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ABSTRACT 

The discove~ of deeper production and higher pressures has 

resulted in the need for control equipment for preserving and protecting 

these great reservoirs of energy; and, in the case of high pressure 

condensate wells, has resulted in the need for means for preventing 

freezing or hydrate solidification caused qy throttling the production. 

Development of a successful removable subsurface regulator has enabled 

operators to reduce dangerous~ high surface flowing pressures to safe 

workable limits; and, by moving the point of principal pressure reduction 

from the surface to warmer subsurface levels, has resulted in complete 

elimination of freezing conditions in flow lines. Development and opera-

tion of the regulator are described, and charts and tables for use in 

determining proper depths and.pressure reductions for preventing freezing 

are shown. Other results, heretofore considered subordinate, such as 

reduction and stabilization of condensate ratios, and retarding of water 

encroachment, have been observed. Possibility- of the use of subsurface 

regulators to establish eonditiQns in the tubing string BlOst favolftble 



for condensate precipitation is noted. Further technical research 

is desired relative to the use of subsurface regulators for controlling 

temperatures and pressures in the flow string to obtain conditions , 

most conducive to condensate precipitation and an increased condensate 

recovery. 
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TABLE .2 

Subeurfaoe temperature or on field. in Texu and LouisiaDa 

*Geothermal 
Gradient 

Produc1nQ. Sub·Sea Temp. Feet per 1° P. 
DtnaJon and Field Formation Depth of. Increaae Type of Structure 

Eaat Ta .. 
i46 East Texas ....... Woodbine 3300 50.00 Stratipaphic Trap 

Navarro Crossina: .. Woodbine 5545 184 53.31 Pierce:ment T~ Salt Dome 
Oakwood. ... . .. Woodbine 5610 186 52.92 Anticline Faulted. 
Van •. . • ' ..... Woodbine 2425 136 43.30 Deep ~ted Dome Faulted 
Talco ........... Paluxy 3785 147 56.49 Anticline Faulted 
Willow Sprina:s . . Glenn Rose: 6925 221 49.11 Anticline Faulted 

GulfCout 
Amelia ... Frio 6480 164 77.14 Deep Seated Dome Faulted 
Anahuac .... Frio 7050 178 71.93 D~p Seated Dome Faulted 
Cedar Point .. ... Frio SS85 172 60.70 Deep Sealed Dome Faulted 
Danbury ......... Frio SSOO 178 56.12 Piercement Type Salt Dome 
Dicklnaon ~~l: Frio 8000 199 67.22 Deep Seated Dome Faulted 

Frio 9060 217 66.13 mrt of Dickinson StructW'f:: 
(Gillock) .. Frio 8750 207 68.89 Fault.M Blocks 

Friendswood . . . Frio S800 164 69.04 p Seated Dome Faulted 
Haatinlls . .. . .. Frio 6000 170 66.66 ~p Seated Dome Faulted 
Lovell Lake : .. Frio 7475 172 81.25 Deep Seated Dome Faulted 
Pledaer .. ~ .. Frio 6730 170 74.77 Deep Seated Dome Faulted 
Roanoke ... Frio 8390 196 72.32 ~~ Seated Dome Faulted 
Suaarland. Frio 3600 156 47.36 SeIDl-Deep Seated Piercement 

Type Dome 
Thompaon!'l ....... Frio 5250 162 64.02 Deep Seated Dome Faulted 
Withen (Maanet) . Frio S350 152 7 • . 30 Elonaated Deep Seated Faulted 

Dome 
N. Crowley ..... Frio 8600 196 74.13 Deep Seated Dome Faulted 
Vanderbilt; . . .. Frio SS30 186 64.30 Deep Seated Dome Faulted 
Conroe ... ........ Cockfield 4900 172 E3.26 Deep Seated Dome Faulted 
Hardin. .. Cockfield 7610 196 65.60 Faulted Resional Uplift 
Livinaston. · .... .. Cockfield 4115 158 52.75 Deep Seated Dome Faulted 
Raccoon Bend ... Cockfield 3850 156 50.65 Deep Seated Dome Faulted 
Sean-a .•. •. . ••.• Cockfield 5060 165 59.52 Deep Seated Dome Faulted 
TombalL .. . .. .... Cockfield S380 182 52.74 Deep Seated Dome Faulted 
N. Cotton Lake .. Marainulina 6145 156 80.85 Closure on Fault (Part of South 

Cotton Lake Structure) 
S. Cotton Lake .. Marsinulina 6320 156 S.U5 Elonaated Faulted kalona! Anti_ 

" cline 
Hutinss . '. ' ." Marainulina 5700 162 69.51 Deep Seated Dome Faulted 
Roanoke ....... Marainullna 8630 201 71.32 Deep Seated Dome Faulted 
N. Crowley . . .. MarKinulina 7970 188 73.79 Deep Seated Dome Faulted 
N . Crowley . . ..... Miocene 7020 169 '78.87 Deep Seated Dome Faulted 

~~~~~:nbia:.: : . Miocene 34SO 146 52.27 Deep Seated Dome FAulted 
Miocene 2350 126 51.08 f1:e~s:a~~~mS:I~~:;~ GOOfIe Creek ...... Miocene .2S8O 115 73.71 

Cameron Meadows Miocene 3925 139 66.52 Piercement Type Salt Dome 
Barbers Hill. Miocene 4.100 136 80.35 Plercement TYJ)e Salt Dome 
Darrow, LA . .. ... ~~~n~ayou 5760 167 66.20 Piercement Type Salt Dome 
HulL . . .. ... . ... 4.100 145 69.23 ~~~~I~~ltrom~ome Katy ..... . . . .. . Saline Bayou 7000 170 77.77 
Kittrell ... .. .... Carrizo 1710 121 41.70 Pieroement Type Salt Dome!: 
Lake Hermitaa:e .. . Miocene 3175 117 85.81 Piercement Type Salt Dome 
Lake Waahina:ton .. Cap Rock 1125 104 46.87 Piercement Type Salt Dome!: 
N. Crowley .. . . Diecorbis 7945 186 74.95 Deep Seated Dome Faulted 
Ra.c.eoon Bend . .. , McElroy 3250 1<2 52.41 Deep Seated Dome Faulted 
Roa.noke . . . .. HeterOlteaina 7790 187 72.80 Deep Seated Dome Faulted 
Soono ...... ... Wilcox 764() 221 53.47 Deep Seated Dome Faulted 
S. Liberty .. .. .... Saline BAYOU .925 1<2 79.43 Piercement Type Salt Dome 

Soutbwe.t Texae 
F10ur Bluff .. .. •.. Frio 6650 185 63.3.1 Deep Seated Dome Faulted 
Greta ..... .. .. ... Frio 5750 177 59.27 Anticline Faulted 
Heylet' .. . . .. .... . Frio S360 164 63.81 Sand Len.es on Anticline 
Kel.ey ... ... Frio 4495 158 57.62 Anticline 
Kelaey ........•.. Frio S800 182 56.86 Anticline 
Plymouth .... .. .. Frio 5675 165 65.58 Monocline 
Tom O·Connor . ... Frio S800 177 59.79 Deep Seated Dome Faulted 
Colora.do ...... . .. Cockfield 2330 145 35.84. Monoc:llne-LeDI 
Dirks ............ Cockfield 3510 149 50.86 Faulted Anticline 
VOII .• .•..•••. ... Coekfi.ld 3S5O 150 50.71 Faulted Monocl1ne 
Government Well •. ~cElroy 1750 128 36.45 Faulted Monocline 
Loma Novia ..... . McElroy 1950 138 33.62 Monocline-LeDI 
I..opes •... ... . ... McElroy 1610 124- 36.59 Monocline Faulted 
Seven Si.tera. .. McElroy 1900 132 36.53 Monocline Faulted 
Greta . ... .. .. .. Heterostetrina 4150 143 65.87 Anticline Faulted 
HUbl ...... .... Edwards Lime 3175 116 88.19 Serpentine 
Hilbia .. .. ... Serpentine 2000 121 48.78 Serpentine 
Kohler •.•.. Mirando 1825 137 32.01 Monocline 
Lundell ... . . .. .. McElroy 940 III 30.32 Monocline Faulted 
N. Sweden . .. .... Pettul 4900 179 49.49 Faulted Anticline 
O'Connor ..... . ' . .. Flemin&' 2950 121 71.95 Deep Seated Dome Faulted 

i:f: ~:~~n : : : : : : Catahoula 3900 133 73.58 Deep Seated Dome Faulted 
HeteroeteKina 4750 158 60.89 Deep Seated Dome Faulted 

WeetTexae 
Hobb" ... . ... ... . Permian Ume SOO 98 27.77 Anticline 
White and Baker . . Permian Lime 5979 126 129.98 Anticline 
Wink .. .... ...... Permian Lime 110 85 ?2.oo Anticline 

NOI'tb Tuu 
Avoca ... .... .. ... Pa)o Pinto 

Anticline Faulted Lime 1710 129 34.8!J 

• BIUIed on auumed averaae Sea Level Temperature of Texas and Louillana of SOO F. 
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TABLE 5 

CORRECTION FACTORS FOR DETERlmJING THE PRESSuRE DOIEDIATELI 
AOOVE OR BELOW A BOTTOK HOLE REGULATOR 

Inatructional 

To determine the theoretical upatreaa fl0.ing 
pressure at the regulator before installation, aultiply the 
actua;l aurface flowing pressure (at the deaired rate of 
.ithdrawal) b,y the correction factor indicated for the depth 
at which the regulator is to be set and for the gravity of 
the gas. 

To determine the theoretical downstream flowing 
pressure at the regulator before instellation, multiply the 
proposed surface flowing pressure by the correction factor 
indicated for the depth at .hich the regulator is to be set 
and for the gravity of the gas. 

Well 
Depth 

1,000 
1,500 
2-,000 
2,500 
3 000 
3500 
4,000 
4,500 
5 000 
5,500 
6000 
6500 
7 000 

· 7 500 
8000 
8,500 
9 000 
9.500 

10 000 

CORRECTION FACTOR 
.6 Gravity.7 Gravity ' .8 Gravity 

1.021 1.025 1.029 
1.032 1.037 1.043 
1.043 1.050 1.057 
1.05.1.. 1.063 1.071 
1.06J..5 1.075 1.087 
1.0705 1.089 1.102 
1.085 1.100 1.116 
1.099 1.116 1.132 
1.110 1.130 1.1.1..9 
1.120 loll . 1.163 
1.132 1.155 1.181 
1.143 1.175 1.195 
1.155 1.184 1.211 
1.171 1.195 1.227 
1.181 1.210 1 ,2il 
1.190 1.230 1.260 
1.202 1.240 1.273 
1.215 1.250 .28'5 
1.225 1.265 1.305 

To simplif7 this operation an average surface 
preasure of 2200 p. s.1. was used. Using Bureau of Kines 
Monograph 7 meant extending ·tables for both depth and 
pressure. 



INTRODUCTION 

Ever since the tapping of the first oil and gas reservoir that 

carried considerable pressure, operators have encountered freezing problems 

caused blf the formation of hydrates on the downstream side of the surface 

controls. Until recent years, this trouble was merely a seasonal headache 

that usually started with the first cold spell in the fall. Surface 

hot water heaters, although troublesome and dangerous, proved to be a 

remeqy for this ear~ trouble, and freezing lines became a seasonal 

pain and not a serious problem. 

During the past few years, however, the discove~ of many deep 

pools has brought to the surface much greater pressures, and has resulted 

in the need for stronger equipment and safer and better methods for 

handling this great energy. The control and protection of these 

reservoirs of energy, as well as the combatting of freezing caused qy . 

throttling the production, today . constitute problems of great importance, 

problems that will continue to become more critical as deeper and higher 

pressure production is found. 



The removable subsur~ace regulator was designed primarily to help 

solve these problems. 

The purpose of this paper is to describe the theo~ and mechanism 

of the subsurface regulator, the progress alreaqy made qy its use, and the 

. important part it is believed the regulator is destined to play in the 

control of high pressure wells in the future. 

EARLY HISTORY OF REGULATOR 

Prior to the development of the subsurface regulator, bottom hole 

choking was used rather extensively to reduce surface flowing pressures and 

to eliminate freezing. These installations, although they did the job 

successfully, had one serious deficiencr,r - the choke had a bean with a 

fixed orifice and only one rate of flow could be had without pulling the 

choke and changing the size of the bean. Due to the fact that .the rates 

of production sometimes had to be changed frequently to meet varying 

demands, pulling the choke to change the bean size became, in rna.ny instances, 

quite a task. The operation also required shutting in the well, which 

was not always convenient. 



With the objective of eliminating these deficiencies, work was 

begun on a removable subsurface regulator. Regulators of several t.ypes 

were built and a series of laborator.y and field tests started. The results 

of most of these were discouraging, primarily because steels suitable for 

withstanding the abuse caused b.1 chattering, cutting, and corrosion were 

not available. During these tests of the first forms of the regulator, 

some of the valve elements became so badly cut b.1 erosion and corrosion as 

to be useless after o~ a few days. Other t,rpes of valves fluttered and 

chattered like machine guns; and, in still other t.ypes, the valve elements 

broke into two or more pieces. 

It was not until after the tool was redesigned altogether to 

eliminate chattering, and after the discover.y of the resistance of K Monel 

to corrosion and of Kennametal to flow cutting, that the regulator re~ 

began to show practical results. 

Because K Monel and Kennametal have played such a vital part in 

prolonging the life of the regulator, it is proper that these materials 

be brief~ described. K Monel is a corrosion resistant wrought alloy of 



nickel, copper and aluminum. The metal is non-ferrous but responds very 

favorably to heat treatment, its hardness being raised from 150 Brinell 

to 280 Brinell. Its resistance to the action of mineral and organic acids, 

alkalis, and salts makes it a most desirable material for the regulator 

valve elements. A very unusual physical pro~rty of K Monel i s that its 

heat treatment is distinctly different from that used for steels. The 

general procedure for hardening this metal is to heat it to 1100 degrees F, 

and then cool it at a rate not exceeding 15 degrees F per hour. Softening 

for machinability is performed qy heating the K Monel to about 1500 

degrees F and quenching in water. 

Kennametal is a hard cemented carbide composition most commo~ 

used in cutting tools for mac~ng tough steels. The physical property 

of this material that makes it so desirable for use in forming the 

ground seats of the regulator valve elements is its resistance to flow 

cutting and sand blasting. It was not until after all other materials 

had failed that the idea of placing Kennametal inserts in the vulnerable 

sections of the regulator valve elements was conceived. The results of 



its use were far beyond expectations and it has almost completely solved 

the abrasion problem. The Kennametal inserts must be ground with diamond-

impregnated bakelite wheels and lapped with diamond dust to make a 

perfect ground seat. 

EXPLANATION OF REGULATOR MECHANISM 

The removable subsurface regulator consists of two principal 

parts, the locking mandrel assem~ and the regulating assembly. The 

locking mandrel assembly is the same as has been widely used for removable 

subsurface chokes and safet.y valves, and hardly needs a detailed explana~ 

tion. However, for the benefit of those not familiar with the lOCking 

device; as shown in Figure 1, it is a mandrel and slip type lock which 

may be rlm and pulled under pressure on an ordinary steel measuring line. 

Sealing cups are used on the device to effect a shut-off between the 

mandrel and the tubing. This same locking mandrel assembly has been used 

in more than 8000 subsurface installations. 

The regulating assembly utilizes a spring-loaded "floating- or 

movable tubular valve seat as the flow controlling element. The design 

is such that a mechanical load, applied by means ell a heavy coiled spring, 



acts to force the valve seat downwardly toward a closed position; whereas, 

the differential pressure across the regulator acts against the area of 

the valve seat to force it upwardly toward an open position. Consequent~, 

two opposing forces are t~ing to actuate the valve. The mechanical force 

of the spring and the downstream pressure are acting to close the valve; 

whereas, upstream or bottom hole pressure is acting to close the valve. 

Therefore, the position of the valve seat is determined qy the prevailing 

force or forces. Since the mechanical force can be controlled and any . 

desired load impressed on the spring to force the valve closed, a definite 

and predetermined pressure reduction across the regulator can be had mere~ 

qy adjusting the amount of initial compression under which the spring is 

placed. 

For example; if a well has a surface tubing flowing pressure of 

2500 p.s.i., and it is desired to lower this pressure to 1000 p.s.i., an 

adjusting ring is used to compress the calibrated regulating spring which 

will impress a d0w.nward load on the valve seat equal to 1500 p.s.i. This 

force acts to close the valve; consequently, when the tubing gate valve is 

closed, the pressure above the regulator will build up to slight~ more 



than 1000 p.s.i. and stop, provided there are no leaks in the tubing above 

the regulator. The valve closes because the forces of the spring load 

of 1500 p.s.i. and the downstream pressure of slightly more than 1000 

p.s.i. overcome the opposing force of the 2500 p.s.i. bottom hole pressure. 

When the surface choke is opened, the pressure above the regulator gradually 

pulls down to slightly less than 1000 p.s.i., and the regulator opens. 

This action is caused by the upward force of the 2500 p.s.i. bottom hole 

pressure overcoming the downward forces of the downstream tubing pressure 

and the compressed spring. 

The amount the regulator valve opens depends altogether upon the 

size of the surface choke used. The larger the surface choke, the greater 

will be the pull down' of the downstream tubing pressure; therefore, the 

differential force across the regulator acting to open the valve will be 

greater and the regulator valve will be opened wider. Likewise, the 

smaller the surface choke used, the less the regulator valve will be 

opened. The operation of the regulator, therefore, is entirely automatic 

and a variable rate of flow, at a substantially constant low delivery 



pressure, can be had merely by adjusting the surface choke. 

The range of production that can be had through a removable 

subsurface regulator is ordinarily from zero to 9,000,000 cu. ft. daily; 

however, the maximum volume is governed by the ability of the well to 

produce after its flowing pressure has been reduced. 

It is the generB.1 practice to limit the pressure drop taken 

across ~ one regulator to a maximum of 1500 p.s.i. If a greater pres-

sure reduction is deSired, two or more regulators are installed at intervals 

of from 500 to 1000 feet and the pressure drop divided between them. This 

is done to eliminate, as much as possible, the terrific abuse caused by 

the abrasive action of flow under differential pressures exceeding 1500 

p.s.i. 

A complete regulator, having its various parts numbered, is shown 

in Figure 1. As has been explained, the movable valve seat (15) is 

for~ed down. onto the valve (17) by the regulating spring (14), which is 

compressed between the adjusting ring (13) and the valve seat guide (16); 

and, by the use of adjusting rings of var:i,ous lengths, any desired dif-

ferential may be had across the regulator. The chevron packing (12) 

1 



in the valve cage (11) prevents flow around the valve seat and forces 

all production through its bore. The valve (17) is mounted in the housing 

(19) and a small valve spring (18), compressed between the valve housing 

plug (20) and the head of the valve, holds the valve in position for 

coaction with the valve seat (15). The valve housing (19) limits both 

the downward travel of the valve seat and the upward travel of the valve. 

Under ordinary producing conditions, the valve (17) is held in 

its uppermost position b.1 the differential pressure and the small valve 

spring (18), as shown in Figure 1; however, the construction permits the 

valve to move down to an open position when the pressure above the 

regulator is greater than the pressure below it. · This feature makes it 

possible to pump downwardly through the regulator should it become neces-

sary to kill the well. 

THEORY INVOLVED IN USE OF SUBSURFACE REGULATOR TO ELIMINATE THE FORMATION 

OF HYDRATES 

HYdrates found in the flow lines of high-pressure condensate 

wells are white crystalline compounds of water and gas which solidify 
I 



under pressure at temperatures which are considerably above the freezirig 

point of water. The formation of these hydrates on the downstream side 

of a choke or regulator is caused by the temperature loss of the flow 

stream due to pressure reduction and, of course, to the presence of water 

condensate. The other principal changes in the physical properties of 

the flow stream due to pressure reduction actually have a tendency to 

retard the formation of hydrates. These changes of properties are: 

(a) the increased tendency of water condensate to vaporize under lower 

pressures, and (b) lowered solidifying temperature of the hydrates. The 

advantages of these favorable property changes are, however, complete~ 

offset and overcome qy the prevailing effect of the temperature reduction. 

Therefore, the most practicable and satisfactory way to eliminate 

freezing, or the formation of hydrates, is to raise the temperature of the 

flow stream before its pressure is reduced, and thus, to compensate the 

temperature loss due to pressure reduction. Or, conversely, to reduce the 

pressure of the flow stream at a point at which the temperature of the 

stream is sufficiently high to compensate the temperature loss due to the 

pressure reduction. 



The two most common methods of eliminating freezing, or the forma-

tion of hydrates, involve the use of surface heaters or the insta~lation of 

subsurface regulators. 

Where surface heaters are used, the gas is heated on the upstream 

side of the surface choke ~ means of a hot water manifold heated with an 

open furnace, and the entire pressure reduction is made at the surface. 

In wells having subsurface regulator installations, the point of 

principal pressure reduction is moved from the surface to an underground 

level, where the upstream gas temperature is sufficiently high to permit 

the temperature drop that accompanies the pressure reduction without the 

formation of solidified ~drates. Actually, both methods accomplish the 

same result; however, the subsurface regulator takes an economical short-

cut ~ utilizing the inexhaustible natural supply of earth heat to achieve 

the desired result. 

Determining the minimum depth at which the regulator can be set 

to complete~ eliminate freezing is the only problem of any importance 

connected with the use of a subsurface regulator. Since formation pres-

~es increase with depth, the principal problem is to select a depth that 



provides a temperature adequately high to allow the loss in heat caused 

b,y the pressure reduction across the regulator without solidification of 

the hydrates. 

Sufficient data and formulae are now available to determine whether 

freezing is likely to occur when a certain pressure reduction is made at a 

certain depth. To make the computation, it is necessary to know the following: 

1. Temperature gradient of well. 

2. Gravity of flow stream. 

3. Upstream and downstream flowing pressures at regulator. 

4. Temperature loss through regulator. 

5 • . Temperature and pressure conditions favorable for the 

formation of solidified hydrates. 

The procedure customarily followed is: 

1. Decide upon the surface flowing -pressure and the rates of flow desired. 

This determination will, of course, be affected by the 

gathering system line pressure. 

2. Determine the upstream and the downstream flowing-pressures at 

the depth at which the regulator is to be set. 



Table 5 has been compiled for use in deterroing the - -
theoretical upstream and downstream pressures across the 

subsurface regulator before it has been set. The upstream 

pressure, which will be present immediately below the reg-

ulator, is calculated by multiplying the actual surface 

flowing pressure (before the regulator is installed) at 

the desired rate of flow by a correction factor determined 

for the depth at which the regulator is to be set and for 

the gravit,r of the gas. The downstr~am pressure immediately 

above the regulator is found by multiplying the proposed or 

desired surface flowing. pressure by the same correction 

factor. 

3. From the upstream and downstream flowing pressures determined in 

step 2, the pressure reduction to be made by the regulator is 

calculated. 

Subtracting the downstream flowing ~pressure from the up-

stream flowing -pressure will give the pressure reduction 



which the regulator must be adjusted to make. A calibration 

chart for the regulating spring will indicate the size of 

the adjusting ring which will give the desired press~e 

reduction. 

4. Determine the upstream temperature of the flow stream at the 

depth at which the regulator is to be set from the temperature 

gradient of the well. 

Table 2 lists the bottom~ole temperature and temperature 

gradient of the principal fields throughout Texas and the 

Gulf Coast. Temperature gradients are expressed in feet 

per one degree F increase in temperature, and are readi~ 

calculated by dividing the total depth of the well by the 

temperature range, determined b.r subtracting the mean annual 

. 
. temperature (80 degrees F) from the botto~hole temperature. 

Using the pressure reduction found in step 3 and the upstream 

T 
flowing pressure, determine the resultant temperature drop at 

the regulator. 

Black, Sivalls and Br,yson's curve, entitled ftTemperature 



Effects of Throttling Gas Produced from Distillate Wells", 

Figure 3, contains the best data yet found on temperature 

loss due to pressure reduction. This curve has proven 

consistently correct and in good agreement ~~th other 

observed data. Using the known determinants, it is possible 

to find from thes curve the temperature reduction of the gas 

as it passes through the regulator. 

6. Subtract the t~mperature reduction, just determined, from the 

upstream temperature of the flow stream, determined in step 4, 

to find the downstream temperature of the flow stream. 

7. Knowing the downstream temperature of the flow stream and the 

downstream flowing pressure just above the regulator, determine 

the probability of freezing. 

Hammerschmidt's curve, Figure 4, on aydrate Formation 

Temperature, provides probably the most widely used data 

for determining the temperatures and pressures ~avorable 

for the ~reezing of water condensate in flow lines. Using 

the known determinants, it is possible to determine from 



this curve the probability of freezing, or the formation 

of solidified hydrates. 

If freezing is indicated, either a lower depth with its corres-

pondingly higher temperature Should be chosen for setting the regulator or, 

if such is impossible or impracticable, the pressure reduction should be 

. 
divided between two or more regulators set at intervals of from 500 feet 

to 1000 feet apart in the well. This spacing permits the earth heat to 

raise the temperature of the flow stream between the points of pressure 

reduction, to compensate the heat loss incident to each succeeding reduction 

of pressure. 

As an extreme example; in one installation in West Texas, where 

bottom~hole temperatures are abnormally low, even a very small pressure 

reduction was sufficient to cause freezing when the entire drop was taken 

across a single regulator. After dividing the desired pressure reduction 

between two regulators, staged at intervals of 500 feet, freezing was 

completely eliminated. 

IMPORTANT CONSIDERATIONS IN ADJUSTING REGULATOR FOR DESIRED FLOWING PRESSURE 

The two most important factors to be considered in determining 



the adjustment of a regulator required to give a desired surface flo~~g 

pressure are: 

1. The maximum rate at which the well is to be flowed, and the 

natural "pull down" of the flowing pressure at this rate of 

flow. 

2. The change in the weight of the flow stream column above the 

regulator due to pressure reduction. 

The "pull down" of pressures is directly dependent upon the pro-

ductivity factor of the well and is particularly important where wide 

variations are to be made in the rate of production. If the well has the 

capacity to produce at the maximum rate, as well as at the minimum rate, 

without an appreciable change in the flowing pressure at the surface; then, 

this factor can be neglected. However, if the well surface flowing pressure 

drops several hundred p.s.i. when the well is flowed at the maximmn rate; 

then, this factor is most critical and must be taken into consideration 

in determining the proper delive~ or surface flowing pressure. 

The "pull down" pressure drop is neither absorbed nor retarded 

by the regulator installation; consequently, this drop must be added to 



that caused by the regulator, and cannot be ignored in adjusting the 

regulator to obtain the desired pressure reduction. 

For example; if a well flows one million cu. ft. per day at a 

surface fl~wing pressure of 2500 p.s.i."and three million cu. ft. per 

day at a surface flowing pressure of 2000 p.s.i.; and, it is desired to 

lower these pressures 1500 p.s.i.; then, the corresponding flowing pressures 

will be 1000 p.s.i. and 500 p.s.~. respectively. However, if the gathering 

system should carry a line pressure" of 500 p.s.i. or higher, then it would 

be impossible to produce at the rate of three million cu. ' ft. per day because 

the surface flowing pressure would not be sufficiently high. " Therefore, in 

order to make this higher volume available, it is necessary to decrease 

the pressure reduction for which the regulator is to be adjusted. If the 

pressure drop across the regulator is reduced to approximately 1200 p.s.i., 

the flowing pressures become 1300 p.s.i. and 700 p.s.i. respectively, and 

the maximum rate of flow can be had. These surface flowing pressures, 

although slightly higher than first desired, are adequately high to cause 

flow into the 500 . p.S.1. gathering line, and yet are sufficiently low to 

prevent freezing at the surface choke. Therefore, in wells in which the 



flowing pressures have a tendenc,r to "pull down", it is sometimes necessary 

to sacrifice maximum pressure reduction in order to have high volumes of 

flow' available. 

To determine the correct adjustment of the regulator for producing 

the desired surface floWing pressure, the weight of the column above the 

regulator must be considered. This is necessary in order to determine the 

upstream flowing pressure immediate~ below the regulator and the downstream 

flowing pressure immediately above the regulator. These determinations 

are necessar,r because these pressures, together with the regulating spring, 

actuate the regulator valve. As has already been explained, the pressures 

may easi~ be determined by use of Table 5. Knowing the theoretical 

upstream and downstream pressures at the regulator, it is a simple task 

to subtract the downstream pressure 'from the upstream pressure to determine 

the pressure reduction for which the regulator should be adjusted. A 

calibration chart for the regulating spring is used to indicate the size 

/t."tY vvv ' <.- J 
of the adjusting ring ~hicll must be used Ito secure this particular pressure 

-. I 

reduction. 



RESULTS 

The primary objective of the subsurface regulator was to provide 

for variable rates of flow under conditions which would eliminate freezing 

in flow lines and reduce dangerously high surface flowing pressures to 

safe workable limits. 

This objective has been successf~ and complete~ attained. 

In many instances, the use of expensive and elaborate surface 

heaters has been entirely eliminated b.1 the simp~e installation of one 

or more subsurface regulators. Surface flowing pressures ranging up to 

5000 p.s.i. have been reduced to 1500 p.s.i. and less. In all cases, 

the maximum flowing pressure has been removed from the surface connections 

or controls to a safe subsurface depth of several thousand feet. It was 

principally for these purposes t~t more than three hundred and fif~ 

subsurface regulators were installed in less than two years. 

Other results, such as the reduction of condensate ratios and 

retarding of water encroachment, have been considered incidental or 

subordinate and have not been given the amount of attention they deserve. 

In most cases in the past, the subsurface regulator installations 



have not materially affected condensate ratios, although several cases in 

which there was an increase in condensate recove~ have been observed. 

These increases might possi~ have been due to the long distance between 

pressure reduction stages; that is, between the subsurface regulator, the 

surface choke, and the separator. Or, a combination of the lengtqy travel 

with v~ing conditions of temperature and pressure existant between these 

stages may have been favorable for condensate precipitation. 

To the writer's knowledge, no subsurface regulator installation 

has been made for the single purpose of increasing condensate recover,r; 

consequent~, the effects on the ratios were obtained accidentally and 

were· not precalculated. However, it is believed that it may be possible, 

through the use of one or more subsurface regulators, to establish the 

temperature and pressure conditions in the tubing which would be most 

favorable for the .udropping-out", or precipitation, of condensate and, 

therefore, to provide for most efficient condensate recovery. 

In practically all installations, it has been noticed that the 

regulator has stabilized ratios to a great extent. This has probably ' 



been caused ~ the maintenance of a relatively constant bottom hole 

pressure, which could not be pulled lower than the amount of pressure 

differential for which the regulator was adjusted. At least the same 

amount of pressure as the differential for which the regulator is 

adjusted must be present below the regulator before the regulator valve 

can be opened. 

CONCLUSIONS 

Since the first removable subsurface regulator went on the market, 

less than two years ago, more than 350 successful installations have been 

made. These installations were made in 103 different fields, including 

\ 

practical~ ever,r high pressure field throughout the world. The rapid 

acceptance the industry has given this new method of pressure control 

convinces the writer that subsurface control is yet in its infancy, and 

that it is destined to playa still greater role with the advent of still 

deeper production and higher pressures. 

While the data presented here are very general, th~ are sufficient 

to give the operator a practical conception of the changes in the physical 

properties of the flow stream caused b.1 subsurface pressure reduction; and, 



have alrea~ proven to be of great value in the installation and use of 

subsurface regulators in the various fields. 

It is the writer's hope that this -paper will encourage further 

technical reserch relative to the use of subsurface regulators for the 

control of temperatures and pressures in the well flow string to obtain 

conditions most conducive to condensate precipitation, and, therefore, to 

greater and more efficient recoveries of condensate. 
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