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Predicting software complexity can save millions in
maintenance costs, but while current measures can be used to

somne degree, most are not sufficiently sensitive or comprehensive.

.Alk SyIn Sof fare

t ro rain aintenance

Warren Harrison, Kenneth Magel, Raymond Kluczny, and Arlan DeKock
University of Missouri-Rolla

Over the past several years, computer scientists have
devoted a great deal of effort to measuring computer pro-
gram "complexity," since many large software systems
can be used for 10, 15, or even 20 years. A large part of
that time involves maintenance activities, which include
all changes made to a piece of software after it has been
delivered to and accepted by the final user. Consequently,
maintenance is most affected by program complexity.

Recent estimates suggest that about 40 to 70 percent of
annual software expenditures involve maintenance of ex-
isting systems. Clearly, if complexities could somehow be
identified, then programmers could adjust maintenance
procedures accordingly. What is needed is some method
of pinpointing the characteristics of a computer program
that are difficult to maintain and measuring the degree of
their presence (or lack of it). Such a method could be used
in preparing "quality specifications" for programs that
are to be written; checking specification compliance of
programs after they have been written, but before they
are delivered; making proper design trade-offs between
development and maintenance costs; and selecting a par-
ticular type of software.

Software complexity

The degree to which characteristics that impede soft-
ware maintenance are present is called software main-
tainability and is driven primarily by software complex-
ity, the measure of how difficult the program is to com-
prehend and work with. Maintenance characteristics that
are affected by complexity include software understand-
ability, software modifiability, and software testability.

Various approaches may be taken in measuring com-
plexity characteristics, such as Baird and Noma's1 ap-
proach, in which scales of measurement are divided into
the following four types:

(1) Nominal scales. The measure classifies the items.
For example, pyograms are grouped into classifications of
"not difficult to understand," "moderately difficult to
understand," "difficult to understand," and "very dif-
ficult to understand."

(2) Ordinal scales. The measure actually ranks in-
dividual items. For example, we would say not only that
program A, program B, and program C are all
"moderately difficult to understand," but also that pro-
gram B was more difficult to understand than program C,
and program A was more difficult to understand than
program B.

(3) Interval scales. The measure not only ranks items in
relation to each other but also tells how far apart they are.
For example, we would say not only that program A was
more difficult than program B but also that program A
was 10 "units of difficulty" more difficult to understand
than program B.

4) Ratio scales. The measure not only ranks the items
and determines how far apart they are from each other
but also determines how far the measures lie from a total
lack of the characteristic being measured. This allows
multiplication and division to be used on the resulting
measures, so we can obtain measures that indicate that
program A is twice as difficult to understand as program
B. This property is unique to the ratio scale.
The most flexible type of measurement seems to be the

ratio scale, but we would be hard put to find a degree of
impeding characteristics that even approaches zero com-
plexity, so this scale is not really the most effective. On the
other hand, an ordinal scale would be feasible, and in
some cases, even an interval scale could be developed, but
a major problem with interval scales is determining the
"unit of difficulty" and its meaning.
We believe the ordinal scale to be the best choice for ex-

amining complexity metrics, and all measures discussed in
this article are in that framework.
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Existing complexity measures

Because much of the work on complexity metrics has
been done in the last five years, many different methods
are being used. Basili2 has suggested that program size,
data structures, data flow, and flow of control can affect
maintenance. A number of measures have been devel-
oped to evaluate each of these characteristics, and several
hybrid measures have been developed to consider mnore
than one simultaneously.

Program size. The most straightforward approach is
based on program size, and as Elshoff3 has pointed out,
very large programs incur problems just by virtue of the
volume of information that must be absorbed to under-
stand the program. Program size is easy to calculate, is
widely applicable, and has definable measures, two of
which are lines of code and Halstead's software science.
The most common form of measuring program size is

by simply counting the lines of code. Unfortuntely, not
everyone agrees on what makes up a line of code, and the
question remains whether only executable source state-
ments, executable source statements and data declaration
statements, or all statements including comments should
be part of the measure.

Halstead's software science4 is based on a refinement
of measuring program size by counting lines of code. It is
one of the most widely accepted measures in industry and
universities and has been supported by several empirical
studies.5-11. Halstead's metrics measure the number of
unique operators n 1, the number of unique operands n2,
the total number of operators NI, and the total number of
operands N2. From these measures Halstead defines the
vocabulary of the program as n = nI + n2 and the total
length of the program as N = Ni + N2. He further com-
putes a predicted program length as N' = n 1 log2 nl + n2
log2 n2. The calculation of the predicted program length
is called length equation and is supported by the empirical
results of Halstead,4 Bohrer,5 and Elshoff.6

Halstead computes program volume as V = N log2 n
and minimal or potential volume as V* = n * log2 n *,
where n * is the size of the potential vocabulary. The

Figure 1. Actual (a) and potential (b) implementations of
a bubble sort program.

potential vocabulary is that needed to invoke a "built-in"
function (if one exists) to perform the desired task. For
example, the potential implementation of a sort pro-
cedure might look like call sort (x,n), where x is the
array to be sorted and n is the number of elements in
the array. The potential vocabulary would include call,
sort(.. . ), x and n. Therefore, n * is 4.
The program level is subsequently defined as the ratio

of potential volume to actual volume and is computed as
L = V* / V. An approximation of program level is
L' = 2/nI x n2/N2. Halstead found that the approxima-
tion has a correlation coefficient of 0.90 to the actual
observed value.4 Clearly, the larger the volume of the ex-
isting program relative to the volume of the potential pro-
gram, the lower the program level.

Halstead uses the volume and program level to calcu-
late the intelligence content of the program, expressed as
I= L' x V. He indicates that this relationship correlates
best with total programming and debugging time and that
intelligence content is a likely candidate for a complexity
measure. However, the intelligence content of a program
appears to remain invariant under translation from one
programming language to another and increases only as
the complexity of the problem increases.

Halstead uses the volume and program level to measure
the effort required to generate a piece of software by
E= VIL. Funami and Halstead7 point out that E has
often been used to measure the effort required to com-
prehend an implementation. For this reason, they suggest
that E may be used as a measure of program clarity. The
use of Halstead's metrics on a simple bubble sort, adapted
from an example used by Fitzsimmons and Love,12 is
shown in Figures 1 and 2 and Tables 1 through 5.

In general, metrics based on measures of program size
have been the most successful to date, with experimental
evidence indicating that larger programs have greater
maintenance costs than smaller ones. However, although
program size metrics tend to work well in ranking pro-
grams with widely varying sizes, other characteristics such
as data structures, data flow, and flow of control become
vitally important as the size difference decreases. In other

Figure 2. Span between data references.
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words, program size metrics can be a very good nominal
scale to use in putting programs into one "complexity
category," but it may not be able to distinguish between
different programs within the same category.

Data structures and data flow. Another factor that in-
fluences software complexity is the configuration and use
of data within the program. Several methods can be used
to measure complexity by the way program data are used,
organized, or allocated.

Span between data references. This technique, which is
based on the locality of data references within the pro-
gram, has no supporting empirical studies to demonstrate
its correlation with maintenance, but it is intuitively ap-
pealing.
A span is the number of statements between two ref-

erences to the same identifier with no intervening refer-
ences to that identifier. Consequently an identifier has
n - 1 spans for an identifier that occurs n times in the
source code (Figure 2).

Elshoff3 found that of 120 production programs used
at General Motors Corporation, over 13 percent had data
reference spans of 100 statements or more. Maintenance
activities might require a programmer to determine what
value a variable has at a particular point, and in more than
one case in eight the programmer would have to search
through at a level of 100 statements with Elshoff's data.

Segment-global usagepair. This measure, discussed by
Basili2'13 bases program complexity on the use of global
data within the program. It is useful for large programs
that consist of several modules or segments, but again no
empirical studies have been reported.
A segment-global usage pair (p,r) is used to signify the

instance of a segmentp using the global variable r. That is,
r is accessed within p.
The actual usage pair A UP represents the number of

times a module actually accesses a global data item. The
potential usage pair PUPrepresents the number oftimes a
module could access a global variable. A potential usage
of a variable rbyp indicates that the scope of rincludesp.
The relative percentage of actual usage RUP is then

RUP=A UP/PUP. This formula provides a rough mea-
sure of the likelihood that an arbitrary segment will refer-
ence an arbitrary global variable. The greater the likeli-
hood, the greater the possibility that a given global vari-
able may have its value changed in another segment,
without the knowledge of the maintenance programmer.

Table 1.
Operator count for actual implementation.

OPERATOR COUNT
BEGIN END

DO END

TO
IF THEN

nl = 8 Nl =

1

1 1
3
5
1
2
1
6

30

Such an oversight may increase the chance of error when
the software is modified.
For example, assume that we have a program with three

global variables, zl, z2, and z3. The program has three
subroutines, A, B, and C. If each subroutine has the
global variables zl, z2, and z3. The program has three
subroutines, A, B, and C. If each subroutine has the
global variables zl, z2 and z3 available for its use, then,
we have the following nine potential usage pairs:

(a,zl)
(a,z2)
(a,z3)

(b,zl)
(b,z2)
(b,z3)

(C,Zl)
(c,z2)
(c,z3)

In this case, PUP= 9. Further, suppose subroutine A ac-
tually references all three global variables, subroutine B
references two, and subroutine C references none. Then,
AUP= 5, and RUP becomes RUP= 5/9.

Table 2.
Operand count for actual implementation.

OPERAND COU'ST

x
SAVE
n2= 5

6

N2

Table 3.
Operator count for potential implementation.

OPERATOR
CALL
SORT
nl* = 2

C UNT

Table 4.
Operand count for potential implementation.

OPERAND
x
N

COUNIT

n2* = 2 N?* = 2

Table 5.
Software science parameters for bubble sort program.

Unicue Operators Ni
Unique Operands N2
Total Operators Ni
Total Operands N2
Vocabulary N
Observed Length N
Calculated Length N'
Volune V
Potentla' Voilal e V*
Prog,am Level L
Pgram Level L'
intel igence Co itent
Effor+ E

8
5
30
18
13
48
8 1092 8 + 5 1092 5 = 47
48 log,13 = I92

2log2 4 = 8
1 2 1 92 = o 063
2 8 x 5 18 = o069
o0069 x 192 = 132

192 0i069 =2t10`2
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Chapin's Q measure. In this method,'4 data items are
viewed differently, depending on how they are used, and
data are divided into four categories:

* Role P data:
output.

* Role Mdata: c
a segment.

* Role Cdata: d
a segment.

Figure 3. Structure
Chapin's 0 measu

input-out data clas

1
Input-output table used in C

* Role T data: data that pass through a segment un-

changed.

Since a particular datum can have different roles within
input needed to produce a segment's different modules or even within the same module, it is

counted as having each role.
lata that are changed or created within Chapin observes that each type of data usage con-

tributes different amounts of complexity to the module it
[ata used in a "controlling" role within is in. He notes that role C data contribute most to com-

plexity, since they control which module will be in-
voked-that is, which course of action will be followed.
RoleM data contribute less than role C data but still pro-
vide a substantial amount of complexity, since their value
is either initially defined or modified. Because role P

SCAN TEXT data are often used to modify the value of role M data,
role P data also contribute some complexity. Role Tdata,
which have no effect on the module, contribute very little
complexity.

/ \q<word An "input-output table" can be used to help classify
each datum.'5 This table consists of a list of each input
and output datum and its source (destination) for every
module or segment in the program. The user computes
program complexity Q by counting the number of data
items used in C, P, or Troles for input and Mor Troles
for output and listing them in the input-output table. For

PROC WORD each segment, the user multiplies the count by the ap-
propriate weighting factor suggested by Chapin to ac-
count for the differing complexity contributed by each

NuRD type of data. The weighting factor for role C data is 3; for
role Mdata, 2; for role Pdata, 1; and for role Tdata, 0.50.
These weighted products are then summed for each
module, producing an intermediate measure W'.

\ card The final measure takes into account the increase in
complexity that is due to repetition factor R. This R value

ard results from data being communicated between iterative-
\ end of data ly invoked segments and is calculated as follows. First

determine which module contains exit tests for iteration
that involve more than a single module. For every role C

GET CARD datum in these modules whose value comes from outside
the loop body, add 2 to the iteration-exit factor E, which
has an initial value of 0 for each segment. If the C role
datum is created or modified in a segment other than the
segment performing the exit test, but is still within range
of the iteration, add 1 to E. The repetition factor R for

chart for sample program to illustrate each segment is then calculated by R = (1/3 x E)2 + 1.
re of complexity. Table 6 depicts the Note that if the segment does not perform an iteration-
;sification in the programs. exit test, it has an E of 0, and hence an R of 1.

The index of complexity for each module Q is the
rable 6. square root of the sum of the weighted counts for that
"hapin's Q measure of complexity. module W' times its repetition factor R. That is,

UFJPU Q =IR xW'.
Vr)t,5 YP14Ft () The complexity for the entire program is then com-

I PHUWU()R puted bycalculatingthearithmetic mean of the individual
V4^u();>1) segment complexities. The entire process is illustrated in

, , 1S(,Ai the following example.
We have a program consisting of five segments, whose

relationships are shown in Figure 3, and whose input and
VVj R D output are shown in Table 6. The measures for each seg-

ment are
IIl (JIF ORI

* SCANTEXT W' =4,R= .1 111, Q=2.1082
* GETWORD W' = I0, R = 1.4445,Q=3.8007
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* GET CARD W' = 8, R = 1.0000, Q= 2.8240
* GET CHAR W' = 3.5, R= 1.0000, Q= 1.8708
* PROC WORD W' = 1, R=1.0000, Q=1.0000

The total of Q for all segments-that is, the overall pro-
gram complexity-is 11.6037/5 or 2.3207.

Overall, data structure and flow metrics fail to be very
comprehensive because the span between data references
indirectly measures program length in some cases, but not
consistently enough to qualify as a true hybrid.
Most of these techniques are also not widely applicable.

For example, the segment-global usage pair is only useful
with software that consists of programs that are
segmented and use global data, and Chapin's Q depends
on the use of segments that communicate among them-
selves.

In addition, since the segment-global usage pair and the
Chapin's Q depend on data communicated between
segments or modules, they clearly fail to be comprehen-
sive even within the area of data complexity. While we can
easily see that intermodule or global data can have a
detrimental effect on program understandability, other
properties of data can have similar effects-for example,
the span between data references.

Finally, data structure and flow metrics have not been
used in studies of their predictive power for software
maintenance.

Program control structures. The majority of the work
in software complexity over the past 10 years has dealt
with the effects of control flow on program complexity.
For example, a 50-line program with 25 IF-THEN-ELSE
statements has well over 33 million possible control paths
within the 50 statements. 16 Such a configuration can ob-
viously be difficult to comprehend fully.
The complexity of control flow is commonly measured

in density of control transfers within the program or in
interrelations of control transfers.

Either approach to measuring control flow complexity
normally represents a program as a flow graph to expose
the control flow topology. The flow graph of a program is
simply a directed graph that corresponds to the program's
flow of control.

For example, directed graph G= (V,E) consists of a
set of nodes Vand a set of directed edgesE connecting the
nodes. In a flow graph, each node represents a "sequen-
tial block of code," which is a sequence of instructions
that can be entered only at the beginning of the sequence,
can be exited only at the end of the sequence, and can con-
tain no transfers of control within the sequence itself. The
edges correspond to the flow of control between the
various nodes.

In edge (u, v) node u is the initial node, and node v is the
terminal node. The number ofedges that have a particular
node w as the initial node is the outdegree of w, and the
number of edges that have w as the terminal node is the in-
degree of w.

If an edge exists from some node u to some node v, u is
said to immediately precede v, and v is said to immediately
succeed u. If apath exists from some node u to some node

v consisting of one or more edges, u precedes v, and v suc-
ceeds u.

Since all the measures discussed in this section incor-
porate these concepts, we present Figure 4 to illustrate the
theory behind program flow control. Note that Node b
has an indegree of 1 and an outdegree of 3. Further, node
b immediately precedes nodes c, d, and e and immediately
succeeds node a. Also, node b precedes, in addition to
nodes c, d, and e, nodes g, h, and v.

McCabe's cyclomatic complexity. McCabeI6 has pro-
posed a graph-theoretic complexity measure that is widely
accepted, probably because it is easily calculated and is in-
tuitively satisfying. McCabe suggests that cyclomatic
complexity is applicable in determining how difficult pro-
gram testing will be, and empirical studies have been car-
ried out on the effectiveness of this cyclomatic measure
with favorable results.8'9 McCabe's measure is based on
the cyclomatic number V(G) of a program's flow graph.
For a flow graph with e edges, n nodes, and p connected
components (usually 1), the cyclomatic complexity is
calculated using V(G) =e-n + 2 xp.
The cyclomatic number may be viewed as the number

of linearly independent circuits in a strongly connected
graph, meaning that for any two nodes, one is reachable
from the other. In other words, the cyclomatic number is
the number of basic paths that can be combined to make
up any possible circuit on the graph. The formula for
calculating the cyclomatic complexity of the weakly
connected flow graph in Figure 5 is V(G) = 17 - 13 + 2 x
1 =6.

Figure 4. Directed graph illustrating program control
flow. Node b is the terminus of only one edge but is the
beginning of three edges. It thus has an indegree of 1
and an outdegree of 3.
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Further, if we convert the flow graph into a strongly
connected graph by adding an edge from the terminal
node m to the initial node a (Figure 6), we increase the
cyclomatic number by 1. With the new edge, we are add-
ing an additional "implicit" decision-to follow the edge
back to node a or to end the path at m. The strongly con-
nected flow graph in Figure 6 contains the following
seven independent circuits:

a-b-d-a
a-b-d-h
a-b-e-h-j
a-c-g-i-j
a-c-f-i-j
j-k - mr-a
j-l-m-a

Myers' extension to the cyclomatic number. Myers17
extends McCabe's theories by noting that predicates with
compound conditions are more complex than predicates
with a single condition. The following code segments il-
lustrate this point:

IF x=O THEN sl
ELSE s2

IF x=Oandy= I THEN sl
ELSE s2

Since both segments involve only a single decision, they
can both be illustrated by the same directed graph

Figure 5. Weakly connected flow graph. In this graph of
program flow, not all nodes are reachable from other
nodes (m to a, for example). With some adjustment,
however, this graph can become strongly connected.

(Figure 7), which has a cyclomatic complexity V(G) of 2.
However, their predicates differ in complexity.

Myers suggests that by calculating the complexity
measure as an interval rather than as a single value, we can
get a more accurate complexity measure. In his approach,
the interval's lower bound is the number of decision
statements plus 1, as in McCabe's V(G), and the upper
bound is the number of individual conditions plus I.

In this manner, Myers hoped to construct a complexity
measure that would account for both the decision state-
ments themselves and their predicates.

Using Myers' scheme, the first code segment has an
associated interval [2,2], and the second segment has [2,3]
to allow a finer distinction between programs with similar
flow graphs.

Unfortunately, no results comparing Myers' measure
to maintenance difficulties have been published, so their
applicability is uncertain.

Gilb 's logical complexity metric. Gilb 18 defines logical
complexity as a measure of how much decision-making
logic is in the program. He proposes two measures: CL, or
absolute logical complexity, which is the number of
"binary" decisions in the program's logic and cl, or
relative logical complexity, which is the ratio of absolute
logical complexity to the total number of statements in the
program.

Experiments support Gilb's assumption that the degree
of decision-making logic in the program can be correlated

Figure 6. Strongly connected flow graph. The weakly
connected program flow graph in Figure 5 has been ad-
justed by adding an edge from node m to node a. The
result is that all nodes are reachable from other nodes.
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to characteristics of that program such as error prone-
ness, development cost, and development time. This
general notion is suppported by Sime et al. 19,20 who have
shown that various forms of conditional constructs that
"simplify" control somewhat (IF-THEN-ELSE versus
IF-THEN-GO TO) favorably affect programming time
and the number of errors. Farr and Zagorski2l have also
found that the degree of decision-making within a pro-
gram is a significant factor in predicting software costs.

Gilb sees such a measurement as an indirect tool for
analyzing and perhaps controlling the program character-
istics mentioned above.

The knot count of Woodward, Hennell, and Hedley.
Woodward, Hennell, and Hedley22 suggest a method in
which they examine the relations between the physical
locations of control transfers rather than simply their
numbers. This method can be easily calculated as follows.

Let transfer of control from line a to line b be the
ordered pair (a,b), with min (a,b) referring to the first
line of the pair (a,b) and max(a,b) referring to the last
line. Under these assumptions, a "knot" occurs when
min(a,b) < min(p,q) < max(a,b) and max(p,q) >

Figure 7. Flow graph of a one-decision code segment.

Figure 8. A control flow knot occurs when the transfer
from a to b is interrupted, and some other transfer out-
side the a-to-b scope is required.

max (a,b), or when min (a,b) < max (p,q) < max (a,b)
and min (p,q) < min (a,b). In other words, a knot oc-
curs when we "jump" out of the scope of the (a,b)
transfer (Figure 8).

This technique may be generalized to apply to program
flow graphs by letting the ordered pair of line numbers
represent an edge of the graph. Hence the pair (a,b)
would now refer to the edge with initial node a and ter-
minal node b, rather than a transfer from line a to line b in
the program.

Difficulties can arise in obtaining an exact knot count,
since the node in a flow graph actually refers to a sequence
of instructions that may be entered into only at the begin-
ning and exited from only at the end, with no internal
transfers of control. The problem is shown more clearly in
Figures 9 and 1O. In Figure 9, line c makes up V3 while line
d is v4 In Figure 1O, both lines c and d make up node V3.
Therefore, we can say that if the node includes only one
line, a knot is present, but if it contains more than one, a
knot is not present.
An interval can be used to get a more precise knot

count, with the lower bound being the verifiable number
of knots detected and the upper bound the total number
of possible knots, assuming every block contains one
statement. Neither the interval nor the basic knot count
has been applied to the maintenance of real programs,
however.

Chen's measure of program complexity. Chen23 has
developed a topological complexity measure that is sen-

Figure 9. Flow graph with knot. A knot occurs when

transfer between two nodes is interrupted. Each node is

a sequence of events that has one entrance and one exit

with no internal transfers. Therefore, since a one-line-

per-code construction requires an internal transfer, a

knot results.

September 1982
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Figure 10. Flow graph without knot. Node v3 has two
lines instead of the one line in Figure 10. Since no inter-
nal transfer is needed, no knot occurs.

sitive to nested decision structures. His technique uses the
maximal intersect number min of the program's flow
graph.
To compute the min the flow graph must be converted

(if it is not already) into a strongly connected graph by
connecting the terminal and initial nodes with an edge.
Such a graph divides the two-dimensional space that it oc-

Figure 11. Illustration of maximal intersect number, or
min. The min is derived by first determining the number
of regions possible, (edges - nodes) + 2, and then draw-
ing a line so that it enters each region exactly once. The
number of times the line intersects the edges is the min.

cupies into a finite number of regions. (McCabe showed
that the number of regions in a connected, planar graph
without bridges, or edges that disturb the weak connec-
tivity of the graph, is equal to the cyclomatic number of
that graph by rearranging Euler's theorem from
n -e+r=2 to r=e- n+2.)
The min, then, is the number of times a line intersects the

edges of the graph when the line is drawn such that it enters
every region of the graph exactly one time (Figure 11).
The min may be calculated in this manner only for

graphs that do not have bridges. If a graph does have a
bridge, then the min for that graph is calculated by sum-
ming the mins of the strong components (the maximal
subgraphs that do not contain bridges), subtracting
twice the number of strong components, and adding 2
(Figure 12).

Figure 12. Illustration of maximal intersect number for graph with a bridge. Here we have two subgraphs connected
by a bridge. The min of the first is 4, as is the min of the second. By adding the two mins, subtracting twice the
number of subgraphs (4), and adding 2, we get a min of 6.

0
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E M2- 'PERBLER BOUND MIN = 2

( _ , \ER~~~~~~LOE BOUND MIN= 4

Figure 13. Illustration of upper and lower bounds of maximal intersect number. Note that the upper bound contains
nested decisions, while the lower bound decisions are all serial.

In general, the upper bound of a given flow graph's min
is n + 1, where the flow graph has n decisions, and the
lower bound is 2. The upper bound occurs when the flow
of control is arranged so that every decision is nested. The
lower bound is obtained when every decision is serial-
that is, unnested (Figure 13).

The scope metric. The scope metric,24'25 like other
metrics that measure control flow complexity, is based on
the graph-theoretic representation of a computer pro-

gram as a flow graph.
Let a computer program be represented as flow graph

G = ( V,E) with a single initial node and a single terminal
node. Then, the set of nodes Vcan be partitioned into two
sets-those with an outdegree of one or less, called receiv-
ing nodes and those with an outdegree of two or more,

called selection nodes.
To obtain the scope measure of complexity, we create a

subgraph G', consisting of all nodes that immediately
succeed a given selection node. That is, the subgraph con-

sists of all nodes that are connected by a single edge from
the selection node (including the selection node itself, in a
self-loop).
Each of these subgraphs has at least one node in the

graph G that is its lower bound. A lower bound is a node
that can be reached from every node in the subgraph; that

is, it succeeds every node that immediately succeeds the

selection node. Most subgraphs will have a number of

lower bounds, but the lower bound that precedes every
other lower bound of the subgraph is called the greatest
lower bound.
The number of nodes preceding the greatest lower

bound of a selection node's subgraph (excluding the GLB
itself) and succeeding the selection node, plus 1, yields the
adjusted complexity for that selection node. Each re-

ceiving node has an adjusted complexity of 1, except for
the terminal node, which has an adjusted complexity of 0.
The adjusted complexity of each node, both selection and
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receiving nodes, is summed to get the overall complexity
of the flow graph.
The process of computing the scope measure of com-

plexity for the flow graph in Figure 14 is illustrated in
Tables 7 and 8.
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The scope ratio. The scope number, in essence, is the
number of nodes in the flow graph. Obviously, this
measure can not always be reliable, since some programs
can be trivially rearranged to give flow graphs with dif-
ferent scope measures, as shown in Figure 15. For this

c ( Creason, the scope ratio was developed.26
The scope ratio is calculated by dividing the number of

nodes in the flow graph, excluding the terminal node, by
the scope number. In this case, as the ratio increases, the

+(e ) WJ complexity decreases, but the scope ratio can be taken as
one minus the original ratio. This number is much more
satisfactory, since it increases towards one as complexity
increases, and decreases to zero as complexity decreases.

If the scope ratio is used to analyze the flow graph in
Figure 14, it would yield a value of 1 - (11/25), or 0.56.
The advantage of the scope measure over current forms

of control flow metrics is its sensitivity to nested deci-
sions, which is illustrated in the complexity measures of
the flow graphs in Figure 16. The results seem to satisfy
the rankings we would intuitively assign to these flow

k) graphs.

As with every other measure yet surveyed, the control
flow metrics fail to be comprehensive. They do not take
into account the contribution of any factor except control
flow complexity.
However, control flow metrics do a fairly good job of

tionsg Subgraphs are explained in Table 7, and scope differentiating between two programs that are otherwise
complexity is computed in Table8. equivalent in other characteristics such as size. A useful

approach may be to use control flow metrics to differen-
tiate among programs that have already been placed in the
same size categories using size metrics.

Table 7.
Subgraphs within flow graph in Figure 14.

Table 8. 0
Computation of scope complexity of flow graph in

Figure 14.

WN())t C0 MPLFX ITV

,,'~ ~~ ~ ~ ~ ~ ~~~~Fgr 15. Posbeoedcso lwgah. Alhog

,,~~~~~~~~~~~~~~~~~~ 0

r

F ~ ~~~~~~~~Figure 15. Possible one-decision flow graphs. Although
all these graphs depict one decision, the number of

Iq ()rALT:, nodes involved, and hence the scope measure, is not the
same for each.
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Hybrid complexity measures. Hybrid complexity
measures attempt to remedy one of the shortcomings of
the single-factor complexity metrics in use. They consider
two or more properties that are thought to contribute to
software complexity-program size, program data struc-
tures, and program flow of control.
One approach is to borrow part of the measure from an

existing metric, such as Hansen's,27 which combines a
measure of control flow and program size. An alternative
approach is to develop completely new measures of com-
plexity for the various properties and combine them, as
does Oviedo.28

Hansen's measure ofcomplexity. Hansen27 developed
a measure that combines the cyclomatic complexity of
McCabe and a count of operators similar to Halstead's
nl.

Hansen's complexity measure consists of a 2-tuple
(a,b), where the first value is a count of the number of

* IF, CASE, or other alternate execution con-
structs and

* iterative DO, DO-WHILE or other repetitive
constructs.

The second component of the 2-tuple is a count of
operators in the program, which Hansen defines as

* primitive operators such as +, -, *, AND,
SUBSTR, etc;

* assignment;
* subroutine or function calls;
* application of subscripts to an array; and
* input and output statements.

Hansen suggests that some version of the cyclomatic
number is an appropriate measure of control flow com-
plexity, since it is easy to compute and supports the use of
an operator count by observing that a program with more
operators is bigger; hence "more is going on" within the
program. Because each operation must be understood to
understand the whole, a bigger program is more complex.
Hansen has demonstrated this technique by applying it

to four programs and their revisions, which were pub-

McCabe's V(G)=4
Myers' Extension=14.41

Gilb's CL=3
Knot Count=-(0,0
Chen' s Metric = 2

Scope Ratio = l - (9/1 5) =0 40

McCabe's V(G)=4
Myers' Extension = 4,41

Gilb's CL=3
Knot Count=1O.01
Chen's Metric=4

Scope Ratio = 1 - (9/24) = 063

McCabe's V(G)=4
Myers' Extension =14,41

Gilb's CL=3
Knot Count= 10.01
Chen's Metric= 4

Scope Ratio= 1- (6/18) = 0 67

Figure 16. Flow graphs with three decisions.
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lished in a popular programming style text by Kernighan
and Plauger. 29 In each case, the complexity of the original
program's 2-tuple indicated greater complexity than the
revised version's 2-tuple, which was written to conform
with the text's guidelines on programming style.
Few empirical studies can support Hansen's measure.

However, the components of the measure have been in-
dependently validated in their original form, which would
tend to lend a measure of credibility to this metric.

Oviedo 's model ofprogram complext)'. Oviedo28 has
developed a method that measures data flow complexity
and control flow complexity. First, control flow complex-
ity cf is calculated, and then data flow complexity df is
calculated. Total program complexity C is then C = adf
+ bdf, where a and b are appropriate weighting factors.
In his preliminary work, Oviedo suggests that the
weighting factors be a= b= I until further experimenta-
tion can be done.
The control flow complexity cf is easily calculated once

the program is represented as a flow graph-it is simply
the number of edges in the graph. The calculation of the
data flow complexity is a bit more complicated, however,

Figure 17. Illustration of locally exposed variables that
can reach n3.

Figure 18. Flow graph of sample program to illustrate
Oviedo's complexity model.

and requires some preliminary definitions. A variable
definition occurs when a variable is assigned a value,
either through an input statement, an assignment state-
ment, or a function or subroutine call. A variable
reference occurs when the value of a variable is used,
either in an output statement or some sort of expression
such as an assignment statement.

In a definition-reference relation, the definition and
reference occur in the same node or they occur in different
nodes. Allen and Cocke30 term a variable locall) available
for a block if there is a definition of that variable within
the block. A variable is termed locallj exposed if it is

referenced in a node and is not preceded in that node by a
definition of that variable.
A variable definition in node ni can reach a block nk if

there is a path from n1 to nk such that the variable is not
locally available in any node on the path. A variable
definition kills all other definitions of the variable when
the definition is encountered.
The data flow complexity of node ni, called df, is the

number of prior definitions of locally exposed variables in
ni that can reach ni (Figure 17). Assume that n I of Figure
17 consists of x: = ,j: 2, and m: = 5. Further, let node
n2 consist of k: I and j: = 3, and node n3 consist of
d: = x +-j + k. Then, the locally exposed variables in node
n3 are x, j and k. Note that variables x and k were
previously defined one time each and j twice, making df
equal to 4.

Data flow complexity for the program is then equal to
the sum of the data flow complexity of each node. That is,

df = df,
i=t

Note that the data flow complexity of the first node df I is
always zero. The total program complexity is

c= e+ S df1
i=t

For example, let nO be the initial node of a program, and
nodes n 1, n2, and n3 be defined as above. The flow graph
of such a program may appear similar to the flow graph in
Figure 18 and the program itself might be

READ n,x,k

If n = 1 THEN
x: 1
j: 2
m: 5

ELSE
k: 1
j: 3

ENDIF
d: = x+j+k
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Notice the addition of the level statement and the IF-
THEN-ELSE construct to the previous program. The
complexity of node nO that consists of

READ n,x,k
IF n= I

is zero, since no prior definitions reach this block. Nodes
nl and n2 have no locally exposed variables, since they
consist only of assignment statements, which use constant
values. Node n3 has three locally exposed variables, x, j,
and k. For each locally exposed variable the following
number of definitions reach n3:

x 2
j
k

2
2

6

Therefore node n3 has a data flow complexity of 6, or
df3= 6. Then df= 6, since dfO= 0, dfl=0, df2 0
and df3 = 6. This sample clearly has four edges, so e =

4. If a=b=l, then c=4+6=10. Hence, the sample
program has an Oviedo complexity of 10.

Integrating software science with the scope measure.
To develop a reliable metric that can assign a realistic
complexity measure to a given computer program, com-
ponents must be included that evaluate the other proper-
ties contributing to program complexity. A modification
to the original scope measure was suggested for this
reason,31 and because it is the most context-sensitive of
the program size metrics, software science4 was selected
as part of the modification. As we discussed earlier, soft-
ware science is used to reflect the complexity contributed
by program length and data.
We consider the program as flow graph G =( V,E) and

each node has a complexity assigned to it, which is called
raw complexity.
The raw complexity of node vi is el, the software

science measure of effort. The first node v 1 has raw com-
plexity el, the second node v2 has raw complexity e2, etc .
This measure is calculated in the following manner. The
unique operand and operator parameters n 1 and n2 are

determined for the entire program-that is, the parame-
ters are global. The total use parameters n 1 and n2 for the
operator and operand are determined for individual node
or block vi; that is, the parameters are local. This results
in parameters n I i, n2i, and Ni for the ith node. The com-
putation of total e values Ei is Ei= (Ni log2 n)/L', where
L' = 2/n 1 x n2/N2. Note that L' is a global parameter.
The software science e value for each node is used to

compute adjusted complexities for the selection nodes.
The adjusted complexity for a selection node is the sum of
the e values of every node within the "scope" of that
selection node, plus the e value of the selection node itself.
A node is within the scope of a selection node if it (1)
precedes the greatest lower bound of the subgraph con-

sisting of all nodes that immediately succeed the selection
node and (2) succeeds the selection node.

Receiving nodes (those with an outdegree of 1) have an

adjusted complexity equal to their raw complexity. The
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complexity of the overall program is the sum of the ad-
justed compexities of every node in the flow graph.

The hybrid approach to measuring software complexi-
ty is clearly the most sensible approach. Software com-
plexity is caused by so many different factors that measur-
ing only one of them cannot help but give unreliable
results for a general case.

Since the hybrids presented here are not supported by a
great deal of empirical research, their veracity must be
evaluated by examining their components.
With Hansen's measure, the component that measures

flow of control is similar to Gilb's CL, absolute logical
complexity. A moderate amount of empirical work sup-
ports the utility of measuring the flow of control to deter-
mine complexity, and the operator count part of the
metric is supported in part by work done to validate
Halstead's software science.
However, if Hansen's measure shares some of their

support, it must share all of their drawbacks. Gilb's
measure lacks context sensitivity, and Halstead's work
suffers from a similar problem. However, they are widely
applicable to many types of software. Hansen also uses a
2-tuple, which creates problems with two measures such
as (5,20) and (3,65), since determining which of the two is
more complex is difficult. A single component measure of
complexity is much more desirable. Oviedo's model,
which measures the number of edges in a flow graph, is
similar in principle to McCabe's and Gilb's measures and,
like these two, fails to consider the context of each edge.
Also, determining an appropriate weighting factor a for
control flow complexity may be difficult. The second
component, data flow complexity, seems to be intuitively
satisfying, but no empirical studies have been reported to
support this property's effect on program complexity.
The weighting factor b for this component may also be
difficult to determine.

The measures just presented represent the metrics be-
ing used in larger software-oriented companies and some
universities. Some appear quite reliable and valid, but all

Table 9.
Usefulness of complexity metrics.*
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have some problems associated with them. Each metric
included can be implemented with a computer program,
and while there may be some disagreement on what is in-
cluded in the calculations (for example, lines of code and
Halstead's software science), all can be said to be deter-
ministic.
Table 9, which summarizes the usefulness of each

metric, shows that the two qualities most lacking are con-
text sensitivity and comprehensiveness. Most are widely
applicable, though of course, they may work better on
some types of problems than others. Many are supported
by empirical evidence, though many have not been tested.
As more work is done in this field, more of these will be
subjected to experiments. The initial goal would be to
develop measures that can distinguish reliably among the
complexity levels of several programs. For example, a
progam with five branches will always have the same
cyclomatic number, regardless of branch arrangement.

Development of new complexity matrices will prob-
ably follow this course over the next several years, as
researchers attempt to refine the measures to evaluate the
context of use for each property being considered. N

Acknowledgment

Work by Harrison and Magel was supported in part by
National Science Foundation Grant MCS 8002667.

References

1. J. C. Baird and E. Noma, Fundamentals of Scaling and
Psychophysics, John Wiley & Sons, New York, 1978, pp.
1-6.

2. V. Basili and A. Turner, "Iterative Enhancement: A Prac-
tical Technique for Software Development," IEEE Trans.
Software Eng., Vol. SE-I, Dec. 1975, pp. 390-396.

3. J. Elshoff, "An Analysis of Some Commercial PL/I Pro-
grams," IEEE Trans. Software Eng., Vol. SE-2, June
1976, pp. 113-120.

4. M. Halstead, Elements of Software Science, Elsevier
North-Holland, New York, 1977.

5. R. Bohrer, "Halstead's Criteria and Statistical Algo-
rithms," Proc. Eighth Ann. Computer Science Statistics
Symp., Los Angeles, February 1975, pp. 262-266.

6. J. Elshoff, "Measuring Commercial PL/I Programs Using
Halstead's Criteria, " ACMSIGPLAN Notices, May 1976,
pp. 38-46. (also GM Research Publication GMR-2012,
1975).

7. Y. Funami and M. Halstead, "A Software Physics
Analysis of Akiyama's Debugging Data," Proc. SYmp.
Computer Software Eng., 1976, pp. 133-138.

8. B. Curtis et al., "Measuring the Psychological Complexity
of Software Maintenance Tasks With the Halstead and
McCabe Metrics," IEEE Trans. Software Eng., Vol. SE-5,
Mar. 1979, pp. 96-104.

9. B. Curtis, S. Sheppard, and P. Milliman, "Third Time
Charm: Stronger Prediction of Programmer Performance
by Software Complexity Metrics," Proc. Fourth Int'l
Conf. Soft ware Eng., 1979, pp. 356-360.

COMPUTER

K AAj. ;

Ne MF\3es

K;

78



10. A. Feuer and E. Fowlkes, "Some Results from an Em-
pirical Study of Computer Software," Proc. Fourth Int'l.
Conf. Software Eng., 1979, pp. 351-355.

11. S. Sheppard, P. Milliman, and B. Curtis, Experimental
Evaluation of On-Line Program Construction, Tech
Report TR-79-388100-6, Arlington, VA, GE Information
Systems Programs, 1979.

12. A. Fitzsimmons and T. Love, "A Review and Evaluation
of Software Science," Computing Surveys, Vol. 10, No. 1,
Mar. 1978, pp. 3-18.

13. V. Basili, "Product Metrics," Tutorial on Models and
Metricsfor SoftwareManagement andEngineering, IEEE
Computer Society Press, 1980, pp. 214-217.

14. N. Chapin, "A Measure of Software Complexity," Proc.
NCC, 1979, pp. 995-1002.

15. N. Chapin, "Input-Output Tables in Structured Design,"
StructuredAnalysis andDesign, Volume2, Infotech Int'l.,
Ltd., Maidenhead, UK, 1978, pp. 43-55.

16. T. McCabe, "A Complexity Measure," IEEE Trans. Soft-
ware Eng., Vol. SE-2, Dec. 1976, pp. 308-320.

17. G. Myers, "An Extension to the Cyclomatic Measure of
Program Complexity," ACM SIGPLAN Notices, Oct.
1977, pp. 61-64.

18. T. Gilb, Software Metrics, Winthrop Publishers, Cam-
bridge, MA, 1977.

19. M. Sime, T. Green, and D. Guest, "Psychological Evalua-
tion ofTwo Conditional Constructions Used in Computer
Languages," Int'l J. Man-Machine Studies, Vol. 5, No. 1,
1973, pp. 105-113.

20. M. Sime, T. Green, and D. Guest, "Scope Marking in
Computer Conditionals-a Psychological Evaluation,"
Int'l J. Man-Machine Studies, Vol. 9, No. 1, 1977, pp.
107-118.

21. L. Farr and H. Zagorski, "Quantitative Analysis of Pro-
gramming Cost Factors: a Progress Report" in "Eco-
nomics ofAutomatic Data Processing," Proc. ICCSymp.,
Frielink, ed., The Netherlands, 1965.

22. M. Woodward, M. Hennell, and D. Hedley, "A Measure
of Control Flow Complexity in Program Text," IEEE
Trans. Software Eng., Vol. SE-5, Jan. 1979, pp. 45-50.

23. E. Chen, "Program Complexity and Programmer Produc-
tivity," IEEE Trans. Software Eng., Vol. SE-4, May 1978,
pp. 187-194.

24. W. Harrison and K. Magel, "A Complexity Measure Based
on Nesting Level," ACMSIGPLANNotices, Mar. 1981,
pp. 63-74.

25. W. Harrison and K. Magel, "A Graph-Theoretic Com-
plexity Measure," ACM Computer Science Conf., St.
Louis, Missouri, Feb. 1981.

26. W. Harrison and K. Magel, "A Topological Analysis of
Computer Programs With Less Than Three Binary
Branches," ACM SIGPLAN Notices, Apr. 1981, pp.
51-63.

27. W. Hansen, "Measurement of Program Complexity by the
Pair (Cyclomatic Number, Operator Count)," ACM
SIGPLAN Notices, Mar. 1978, pp. 29-33.

28. E. Oviedo, "Control Flow, Data Flow and Program Com-
plexity," Proc. COMPSAC80, pp. 146-152.

29. B. Kernighan and P. Plauger, The Elements ofProgram-
ming Style, McGraw-Hill, New York, 1974.

30. F. Allen and J. Cocke, "A Program Data Flow Analysis
Procedure," Comm. ACM, Vol. 19, No.3, Mar. 1976, pp.
253-261.

31. W. Harrison, "A Hybrid Metric to Measure Software
Complexity," MS thesis, University of Missouri-Rolla,
1981.

Warren Harrison is a doctoral student in
computer science at the University of
Oregon. He has a BS in accounting and in-
formation systems from the University of
Nevada-Reno and an MS in computer sci-
ence from the University of Missouri-
Rolla. In 1980, he was awarded the Cer-
tificate in Data Processing.

m Harrison has been a programmer with
the Nevada Cooperative Extension Ser-

vice, a computer scientist with Lawrence Livermore National
Laboratory and a member of the technical staff at Bell
Laboratories. His research interests include software main-
tenance, program testing, human factors, and decision support
systems.

Kenneth Magel is an associate professor of
computer science at the University of
Texas at San Antonio. He taught for two
years at Wichita State University and then
for four years at the University of Mis-
souri-Rolla. His research interests include
software metrics, predictive software de-
velopment tools, and the use of compre-
hensive models in program optimization.
Magel received a PhD in computer sci-

ence from Brown Universityin 1977. Heis a member of the IEEE
Computer Society and the ACM.

Raymond Kluczny is an associate professor of engineering
management at the University of Missouri-Rolla, where he has
been since 1979. He received a DBA from Arizona State Univer-
sity in 1979. Kluczny's research interests are management infor-
mation systems and systems analysis and design. He is a member
of the Society for Management Information Systems and the
ACM.

Arlan DeKock is professor and chairman
of the Computer Science Department at
the University of Missouri-Rolla, where he
has taught since 1968. Previously, he
worked for NASA, was database adminis-
trator for the Missouri Department of
Social Services, and consulted for numer-
ous private and governmental organi-
zations. His research interests include soft-

_ w _ ware engineering, database design, and ar-
tificial intelligence. DeKock received his PhD in 1968 in Human
Factors Engineering from the University of South Dakota. He is
a member of the ACM.

September 1982 79


	Applying Software Complexity Metrics to Program Maintenance
	Recommended Citation

	Applying software complexity metrics to program maintenance

