1. American Iron and Steel Institute, "Cost-Effective Weight Re­
duction with Sheet Steel", SG-631R. 

2. American Iron and Steel Institute, "Sheet Steels: Automotive 
Problem Solvers", Cost-Effective Weight Reductions in Parts at 
1980 AISI/SAE Exhibits, SG-932A. 

3. American Iron and Steel Institute, "High Strength Sheet Steel 
Source Guide", SG-603D. 

4. American Iron and Steel Institute, tiThe Materials Decision
tl

, 

SG-834. 

5. Errera, S.J., "Automotive Structural Design Using the AISI Guide", 
SAE Tech. Paper Ser. 820021, February 22-26, 1982. 

6. American Iron and Steel Institute, "Automotive Steels: They Still 
Do It Better", Cost Savings/Corrosion Protaction/Weight Reductions 
in Components seen at the 1982 AISI/SAE Exhibit, SG-937. 

7. International Nickel Company, Inc., "A Cost/Weight Study of 
1981-1982 Production Bumper Systems". 

8. Levy, B.S., "Advances in Designing Ultra High Strength Steel 
Bumper Reinforcement Beams", SAE Tech. Paper Ser. 830399, February 
28-March 4, 1983. 

9. Vecchio, M.T., "Design Analysis and Behavior of Variety of As­
Formed Mild and High Strength Sheet Materials in Large Deflection 
Bending", SAE Tech. Paper Ser. 830398, February 28-March 4, 1983. 

10. American Iron and Steel Institute, "Guide for Preliminary Des ign 
of Sheet Steel Automotive Structural Components", 1981 Edition. 

11. Yu, W.W., Santaputra, C., and Parks, M.B., 
Structural Components Using High Strength 
Progress Report, Civil Engineering Study 
Missouri- Rolla, January 1983. 

"Design of Automotive 
Sheet Steels", First 
83-1, University of 

12. Parks, M.B. and Yu, W.W., "Design of Automotive Structural Com­
ponents Using High Strength Sheet Steels: Mechanical Properties 
of Materials", Second Progress Report, Civil Engineering Study 
83-3, University of Missouri- Rolla, August 1983. 

13. Santaputra, C. and Yu, W.W., "Design of Automotive Structural 
Components Using High Strength Sheet Steels: Strength of Beam 



14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

315 

Webs", Third Progress Report, Civil Engineering Study 83-4, 
University of Missouri- Rolla, August 1983. 

Parks, M.B. and Yu, W.W., "Design of Automotive Structural Com­
ponents Using High Strength Sheet Steels: Strength of Curved 
Elements and Members Consisting of Curved Elements", Fourth 
Progress Report, Civil Engineering Study 83- 5, Univers i ty of 
Missouri- Rolla, August 1983. 

Santaputra, C. and Yu, W.W., "Design of Automotive Structural 
Components Using High Strength Sheet Steels: Structural Behaviour 
of Beam Webs Subjected to Web Crippling and a Combination ~f Web 
Crippling and Bending", Fifth Progress Report, Civil Engineering 
Study 84-1, University of Missouri- Rolla, October 1984. 

Parks, M.B. and Yu, W.W., "Design of Automotive Structural Com­
ponents Using High Strength Sheet Steels: Status Report on the 
Study of Members Cons isting of Flat and Curved Elements". Sixth 
Progress Report, Civil Engineering Study 84-2, University of 
Missouri- Rolla, October 1984. 

Parks, M.B. and Yu, W.W., "Design of Automotive Structural Com­
ponents Using High Strength Sheet Steels: Results and Evaluation 
of Stub Column Tests for Unstiffened Curved Elements", Seventh 
Progress Report, Civil Engineering Study 85-1, University of 
Missouri--Rolla, September 1985. 

Santaputra, C. and Yu, W.W., "Design of Automotive Structural 
Components Using High Strength Sheet Steels: Web Crippling of 
Cold-Formed Steel Beams", Eighth Progress Report, Civil Engi­
neering Study 86-1, University of Missouri- Rolla, August 1986. 

Parks, M.B. and Yu, W.W., "Design of Automotive Structural Com­
ponents Using High Strength Sheet Steels: Structural Behavior of 
Members Consisting of Flat and Curved Elements", Ninth Progress 
Report, Civil Engineering Study 87-2, University of Missouri­
Rolla, June 1987. 

Lin, S.H., Hsiao, L.E., Pan, C.L., and Yu, 1.'.1.'., "Design of Au­
tomotive Structural Components Using High Strength Sheet Steels: 
Structural Strength of Cold-Formed Steel I-Beams and Hat Sections 
Subjected to Web Crippling Load", Tenth Progress Report, Civil 
Engineering Study 88-5, University of Missouri- Rolla, June 1988. 

Pan L.C., "Effective Design Widths of High Strength Cold-Formed 
Ste~l Members," Ph.D. Thesis, University of Missouri-Rolla, 1987. 

American Iron and Steel Institute, "Automotive Steel Design Man­
ual," 1986 Edition. 



316 

23. Kassar, M. and Yu, W.W., "Design of Automotive Structural Compo­
nents Using High Strength Sheet Steels: The Effect of Strain Rate 
on Mechanical Properties of Sheet Steels", Eleventh Progress Re­
port, Civil Engineering Study 89-2, University of Missouri- Rolla, 
January 1989. 

24. Kassar, M. and Yu, W.W., "Design of Automoti"ve Structural Compo­
nents Using High Strength Sheet Steels: The Effect of Strain Rate 
on Compressive Mechanic_al Properties of Sheet Steels", Twelfth 
Progress Report, Civil Engineering Study 89-4, University of 
Missouri- Rolla, August 1989. 

25. Kassar, M. and Yu, W.W., "Design of Automotive Structural Compo­
nents Using High Strength Sheet Steels: Structural Strengths of 
Cold-Formed Steel Members under Dynamic Loads", Thirteenth 
Progress Report, Civil Engineering Study 90-1, University of 
Missouri- Rolla, March 1990. 

26. Yu, W.W., Cold-Formed Steel Design, Wiley-Interscience, New York, 
1985. 

27. Hosford, W.F. and Caddel,R.M., Metal Forming-Mechanics and Met­
. allurgy, Prentice Hall, Inc~, N.J., 1983, 80-84. 

28. Timoshenko, S., Strength of Materials-Part II, D. Van Nostrand 
Company, Inc., 1956,400-428. 

29. Malvern, L.E., Introduction to the Mechanics of a Continuous Me­
dium, Prentice Hall, IRC., 1969, 327-333. 

30. Juvinall, R.C., Stress, Strain and Strength, McGraw-Hill Book 
Company, New York, (1967), 96-100. 

31. Follansbee, P.S., "High' Strain Rate Compression Testing", Metals 
Handbook, American Society for Metals, Ninth Edition, Volume 8, 
1985. 

32. Lindholm, U.S., "Techniques in Metal Research", Vol. 5, Part 1, 
Wiley-Interscience, New York, 1971. 

33. Zukas, J.A., Nicholas, T., Swift, H.F., Greszczuk, L.B., and 
Curran, D.R., Impact Dynamics, John Wiley & Sons, New York, 1982. 

34. Staker, M.R., "High Strain Rate Testing," Metals Handbook, Amer­
ican Society for Metals, Ninth Edition, Volume 8, 1985. 



317 

35. Kumar, S., "Introduction," Mechanical Behavior of Materials Under 
Dynamic Loads, U.S. Lindholm (Ed.), Springer-Verlag, New York, 
1968. 

36. Norris, C.H., Hansen, R.J., Holley, M.J. Jr., Biggs, J.M., Namyet, 
S., and Minami, J.K., Structural Design for Dynamic Loads, 
McGraw-Hill Book Company, 1959. 

37. Davis, E.A., "The Effect of the Speed of Streching and the Rate 
of Loading on the Yielding of Mild Steel," Journal of Applied 
Mechanics, ASME Transactions, Vol. 60,1938. 

38. Winlock, J. and Leiter, R., "Some Factors 
Deformation of Sheet and Strip Steel and 

Affecting the Plastic 
Their Relation to the 

Deep Drawing Properties," !..!A!::m~e~r-=i.:::c~a~n!.-.--!:S~0~c::..;:1~· e::..:t:..;yL----'f~o:!..;r~ ___ M~e~t.2.a..:l~s 
Transactions, Vol. 25, 1937. 

39. Manjoine, M.J., "Influence of Rate of Strain and Temperature on 
Yield Stresses of Mild Steel," Journal of Applied Mechanics, ASME 
Transactions, 66, (1944). 

40. Gillis, P. P., "Effect of Strain Rate on Flow Propert ies," M-eta Is 
Handbook, American Society for Metals, Ninth Edition, Volume 8, 
1985. 

41. Chatfield, D.A. and Rote, R.R., "Strain Rate 'Effects on the 
Properties of High Strength, Low Alloy Steels," SAE Tech. Paper 
Ser. 740177, February 25-March 1, 1974. 

42. Meyers, M.A., and Chawla, K.K., Mechanical Metallurgy: Principles 
and Applications, Prentice-Hall, Englewood Cliffs, N.J., 1984. 

43. Alder, J.F., and Phillips, V.A., "The Effect of Strain 
Temperature on the Resistance of Aluminum, Copper, and 
Compression," Journal of the Institute of Metals. 
1954-1955, pp. 80-86. 

Rate and 
Steel to 
Vol 83. 

44. Cook, P.M., "True Stress-Strain Curves for Steel in Compression 
at High Temperature and Strain Rates, for Application to the 
Calculation of Load and Torque in Hot Rolling," Conference on The 
Properties of Materials at High Rates of Strain, Institute of 
Mechanical Engineers, 1957, pp. 86-97. 

45. Davies, E.D.H., and Hunter, S.C., "The Dynamic Compression Testing 
of Solids by the Method of the Split Hopkinson Pressure Bar." L 
Mech. Phys. Solids, Vol 11, 1963, pp. 155-172. 

46. Holt, J.M., "The Effect of Scrain Rate on the Tensile Properties 
of USS COR-TEN and USS TRI-TEN High-Strength Low-Alloy Steels", 



318 

United States Steel Corporation, Applied Research Center, Project 
Number 37.12-100(2), Pittsburgh, PA., 1962. 

47. Watanabe, T., "Effect of Strain Rate on Y ie ld Behav ior of Co ld­
Rolled Sheet Steel," Transactions of the Iron and Steel Institute 
of Japan, Vol.22, 1982. 

48. Peterson, D., Schwabe, J.E., and Fertis, D.G., "Strain Rate Ef­
fects in SA-106 Carbon Steel Pipe," Journa 1 of Pressu re Vesse 1 
Technology, A9ME Transactions, Vol. 104, February, 1982. 

49. Sachdev, A.K., and Wagonar, R.H., "Uniaxial Strain Hardening at 
Large Strain in Several Sheet Steels," Novel Techniques in Metal 
Deformation Testing, The Metallurgical Society of AIME, 1983. 

50. Meyer, L.W., "Dynamic Tension Studies of Strength and Formability 
Characteristic of a High Alloyed Steel With Respect to Thermal 
Activation," Mechanical Properties at High Rate of Strain, In­
stitute of Physics, London, No. 70, 1984. 

51. Nagorka', M. S., "The Effect of Microstructure and Strain Ra te on 
the Stage III Strain Hardening and Ductility of Dual-Phase 
Steels," Material Science and Engineering, 94, 1987, 183-193. 

52. Albertini, C. and Montagnani, M., "Testing Techniques Based on 
the Split Hopkinson Bar," Mechanical Properties at High Rates of 
Strain, Institute of Physics, London, No.21, 1974. 

53. Kassner, M.E., and Breithaupt, R.D., "The Yield Stress of Type 
21-~-9 ~t~tnless Steel Over a Wide Range of Strain Rate 
(10 5- 10 s ) and Temperature," Mechanical Properties at High 
Rates of Strain, Institute of Physics, London, No.70, 1984. 

54. Jones, A.H., Maiden, C.J., Green, S.J., and Chin, H., "Prediction 
of Elastic-Plastic Wave Profiles in Aluminum 1060-0 under Uniaxial 
Strain Loading," Mechanical Behavior of Materials under Dynamic 
Loads, U.S. Lindholm (Ed.), Springer-Verlag, New York, 1968, 
96-133. 

55. Kanninen, M.F., Mukherjee, A.K., Rosenfield, A.R., and Hahn, G.T., 
"The Speed of Ductile-Crack Propagation and the Dynamics of Flow 
in Metals, Mechanical Behavior of Materials under Dynamic Loads, 
U.S. Lindholm (Ed.), Springer-Verlag, New York, 1968, 96-133. 

56. Hockett, J . E., "Compress ion Test ing at Constant True Strain 
Rates," Proc. ASTM, Vol 59, 1959, pp. 1309-1319. 



319 

57. Lindholm, U.S., and Yeakley, L.M., "High Strain-Rate Testing: 
Tension and Compression," Experimental Mechanics, Vol 8, 1968, 
pp. 1-9. 

58. Lindholm, U.S. and Bessey, R.L., Technical Report AFML-TR-69-119, 
Air Force Materials Laboratory, Wright-Patterson Air Force Base, 
Ohio, 1969. 

59. 

60. 

Lindholm, U.S.," Some Experiments 
Bar," J. Mech. Phys. Solids, Vol. 12, 

With the 
1964. 

Sp Ii t Hopk inson 

Maiden, C.J., and Green, S.J., "Compressive Strain Rate 
Si~ Selected Materials at Strain Rates From 
10 in./in./sec.", Transaction of the ASME, Sep. 1966. 

61. Eleiche, A.M., Albertini, C. and Montagnani, M., "The Influence 
of Strain-Rate History on the Ambient Tensile Strength of AISI 
Type 316 Stainless Steel," Nuclear Engineering and Des ign, 1985. 

62. Shirakashi, Takahiro and Usui, Eij i, "Effect of Temperature and 
Strain-Rate Upon Flow Stress of Metals in Compression," 
Bulletin of Japan Society of Precision Engineering, Vol.4, 
1970. 

63. Eleiche, A.M. and Campbell, J.D., ·Tech. Rep. ARML-TR-76-90, Air 
Force Materials Laboratory, Wright-Patterson Air Force, 1976. 

64. Wilson, M.L., Hawley, R.H. and Duffy, J., "Strain Rate and Strain 
Rate History Effects in Two Mild Steels", Brown University, Rep. 
NSF ENG 75-18532/8, 1979. 

65. American Iron and Steel Institute, "Cold-Formed Steel Design 
Manual," 1986 Edition. 

66. Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, 
2nd Edition, New York: McGraw-Hill Book Company, Inc., 1961. 

67. Bulson, P. S., The Stability of Flat Plates, New York: American 
Elsevier Publishing Company, Inc., 1969. 

68. Saint Venant, "Discussion in Theorre de l'elasticte' des Corps 
Solides," by Clebsch, P.704, 1883. 

69. Bleich, F. "Theorie .und Berechnung der eisernen Brcicken," Julius 
Springer, Berlin, 1924. 

70. Bijlaard, P. P., "Theory of Plastic Stability of Thin Plates," 
Pubs. Interna"tional Association for Bridge and Struc tura I Engi­
neering, Vol. VI, 1940-41. 



320 

71. Bijlaard, P. P., "Theory and Tests on the Plastic Stability of 
Plates and Shells," Journa 1 of the Ae'ronaut ica 1 Sciences, V. 16, 
PP529-541, 1949. 

72. Ilyushin, A. A., "The Elastic-Plastic Stability of Plates," 
Translation in NACA Technical Memorandum 1188. 

73. Stowell, E. Z., "A Unified Theory of Plastic Buckling of Columns 
and Plates," NACA Technical Note No. 1556, April 1948. 

74. Von Karman, T., "Festigkeitsprobleme in Meschinenbau," Encyk lpadie 
der Mathematischen, Vol. 4, 1910, P. 349. 

75. Schnadel, G., "Die Uberschreitung der Knickgrenze bei dunnen 
Platlen," Proceedings of Third International Congress for Applied 
Mechanics, Stockholm, Vol. 3, 1930. 

76. Cox, H. L., "The Buckling of Thin Plates in Compression," Tech­
nical Report of the Aeronautical Committee, 1933-34. 

77. Harguerre, K., "Die Mittrangende Breite der Gedrukten Platte," 
Luftfahrtforschung, Vol. 14, 1937. 

78. Levy, S., "Bending of Rectangular Plates with Large Deflections," 
NACA Technical Report 737, 1942, P.139. 

79. Von Karman, T., Sechler, E. E., and Donnell, L. H.; "The Strength 
of Thin Plates in Compression," Transactions, ASHE, Vol. 54, 
APM54-5, 1932. 

80. Winter, G., "Strength of Thin Steel Compression Flanges," Bulletin 
No. 35, Part 3, Cornell University, Engineering Experiment Sta­
tion, Ithaca, N.Y., 1947. 

81. Winter, G., "Performance of Thin Steel Compression Flanges," 
Preliminary Publication, 3rd Congress of the International Asso­
ciation for Bridge and Structural Engineering, 1948, P.137. 

82. Winter, G., "Performance of Compress ion Plates as Parts of 
Structural Mambers," Bulletin No. 35, Cornell University, Engi­
neering Experiment Station, Ithaca, N.Y., 1947. 

83. Kalyanaraman, V., Pekoz, T., and Winter, G., "Analytical Study 
of Unstiffened Elements," Journa 1 of Structura 1 Divis ion, ASCE, 
Vol. 104, No. ST9, September, 1978. 



321 

84. Kalyanaraman, V., Pekoz, T., and Winter, G., "Unstiffened Com­
pression Elements," Journal of Structural Division. ASCE, Vol. 
103, No. ST9, September 1977. 

85. Kalyanaraman, V., "Local Buckling of Cold-Formed Steel Members," 
Journal of Structural Division. ASCE, Vol. 105, No. ST5, May 1979. 

86. American Iron and Steel Institute, "Specification for the Design 
of Cold-Formed Steel Structural Members," 1968 Edition. 

87. American Iron and Steel Institute, "Specification for the Design 
of Cold-Formed Steel Structural Members," 1980 Edition. 

88. Pekoz, T., "Development of a Unified Approach to the Des ign of 
Cold-Formed Steel Members," Report SG86-4, AISI, Washington, D. 
C., May 1986. 

89. Rawlings, B., "Response of Structures to Dynamic Loads," Mechan­
ical Properties at High Rates of Strain, Institute of Physics, 
London, No.2l, 1974. 

90. Parkes, E. W. ,"The Permanent Deformation of an Encastre Beam 
Struck Transversely at any Point in its Span," Proc. Inst. Civil 
~, July, 1958. 

91. Ezra, A. A., "The Plastic Response of a Simply Supported Beam to 
an Impact Load at the Center," Proc. III U. S. Nat. Congo Apol. 
Mech., 1958. 

92. Duwez, P. E., Clark, D. S., and Bohnenblust, H. F., "The Behavior 
of Long Beams Under Impact Loading," J. Appl. Mech., Vol. 117, 
No.1, March, 1950. 

93. Bodner, S. R. and Symonds, P. S., "Experimental and Theoretical 
Investication of the Plastic Deformation of Cantilever Beams 
Subjected to Impulsive Loading," Journa 1 of App 1 ied Mp-chan ics, 

Vol. 29, Dec.1962. 

94. Rawlings, B., "The Dynamic Behavior of Steel in Pure Flexure," 
Proc. Royal Soc. Series A, Vol. 275, 1963. 

95. 

96. 

Ting, T. C. T., "Large Deformation of a Rigid-Ideally-Plastic 
Cantilever Beam," J .. App!. Mech., J.une, 1965. 

Bodner, S. R., "Deformation of Rate-Sensitive Structures under 
Impulsive Loading," Engineering Plasticity, Heyman and Leckie, 
Ed., Cambridge Univ. Press, 1968. 



322 

97. Symonds, P. S., Behavior of Materials Under Dynamic Loading, ASME, 
Huffington, N. J., Ed., 1965. 

98. Jones, N., "Response of Structures to Dynamic Loading," Mechanical 
Properties at High Rates of Strain, Institute of Physics, London, 
No.47, 1979. 

99. Aspden, R. J., and Campbell, J. D., "The Effect of Loading Rate 
on the Elasto-Plastic Flexure of Steel Beams," Proceedings of 
Royal Society of London, Vol. A290, 1966. 

100. Jones, N., "Influence of Strain-Hardening and Strain-Rate Sensi­
tivity on the Permanent Deformation of Impulsively Loaded Rigid­
Plastic Beams," International Journal of Mechanica I Sciences, 
Vol.9, 1967. 

101. Culver, C. G., Zanoni, E. A., and Osgood, A. H., "Response of 
Thin-Walled Beams to Impact Loading," Proceedings of the First 
Specialty Conference on Cold-Formed Steel Structures, University 
of Missouri-Rolla, Aug. 1971. 

102. Symonds, P. S. and Jones, N., "Impulsive Loading of Fully Clamped 
Beams with Finite Plastic Deflections and Strain-Rate Sens it iv­
ity," Int. J. Mech. Sci., Vol. 14, 1972. 

103. Forrestal, M. J. and Sagartz, M. J., "Elastic-Plastic Response 
of 304 Stainless Steel Beams to Impulse Loads," Journal of Applied 
Mechanics, Vol. 45, September 1978. 

104. Forrestal, M. J. and Wesenberg, D. L., "Elastic Plastic Response 
of Simply Supported 1018 Steel Beams to Impulse Loads," Journa 1 
of Applied Mechanics, Dec. 1977. 

105. Meier, J. H., "On the Dynamic of Elastic Buckling," Journal of 
the Aeronautical Sciences~ Vol. 12, 1945. 

106. Hoff, N., "Dynamic Stability of Structures," Proceedings of an 
International Conference on Dynamic Stability of Structures, 
Northwestern University, Evanston, Illinois, October 1965. 

107. Roberts, T. M., "The Response of Steel Struts to Impact Overload," 
PhD Thesis, University of Sheffield, 1972. 

108. Culver, C. G. and Vaidya, N. R., "Impact Loading of Thin-Walled 
Columns," Proceedings of the First Specialty Conference on Cold­
Formed Steel Structures, University of Missouri-Rolla, Aug. 1971. 



323 

109. Logue, J. M., "Experimental Study ·of Thin-Walled Columns Subjected 
to Impact Loading," Master Thesis, Carnegie-Mellon University 
April, 1971. ' 

110. Soden, P. D., Al-Hassani, S. T. S., and Johnson, W., "The Crumpling 
of Polyvinylchloride Tubes Under Static and Dynamic.Axial Loads," 
Mechanical Properties at High Rates of Strain, Institute of 
Physics, London, No.21, 1974. 

111. Wierzbicki, T., "Dynamic Crushing of Strain Rate Sensitive Box 
Columns," SAE Second International Conference on Vehicle Struc­
tural Mechanics, April 1977. 

112. Ohkubo, Y., Akamatsu, T., and Shirasawa, K., "Mean Crushing 
Strength of Closed-Hat Section Members," SAE Paper No. 740040, 
1974. 

113. Wimmer, A., "Einfluss der Belastungsgeschwindigheit auf das 
Festigkeitsund Verformungsverhaten von Blechkonstruktionen am 
Beispiel von Kraftfahrzengen," ATZ 77, 1975. 

114. Wierzbicki, T. and Abramowicz, W., "Crushing of Thin-Walled 
Strain-Rate Sensitive Structures," Dynamic and Crushing Analysis 
of Plastic Structures, Euromech Colloquium No. 121, August, 1979. 

115. Abramowicz, W. and Jones, N., "Dynamic Axial Crushing of Square 
Tubes," Int. J. Impact Engng., Vol. 2, No.2, 1984. 

116. Galambos, T. V. 
Meta 1 structures, 
Inc.,1988. 

(ed.) , 
4th 

Guide to Stability Design Criteria for 
Edition, New York: John Wiley & Sons, 

117 .. Gerard, G., and H. Becker, Handbook of Structural Stability. Part 
I-Buckling of Flat Plates, NACA Technical Note 3781, July, 1957. 

118. Winter, G., "Commentary on the 1968 Edition of the Specification 
for the Design of Cold-Formed Steel Structural ~embers," Ameri.can 
Iron and Steel Institute, 1970 Ed. 

119. 

120. 

Johnson, A. L. and Winter, 
Austenitic Stainless Steel 
University, Nov., 1966. 

G., "The 
Members," 

Structura 1 Per formance of 
Report No. 327, Corne 11 

ChaJ·es A Britvec, S.J., and Winter, G., "Effects of Cold-, . , 
Straining on Structural Sheet Steels," Journa 1 of the St ructu ra 1 
Division, proceedings of the American Society of Civil Engineers, 
Vol. 89, No. 5T2, April, 1963. 



324 

121. Bleich, F., Buckling Strength of Metal Structures, New York: 
McGraw-Hill Book Company, 1952. 

122. Reck, H. P., Pekoz, T., .and Winter, G., "Inelastic Strength of 
Cold-Formed Steel Beams," Journal of Structural Division, ASCE 
Proceedings, vol. 101, Nov. 1975. 



325 

APPENDIX - NOTATION 

The following symbols are used in this dissertation: 

a Length of plate 

A Actual tensile or compressive coupon area 

Constant 

A Effective cross-sectional area of stub columns e 

Af Tensile coupon area at fracture 

A Full tensile or compressive coupon area 
o 

At Total cross-sectional area of stub columns 

b Effective width of a compression element 

B Constant 

C Constant 

C Compressive strain factor 
y 

d Depth of the section 

Midspan deflection 

3 2 
D Flexural rigidity of plate, Et 112(1- M ) 

Constant 

E Modulus of elasticity of steel = 29,500 ksi 

E
t 

Tangent modulus of steel 

f Stress in the compression element 

Engineering stress 

Compressive stress at the stiffened or unstifffend flange 

based on the effective section at service moment 



f Critical local buckling stress 
cr 

( f ) Elastic critical local buckling stress 
cr E 

( f ) Inelastic critical local buckling stress 
cr I 

f Maximum edge stress of a compression element 
max 

f ,f Stress components in the x-y plane 
x y 

F Stress function 

F Proportional limit 
pr 

F Yield strength 
y 

H Thickness of the beam 

I Moment of inertia 

I Effective moment of inertia 
e 

k Buckling coefficient 

fo Full tensile or compressive coupon gage length 

f Deformed tensile or compressive coupon gage length 

f[ Tensile coupon gage length at fracture 

L Span length 

m Number of half sine waves in x-direction 

Strain-rate sensitivity exponent 

n Constant 

M Dynamic bending moment 

~o Static collapse moment 

M Critical local buckling moment cr 

M Ultimate moment u 

M Yield moment 
y 
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n Number of half sine waves in y-direction 

p Constant 

P Coupon axial load 

Pcr Critical buckling load 

P Yield Load y 

P Ultimate load u 

P Mean crush force m 

q Lateral uniform load 

r Ratio of the slopes of the elastic and plastic 

portions of the stress-strain curve 

R Dynamic correction factor 

S Elastic section modulus of the effective section e 

S Elastic section modulus of the full cross section xc 

relative to the compression flange 

t Thickness of plate 

Test time 

v Impact velocity 

w Width of plate 

Constant 

f3 Constant 

,.~ ,h 
"'s' u 

Stress reduction factors 

£ Engineering or true strain 

£ Strain rate 

i, i
d 

Slenderness factors 

'7 Plasticity reduction factor 



K 

OJ 

v 

p 

Curvature rate 

Deflection of plate perpendicular to surface 

Poisson's ratio 

Constant = E/(r ao) 

Reduction factor 

True stress 

Dynamic yield stress 

Static yield stress 

Shear stress component in the x-z and y-z planes 
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