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NOMENCLATURE

Numbers and letters in ( ) refer to Chapters and Appendices unless
otherwise indicated. Distance is in inch, load in kip, coupon weight

in gram.

A Area

A Integration constant (4,8)

Ay Area computed from dimensions (3)

Ae Elastic area (6)

Ap Plastic area (6)
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B Width of rectangular section (2)
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B Element width (6)

b} External corner radius (3,4)

b Specimen designation (3)

b Coefficient in Eq. (6.4)

bo Intercept of linear regression line (9)

by Slope of linear regression line (9)
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C Empirical coefficient (2)

C Lip flat width (3)

c Integration constant (4,8)

c, Warping constant (D)

e Specimen designation (3)

e Radius of neutral axis (4)

e Coefficient in Eq. (6.4)

c Radius of centroidal axis of curved element (6)

C.,C Radius of centroidal axis of inside, outside part of curved
e element (Rectangular residual stress distribution) (6)

e, Maximum radius of neutral axis (k)

D Section depth (2,6)

D Integration constant (L)

Ds Unstiffened flat width of stiffener plus corner radius (D)
a Empirical coefficient (3)

4 Coupon width (3)

d Specimen designation (3)

a Coefficient in Eq. (6.h)

E Young's modulus

E e Effective modulus (2)

E, Reduced modulus (2)

Et Tangent modulus (2)

e Specimen designation (3)

e Load eccentricity (6,8)

e, Fourier coefficient in expansion of e (6,8)
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Resultant of z residual forces (4)
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Element force (6)

Function (6)
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Shear modulus (4,D)
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Element number (6)
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Plate buckling coefficient (D)

P/Pcr = Load parameter (8)

Empirical coefficient- (3)

Yield stress in two-dimensional space (4,9)

Buckling coefficient for adequately stiffened flange (D)

Column length
Coupon length (3)

Empirical coefficient (3)

M/2k = Moment (k)
Moment (6)

Moment (k4)

Internal moment (6)
Maximum moment (4,6)
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Mean square due to regression (9)

Empirical coefficient (2)

M/My = Normalized moment (6)
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Coefficient in Eq. (6.4)
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crx

cry
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Geometric constant (L)
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Empirical coefficient (3)
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€y Yield strain

€y Force equilibrium correction (6)

€, Moment equilibrium correction (6)

€ Equivalent strain (3)

€y Experimental values of € o° at inside face of element j (6)

Xxxxiv



Xred

=1 > >

>1

rev

Experimental values of Eres at outside face of
element j (6)

in(l + €) = Natural strain

Principal natural strains

Qpn/t

azp/M = relative importance of cold-forming actions (L)

Angular coordinate

curveture angle (4)

Slenderness ratio (2)

Elastic slenderness ratio (2)

Slenderness ratio at which og.. .. =0 (9)
Reduced slenderness ratio (2)

Reversal slenderness ratio (2)

A/Ko = Normalized slenderness ratio (2,7)

X based on average yield strength of section (6,9)
\ based on yield strength of flat (6,9)

—

Vo/e = Ratio of maximum initial deflection to eccentricity

for eccentrically loaded column (8)

Von/e = Ratio of Fourier coefficient of maximum initial

deflection to eccentricity (8)

Wo/e = Ratio of maximum initial deflection of centrally

loaded column to eccentricity of equivalent eccentric
column (8)



0 Radial coordinate (from midthickness outward) (6)

py Radial coordinate at which € = £, (6)
Py Radial coordinate of neutral axis (6)
o] Stress

o} J/2k = normalized stress (L)

o Stress (L4,5)

g Equivalent stress (3)

Subscripts on ¢

a Axial (4), applied (6) or average (9)
b Bending (5)

c Compressive (3)

co Corner (3)

er Critical (2,D)

e Elastic (k&)

£ Flat (3)

max Maximum (3)

P Proportional limit (3)

D Plastic (4)

D+ Plastic in tension (4)

p- Plastic in compression (4)
r Radial (4)

t Tensile (3)

a Ultimate (3)

vy Yield

xxxvi



1,2,3

Longitudinal (4)
Principal (3)

Tangential (L)

Superscripts on 0

bu
pu
rel
res
0 rel

* rel

Bending unloading (4)

Pressure unloading (4)

Relaxation (4,5)

Residual (4)

Relaxation assuming elasto-plastic unloading (L)

Relaxation assuming elastic unloading (4)

Et/E = Ratio of tangent modulus to Young's mcdulus (D)

Poisson's ratio (U4)

z/L = Length coordinate (8)

Curvature (6)

Yield curvature (6)

@/@y = Normalized curvature (6)
Initial curvature at i (6)
Midspan curvature (6)

Limiting curvature between elastic and primary plastic
states (6)

Limiting curvature between primary and secondary plastic
states (6)

Density of steel (8)

Xxxvii



"In this temple they were desirous of using columns;
but, being ignorant of their symmetry, and of the proportions
necessary to enable them to sustain the weight, and give
them a handsome appearance, they measured the (human) foot
of a man to be the sixth part of his height, they gave that
proportion to their columns, making the thickness of the
shaft at the base equal to the sixth part of the height,
including the capital. Thus the Doric column, having the
proportions, firmness and beauty of the human body, first
began to be used in buildings."

Vitruvius Pollio - De Architectura
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CHAPTER 1

INTRODUCTION

The flexural buckling of columns is a fundamental problem whose
solution was found by Euler more than 200 years ago. Since then, refine-
ments have extended the solution to the inelastic range and clarified the
influence of initial deflections and residual stresses. Most of these
advances were made by studying hot-rolled steel columns, which are widely
used.

Cold-formed sections are coming into greater and greater use,
thanks to the great variety of geometries available, which make them
suitable for specific needs, and the significant advances made in the
last four decades in understanding the behavior of cold-formed steel
and in developing simple design methods.

Previous works on the behavior and strength of cold-formed members
in compression have concentrated on phenomena associated with, but not
specific to thin-walled structures, such as local and torsional buckling.
For flexural buckling, only a few tests have been performed on cold-
formed sections, and use has been made of results developed for hot-
rolled sections, although cold-forming affects the mechanical properties
of steel differently than hot-rolling; in particular, cold work increases
the yield strength at the expense of ductility and introduces residual
stresses which are completely different from the thermal residual
stresses in hot-rolled sections.

The need for the present study, the flexural buckling strength of



cold-formed columns, is thus clear. It is, of course, impossible to
investigate all types of cross-sections; only the stiffened channel and
the hat sections are studied here, mainly because of their availability
and many structural uses. The extension to other shapes must be done by
theory.

This work starts with a review of the column problem (Chapter 2)
and measurements of the effects of cold-forming (Chapter 3). Next,
residual stresses due to cold-forming are investigated, both theoreti-
cally (Chapter 4) and experimentally (Chapter 5). Chapter 6 develops
a numerical scheme for determining column strength. Chapter T shows the
results of stub column tests. Chapter 8 examines the effects of initial
out-of-straightness and the process of load alignment. Chapter 9 covers
the procedure for testing long columns and discusses the results. Finally,
the conclusions of this study and recommendations for future work are

presented in Chapter 10.



CHAPTER 2

THE BUCKLING OF COLUMNS

2.1 Introduction

The history of the theory of columns has been lively and contro-
versial, probably more so than any other branch of mechaniecs. This
history is covered very well in a number of publications (Hoff [1954],
Tall et al [1964], Johnston [1976], Bieich [1952]) which also give a
rather complete list of references and original sources. For complete-
ness, the main events, dates and concepts are summarized bhelow, together
with more recent developments.

Van Musschenbroek is reported to be the first one (1729) to have

obtained a column formula of the form:

_ 2,2
P, = KBD /L (2.1)

where Pcr is the column buckling load, K is an empirical factor, D and
B are the depth and width of the rectangular section and L is the
column length. This formula is really not too different from present

day formulas.

2.2 Elastic Buckling

In 174k4, Euler derived an analytical solution to the problem
and gained fundamental insight into its nature, a stability problem.
Euler established the differential equation governing the equilibrium
of columns and solved for the eigenvalues and eigenfunctions, thus

determining the loads at which bifurcation of the equilibrium path of



centrally loaded columns occurs. He obtained the famous formula :

2 2
Pop =T EI/(XL) (2.2a)

where EI is the column stiffness and K is a constant that depends on
the boundary conditions. Only pin-ended columns will be considered

here, so K = 1 and Euler's formula becomes:
p_ = 1°EI/1° (2.2b)
er

The limitations of Euler's theory has been misunderstood in the
past, but it remains to this day the cornerstone of column theory.

Euler's formula is, of course, only valid in the elastic range.

2.3 Elastic-plastic Buckling

2.3.1 Engesser

Development of inelastic buckling theories came in 1889 with
Considere and independently, Engesser. To extend the validity of
Buler's formula to the inelastic range, Considere¥* advocated the sub-
stitution of an effective modulus Eeff’ whose value would be between
Young's modulus E and the tangent modulus Et (Fig. 2.1) for E in (2.2b)

2 2

Pcr =T Eeff /L (2.3)

Engesser, on the other hand, suggested it was only necessary to

substitute E, for E in (2.2b):

_ 2 2
P,.=T EI/L (2.4)

*Considere is also credited with establishing the foundations of
modern column testing techniques. He tested 32 columns using
adjustable knife-edge fittings and centered the load by measuring
midheight deflection at half the buckling load and adjusting the
end fittings accordingly.



Engesser's tangent modulus formula was criticized in 1895 by
Jasinski, who was also aware of Considere's work. Subsequently and
that same year, Engesser published a correction to his theory and
noted that the effective modulus Eeff depended not only on E and Et
but also on the shape of the cross-section.

Although Engesser, in his final formulation, had derived the

correct formula for figuring out Eef for an arbitrary cross-section,

£
his work and the controversy that led to it did not attract much atten-
tion. Hoff [1954] noted the surprising fact that Tetmajer, in his
comprehensive book on buckling, "Die Gesetze Der Knickungs Und Der
Zusammengesetsten Druckfestigkeit Der Technisch Wichtigsten Baustoffe'
(The Laws Of Buckling and Combined Compressive Strength Of The Techno-
logically Most Important Construction Materials) published in 1903,

only mentioned Euler's theory. Being a professor at the Federal Poly-
technic Institute in Zurich, Tetmajer had easy access to the "Schweizer-

ische Bauzeitung', where Jasinski's criticism and Engesser's final

formulation were published.

2.3.2 Von Karman

The effective modulus theory, otherwise known as the reduced
modulus or double modulus theory, was revived by Theodore von Karman
in 1910 in his doctoral dissertaticn. He derived the expressions for
the reduced moduli of rectangular and wide-flange sections and per-
formed a series of careful column tests. In addition, he computed the
strength of eccentrically loaded columns by using the actual stress-

strain diagram of the material and finding the actual deflected shape.



He showed that the failure of eccentrically loaded or initially curved
columns is due to a loss of stability and thus, proved that formulas
which establish column strength as the load at which the maximum stress
reaches yield are not theoretically justified. The term buckling can
thus be applied to initially crooked or eccentrically loaded columns as

well as initially perfectly straight ones.

2.3.3 Shanley

In contradiction to Karman's theory, test points tend to fall
closer to the tangent modulus load than to the reduced modulus load.
(For very short columns, where the tangent modulus approaches a constant
value, the opposite is often true (Shanley [1947]). Also, for short
columns and where the yield point is pronounced, test points lie close
to the yield load (Timoshenko and Gere [1961] p. 189)). In 1947
Shanley came up with the observation, genial in its simplicity, that
a column is "free to try to bend at any time" (Shanley [1947]). Thus,
he rejected the classical stability concept, whereby a perfect column
is assumed to remain straight until the critical load is reached, at

which point bending occurs with no change in load. This concept is the

same that has been used successfully in elastic buckling,. According to
Shanley, a perfect column begins to bend upon attainment of the tangent
modulus load, at which point bending and load increase proceed simul-
taneously. Thus, Shanley generalized the question "what is the load at
which equilibrium of a straight column becomes unstable under the same

load" to "what is the smallest load at which bifurcation of the equili-

brium positions can occur regardless of whether or not the transition



to the bent position requires an increase of the axial load" (from
Von Karmen's discussion of Shanley's paper).

It must be emphasized that Shanley's contribution is not a
return to Engesser's ofiginal concept although both are called the
tangent modulus theory.  According tb Engesser, there is no unlcading
of any sort; increases in stress are therefore governed by the tangent
modulus. Shanley proved that, although there is no unloading at the
inception of bending, strain reversal must occur on the convex side of
the column as soon as deflection becomes finite. In fact, the region
of strain reversal grows continuously from the convex to the concave
side.

Duberg and Wilder [1952] investigated the behavior of inelastic
columns with & Shanley column in which the flexible midheight cell
consists of two springs. As the initial imperfection of the column
approaches zero, the departure from the straight configuration occurs
precisely at the tangent modulus load, rather than anywhere between the
tangent modulus load and the Euler load. For columns with vanishing
initial lack of straightness, the maximum load may be significantly
above the tangent modulus load or only slightly above it, depending on
whether the stress-strain curve of the material departs gradually or
abruptly from the initial elastic slope.

More recently, Shanley's concept was confirmed with the use of
computer technology (Johnston [1963]). A column model similar to
Shanley's except that the flexible cell is now a solid cube (rather
than just two legs) made of continuously strain-hardening aluminum was

investigated using a computer program that increases deflections



gradually. Shanley's conclusions regarding the maximum load and
strain reversal were verified quantitatively. In the same paper,
Johnston also remarked that, for real ﬁaterial whose tangent modulus
decreases with increasing strains, equilibrium paths obtained by
restraining a column to remain straight until a load between the
tangent modulus load Pt and the reduced modulus load Pr is reached,

do not tend asymtotically to Pr' Johnston showed that the assumption
of a constant tangent modulus leads to a reduced modulus load that may
be grossly in error. (This is in response to von Karman's discussion
of Shanley's paper, where von Karman stated that there is an infinity
of equilibrium paths and not just the two corresponding to tending
beginning at Pt and Pr' All such paths, according to Von Karman, tend
asymptotically to Pr provided Et remains constant. The non-uniqueness
of equilibrium paths is characteristic of plastic phenomena).

For singly—symmetricVsections buckling in the plane of the axis
of symmetry, the reduced modulus load not only depends on E, Et and
the shape of the cross-section but also on the direction of buckling.
In fact, the value of the slope, dP/dV, of the curve of the load P versus
the maximum lateral deflection V at P = Pt (at which value V ceases to
be 0), called the inelastic buckling gradient by Johnston [1964],
also depends on the direction of buckling. A negative inelagtic buck-
ling gradient is characteristic of an imperfection-sensitive structure.
The inelastic buckling gradient is smaller for the smaller of the two
reduced-modulus loads and the column tends to buckle in the direction

from mid-depth toward the center of gravity of the section. Such

direction dependence is called trifurcation by Johnston, asymmetric



bifurcation by Croll and Walker [1972].

2.3.4 Residual Stresses

Discrepancies between critical loads determined through experi-
ments and those predicted by the tangent modulus formula were attributed
solely to initial deflections and load eccentricities. Although these
factors do play an important role, it is now known that residual stresses
have a determining influence on the buckling load in the elastic-plastic
range (Fig. 2.2). This influence was suspected as early as 1908
(Johnston [1976] p. 50), but definite research on the subject was not
done until the 1950's. Virtually all the work on the effect of residual
stresses on column strength was done at Lehigh University (Huber and
Beedle [195L4], Beedle and Tall [1960], Tall [1964]). The residual
stresses studied at Lehigh were due to cooling or cold-straightening
(also referred to as cold-bending, but this is bending of the member
in the longitudinal direction, perpendicular to the bending involved in
forming the corners of a cross-section).

Residual stresses result in earlier initiation of yield in a
column, causing a loss of stiffness, and thus a lower strength as
compared to residual stress-free columns. This lowering of strength
(up to 30%) is greatest at slenderness ratios corresponding to a criti-

cal Euler stress about equal to the yield stress of the material (i.e.

g
Y= /LL_
for X = = J//;: == 1.0).

Sherman [1971], however, reported a very slight increase in the

strength of tubular members with the introduction of residual tension
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at the corners. The severity of this effect depends not only on the

magnitude and distribution of the residual stresses, but on the axis

of buckling as well. Thus, the application of the tangent-modulus
formula with the tangent-modulus determined from a stub column test,
even if the stub is sufficiently long to include residual stresses, 1is
not correct in general:(This was the practice before 1952; discrepancies
with actual test results were attributed to various imperfections, and
empirical parameters were chosen for a good fit with experimental
data). A stub column does not exhibit any dependence on direction,
whereas the effect of residual stresses, unless they are axisymmetric,
varies with the axis of buckling. Investigators at Lehigh made the
important observation that the buckling load of a column is the same as
that of a column consisting of the elastic part of the section only,
i.e., at buckling the total external moment is resisted by the moment

of the increases of internal stresses:

. 2 2
Pcr m EIe/L (2.5)

Ie being the moment of inertia of the elastic part of the section.

This is an important discovery, but not a new column formula
at the same level as the reduced modulus or tangent modulus formulas.
Since strain reversal at buckling increases Ie’ the above formula is
only valid if used with the Engesser-Shanley concept of column buckling.
It shouwld be noted that Ie is the moment of inertia of the elastic part
of the section immediately before buckling. After buckling has occurred,
the convex and concave sides of the column plastify to different extent

and this, of course, contributes to the internal moment.
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The directional effect of residual stresses can be illustrated
by the simple example of a rectangular section with linearly distributed
residual stresses (Chajes [19TL4] p. 65). If the residual stresses are
symmetrical with respect to the x-(strong) axis and are constant in

the y-(weak) direction, then formula (2.5) gives

2 2
T E, Iy/L (2.6)

+d
1

ery

but P e (&, /E

crx

) B, 1/1° (2.7)
where I is the moment of inertia of the entire cross-section and the
subscripts x and y denote the axes of buckling.

Osgood [1951] applied formula (2.5) to a rectangular section
with parabolic residual stress distribution and ended up with a Rankine-
type formula.¥ This was the first theoretical justification of such a
formula.

Huber and Ketter [1958] investigated the effects of residual
stresses due to cold-straightening (bending in a plane parallel to the
flanges) and differential cooling. Frey [l969]lshowed that cold-
straightening has a beneficial effect because it practically wipes out
the thermal residual stresses and introduces residual stresses of a
more favorable distribution and smaller magnitude (maxima are still at

the flange tips when straightening is about the weak axis, but are

c

*g = —l— where C is an empirical coefficient and
er Ckz

A is the slenderness ratio.
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tensile on one side, compressive on the other). Alpsten [1972]
reported that only a small amount of rotorizing is necessary to achieve

a complete and beneficial redistribution of residual stresses.

2.3.5 Residual Stresses and Initial Deflections

In a most important paper, Baﬁéerman and Johnston [1967] made
a computer study of the combined effect of residual stresses and
initial crookedness on the strength of aluminum and steel columns.
The presence of residual stresses in steel sections makes the stress-
strain curve of a stub column continuously curved beyond the propor-
tional limit so that the same computer program can be used for both
aluminum and steel. Cold-straightened aluminum sectiong were considered
free of residual stresses. Once again, Shanley's observations were
verified numerically. It was noted, however, that for initially crooked
columns, strain regression does not necessarily occur as bending begins
and that, for initially straight, wide-flange aluminum columns, the gain
of the ultimate load over the tangent modulus load Pt is less than 2.0%.
This justifies the use of the tangent modulus load as a basis for column
strength. For long steel columns, results showed that the combined
effect of initial deflections and residual stresses is greater than the
sum of the parts. The longer the column and the higher the steel strength,
the less important the effects of initial imperfections are. For slender
columns made of high strength steel, residual stresses have almost no
effect on column strength, whereas for short columns, the reduction in
strength attributable to residual stresses is about the same for various

yield strengths. Also, variations of the patterns of residual stresses
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have much less influence on crooked columns than on perfectly straight
ones. The reason for the higher critical load of a wide-flange column
buckling about its strong axis, compared to the buckling load about

its weak axis, for the same slenderness ratio, is the presence of

thermal residual stresses. In the absence of residual stresses, the
opposite is true.

Batterman and Johnston concluded that for the same residual
stresses, no single design curve is satisfactory for all yield strengths,
but that the Structural Stability Research Council (SSRC) curve¥ is
also adequate for high strength steel with nominal residual stresses

and initial deflections.

2.4 Plastic Buckling

For the range of slenderness ratio where elastic-plastic buck-
ling occurs, the presence of residual stresses causes gradual yielding
of the column. In Fig. 2.2, experimental data fall along the dotted
line in the elastic-plastic range rather than along the solid line, which
would hold for a perfectly straight, residual stress-free columm. After
the entire cross-section has yielded, however, the effect of residual
stresses is completely wiped out. The question arises then, whether or
not it is possible to obtain a critical stress as high as, or higher

than the yield stress of a material with a well defined yield plateau.
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Classical works on stability acknowledge such possibilities
but disregard them. One reads, for example, in Timoshenko and Gere
[1961]: "Such values for critical stresses (above the yield stress)
can be obtained experimentally only if special precautions are taken
against buckling at the yield point stress; thus they have no practical
significance in the design of columns." Similarly, Bleich [1952]
states: "Such high values for the critical stress (above the yield
stress) of very short columns could be observed only in very careful
tests on small specimens and cannot be relied upon in the design of
columns." Such statements are justified by the tangent modulus
formula (2.4) which gives P, = 0 at the yield plateau of the stress-
strain diagram of steel (Fig. 2.1), where the tangent modulus Et is
zero. Thus, buckling must occur at Py, the yield load of the section.
This is, however, not so. Haijer and Thurlimann [1958], among
others, reported the attainment of ccr greater than o without special
precautions. The mechanics of plastification offer an explanation to
this phenomenon. Yielding occurs in slip bands and starts at points
of weakness and stress concentration; although the existence of a
yield plateau is observed macroscopically, there is no finite amount
of material at a strain between the yield strain e

and the strain-

hardening strain Est' The process of yielding entails a discontinuous

Jump between ey and est. Therefore, during yielding, part of the

materlial is still elastic while part of it has already reached ¢ £
]
When all the material has strain-hardened, the stress rises again. In

loose terms, the column jumps right over the yield plateau where Et =0

and the tangent modulus formula does not apply there.
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Haijer and Thurlimann [1958] and Thurlimann [1962] considered
two limiting cases. The first column started to yileld at the middle
and the second at both ends; yielding then progressively spread out to
the rest of the column. The columns thus had non-uniform stiffness and
were equivalent to columns with varying cross-section, whose strengths
could be readily computed. Experimental points fell between these two
extreme cases, with yielding starting at the middle as the lower bound.

Since the critical stress remains at the yield stress, column curve in

the plastic range is expressed as critical strain versus slenderness
ratio. TFor slenderness ratios of about 15 or less, the strain-hardening
range is reached. From there on, the buckling load is governed by the

tangent-modulus Et'

Hrenikoff [1966] observed that yielding always iniéiated at the |
ends of his annealed steel columns, sometimes only at one end. For
longer columns, independent yielding at the middle also occurred and
hastened failure. TFor computational purposes,the plastic parts at the
ends were assumed to deflect in a parabolic curve whereas the elastic
part followed a sine curve. At the transitions between the two curves

the strain jumped from ey to es Experimental data provided reason-

£
able support for the analysis, but also fell between the upper and lower

bounds established by Thurlimann.

2.5 Buckling in the Strain-Hardening Range

Yanev and Gjelsvik [1977] criticized Thurliman's assumption that
yielding in tension and in compression occurs in the same manner, and

suggested that an understanding of buckling beyond yield must be sought
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in the post-buckling behavior of short steel columnms. Their study was
restricted to an idealized two-flange section with no residual stresses.
Local buckling was precluded from happening and strains reached the
hardening range.

In the first post-buckling stage, the middle of the column on
the concave side has yielded and strain-hardened, while the rest of the
column is still elastic. The deflected shape, symmetrical with respect
to the middle of the column, consists of three sine curves corresponding
to the middle and the ends. As the load increases, yielding spreads to
the rest of the concave flange and initiates at the ends of the convex
flange: this is the second post-buckling stage. Again, the deflected
shape consists of three sine curves corresponding to the middle and the
two ends. The middle part has one flange elastic and the other strain-
hardening and the ends have both flanges strain-hardening.

A number of experiments were performed. For specimens with
slenderness ratios A > 11 the agreement between theory and experiment
is excellent. For A = 9 or 10 the lateral displacement tends to be
smaller than predicted.

Three slenderness ratios are of importance in determining the

behavior of short columns.

By definition, at Ael the critical stress reaches the yield

stress:

Or =9y = 3 (2.8)

from which:
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By analogy, a reduced slenderness ratic is defined by

e =T/ (2.10)
g
¥
2EEt
where Er = E+Et (2.11)

Finally a reversal slenderness ratio Arev’ which depends on the tangent
modulus, is evaluated numerically. Xrev is the dividing point between
two types of behavior in the second post-buckling stage: in one the
deflection increases with the load; in the other the column actually
straightens as the load increases.

For A > Ael the column starts to bend upon reaching the yield
load. For Ared <A f-kel the column does not regain stability under a
load equal to the yield load. After reaching the yield load, the load
decreases as the lateral displacement increases. Xred does not depend
on the extent or existence of the yield plateau, which only affects the
amount of lateral displacement at a given load. For AreV'f-A E-Ared’
the load decreases upon reaching the yield point, then begins to increase
again and regains the value of the yield load by the time the entire
concave flange has strain-hardened. The maximum load the column can
carry is greater than the yield load. Finally, columns with A f-Arev
develop a straightening process under increasing loads and can sustain
loads higher than the yield load.

Sewell [1972] mentioned the effect of transverse shear stiffening

on the buckling load. This effect is negligible for purely elastic

buckling,but becomes appreciable (up to 20%) in a metal with a rate of
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hardening small compared to the shear modulus. An extensive bibliography

on plastic buckling was presented.

2.6 Conclusion

An understanding of column behavior over the entire range of the
stress-strain diagram of the material has thus been achieved. In the
elastic range, where the critical stress is less than the proportional
limit, Euler's formula applies. In the elastic-plastic range, the
tangent-modulus formula governs and residual stresses play an important
role. Finally, critical stresses equal to or greater than the yield
stress can be achieved without special care for short columns. At all

slenderness ratios,initial crookedness reduces column strength.
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CHAPTER 3

COLD-FORMING EFFECTS

3.1 Introduction

The previous chapter covers the column problem in general. Since
this thesis addresses itself to the problem of determining the strength
of cold-formed steel columns, an understanding of the effects of cold-
forming is necessary. This is achieved through tensile and compressive
coupon tests. Residual stresses due to cold-forming will be covered in

subsequent chapters.

3.2 Literature Review

In the 1960's a systematic program of research was conducted at
Cornell University under the leadership of Professor G. Winter to in-
vestigate the effects'of cold-forming on structural steel and members.

Chajes, Britvec and Winter [1963] started by studying the effects
of the simplest kind of cold-straining, namely one-dimensional stretch-
ing, and attributed these effects to three phenomena: strain-hardening,
strain-aging and the Bauschinger effect. Two of these phenomena are
illustrated in Fig. 3.1, which is taken from Chajes et al [1963].

Strain-hardening increases the yield strength and decreases the
ductility of steel. Strain-aging, obtained by leaving the prestretched
and unloaded material for several weeks at room temperature, or accel-
erated by raising the temperature to 100°C for half an hour, also
causes an increase in yield strength and a decrease in ductility. In

addition, strain-aging causes an increase in ultimate strength and a

20
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regain of the yield plateau. The Bauschinger effect is defined as
"the phenomenon that results in an increase in the proportional limit
and yield strength by reloading plastically deformed specimens in the
same direction, but a decrease by reloading it in the opposite direc-
tion” (Chajes et al [1963]).

"Upiform cold stretching in one direction has a pronounced effect
on the mechanical properties of the material, not only in the direction
of stretching but also in the direction normal to it". "Regardless of
the direction of testing, increases in the yield strength and ultimate
strength as well as decreases in ductility were always found to be
approximately proportional to the amount of prior cold stretching"
(Chajes et al [1963]). The Bauschinger effect is observed in the
longitudinal direction (i.e. the direction of straining) but an inverse
Bauschinger effect exists in the transverse direction (Fig. 3.2). The
reason is, in the prestretching operation, extension in one direction
causes compression in the direction perpendicular to it. It was also
found that, the larger the ratio cu/oy of the ultimate stress to the
yield stress the larger the effect of strain-hardening. In strain-
hardened and aged specimens, the increase in yield strength is much
larger than the increase in ultimate strength. Finally, strain-aging
affects properties in the longitudinal as well as transverse direction.

In general, cold-forming involves states of stress vastly more

complicated than uniform tension. The cold-forming of corners out of

sheets, for example, involves a combination of radial pressure, end

moments and forces (Fig. 3.3). In developing a semi-empirical model

of corner strength, Karren [1967] assumed a2 strain-hardening law of
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the form

o = x(e)? (3.1)

where k and n are empirical coefficients expressible in terms of the
ultimate stress Gu and the yield stress dy. G and € are the equivalent

stress and strain.

k = 2.80 g, - 1.55 o, (3.2)
n = 0.225 cu/cy - 0.120 (3.3)
- 2 2 2.1/2
c-(lﬁﬁ)ﬂol-cg) +(o2-c3) +(c3-cl)] (3.4)
- _ 2 12 L 22q1/2
€ = (/5/3)[ei-eé) + (eé-e3) + (83-81) ] (3.5)
Subscripts 1, 2, 3 denote the principal directions and €' = ln(l+¢g)

is the natural strain.

Assuming isotropic hardening, Karren found that the yield strength
in the longitudinal direction (which is now the direction perpendicular
to prior stressing, Fig. 3.3) of a corner can be expressed by

g =k (3.6)
yeco (a/t)z
where a is the internal radius and t the thickness of the corner and
d is an empirical coefficient defined below.
In a first model, only pure bending was assumed to be applied

in the forming process and there resulted:

d=0.945 - 1.315 n (3.7)

2 =0.803n (3.8)

A second model included also radial pressure and provided

better agreement with experimental results. For the second model:
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d=1.0-~-1.3n (3.9)

2 = 0.855 n + 0.035 (3.10)

Since forming occurs under plane strain, the plastic strains
in the tangential and radial direction are equal, of opposite signs
and perpendicular to the final direction of loading, i.e. the longi-
tudinal direction. Thus, the inverse Bauschinger effects of these
two plastic strains cancel each other out, a fact that is confirmed
experimentally.

Karren was careful to limit the applicability of formulas
(3.6 - 3.10) to corners of a/t less than 7.0. Macadam [1967a] found
these formulas inapplicable to large a/t typical of round tubing.

The problem was addressed again more recently by Lind and
Schroff [1975]. Their elegant work culminated in a very simple formula
of wider applicability than Karren's (no restriction on a/t, at least
theoretically), called the 5t formula. Assuming linear strain-hardening,
the yield strength Gyco of a corner is obtained simply by replacing the
yield stress by tbe ultimate stress over an area 5t2 in each 90° corner.

For other corner angles, the area is scaled proportionally.

AF = (St)t(cu—cy)(2ot°)/90° (3.11)
. Cy . St(Ou—Oy)(2oc°)/90°
yeo Ty m/2 (a +t/2) (3.12)

AF is the increase in yield load of a corner of angle 20°.
If the yield stress is assumed to be a linear function of the
work of forming, the increase in yield force, AF, is also a linear

function of the work of forming. If hardening is further assumed to
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be linear, then the work of forming, neglecting its elastic part, is
independent of the corner radius. Thus, the increase in yield force
for a corner is independent of the radius, as Eq. (3.11) shows.

In a paper subsequent to Lind and Schroff's, Karren and Gohil
[1975] extended Karren's formulas to large a/t ratios. Equation (3.6)

still applies but (3.7) and (3.8) are now replaced by:

d =0.942 ~ 1.0k n (3.13)

% =0.988 n - 0.0013 ~ n (3.1h)

Experimental evidence shows the 5t formula to be very good for
a/t > 2, whereas Karren's formulas show appreciable inaccuracies for
a/t > 10. However, if k and n in (3.1) are determined from the stress-
strain curve of prestrained and aged specimens, Karren's formulas (3.6),
(3.2), (3.13) and (3.14) agree well with experimental data for large
a/t (> 30), but not for small a/t.

Although no restriction was imposed on a/t in the theoretical
development of the 5t rule, Karren's formulas (3.6), (3.13) and (3.1k)
appear superior for a/t < 2, provided k and n (Eq. 3.2 and 3.3) are
determined from virgin tensile specimens. TFor a/t > 2, the use of the
5t rule is recommended.

Karren and Winter [1967] found that the pressure of the rolls
and aging after stretcher-straightening cause roll-formed members to
exhibit significant increase in strength in the flats over wvirgin yield
strength. This is especially true of the flats adjacent to corners,
and is confirmed by Macadam [196Tb]. This phenomenon is not observed

in press-braked members.
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Uribe and Winter [1970] investigated the cold-forming effects
of thin-walled members. Their work included a statistical study of
the as-formed strength of joist cherd sectioné, a study of the strength
of flexural members and the buckling of columns of bisymmetrical sections
subject to local buckling.

Hlavacek [1968] looked into the effects of cold-waving of a
steel sheet. This is sometimes done before press-braking or cold-
rolling in order to increase the yield strength,with the sheet flat at
the initial and final stages.

Zichy and Moreau [19T1l] presented test results on angle, channel,
welded box and cruciform sections, all of which involve 90° cold-formed
corners. Test results confirm the validity of the American Iron and
Steel Institute (AISI) specifications [1977].

Grumbach and Prudhomme [1974] studied cold-formed corners and
full sections (angle, channel and hat). They confirmed that cold-rol-
ling affects the mechanical properties of a section more than press-
braking. Flats that had been bent, then restraightened, showed the
usual effects of cold-work. 3Brittle fracture of corners was studied

vy impact-flattening them and the sensitivity of a welded material to

aging was also examined.

3.3 Cross-sectional Geometry

Sections can be cold-formed to a wide variety of geometrical

shapes with relative ease (see, for example, Yu [1973]). At an early

stage, it was decided to limit this study to two shapes, the stiffened

channel and the hat section. These structural shapes are commonly used
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as flexural and compression members in racks, space frames, open web
Joists and so on. The cross-sectional dimensions were selected to pre-
clude local, torsional and torsional-flexural buckling from occurring
in the range of slenderness ratio of interest.

The channel and hat sections investigated are shown in Fig. 3.4
and their cross-sectional properties are listed in Tables 3.1, 3.2a and
3.2b. RFC, PBC, H and HT stand for Roll-Formed Channel, Press-Braked
Channel, Hat and Thick Hat, respectively. The number following these
designations refers to the thickness gage of the steel (there is no
number for HT). @2H, B and C designate the flat width of the web, the
flange and the lip, a, b, r and 20 the internal, external, mean radius
and angle of the corners, N the distance between the centroid of the
section and the web midthickness. The juncture between the web and the
flange is numbered 1 or 3 and that between the flange and the 1ip 2 or

L, tc and t_ refer to the thickness of a corner and that of a flat.

£
Since the thickness of the section is not uniform, the wvalues of t
listed in Table 3.1 are only approximate and correspond to the gage
thickness. All cross-sectional properties are, however, computed with
the actual thickness. The cross-sectional properties of the various
specimens tested, with the exception of some of the Clh sections, were
found to be within 2% of those listed in Table 3.1. The variations

in thickness along the perimeter of the cross-sections and from speci-
men to specimen are shown in Fig. 3.5, 3.9, 3.1k, 3.17, 3.20, 3.24 and
3.28.

The cross-sectional dimensions were determined from the trace of

a ground specimen, usually a stub column, precisely cut perpendicular
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to the longitudinal axis. Corner radii and thicknesses were measured
directly from the specimen. Cormer thickness was determined with a
micrometer and a dowel-pin of known diameter (Fig. 3.b4a).

Table 3.3 compares the cross-sectional areas obtained from
weighing a specimen (Aw) and from computation based on the measurements
described above (Ad). The thickness at any point was obtained by cubic
spline interpolation from the local measurements (Shampine and Allen

[1973]). The agreement is satisfactory.

3.4 Tensile Coupon Tests

Steels are often designated by their tensile yield strength be--
cause tensile tests offer a relatively easy and reliable means of study-
ing the mechanical properties of a material.

Because cold-forming changes the mechanical properties of steel
significantly, it was necessary to splice the section of interest into
a number of coupons to study the variation of these properties over the
cross-section. Tensile coupons cut from the flat portions of the
section followed ASTM procedures (Davis et al [1964]). They were about
9.0" long with a middle portion of 2.Q0" by 1/2",which gradually widened
into the ends. These ends were roughened to ensure adequate grip in the
testing machine. Corner tensile coupons were usually narrower than 1/2"
to avoid inclusion of any of the adjacent flats. The coupons were
usually thick enough so flattening of the ends of corner coupons due
to the pressure of the grips was only minimal and did not affect the
middle portion.

Tensile tests were conducted on a Tinius-Olsen screw-gear type

nachine and strains were recorded automatically with a 2.00" gage
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extensometer. Portions of the load-strain curves are shown on Fig.
3.7, 3.12, 3.15, 3.18, 3.22, 3.26 and 3.30. The strain rate was kept
constant at 0.015 in/min. until well into the yield plateau, then

was gradually increased to 0.10 in/min until final rupture. The pieces
were then removed, fitted together and the distance between two lines
previously scribed 2.00" apart measured. The percentage elongation

is a measure of the ductility of the material.

The total elongation of a ductile metal at the point of rupture
is due to plastic elongation, which is more or less uniformly distri-
buted over the gage length, on which is superimposed a localised drawing
out or extension of the necked section, which occurs Jjust before rupture.
The former is small compared to the latter. The length affected by the
final localized drawing out is of the order of 2 or 3 times the thick-
ness of the specimen. It is thus apparent why the gage length must be
fixed if comparable elongations are to be obtained and why specifications
call for rejection of an elongation measurement if the break is too near
the ends (the effect of the localized necking down would extend beyond
the gage length).*

Investigations have showed that wide tolerances in loading speed
can be permitted without introducing serious error in the results of
tests for ductile metals. Davis et al [196L] cite tests of standard

specimens of a structural steel in which an eightfold increase in the

-~

*¥Percentage elongation measured over a 2.00" gage length, although
accepted ASTM practice (Standard A370-68) presents several disadvan-
tages: it does not account for the specimen cross-sectional area, nor
does it separate uniform ductility from local ductility. For a more
complete discussion and suggested improvements, the reader is referred
to Dhalla and Winter [19TLa].
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rate of strain increased the yield point by about 4%, the temsile
strength by about 2% and decreased the elongation by abogt 5%. In the
machine in which these tests were performed, this change corresponded
to a change in idling speed of the head from 0.05 to 0.40 in/min.

I+ has also been shown that the strquth of ductile materials
does not appear to be greatly affected by slight eccentricities of
load or by bending.

The cross-sectional area of a tensile coupon is, of course,
important. TFor flat coupons, the width and thickness were easily
determined with a micrometer after removal of scale or paint. For
corner coupons, whose cross-section is not rectangular, the area was
determined by weighing the reduced (middle) section. This was done
after‘completion of the tensile test. The two pieces of the ruptured
coupon were cut slightly outside of the 2.00" scratches used to determine
elongation and the pieces were hand-filed exactly to the marks. The
area was obtained by dividing the combined weight of the pieces by
the density and the length (determined prior to testing) of 2.00":

A (in2) = w(grans)
v 128.5(g/in3) x 2(in)

(3.13)

Weight can be determined to 0.1 mg and the density is known accurately;

thus the only significant source of error was in the cutting and filing

process. With proper care, good agreement with the product of width
and thickness was obtained (usually less than 1% difference) where the
latter two were available (Tables 3.7 and 3.10).

Yield stress was determined by the 0.2 % strain offset method.
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3.5 Compressive Coupon Tests

Since columns are compressed, it 1s desirable to measure the
compressive yield strength of the material. Variations in material
properties caused by cold-forming necessitates the testing of small
compressive coupons cut from various locations of the cross-section.
Except for the thickest type of section (HT), all coupons were provided
with lateral support in the form of a well-greased jig (Photos 3.1-3.4)
to prevent flexural buckling.* Load was applied to the ends of the
coupons. A Wiedemann-Baldwin compressometer of 1.00" gage length
clamped to the sides of the coupons recorded the strain automatically.
Therefore, coupons had to be slightly longer and wider than the 3.00" x
0.50" jig.

As the specimen was compressed, it expanded laterally due to
Poisson's effect and friction developed between the specimen on one hand
and the lateral support and the machine plates on the other. To mini-
mize this effect, the coupon, the jig, and small areas of the machine
bed plate and cross-head were greased prior to the test. In addition,
the‘jig was tightened by hand so it only barely touched the specimen at
zero load.

All specimens were tested in a Wiedemann-Baldwin hydraulic press
with fixed heads. Although each coupon was machined individually after
being cut from a section, so its ends were parallel to within 0.001",

and was carefully placed at the center of the machine plate, uniform

*#Tt is, of course, possible to avoid buckling with a short enough
coupon. But the effects of end friction would then be important and
the use of a compressometer to record strain impossible.
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axial straining could never be exactly achieved as seen from the test
results for the HT coupons with strain gages (Fig. 3.32).* The reason
was a specimen would never be exactly straight because cutting released
the longitudinal residual stresses, which were not uniform over the
thickness. This phenomenon was, in fact, used to advantage in the
"sectioning method" to measure residual stresses.

Strain rate was comparable to that in tensile tests. Cross-
sectional area was computed from the dimensions of flat coupons and
from the weight of corner coupons. The weighing method was easier
here than for tensile coupons, since compressive coupons had a uniform
cross~section over their entire length.

For laterally supported coupons, compression was maintained
until either the coupon buckled about the strong axis or had shortened
so much that the machine plates come close to touching the jig. ' The
stress-strain curve was only used to determine the yield stress by the
0.2% offset method so the portions of the curve involving large plastic
strains and possible frictional effects needed not be considered.

One set of HT coupons was tested without lateral supports and

with strain gages affixed to both sides of each coupon. Strains were

not uniform for reasons mentioned above but an average load-strain
curve could be obtained. Coupons buckled shortly after reaching the

yield plateau. Yield stress was obtained by the 0.2% offset method and

*¥The HT coupons were thick enough so flexural buckling did not occur
before yielding. Lateral support was therefore dispensed with. These

coupons were obtained from a previous residual strain measurement test
and had strain gages mounted on both faces.
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agreed well with that of laterally supported coupons (Tables 3.20, 3.21,

Fig. 3.31 and 3.32).

3.6 Results of Tensile and Compressive Coupon Tests

Several specimens were obtained from each type of section and a
number of coupons were cut from each specimen. The specimens were
designated by the letters a, b, c... or by the length (without end
plate) of the column adjacent to which they were cut. Thus, coupon Ta,
for example, was coupon 7 of specimen a. There was at least one complete
set of tensile and compressive coupons for each section type (complete
in the sense it covered the entire cross-section). The compressive
coupons were wider than the tensile coupons and thus, fewer of the
former were obtained from a specimen. In order to compare compressive
test results to tensile test results on the same graph, e.g. Fig. 3.5,
equivalent tensile coupon locations were used for the compressive cou-
pons.

Table 3.22 lists the figures and tables where the results of
tensile and compressive coupon tests for the various sections are pre-
sented. (The strain scale on the load-strain curves may be different
from coupon to coupon). The main purpose of these tests was to measure
the yield strength to be used subsequently in the determination of
column strength.

The S5t formula and Karren's formula predict the yiéld strength
of the corner from the yield and ultimate stresses of the virgin flat
and the geometry of the corner. Table 3.4 shows that, if the mechanical

properties of the as-formed flat are used instead of the virgin proper-



ties, both formulas overestimate corner yield strength. Agreement
between predicted and actual values for cornmer 1 (at the web-flange
juncture) of H1l and HT appears to be coincidental.

The main effects of cold-forming are clear from Fig. 3.5, 3.9,
3.1k4, 3.17, 3.20, 3.2k, and 3.28. Cold forming raises the yield
strength, the ultimate stress and decreased ductility. Tables 3.5,
3.8, 3.11, 3.13, 3.15, 3.17, and 3.19 show that elongation remains
above 10% and the ratio of the tensile strength to the tensile yield
strength is greater than 1.08. Thus, ductility is adequate (Dnalla
and Winter [1974b], Winter [1979]1). However, the ratio Gp/cy of the
proportional limit to the yield strength sometimes dips below 0.70,
which is the lower limit of applicability for virgin steel of the AIST
Specifications. (Winter [1979]). UP/Oy is lowest at the corners and
their vicinity. Measurement of the proportional limit is less reliable
than that of the yield or tensile strengths because of its dependence
on the shape of the stress-strain curve and, therefore, on the perfor-
mance of the strain recorder.

Two observations differ from previous works:

1) There is no clear difference between the cold-forming effects
due to press-braking and those due to cold-rolling.

2) Although corner yield strengths in compression and in tension
appear to be close to one another, the larger size of compression
coupons means that the actual corner compressive yield strength is
slightly higher than the corner temnsile yield strength, since a corner

compressive coupon includes a higher proportion of weaker flat area.
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Except for the case of RFC 14, the variations in mechanical
properties from one specimen to another of the same type are small.
It is th;g sufficient to take only one set of characteristic wvalues
and apply it to all columns of the same type.

The fabri?gtion of tensile coupons by sectioning releases
the longitudinal residual stresses (Chapter 5), causing the coupons
to shorten or elongate and to bend. Applying tension to the coupons
brings them back to straightness and restores the flexural component,
but not the axial component of the residual stresses. The presence
of these stresses lowers the proportional limit, but does not affect
the yield stress in any appreciable way in the vast majority of the
coupons. The reason is, the .2% strain offset point lies in the yield
plateau, where the effect of residual stresses is wiped out. Unfortu-

nately, there is toc much scatter in the proportional limit and other

experiments will have to be devised to measure residual stresses.
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TABLE 3.1

CROSS-SECTIONAL PROPERTIES

Symbols are explained in Fig. 3.k4.

Sections PBC 14 PBC 13 H11 HT HT
RFC 1L RFC 13
H 1.25 1.25 .070 .075 .100
(inech)
B 1.20 1.20 470 672 .L50
(inch)
C .500 .500 ko .860 1.00
(inch)
Ty .200 .200 | .koO .500 542
(inch) |
r, .200 .200 | 400 .527 .632
(inch)
2ul 90.0 90.0 70.9 78.0 85.5
(degree)
2u2 90.0 90.0 6h.5 68.0 86.0
(degree)
t .073 .090 .120 .179 .300
(inch)
N .63k .636 .585 .952 .992
(ineh)
A .518 L6400 Luh2 .990 1.870
. 2
(in®)
I 217 . 269 .063L .327 .6L2
(in")
R .6LT .648 .379 .575 .586

(in)




TABLE 3.2a:

CHANNEL SECTION PROPERTIES

average or

corner 2 1 3 L typical
a 3/32 T/6M4 T/6h T/64 T/6b
t, .0732 .0732 .0725 .0715 .0726
flat locations (1) (2)
PBC 1k te .0750 .07hé L0748
a + t, .1842
At/t % min=1.9 max=4.T
corner 2 1 3 l av./typ.
a T/6k4 T/6h 3/32 T/6k4 T/6h
t, .0739 .0718 .0710 .0722 .0722
RFC 14 |flat locations (1) (2)
t, .0Tho .0753 .0Thé
a + tf .1840
AL/t % min=.13 max=5.7

9t



TABLE 3.2a:

CHANNEL SECTION PROPERTIES (continued)

corner 2 1 3 L av./typ.
a 3/32 T/64% 7/64 3/32 13/128
t, .0848 .0852 .085h4 .0855 .0852
flat locations (1) (2)
PBC 13 te .0887 .0885 .0886
a +t, .1902
At/ % max=h U min=3.4
corner 2 1 3 L av./typ.
a T/6k 3/32 3/32 3/32 . 3/32
tg .0879 .087h . 0860 .0879 .0873
RFC 13 |flat locations (1) (2)
te .0910 .0920 .0915
a +t, .1852
At/ % max=6.5 | min=3.k

LE



TABLE 3.2b:

HAT SECTION PROPERTIES

average
flat locations (1) (2) or typical| a + t
t. .1250 .1200 .1225
corner 2 1 3 h
a 12/64 13/6h 25/128 .3178
H 11 t, .1148 L1142 .11h45
At/t % min=k.3 max=8.6
a 14/6k4 15/64 29/128 .3h01
t, .1115 117k .11h45
At/t % max=10.8| min=2.2
flat locations (1) (2) av./typ. a + tf
t, .1850 ATTT .1813
corner 2 1 3 b
a 5/32 5/32 5/32 .3376
HT t, .1576 .1559 .1567
At/t % min=11.3 max=15.T
a 14/64 15/64 29/128 .ho79
t .1115 L1217k .11k5
At/tc% max=39.7| min=33.9

B¢



TABLE 3.2b:

HAT SECTION PROPERTIES (continued)

flat locations (1) (2) av./typ. | a + te
tf . 3090 .2971 . 3030
corner 2 1 3 i
a 13/64 13/6h 13/64 . 5061
HT t .2625 .2585 . 2605
At/t % min=11.6 max=16.3
a 9/32 17/64 35/128 .576h
tg .2639 .2649 .26h)
At/t % max=1k4.6 min=10.8
(1) 3
} hd °
e (2)
™ ®
2 I

At/t is the relative change in thickness from corner to flat.

Locations of Flats and Corners

6¢
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TABLE 3.3

CROSS-SECTIONAL AREA (ing) FROM

WEIGHT (Aw)and LINEAR DIMENSIONS (Ad)

Section A A Ag-B,
d W

.01 A

d
PBC 14 .518 .515 .6
RFC 14 .518 .51k .8
PBC 13 .6L0 .637 .5
RFC 13 .6L0 .637 .5
H1l Lk 435 1.6
HT -990 .985 .5
HT 1.870 1.849 1.1




TABLE 3.4

CORNER YIELD STRENGTH:

ACTUAL, KARREN'S FORMULA AND 5t FORMULA

PBC 1h
oyf = 39. KSI | a = .1094"
uf - 58. o = .0726"
= -— "
actual cho 55. tf L0748
5t Karren
tc yeo = 69.1 cho = 61.7
tf 69.8 cho = 62.2
PBC 13
— — [1]
cyf = 38, KSI| a = .1016
= - "
uf 60.5 t, .0852
= = "
actual veo - 57. tf .0886
ot Karren
tc cho = 61.5 °yco = 67.8
t 62.2 o = 68.5
f yeco

RFC 1k
o] = L4l KSI | a = .1094"
yf
Op = 62. KSI o = L0722
— — "
actual cyco = 59, tf = .07L46
5t Karren
t o] = T2.h o = 66.1
c yco yco
te 73.1 66.1
RFC 13
cyf = 38. KSI| a = .0937"
—_ — "
O = 62. tC = .0873
actual cho = 56' tf = .0915"
5t Karren
tc cho = 66.3 cho = T71.2
tf 67.2 72.2

8



TABLE 3.4

CORNER YIELD STRENGTH: ACTUAL, KARREN'S FORMULA AND 5t FORMULA (continued)

H 11
oyf = 42, KSI Oup = 59.5
actual | o = 60, t. = .1225
yco f
a, = ,1953" a, = .2266
t, = .11ks t,, = .11ks
(2<x)l = T70.9° (2a)2 = 64,50
5t Karren
t.] cho = 61.9 °yco = 61.8
t 62.9 62.8
f
t 5 58.1 59.7
(o]
t :} 59.0 60.6

HT
ny = 5, KSI O = 63.
actual | o = 63. t, = .1813"
yco t
a, = .1563 a, = .2266
ty = .1567 too = .11h5
(o)., = 78° (2cx)2 = 68°
__5_1;_ Karren
tcl ayco = 62.5 cyco = 4.2
t 69.7 76.8
f
63.
too . 18.2 3.3
tf 73.4 70. 4

cn



TABLE 3.4

CORNER YIELD STRENGTH: ACTUAL, KARREN'S FORMULA AND 5t FORMULA (continued)

HT
cyf = 52. KSI Oup = 65. KSI

actual cho = T70. tf = ,3030"
8, = ,2031" a, = L2T34"

ol = -2605" too = L 26hL"

(2a), = 85.5° (2a)2 = 86.°

5t Karren

tcl “yco = 82.7 Gyco = 78.3
te 85.6 80.6
tce 83.7 Th.1
tf 80.2 76.1

Oyf = yield strength of flat, ksi
Ouf = ultimate stress of flat, ksi
o] = corner yield strength, ksi
yco

ey

a = corner radius, inch

t = thickness of corner, inch
t = thickness of flat, inch

20 = corner angle, degrees

Subscripts 1, 2 refer to corner 1
(web-flange) and 2 (flange-lip) respectively.
5t formula (eq. 3.11) and Karren's formulas
may be used with t = tC or t = tf.

Karren's formulation involve equations (3.2), (3.3),

(3.6), (3.13) and (3.1h).



PBC 14 TENSILE COUPON TEST

TABLE 3.5

g g
Specimen Coupon W t d A g o] o % —P u Int. Ext.
5 p yt u Elong. 0yt Oyt Radius
gram in in in ksi ksi ksi in in
a 1 L0761 .226 .0172 26.1 LL4.3 s58.Y4 28. .59 1.32
2 8.096 .0T745 .0315 Lo.6 s5h4.6 65.1 *¥% Th 1.19 T7/6L4 15/6h
3 0752 .229 .0173 34.8 k1.7 s58.2 35. .83 1.40
N L0756 .227 .0172 26.2 Lo.7 58.0 31. 64 1.43
5 7.322 .0720 .0285 28.1 5Sh.0 63.8 *% .52 1.18 3/32  7/32
6 L0762 .229 .017h 28.6 kL1.3 58.9 27. .69 1.43
T L0755 .227 .0172 29.1 39.1 58.1 36. .74 1.h9
8 .0762 .228 .017h 28.8 39.0 57.6 34, LTW 1.48
9 .0800 .227 .0182 33.0 38.8 55.4 3Y. .85 1.43
10 .0760 .229 .017h 29.3 L3.0 58.8 30. .68 1.37
11 7.131 .0730 L0277 23.5 56.0 66.4 *% b2 1,19 T7/64  1/4
12 L0757 .227 .0172 30.2 hLo.7T 58.7 30. LT 1.hy
13 .0758 .227 .0172 32.5 Lo.1 58.7 33. .81 1.46
14 8.151 .0Tkh5 .0317 28.4 53.9 65.3 11. .53 1.21 9/64 17/6h
15 .0760 .227 .0172 24.9 L45.9 59.7 23. .54 1.30
b 1 077 456 .0351 22.8 L7.6 59.5 28. A8 1,05
15 L0774 .9 .0347 25.9 L5.2 5S8.4 30. .57 1.29
c 8 9.543 .0762 .h491 .037h 38.3 LO.T7T 57.6 35. 9 10
11 8.007 .0721 .0315 L6.1 s5L.8 64.1 %% Bhoo1aay
d 5 7.967 .0716 .0313 L2.5 5SL4L.6 64.2 18. (8 1.18
8 9.481 .0762 .489 .0373 37.5 L0.9 5S8.4 37 . .92 1.43

T



TABLE 3.5 (continued)

g o}

P u

Specimen Coupon W t d A o o o] % o o Int. Ext.

, P vt u Elong. Yt Yt Radius

gram in in in ksi ksi ksi in in
75" 8 L0767 496 .0380 35.5 LO.7T 56.5 35. .87 1.39
column 11 .0720 .0312 36.9 5k4.9 63.8 *% .67 1.16
86" 5 6.585 .0725 L0256 39.4 56.2 65.8 %% 700 1.17
column 8 L0758 .483 .0366 32.7 h0o.4 57.3 35. .81 1.h2
99" 8 0760 .495 ,0376 L1.3 L41.3 57.5 35. 1.00 1.39
column 11 8.056 .0T713 .0313 38.9 5h4.3 6kh.5 15. .72 1.19

*%
broke outside of middle 2",

Specimens are sometimes designated by the length of the corresponding column (without end plate).

S



TABLE 3.6

PBC 14 COMPRESSIVE COUPON TEST

. w t d Aw op ch dt L dt--Aw Int. .Ext. op
Specimen  Coupon . . . 2 : : .2 .0lat  fadius o
gram in in in ksi ksi in in in ye
e 1 16.993 .0TT75 .0k30 47.9 53.9 .075 T/64 T7/32 .89
2 14.501 .0758 .486 .0365 16.2 38.1 .0368 3.089 .8 43
3 17.462  .0720 .okk2 k7.7 52.8 077 3/32 7/32 .90
L 14.512 .0760 .486 .0365 29.9 38.7 .0389 3.090 1.0 LT
5 14.974  .0760 .502 .0377 28.1 37.9 .0381 3.089 1.1 .Th
6 15.002 .0760 .501 .0378 11.5 37.7 .0381 3.090 .8 .30
T 17.484  .0730 .0hkblh 35,3 53.4 067 3/32 T7/32 .66
8 15.224 .0760 .509 .0383 11.5 39.6 .0387 3.090 .9 .29
9 17.723 .0ThLO L0450 L5.7 55.1 .066 9/64 1/4 .83

A was used for stress computations.
%

on



TABLE 3.7

COMPARISON BETWEEN COUPON AREA BY WEIGHT AND DIMENSION FOR PBC 1k

o o A -dt
Specimen Coupon w (gram) t (in) d (in) £ (in) Aw (in") dt (in™) .det
c 8 9.543 L0762 4ol 2.00 .0371 .037Th
d 8 9. 481 L0762 .189 2.00 .0369 L0373
f 1 .0768 .h35 3.021h
2 14 .25, L0755 3.0080 .0369
3 11.710 L0760 .Lho11 3.0123 .0302 .0305 .8
I 11.771 L0760 .403 3.019 .0303 .0306 .9
5 1k4.055 L0762 3.0156 .0363
6 11.761 L0760 .403 3.015 .030k .0306 .9
7 13.794 L0760 .h668 3.0377 .0353 .0355 ol
8 13.969 .0760 L4710 3.050k .0356 .0358 -.h
9 13.89k L0760 6T 3.0638 .0353 .0355 .6
10 11.950 .0761 .Lho20 3.0573 .0304 .0306 .6
11 13.490 .0730 3.0597 L0343
12 12.082 L0760 Lho71 3.0548 .0308 .0309 .5
13 12.002 L0760 .L020 3.0673 L0304 .0305 .3
14 15.524 L0760 3. 0690 .0394
15 L0770 Jhok 3.0635

Specimen f was intended

for compression tests but was found too narrow.

L



TABLE 3.8

RFC 1k TENSILE COUPON TEST

Specimen W t d A o] o o % SE__ u
5 p yt u Elong. (6]

gram in in in ksi ksi ksi yt yt

1 .OTh . 360 L0266 43,2  Lo.7 62.9 23. B7 0 .27
2 5.914 .073 .0230 k6.5 59.1 69.5 11. .79 1.18
3 .073 .318 .0232  45.2  L6.3  62.0 20. .98 1.34
i .07k .311 .0230 32.6 k4.1  61.7 %% JTh 1.ko
5 8.399 071 L0327  hh.7 s56.6 67.2 13. .79 1.19
6 .073 .311 L0227  35.2 k6.2 61.0 25. .76 1.32
7 6.7h0 .073 . 360 L0262  36.2 Lh.5 60.9 26. .81 1.37
8 .072 .335 L0241 36.1  L9.7 66.3 26. .73 1.33
9 .073 .312 .0228 35.1 Ls5.0 60.2 26. 18 1.34
8.570 .070 .0333 L2.0 sk.0 63.6 X% .78  1.18

073 .311 .0227 37.4  43.0 56.4 25. 87 1.31

.072 .287 .0207 31.5 k0.2 sk.0 32. .78 1.3k
7.701 .071 .0230 k1.7 50.7 57.4 15. .82 1.13
.072 .318 .0229 35.8 40.6 53.1 36. .88 1.31
L0771 .h19 .0323  35.6  L8.1 59.h 27. LTh 1.23
9.545 .07k0 .499 .0369 36.6 4o.1 57.8 36. .91 1.k}
.0T760 .438 .0333 34.5 42,1 58.6 33. .82 1.39
7.613 .0710 .0206 35.5 52,4  63.2 19. .68 1.21
8.096 .0769 .0315 35.7 47.8 60.3 2. .75 1.26
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TABLE 3.8 (continued)

Specimen  Coupon W t d A o O ¢ o} % :ﬁl SJL
o p y u Elong. O N o] N

gram in in in ksi ksi ksi y y
c 2 8.268 .0732 .0322 L2.0 55.4 64.5 *% .76 1.16
3-4 L0754 Jh2h L0319  37.6 h6.0  6L.8 35.5 .82 1.k
5 8.009 .0ThT .03112  40.1 54.6 63.4 *% .73 1.16
6-T 9.228 .0750 L0317 L4i1.9 k7.1 66.0 35.5 .89 1.h4o0
-8 .0758  .k4s52 0342  38.7 39.4% s5k.0 39. .98  1.37
8-9 9.754 .0751 .510 .0379 39.6 Ll1.h 58,3 35. .96 1.k
11 .0750 .510 .0382 32.7 Lo.3 58.1 36.5 .81 1.4k
d 1-8 9.641 .0750 . 499 .037h 36.1 40.1 57.6 39. .90 1.4k
10 10.261 .0715 L0399 k0.1 50.7 61.9 25. .79 1.22
78" 5 7.111 .0732 L0276 k3.4 60.2 70.3 *%* 720 1.17
column 6-17 9.199 .0756 .Lg2 L0364 45,3  L6.h 62,2 30. .98 1.3k
8-9 9.479 .0750 .ho6 L0369 2.0 44,1 59,0 30. .95 1.3k4
10 6.539 .0T10 L0254 33.4 58.8 68.2 *% .57 1.16
8y 5 9.200 .0733 .0358 L7.5 57.3  67.4 15. .83 1.18
column 7-8 9.335 .0363 44,1 45.5  60.3 25. .97  1.32
10 7.411  .0700 .0288 45,1 58.3 65.9 *% T7T 0 1.13

**broke outside middle 2".

Specimen is identified by the length of the corresponding column (without end plates).

Aw used for all stress computations.
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TABLE 3.9

RFC 14 COMPRESSIVE COUPON TEST

Specimen Coupon W t d 2 Aw Op ch at
gram in in in in2 ksi ksi in2
e 1 18.346 3.10k L0460 43.5 55.5
2 15.185 .07k .511 3.12k .0378 39.6 ho.3 .0378
3 17.182 3.109 .0430 4h.6 56.3
L 15.016 .0T7h . 507 3.12h .037h 33.1 40.1 .0375
5 14.631 .OTh .511 3.003 .0379 28.5 37.6 .0378
6 15.092 .OTY .511 3.124 .0376 26.6 38.8 .0378
7 17.177 3.093 .0h32 347 51.3
8 14,568 0Tk .511 3.003 L0377 30.2 38.2 .0378
9 17.645 3.1h1 .0h37 38.9 50. 3

Aw used for all stress computations.

For tensile coupons £ = 2.00".
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COMPARISON OF AREA FROM WEIGHT AND FROM DIMENSIONS

TABLE 3.10

at-A
Specimen Coupon w t d L Aw at : Old:;]
. ) . .2 L2
gram in in in in in
a T 6.7 .073 .360 2.00 .0262 .0263 .2
b T 9.5kL5 .07h0 .99 2.00 .0371 .0369 -.6
w]
S c 8-9 9.75k .0751 .5102 2.00 .0379  .0383 .9
4]
5 a 7-8 9.641  .0750  .k99 2.00 .0375 .037h -.2
il
78" column 6-7 9.199 .0756 4819 2.00 .0358 .0364 1.7
78" column 8-9 9.479  .0750 .L956  2.00 .0369  .0372 .8
“ e 2 15.185 LOTh .511 3.12k .0378 .0378 0.0
(0]
on e L 15.016 .OTh .507 3.124 .037h .0375 .3
§ e 5 14.631 .07k .511 3.003  .0379 .0378  -.3
%‘ e 6 15.092  .074  .511  3.124  .0376  .0378 .6
© e 8 14.568 .07k .511  3.003 .0377 .0378 .2

16



TABLE 3.11

PBC 13 TENSILE COUPON TEST

. % d*;—Aw op ou
Specimen Coupon W t d A op Oyt u Elong. dt oidt o g
. 2 2 yeoooyt
gram in in in ksi ksi ksi in
a 1 7.070 .091 .307 .0275 21.8 L6.0 63.1 32. .0279 1.5 ATo1.37
2 10.358 .090 .0k03 17.4 56.1 65.5 30. : .31 1.17
3 6.900 .091 .298 .0268 22.3 139.1 61.4 30. .0271 1.0 .57 1.57
h 6.869 .092 .295 ,0267 9.3 39.7 61.7 30. L0271 1.5 .23 1.55%
5 11.555 .090 .0k50 31.1 s5L.8 6L4.2 26. 57 1.17
6 7.656 .091 .329 .0298 18.5 Lo.4 61.8 38. .0299 .5 A6 1.53
T 10.31h  .092 Jhho  Loko1l 22.2 37.8 60.5 36. .0Lo05 .9 .59 1.60
8 10.328 .092 Juho  oko2 21.0 38.3 61.0 35. .0k0o5 T .55 1.59
9 10.321 .092  .439 .0k02 17.3 39.6 61.0 32. .0LokL .6 o105k
10 10.072 .086 .0392 1b.0 52.8 64L.8 20. .27 1.23
11 6.720 .092 287 .0261 22.9 39.4 61.2 33. .58 1.55
12 6.929 .092 .297 .0270 2h.1 37.8 60.3 30. L0273 1.3 .6h 1.60
13 9.620 .087 0374 26.7 55.8 6L.2 23. W8 1.15
14 7.743 .093 .0301 13.3 k2.1 61.1 28. .32 1.45
b 2 10.508 .091 .0k09 31.8 59.4 66.0 26. 50 1011
c 5 9.451 .0866 .0371 u45.8 57.2 63.7 29. .80 1.11
7-8 11.4%26 .0917 .490 .0Ohks 21.1 37.8 60.9 36. .ohhg 1.0 .56 1.61
d 10 9.672 .0878 .0380 L0.8 56.6 63.5 29. 2 1.12
7-8 11.623 .0931 .L490 .0k452 21.9 37.2 60.7 36. L0456 .9 .59 1.63

cs



TABLE 3.12

PBC 13 COMPRESSIVE COUPON TEST
dt-A_ ©
Specimen Coupon W t a 2 A o at .01d¥ 5
gram in in in in2 ksi ksi :'Ln2 ve
e 1 20.765 .088 3.043 .0531 24.0 5T7.k4 b2
2 18.245 .091 .512 3.085 .0L460 21.9 39.5 .0k66 1.2 .55
3 21.256 .085 3.044  .0543 32.k 55.7 .58
4 18.320 .091 .512 3.087 .0ok62 27.9 38.5 .0L66 9 .72
5 18.360 .091 .512 3.095 .0k62 24,6 37.9 .0L66 .9 .65
6 18.370 .091 .512 3.092 .0462 28.7 39.6 .0L66 8 .72
T 21.049 .086 3.042 .0538 L49.6 58.9 .84
8 18.393 .091 .512 3.090 .0463 22.3 38.0 .0k66 .6 .59
9 21.676 .089 3.043 .0554 k0.0 56.1 .71

€5



RFC 13 TENSILE COUPON TEST

TABLE 3.13

Specimen  Coupon W t d A Op Oyt o, Elfng - OJ— E}.l._
> yt yt
gram in in in ksi ksi ksi

a 1 .092 . 294 0270 25.9 h2.1  61.5 30. .62 1.h6
2 8. 741 .089 .0340 25.0 57.3 65.6 2k, Ly 1.1k

3 . 090 . 310 L0279 19.7 39.4  62.4 36. .50 1.58

I .090 .303  .0273 23.8 38.9 61.8 36. .61 1.59

5 10.894 .087 .oLh2Y 3.2 55,4 6L.9 30. .62 1.17

6 .090 .327 L0294 29,7  ho.1  62.3 34, .74 1.55

7 .090 . 329 L0296  28.7 38.2 61.8 30. .75  1.62

8 .090 . 326 .0293  27.3 38.5 62.0 30. .71 1.61

9 .090 . 310 L0279  26.9 39.4  62.0 35. .68  1.57

10 10.200 .086 .0397 20.2 52.9  65.1 32. .38 1.23

11 . 090 .295 L0265 26.4  39.7 62.7 3k, .66 1.58

12 .090 .29 .0265 20.8 39.7 62.2 33. .52 1.57

13 9.228 .088 .0359 25.1 56.2 66.5 30. 50 1,18

1k .091 .250 L0227 19.8  41.8 61.8 29. AT 1.48

b 10 9.220 . 0860 .0358 L0.5 55.9 65.1 26. .72 1.16
8 .0910 .Lo8 .0453  30.9 37.5  61.3 40. .82 1.63

c 5 8.374 .0858 .0326 46.0 59.8 65.2 15 *¥ 1T 1.0¢
7 .0900 .500 .0ks0  29.7  37.h  60.7 36. 79 1.62

*%

broke outside of middle 2".
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TABLE 3.1h

RFC 13 COMPRESSIVE COUPON TEST

Specimen Coupon W t L A o, e gﬁl
gram in in 1n° ksi ksi &

a 1 21.55k4 .088 111 .0545 22.0 55.3 .40
2 18.080 .0913 .051 .0L66 23.6 38.4 .61

3 21.002 .087 .095 .0533 ol k4 56.6 .3

4 18.075 .0911 .051 .0k66 26.8 38.4 .70

5 18.049 .0912 .051 .0L65 23.6 37.6 .63

6 18.015 .0912 .050 .ok6h 28.0 39.2 .71

7 20.0LO .086 131 .0503 33.8 54.8 .62

8 17.768 .0908 . 024 .0k62 31.2 39.4 .79

9 20. 754 .087 .089 .0528 2h.6 55.8 b
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TABLE 3.15

H 11 TENSILE COUPON TEST

Specimen Coupon t a A o Oy o % Int. Ext. SLL_ Sg_
. ) ? y‘ _Radius- Oyt Gyt
in in in ksi ksi ksi Elong. in in

a 1 .125 .235 L0204  48.0 55.8 71.8 18. 86  1.29
2 112 L0374 36.9 60.1  T1.6 11. 15/6  T7/16 .61  1.19
3 121 .24h8 L0304k 36.2 434k 59,8 21. .83 1.38
i .123 .0299  30.5 50.9 6h.9 ik, 9/32 1/2 .60  1.28
5 J11k 0403 24,8 51.8 65.9 15. A48 1.27
6 L1111 .0355 28.2 56.3 68.6 11. 9/32 1/2 .50 1.22
7 .121 .25} .0309 26.6 L2.2 59,1 19. .63  1.h0
8 112 .0371 35.0 59.2 T70.8 12. 15/64  7/16 .59  1.20
9 .121 .270 .0325 W7.7 53.2 65.2 *% .90 1.23
b 3 .1216 o1k 36.2 k1.2 59.2 28.5 .88 1.hh
8 L1122 .0369 33.9 61.2 T0.9 *% .55  1.16
c 2 1122 .0373 kL2.9 60.3 T1.2 10. 71 1.18
7 .1183  .31k1 .0375 31.5 L40.7 59.6 ok, 1T 1.46

*¥¥proke outside middle 2".



0 11 COMPRESSIVE COUPON TEST

57

TABLE 3.16

Specimen Coupon t d A o g g
1) ye _p_
in in :'.n2 ksi ksi Uyc
a 1 .120 . 0601 4.8 56.8 .75
3 121 .506 .0612 39.7 Ubs5.2 .88
7 .120 .505 .0605 33.1 Lk.6 .74
9 .121 .0618 39.3  52.4 .75
e 2 .110 .06L2 30.4  59.7 .51
T .110 .0633 36.1 55.3 .65
5-6 .110 .06L40 hs. b 60.2 )
8 .110 . 0663 Lo.h 58.8 .72




H 7 TENSILE COUPON TESTS

TABLE 3.17

Specimen Coupon W t d A g g ag % A dt—Aw o Ou
5 p yt u v NUETRN T
gram in in in ksi ksi ksi Elong. in y yt
a 1 23.568 .181 .513 . 0928 36.6 50.2 63.3 27. L0917 1.2 LT3 1.32
2 22.5091 .160 .0892 25.8 62.8 T7.0 15. 11,23
3 11.597 .173 .263 .0k55  37.4 k5.3  62.7 25. .0h51 .8 .83 1.38
L 21.847 .160 .0863 k4.0 62.8 75.3 1k, .70 1.20
5 22.801 .162 .0901 ho.2  61.1 T6.1 15. .69 1.25
6 14,466 1Tk .328 L0571 k40.3 hh.,1 62.2 25. .0563 1.4 .91 1.h1
7 18.21k .166 L0719  33.4  66.7 T7.2 11. .50 1.16
8 21.6kL3 .182 L6l .08kl 23,7 u48.6 63.4 25, .08L42 .3 .bo 1.30
b 1 .1819 .h036 .073h 34.0 50.h4 6h.3 17. .67 1.28
7 .1580 .0573 51.5 68.7 80.5 *% 75 1.17
c 2 .1528 .0634 50.5 66.2 T7.0 10. .76 1.16
7 .1528 .oh1h  s51.9 67.6 78.4 10. TT 1.16
8 .1820 Lho21 .0732 32.8 k8.5 63.5 20. .0729 .68 1.31

*¥proke outside middle 2".
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TABLE 3.18

H T COMPRESSIVE COUPON TESTS

dt-A
W

Specimen  Coupon t d A o o] dat P
"; J , -0ldt o

in in in ksi ksi in ye

d 1 .182  .505 .0912 43.9 60.0 .0919 .8 .13

2 .165 .091k hi.7 6L4.8 .6h

3 175 .505 .0881 4.6  h6.3  .088L4 .3 .96

L .160 .088Y4 59.2 65.1 .91

5 .165 .0882 35.6 63.8 .56

6 ATh .50 .0880 33.0 kL5.9 .0877 -.k 72

7 .160 .090k4 43.5 66.4 .66

8 .183  .505 .0930 41.5 L8,k 0924 _-.6 .86
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TABLE 3.19

H T TENSILE COUPON TEST

Specimen  Coupon W t d Aw Gp Oy N o, % EE_ (_ji_
gram in in in2 ksi ksi ksi elong. Oyt Oyt

a 1 30.771 .309 .hoo .120 33.4 s56.0 65.0 20. .60  1.16
2 29.84k 309 .377 .116 43,1 s51.1 6h.2 22, By 1,26

3 32.506 520 126 23.7  65.2  78.9 15, .36 1.21

L 27.788 .291 .305 .0887 39.5 58.0 69.4 8. .68 1.20

5 23.659 263 .329  .0921 41.3 T70.6 79.8 1o0. .58 1.13

6 34.916 .303 .h4é6 .136 k2.7 60.0 T0.6 18. .71 1.18

7 20.587 .0801 h7.h  T71.8 80.8 @ %% .66 1.13

8 25.342  .299 .327  .0986 52.8 67.4h 18, 1.28

9 29.51h .252 Jhos o L1150 27.4 0 71,0 81.9 13, .39 1.15

10 28.172 .310 .33k .110  Lh.7 52.5 66.1 22. .85 1.26

11 3h.1kk .311 L35 0133 k5.2 52,1 6h.0 2k, .87 1.23

b 9 28.58 .273 .111 k2.7 70.9  81i.7 %% .60 1.15

#%
broke outside middle 2".
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TABLE 3.20

H T COMPRESSIVE COUPON TEST

Specimen  Coupon W t d £ AW o e ER
. . . , 2 . . o
gram in in in in ksi ksi ye
c 1 60.32hF  .311 .508 .1527 k3.2 k9.8 .87
3 5h.725  .248 3.098 1375 W6.5  65.8 .71
5 55.110 .262 3.086 .1390 49.6  70.5 .70
7 55.7Th2  .264 3.086 1406 50.5  73.1 .69
9 56.042  .259 3.098 L1408  L46.9  T2.6 .65
11 . 294 49.0
d 2 60.793 .310 .h9T7T 3.1hks5  .1504 53.2 55,2 .96
6 60.180  .303 3.0976 .1512 52.2 62.7 .83
10 60.171 .309 .503  3.0k2 .1539 L6.8 s52.5 .89
e L 56.734  .296 .503 3.0k42 .1hks1 halh s57.8 0 L2
8 55.949 297  .h93  3.0k2 .Ahk31 s2.4 60.0 .87
11 hg,2

19



H T COMPRESSIVE COUPON TEST (strain gages)

TABLE 3.21

Specimen  Coupon w t d L A O o
. . . . 2 .

gram in in in in ksi

f 1 64 .922 .307 .Eug 3.062 165 52,1
2 52.599 .313 437 3.078 .133 53.0

3 58.890 .201 .280 3.078 .149  T0.5

L 60.815 .290 .548 3.078 .154 62.3

5 57.19k .219 3.078 .1k5  T70.7

6 97.693 .311 .965 3.078 247 62.5

7 67.065 .271 3.078 .170 67.6

8 53.380 .298 3.078 .135 Th.6

9 53.204 228 .560 3.078  .134 68.7

10 50.273 .31k ik 3,078 127 sh.9

11 60.219 .303  .519 3.078 152 55.1

c9
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RFC 1k

PBC 13

RFC 13

H1l
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TABLE 3.22

LIST OF TABLES AND FIGURES FOR

TENSILE AND COMPRESSIVE TESTS

Fig. 3.1h:

3.15a,b:

3.16a,b:
Table 3.11:

3.12:

Fig. 3.17:

3.18a,b:

3.19a,b:
Table 3.13:

3.1k:

Fig. 3.20:

3.21:
3.22:
3.23a,b:
Table 3.15:
3.16:

O_,C 7 elongation » * plots
pﬁ y’cuaa g > P )
Tensile coupon [ocations

Load-strain curves for tensile tests

Load~-strain curve for compressive tests

Tensile coupon tests

Compressive coupon tests

Comparison of area from weight and from
dimensions

cp,Gy,Gu,%elongation, t plots

Tensile coupon locations for RFC 1k, RFC 13,
PBC 13

Compressive coupon locations for RFC 1k,
RFC 13, PBC 14, PBC 13.

Load-strain curves for tensile tests

Load-strain curves for compressive tests

Tensile coupon tests

Compressive coupon tests

Comparison of area from weight and from
dimensicns

GP,Gy,Gu,%elongation, t plots
Load-strain curves for tensile tests

Load-strain curves for compressive tests
Tensile coupon tests
Compressive coupon tests

op,cy,cu,%elongation, t plots
Load-strain curves for tensile tests
Load-strain curves for compressive tests
Tensile coupon tests

Compressive coupon tests

Op,cy,cu,%elongation, t plots
Location of tensile and compressive coupons
Load-strain curves for tensile tests
Load-~strain curves for compressive tests
Tensile coupon test

Compressive coupon test
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TABLE 3.22 (continued)

LIST OF TABLES AND FIGURES FOR

TENSILE AND COMPRESSIVE TESTS

Fig. 3.2k:

3.25
3.26a,b:
3.27a,b:
Table 3.17:
3.18:

Fig. 3.28:

3.29:
3.30:
3.31a,b:

3.32a,b,c:

Table 3.19:
3.20:
3.21:

cp,oy,au,% elongation, + plots

Location of tensile and compressive coupons
Load-strain curves for tensile tests
Load-strain curves for compressive tests
Tensile coupon test

Compressive coupon test

GP,Gy,Gu,%elongation, t plots

Location of tensile and compressive coupons

Load-strain curves for tensile tests

Load~strain curves for compressive tests -
(compressometer)

Load-strain curves for compressive tests (strain

gage)
Tensile coupon test
Compressive coupon test (compressometer)
Compressive coupon test (strain gage)
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Photc 3.1 Compressometer, Compression Jigs For Corners
and Flat Coupons

Photo 3.2 Compressometer, Compression Jigs For Corners
and Flat Coupons
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Photo 3.3 Compressometer, Compression Jigs For Corners
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Photo 3.4 Compressometer, Compression Jigs For Corners
and Flat Coupons
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Fig. 3.la

Measurement of Corner Thickness
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Fig. 3.5 PBC 14 Tensile and Compressive Coupon Tests.
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Fig. 3.T7a PBC 14 Tensile Coupon Tests (Specimen a).
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For coupon locations, see Fig. 3.10
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. Fig. 3.21 H1l Tensile (a) and Compressive (d,e)
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Fig. 3.25 HT7 Tensile and Compressive Coupons.



LOAD

kips

h.oF

3.0

.002 in/in

2.0
2a Lha Sa Ta la ba STRALN

Fig. 3.26a HT Tensile Coupon Tests (specimen a).

c0T



4.5+

LOAD
kips
3.5}
2.5
J . 002 ‘ . 002
1.5 ———

.002 in/in

1b

.005

g

8¢

3a

.005 in/in

STRATN

€0T



LOAD
kips

5.0

by

3.0

70T

.002 in/in

64 STRAIN

1d 84 3d

Fig. 3.2Ta HT Compressive Coupon Tests.



105

NIVHLS

bY

PS

Pl

e

ur/utr 2oo°

P—

0°0

17"

sdTy

avo1




.30
t
.25
inch
.20
25.
%
15.
elong.
5.
80.
ou
0.
ksi T
60.
70.
o
vy 60.
ksi
50.
50.
OP 4o
ksi
30.
20.

106

N
o H
S

-~
S
He D
~
TN
| Bef
S’

\

—
.Y ] |
~

N o

\S
-

—
oBRe
SN——
™~

]
- .
8- o
o @
Tension

(o)
A ¢ .§
v 4 %
(@)
( l\ © e §
n 5]
&)

1 3 > T 9 11

Fig. 3.28 HT Tensile and Compressive Tests.
For locations of coupons, see Fig. 3.29.



107

[

=

Fig. 3.29 HT Tensile and Compressive Coupons.
(also corresponds to residual strain
coupons) .



10.0

7.5
LOAD

5.0
kips

2.5

7.5
LOAD

5.0
kips

2.5

.002 —
| ———— L Z
i 7b\ 7
yd
7 [
7/
u
|
.001 .001 .001 .001 .001 in/in
P
3a 9a 6a 1la la STRAIN
-
7/
4 7
/. e
7
— -
.002 in/in
5a 2a 10a 7a ha STRAIN

Fig. 3.30

HT Tensile Coupon

Tests.

80T



11.0

LOAD
kips

9.0

5.0

.002 in/in

9c¢

Te

6d

3e 5¢

Fig. 3.31a HT Compressive Coupon Test.

STRAIN

60T



8.0

6.0

LOAD
kips

-l

.002 in/in

1064

8c

Le

2d le

Fig. 3.31b HT Compressive Coupon Tests.

—t

STRAIN

OTT



111

NIVYIS
—< ut/ut z00"

STUTPBOI TBNIOE e

0°¢

0" X

09

0°g
sd1y

avol

0°0T



10.

LOAD

kips

.002 in/in

— >
STRAIN

Fig. 3.32b HT Compressive Coupon Tests with Strain Gages (Specimen f).

cTT



8.0
LOAD

kips
6.0

. .002 in/i . / .002 in/in
0.0 et 002 in/in — 0.0 R e

11f 10f STRAIN 6f STRAIN

Fig. 3.32c. HT Compressive Coupon Tests with Strain Gages (Sspecimen f).

€TT






CHAPTER &

RESIDUAL STRESSES DUE TO COLD-FORMING: THEORY

4.1 Introduction

The cold forming of a structural section involves loading the
metal into the plastic range followed by unloading. This seguence
leaves residual stresses locked in the metal since locading and unloading
follow different stress-strain paths. The loads are of mechanical
origin here but they can also be of thermal origin (e.g. in the uneven
cooling of hot-rolled sections) or a combination of both (e.g. in metal
cutting).

Only the simplest problems have so far lent themselves to theo-
retical analysis, and accurate prediction of residual stresses is still
the exception rather than the rule. Solutions do exist, however, for
the bending of beams and sheets, a problem relevant to the present in-
vestigation, and the next easiest problem, the autofrettage of cylinders
(prestraining by uniform internal pressure)* which produc¢es an axisym-
metric state of stress. Denton [1966a] cites several solutions to the
problem, including one that produces results within 5% of experimental

measurements obtained by the Sachs boring method (Chapter 5).

*

"Guns, tanks to contain gases at high pressure, etc. may be
tightly wound with wire so as to exert compression on the inside, or
the guns are expanded by internal hydraulic pressure, so that, when
this pressure is relieved, there will be residual compressive stress,
so located that, when the gun is fired, the effective tensile stress
is decreased. Thus the gun is strengthened, much as when an outer gun
tube is shrunk upon an inner tube or when the gun is tightly wound
with wire." Bullens [1948]

11k
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More recently, with the advent of electronic computation, a
greater number of analytical solutions to residual stress problems have
been developed. Incremental computer techniques have proved invaluable
in solving the basic difficulty, which lies in the elasto-plastic load-
ing stage rather than the elastic unloading stage (Pawelski [19701]).
There is a possibility of further plastic floﬁJin the unloading stage,
but most investigators have neglected this possibility because of the
great complications involved. It will be shown below this neglect is
justified in the case of bending of sheets, except for a narrow range

of internal pressure.

4.2 Literature Review

Hill [1950] solved the plane strain problem of bending of wide
sheets by pure bending and by a combination of end moments and internal
pressure (his solution is also reported in Hoffmen and Sachs [1953]).
Independently, Lubahn and Sachs [1950] solved both the plane stress and
plane strain problems of pure bending of sheets. BStresses in the plane
strain condition could be obtained directly, whereas the plane stress
case required successive approximations. All the above solutions neg-
lected strain-hardening, the presence of an elastic zone near the neutral
axis at the end of the loading stage and assumed purely elastic unloading.

Alexander [1959] solved basically the same problem of pure bending
of sheets but with slightly different assumptions. The plane strain
condition and elasto-plastic loading were considered (not a fully plas-
tified section like above), but the normal stresses in the thickness
direction were neglected and a close-form solution was obtained.. Using

a simple three-sheet model, Alexander also found that a small amount of
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stretching reduces considerably the magnitude of transverse residual
stresses. He concluded that stretching in a direction transverse to the
major residual stresses is almost as effective in reducing them as
stretching in a parallel direction.

Denton [1966b] extended Alexander's work to the plane strain pure
bending of a work-hardening material but abandoned Alexander's geometri-
cal method for a numerical one.

Shaffer and Ungar [1960)] also considered the plane strain pure
bending of sheets and assumed the formation of a full plastic hinge at
the loading stage. They proved, however, that unloading cannot be fully
elastic, and a thin plastic region remains around the neutral axis of
the section after unloading. For severe bending (ratio of internal
radius to thickness a/t < 0.84), an additional plastic region is left on
the concave (internal) edge. This is one of the few solutions that con-
sider the possibility of plastic flow in the unloading stage. The thick-
ness of the residual plastic zones is small, however, especially when
internal pressure is also applied, as will be shown below. The interior
plastic residual region may be a consequence of the assumption of full
plasticity after loading, and the assumption of elastic unloading appears
to be Justified. This problem, generalized to include the action of in-
ternal pressure, is reexamined in detail btelow.

More recently, Ingvarsson [1975, 197T7b] studied the problem of
plane stress and plane strain bending of bars and sheets under internal
pressure, end moments and forces, taking into account elasto-plastic
loading and strain hardening. A computer program takes the section

through increments of loads followed by purely elastic unloading (the
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unloading stresses are not exact but assumed to vary linearly in the
thickness direction). There is no mention of violation of the yield cri-
terion in the unloading stage. This work appears to be the most complete
and general to date and will be used subsequently.

Most of the studies about sheet bending mentioned so far only
consider pure bending by end moments, a condition that creates strains
varying linearly in the thickness direction. This is obviously the sim-
plest case, but clearly it does not reflect the complexity of the forces
between the dies or the rolls and the metal sheet. It is reassuring to
note that, in modelling the bending of sheets by a three-roll pyramid
type machine, Basset and Johnson [1966] obtained good agreement with ex-
perimental results in considering bending moments only.

The bending of sheets by pressure and moment aﬁd the resulting
residual stresses are reexamined in detail. A first solution assumes
purely elastic unloading, whereas a second solution allows for the possi-
bility of inelastic unloading. Both solutions assume full plastification
upon loading. The approach is therefore slightly different from
Ingvarsson's [1975, 197Tb] who does not assume full plastification upon

loading but only considers elastic unloading. The present solution is

also ‘a generalization of the work of Shaffer ang Ungar [1960] who did not
consider pressure loading. The first solution is less exact than

Ingvarsson's but offers the advantage of simplicity: without the need

of a computer program an approximate, close~form solution can be obtained

from the classical results of the theories of Plasticity and elasticity
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4.3 Theory of Sheet Bending

The forming of a corner under internal pressure D, end moments M
and end forces T is now examined (Fig. 3.3). It is assumed that:

— forming occurs under plane strain conditions. This is obviously
a good assumption since the structural member being formed is usually
several dozen feet long and only a fraction of an inch thick.

— the material is elastic, perfectly plastic and does not strain-
harden.

— plane sections remain plane,

~— the section is entirely plastified after loading. The small
elastic region near the neutral axis is neglected and the angle of curva-
ture does not need to be considered.

It is clear that r, 6 and z are the principal directions.

4L.3.1 Yield Criterion

The yield criterion for plane strain is:

_— =+—
Oy = 0. = %2k (L.1)
where 35 = tangential normal stress
5; = radial normal stress

Oy for the Tresca criterion

N
=3
f._A_’\
1] "

ch//§ for the Von Mises criterion

Q
[}

yield strength of the material in one dimension

Forces, moments and stresses are normalized with respect to 2k.

oe = ce/2k
cr = or/2k
M = M/2k
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T = T/2k
p = p/k
The yield criterion is then:

g. -9 = %1 (k.2)

This equation will be referred to as the '+' or '-' criterion

jepending on the sign on the right-hand side.

4.3.2 Equilibrium

Equilibrium requires:
T = ap (4.3)
where a is the internal radius.
The stresses must also satisfy the differential equation:

dO'r Ohn = 0O
= (4.b)

4.3.3 Plastic Loading

Hill's results [1950] on plastic loading are presented here. The

state of stress is:

— for a<rc<c

g = -p -1lnr/a
r
P (4.5)
Gep—-p-l-—lnr/a
where orp s Gep are the plastic loading stresses in the radial and

tangential directions.

1/2
¢ = (abe™?) (4.6)

is the radius of the neutral axis and b is the external radius. The
location of the neutral axis depends on p and therefore, as will be seen

below, on the thinning of a corner relative to the virgin flat.
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o lnr/b
P (L.7)
(o] 1+ 1lnr/b

it

fp
The combination of pressure p and moment M necessary to obtain

full plastification of the corner is given by:

M= (a® + v° - 2abe”P)/4 - abp/2 (4.8)
The relative thinning of the sheet, -At/t, is proportional to
the pressure:
-At/t = p/2 (L.9)
This is of practical importance. -At/t can be measured experi-
mentally and thus, p, M and ¢ evaluated. The combination of p and M
determines the residual and the relaxation stresses.
p must, of course, be positive and it is natural to also require
M to be positive, so the cold-forming actions do not work against one

another. By (4.8), M > O implies

p+eP 2 D (4.10)

Thus a maximum value pm can be defined, for which M = 0:

-p 2 2
m_a +b
P, *e = = (L.10v)

Similarly, a maximum moment can be defined, for which p = O:
2
Moo=t an (L.10¢)

where t = b - a is the corner thickness.
Another limiting value of p is one for which ¢ = a. From (4.6)
there results:

Py = In(b/a) (4.11)
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where 1ln denotes the natural logarithm.
It is seen numerically that Py < pm , so 0<p f_pg. The great-

est thickness reduction occurs at p = By
(—At/t)z = 1/2 1n(bv/a) (L.12)
Equations (4.6) and (4.9) indicate that the highest value of the neutral

axis,

cy = Vab (L.13)

occurs at p = 0, where no thickness reduction takes place.

4.3.4 Blastic Unloading (to be added):

The problem is axisymmetric and its solution can be readily found

in Timoshenko and Goodier [1970]:

o A/r2 + B(1 + lnrz) + C

re

T5e —A/r2 + B(3 + lnrg) + C

(L.1k)

cre ) Oee are the elastic unloading stresses and A, B, C are constants

to be determined.

The solution is the superposition of an internal pressure solu-
tion and a pure bending solution. Let the superscripts pu and bu denote
pressure unloading and bending unloading respectively.

The pressure unloading stresses are:

2 2
" - __u_(l_b_g)

(h.15)
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Subtracting:
u 2 2 b2
U _GPu_ __2ap b
S 2 2 2
b -a r
With N defined by:
M= (¥ - 1)% - 1¥3(1T)? (4.16)
where,
Y = b/a (L.17)
the bending unloading stresses are:
2 2
bu _ WM /v b . b r a
r ‘“2(2ln * 2lnb+ln?)
a N\r
(4.18)
2 2 2
bu LM b b . b r a b
09 --2(-2lna+ 2ln€+lnr+ 2—1)
a N r a a

Subtracting:

9 r 2 2

2 2
Obu_cbu=hM(2b 1Bk +1)
a
a N\ r a

N is always positive (Shaffer and Ungar [1960]).

4.3.5 Residual Stresses

The residuasl stresses, dencted by superscript res, are the sum

of the loading and the unloading stresses:

Ores =g + 0pu + 0bu

r rp r r

res _ pu bu
Ty g0 * 95 * Tg (L.19)
o™ = 0.5(0 + 0. ) + 0.3(c®% + 0P+ ¥ 4+ oW

z rp 8p r 5] r 8

Poisson's ratio is 0.5 in the plastic range, 0.3 in the elastic range.
The resultant forces and moments on the corner vanish after un-

loading:
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No tangential force:

z=1 Db b
J J oges drdz = 0 or J oges dr = 0 (L4.20a)
o a
No moment:
z=l Db b
cges rdrdz = 0O or J Oges rdr = 0 (L.20D)
0 a a

L, 4 Approximate Stresses

The expressions for the stresses are straightforward, but lengthy.
In evaluating them, it was observed that linearization is justified for
certain quantities and for large a/t ratios (mildly bent corners). In

practice, the approximation is good for a/t > 3.

4.4,1 Plastic Loading (from 4.5 and L.7):

— for a<r<c

Grp 1 -p-r/a
Ogp = 7P - r/a (k,21)
Gzp *1/2 = p -1r/a

— for ¢ <r<b
Grp = (r-b)/a
Oep = (r-t)/a (4.22)
Opp = -1/2 + (r-t)/a

4.4.2 Elastic Pressure Unloading (from L.15):




P = 253(1 - —=
8 t a+ b (4.23)
oou 2va29
2 = T(atd) (exact)
L. 4.3 Elastic Bending Unloading (from 4.18):
bu _ 6M(r-a)(r-b)
o F 3
r at
ol = lZ_M(r - a”’) (4.24)
3 5

Z 3 a 3a2

2 2
ade =-6VMa[(£) S (EinyEei 2 3]
a a
Unfortunately these expressions are obtained through neglect of
(a/t) terms of different orders and care should be exerted in summing

them. There is no simple expression for the residual stresses and ex-

pressions (4.19) should be used.

4.5 Theory of Sheet Bending with Inelastic Unloading

Following Shaffer and Ungar's work [1960], the unloading process

is reexamined to see if it violates the yield criterion. From (L4.19)

and (4.2):
-1+ ¢
res res _ _ pu pu bu bu, _ fora <r<ec
g -0, = (cep g, ) + (ce 0. ) + (oe -0, ) = ot
for ¢ <r _<_b
(L.25)
where,
5= (oF" - o® + (05" - o:u) (4.26)

From (4.15) and (4.18) and with

n = a2p/M (4.27)
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2
s =2_b-ﬂ(-g— n2 - 2 2)- ML 2 o%) (4.28)
r2 a N & p°-a al

Elastic unloading occurs in a < r < ¢ only if § >0 and in
¢c <r <bonly if § <O.
2 b2
IfFM=0,0=- <80 P and is always negative. The concave

(02 - a%)r

region a < r < ¢ then unloads inelastically regardless of a and b.

Ifn > h(b2 2)

ln-z- , then § is always negative. The concave
a N

region a < r < ¢ unloads inelastically. Therefore, inelastic unloading

develops for high pressures.

b (b2 - a)
For n < —— ln; . ry is defined as the radius at which
a N
§ =0; also § <0 for r > ry and § > 0 for r < T From (4.28):
P2 (2B 2[2(102 a®) 1n2 - Inay (4.29)
¥ bg_a? na - 2na. .29

The relative positions of T, and ¢ (i.e., ry <corr >c) sug-
gests two kinds of interior yield band. For severe bending (high b/a) at
low pressures a third case arises whereby an additional yield band de-
velops at the concave edge. As the pressure increases, the interior
yield zone migrates towards the concave edge. A fourth case obtains as
soon as one of the following holds:

h(bz-a2)

t <a,n>
a.2N

b
ln-; or M= Q.

t, is defined as the lower boundary of the interior residual plastic zone.
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4.5.1 Case 1l: v, < e Interior yielding only.

An interior region bordered by tg (by definition) and c¢ unloads
inelastically (Fig. 4.1).

The residual stresses are:

- for a<r<t (from (L.5) and (4.14)):

% =6 +0 _ =-p-inr/a + A/r> + B(1 + 1ar°) + C
r rp re
oL =g, +0 =-l—p-lnr/a-A/r2+B(3+lnr2)+C
8 Bp Be
' (4.30)
0°°% = 0.5(6__ +0, ) +0.3(0. +0, ) ==0.5-p-1nr/a
zZ Bp re Be
+ 0.3[B(4 + 2lnr2) + 2C]
— for to <r<c (from (4.2) and (L4.L4)):
%% = g = -lnr/b - D
r rp-
res _
Ty Ogp- = ~10 r/b - D -1 (4.31)
res _
o, = O.5(O’rp_ + oep_) = ~0.5 - 1lnr/b - D
The - in the subscript indicates satisfaction of the '-' yield criterion
(L.2).
— for ¢ <r<b (from (L.T) and (4.1k)):
0 =6 +0_ =1lnr/b+ A/r° +B(1 + 1nro) + C + H
r rp re
res - 2 2
o] = 0 +Ge—l+lnr/b-A/r +B(3+1lnr ) +C+H
) P e (L.32)
ot°% = ) = 0.5 + Inr/b

o.s(crrp + 0, ) + o.3(<;vre +0

gp Oe

+ 0.3[4LB(1 + 1Inr) + 2(C + H)]
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A constant H has been added here because there is no continuity

reéquirement of the stresses from one side of the yield band to the other.

Boundary Conditions and Equilibrium:

Radial stresses vanish at both edges: Gies =0atr=a,b and

are continuous at to and c¢. Tangential stresses are also continuous at
to. These conditions, added to the requirements of zero resultant force
and moment (4.20a,b) provide seven equations to solve for the six un-

knowns 4, B, C, D, H and t_.

At r = a,
res 2 2
o’r = -p+Afa” +B(lL+1lna")+C=0 (4.33)
at r =b,
res 2 2
a, = A/ +B(1L+ Ind) +C+H=0 (L4.34)
at r = to . Gies is continuous:

-p - Int /a + A/t2 + B(1 + lnt2
Q o} o)

) + C -lnt /b - D (h4.35)

_ res |, .
atk r=c¢ , Gr is continuous:

“Inb/c + A/c® + B(1 + 1n c2) +C+H=-Inc/b - D (4.36)

and at r = to . Gges ls continuous:
-1 ~p-1lnt /a - A/t2 + B(3 + lnt2 =
o o o) ¥ C=-lnt /b -D-1
(4.37)
Subtracting (4.37) from (4.35):
1+ 24/4° 2B =1 2
° = or A= Bt (4.38)

From (4.33),

C=p-4a/a° - B(L + 1na?) (4.39)
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from (4.34),

H = -A/b° - B(1 + Inb>) - C (4.40)
from (L.36),
D=2(1+B)nZ+ A(Jg'--%5> (L.%1)
b c
from (4.35),
6\ p ,2/1 1 1 c\2
m(;—) +B-to(a—2-;§+;—2—) = -1+ 1n(®) (4.42)
and from (4.20b),
£°p 2 2 2 g
0= §{a” + 6% - 2c®) + - ;fg(ti - 2) ¥ B(bgg;‘z L2 - :%
(L.43)

Finally, the force equation (4.20a) is identical to (L.L2).
Integrals (L4.20a) and (L4.20b) are evaluated in Appendix A. All equations
reduce to published results when p = 0. The system of six equations
(4.38)-(4.43) is solved numerically for A, B, C, D, H and to and the

residual stresses are obtained from (4.30)-{(4.32).

4.5.2 Case 2: t > c. Interior yielding only.

Case 2 is similar to case 1 except that the interior plastic
region now satisfies the '+' yield criterion (4.2).

For a < r < ¢ and to < r < Db the residual stresses are given by

(4.30) and (L4.32) respectively. For ¢ <r f_to , they are:

Or = crp+ =1lnr/b + D
res
% -oep+=lnr/b+D+1 (L.Lb)
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) = 0.5 + 1nr/b + D

Boundary Conditions:

As in case 1 above:

at r

at r

at r

~lnb/t + A/t2 +B(L+21lnt ) +C
Q Q o

at r

-
=

i

i

a,

ies = -p + A/a° +B(1+2lna) +C =0
b,

olfes = A/b° +B(1L +21nd) +C +H=0
to ) oies is continuous:

+

H = lnto/b + D

res ., .
c , Or is continuous:

-p - lnc/ea,+A/c2 +B(l +21nc) +C=1lnc/b + D

res

and at r = to . 09 is continuous:

1 - lnb/to - A/ti + B(3 + 2lnto) + C+H

lnto/b +D+ 1

Subtracting (4.49) from (L.47):

From (L.45),

from (4.46),

from (4.48),

2A/ti - 2B =0 or A = Bt

o n

2
C=p~-A/a” -B(lL+ 21na)
2
-H = A/b” + B(L + 21nb) + C

2
D=-p-1lnc/ab + A/c® + B(1 + 21nc) + ¢

(L

(L.

.4s)

.46)

4T)

48)

.49)

.50)

.51)

.52)
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from (4.6),

D= A/c2 + B(lL+21nc) + C

from (4.50) and (L4.51),

D Bti/c2 +B(1+2lnc) +p - Bti/ae -B(1+21na)

or

o
1

P,.2fL1 _ 1 c
B[B+to(2 a2>+2lnaJ (4.53)

c

from (L.47),

o
[}

2B(1 + lnto) - B(ti/b2) - B(1 +21nb)
or

D

B(1 + 2lnto/b - ti/be) (4.5k4)

and from (4.53) = (kL.54),

ct
~—
- ——

oA 2
B l+21n(b

a 2 1 1 1
c) - to(_-§'+ >t 2) (k.55)
b c
The condition of moment equilibrium (3.20b) is equivalent to:

2,2

2 Bet
_;(2 2 2) e ofl _ L
0= A a + b - 2c¢ + > D+ 5 ( ) 2)
b a
+ -g—(b2 - a ) + B(02 - ti)ln-gs— (4.56)

and the force equilibrium equation (4.20a) is equivalent to (L4.47). The
system of six equations (L4.50)-(4.54) and (4.56) is evaluated numerically

for A, B, C, D, H and to.
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4.5.3 Case 3

In this case, there exists a yield band in the interior limited
by t and c (as in case 1) and another yield band on the concave edge
limited by a and ty (by definition. See Fig. 4.2). The edge band satis-

fies the '+' criterion; the interior band, the '-' criterion.

Residual Stresses:

For a <r f_ti , they are expressed by:

res

cr = 6rp+ = lnr/a
res _ -
Ge —Gep+— Inr/a +1
(4.57)
res _ -
cZ = o.s(crp+ + cep+) = 0.5 + 1lnr/a
cep+ - crp+ = +]

For ti Srit st <r<cand c<r<b, the residual stresses

o )
are given by (4.30), (4.31) and (4.32) respectively.

Boundary Conditions:

At r = a,
G;es =0 1is satisfied.
at r =b,
GzeS=A/b2+B(l+21nb)+C+H=O (4.58)
at r = ti , Gies is continuous:

lnti/a=-p—lnti/a+A/t§+B(l+21nti) + C (4.59)
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res ., .
at r = to R Gr is continuous:

-lnto/b -D=-p - lnto/a + A/ti + B(1 + Zlnto) + C (4.60)

res ., .
atr=c¢ , Gr is continuous:

—lnc/b—D=-lnb/c+A/c2+B(l+21nc) + C+H (4.61)

res . .
at r = ti R Ge is continuous:

lnti/a +1=-1-p- lnti/a - A/t‘?: + B(3 + 2lnti) + ¢ (k.62)

res . .
at r = to R Ge is continuous:

- 2
-lnto/b -D=-1==1=-p = lnto/a - A/to + B(3 + 21nto) +C (4.63)
From (4.60) and (4.63)

0 = 2A/t§ - 2B

which implies

b=
i

Bt or B = A/ti (L.6L4)

o M

from (4.59) and (L.62)
_ 2 2
-1=1+ 2A/ti - 2B or B=1+ A/ti

SO
242
A= —202 (4.65)
t. - %

and

B = —é——i—jg (4.66)



From (4.58) and (4.61)

from

from

from

from

from

2
D=21nb/e --./-\_/c2 - B(lL+21nc) + A/p” + B(L +21nb)

(L.6L)
¢} 2 2 1l 1
D= (B + l)ln(——) - Bt (--—-+ ——-J
c o b2 c2
(k.60)
c -b2
cC = ~lnto/b - 2(B + 1l)lnb/c - A b2c2 + p + lnto/a.
- A/t'2 - B(L+2Int )
o] o]
(L.6)
2
bt
- o 2( 1,1
C—-B[ln( S ) +2] +Bto(_ 2+ 2)
o e
(L4.59)
ti : to : 2
C=Inj—=] ~-3B . -B<l+lnti) +p
(4.61)
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(4.67)

(4.68)

(L.69)

2,2
-H = -21nb/c +Bto/c + B(L+ 21lne) +21nti/a+p—Bt2/t?
o' “i

-B1+2Int.) +2(B+ 1)

b

=~ +
: B,

2c2

b

_b2

22
c

(k.70)
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From (4.68) = (4.69)

ty ti ot 52~ o2
2ln—= - B-—2-B(1L+21nt.) +p=-2B|ln—>+ 1| + Bt >Z—
a 2 i c o .2 2
t. b e
1
or
2 2
{ t 2/t
a(2) e[ R) [ ole 550
i b e t t
(o] 1
(L.71)
and from (L.66)
2 2 2
t 2 t t
o a b o =S R o
b c i
t02
+ t— - 2 P
1
or
p) 2
t 2 4
O} 1nl2) +m(2|=2] +3/E_L 2L
t t a a ol .2 2 2
i i Jo) c t.
1
t02
- t—' -2 p+l=0 (h-72)
i

Eguilibrium:

Moment equilibrium (L.20b) requires:

2 .2 2 t
1 1 (-2 +b° -2c7) i 1 /(.2 2)
(o]

t 2t
(o]
+(-3=2--—l§>=o (4.73a)
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or

=0 (b.73)

It is shown in Appendix A that the force equilibrium (4.20a) is
equivalent to (4.71). It can also be seen from inspection that the
equations in case 3 reduce to published results (Shaffer and Ungar [1960])
for p = 0, c2 = ab. to and ti can be solved for from (4.72) and (4.73).
Substitution into (4.71), (4.72), (L.74) and (4.75) gives A, B, D, C

and H.

L.5.4 Case b
The region below the neutral axis (a <r E_c) unloads inelasti-

cally. ‘As discussed earlier this case arises at high pressure, namely

— when p = Pmax , 1.2., M=0
2 2 2
a N a

— when to < a.

As will be shown below, ry is a useful estimate of to. From

(4.17), (4.27) and (L.20):

2 2

2 2 Yo - 1) 2 1

bl = o’ —————— = - - =
;=8 & < 7 2(y 1)lny > TN

or

2Py -
T N = Lq
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where
5 2
Q= (¥ - Ly - %(Y—Y‘—l) (h.74)
From (4.8)
M= a%(1+ Y% - 2ve™® - 2vp) /b
SO
(N + 2YQ)p + 2YQe™® - (1 + v3)q = 0 (L.75)

The solution of (4.75) gives P, » the internal pressure at which ry = a.

Case 4 does not arise before p reaches P,-

Residual Stresses:

The residual stresses in this case are:
— for a<r<c

res

g =g = ~1lnr/a
r rp-
oges = Oep_ = ..1lnr/a - 1
(4.76)
res _ _
o = O.S(Urp_ + Oep_) = -0.5 - 1lnr/a
Ogp- = Opp- = 1

— for ¢ <r <b , equations (4.32) apply with H = O.

Boundary Conditions:

At r = a,

res . . o
o] =0 is satisfied.

res

At r=c¢, cr is continuous:

Inc/b + A/c2 + B(1 + 1nc2) + C= 1na/c
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From (4.6)

2 5 (4.77)

n

Alc +B(l+lnc2) + C
At r = b,

Q™5 2 0 = A/b° + B(L + 1nbo) + C (L.78)

Bquilibrium requires resultant residual force and mament to be zero

(L.20a, b):
c b
Force = - J (lnr/a + 1)dr + J (L+ 1nr/b - A/r2 + B(3+21nr) + Clar
a ¢
c b
= -f (Inr-1na+1l)dr + j [(L+3B+C=-1nb) + (1+ 2B)1nr-A/r2]dr
a c

—[rlnr-r-rlna+r]; +(1+3B+C-1nb)(b-c) + (1+2B)[r1nr—r]:

+ [a/r1]

A(%—— -i-) + B(b(1+1nb%) - e(1+1nc?)] + Clb-c) + cp = 0 (4.79)

It is clear that (L4.79) can be derived from (4.77) and (L.78).

c b
Moment = - J (Inr-1na+1)rdr + f [(1+3B+C-1nb) + (1L+2B)Inr - A/rglrdr
a (o]
[ r2(21 1) + (In r e r°
= == nr- + -1)=— —
" a 1)2]a+[(1+33+ C-lnb)2
2

+

r
(l+2B)T(21nr-l) - A]_nr]z - Alnbz/c2

2 2 2 22
B[ (2 +1nb") - ¢ (2+:an2)]+ C(bg—ce) +%—+P—-—+ (p--l)c2 = 0

+

Equations (4.77), (L4.78) and (4.80) are solved for A, B and C.
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From (L4.78)
C = -A/b° = B(1 + 1nb°)
from (4.77)
2
A(—lg—iz) + B(lnc® - 1Ind") = p
c b
or (L4.81)
b2 2
A= — 5 (p + Bln—g)
P -c c
1]
-c(b2 - c2) = c2(p + Blnb2 - Blnce) + B(1 + lnb2)(b2 - c2)
= 02p + B[bg(lnbe + 1) - c2(lnc2 +1)] . (L.82)
Introducing (4.81) and (4.82) into (L4.80):
2 2
A(b2 - ce)lnlo—g— - B(b2 - cz)[b2(2 + l_nbg) - c2(2 + lnc2)] - C(b2 - 02) =

c

5 b° - c2) + pcz(b2 - c2)

QoY
2 2 2
bzce(p + Blnb—)lnb— - BB - ¢2) = (2% + 1% - 28) (02 - Bz .

From which

2 2 2y,,2 2)/2 _ b2

(a” + b~ = 2¢7)(b” = ¢
2

B =
[be 1n (0°/c2)1° - (8° -

2 2, 2
¢“p ln (b°/c°)
C2 > (L4.83)

)

The constants of integration are thus obtained in close form.

In particular, p = 1ln (b/a) gives ¢ = a, B = -1/2, A = 0,

C=1/2 + 1Inb and oies = oges = 0 for any r.
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L.6 gpringback
Springback occurs upon unloading. The constants A and B are

related to the rotation of radial sections and the change in radius of

curvature (Shaffer and Ungar [1960]).
| 3= 28 (L.8L)
Ny k
and
Gebay. A g (1.85)
k a ad

where G is the shear modulus, 2k is the yield stress in two-dimensional

space, a is the internal radius and 6 is the angle of curvature.

Continuity of displacements requires A and B to remain the same

throughout the thickness. No such requirement exists for C; H is there-

fore introduced in (4.32).

4,7 Elastic Relaxation of the Longitudinal Residual Stresses

The longitudinal residual stresses are released by sectioning
(see Chapter 5). The force resultant per unit angle is:

g=1 b b
J f Bzes rdrdg = J azes rdr (4.86)

o a

F o=

The axial elastic relaxation stress is:
(L.87)

|

The moment resultant per unit angle about the center of curvature is:

B=1 b b
v —re 2
M= J [ %% r"arap = ‘( b“z'es r2dr (L.88)
Q a
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The elastic response G to this moment, which is uniformly distributed

over the corner width is linear in the radial direction:

—rel -
2a
- b a+b
0—-b_a(r— 2) (1.89)
_ - —rel — —rel
such that, atr—a,0=+0b and atr=b,0=-0b
The relaxation moment is:
—rel —rel
20 0 L 4
el _ b a+ b2, b b - a (a + b) ;.3 3
MZ T T b -a (x 2 Jriar = - b-a [ 2 - 3 (= - a.)
a
(4.90)
. el = . . . ;
Since Mz = —Mz , one obtains the bending elastic relaxation stress:
M (b - a)
arbel=j4 j_* 2 3 3 ()4-91)
b -a (a+1)(b” -4a”)
2 3

Table 4.1 shows azel and Eiel for purely elastic unloading (*) and

elasto-plastic unloading (o) for some actual corners. Comparison with

experimental results will be discussed in the following chapter.

4.8 Results and Discussion

Various combinations of pressure and moment (characterized by the
ratio of the pressure p to the maximum pressure P, for which the applied
moment is zero) applied to different geometries (characterized by the
ratio of the external radius b to the internal radius a) were examined.
Von Mises yield criterion was used. The location and extent of the
yield zones are tabulated in Tables 4.2-L.6 and plotted in Fig. L.3 for
some selected b/a values. Any consistent system of units may be used

with the figures and tables of this chapter, e.g. ksi for stress and
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inch for distance. For pure bending situations (p = O), there exists an
interior yield zone limited on the upper side by the neutral axis for

all values of b/a. For severe bending (a/t < 0.84 or, equivalently,

b/a > 2.2) with little or no pressure, an additional yield zone develops
at the concave edge (in Fig. 4.3, this is shown for b/a = 3.0). The pre-
ceding observations were first made by Shaffer and Ungar [1960], but the
following remarks have to do with the existence of pressure and are new,
as far as the author knows.

The edge yield zone is small, however, and disappears rapidly as
the forming pressure increases. For mild bending (b/a < 1.80), the in-~
terior yield zone is located above the neutral axis for moderate pres-
sures, but below it for very small or very large pressures (e.g. b/a =
1.2 in Fig. 4.3). For sﬁch cases, there are two values of p for which
the whole section remains elastic (these are the abscissas of the inter-
sections of ¢ and t in Fig. L4.3). For b/a > 1.80 the interior yield
zone remains below the neutral axis for all pressures and yielding is
minimal for moderate pressures (p = O,hpm).

In Fig. 4.3, the extent of yielding is given by the vertical
height, parallel to the r-axis, of the darkened areas. Except for the

cases where there are two separate yield bands (high b/a), the extent of

]

vielding is greatest (about 13% of the thickness) when t =a,atpIp,
i.e., the lowest pressure at which the whole area below the neutral axis
is plastic. When there are two separate yield zones, the extent of

vielding may be maximum at P = 0. Thus, errors in residual stresses due

to the assumption of purely elastic unloading are significant only for

P = p, and, in addition, for p = O when b/a is large (> 3.0).
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It is recalled that ry (Eq. L4.29) denotes a limiting radius be-
tween elastic and inelastic unloading zones. to is also defined as one
of the limits (the other being the neutral axis c¢) of the interior yield
zone. to is obtained by solving a system of equations, such as Egs.
(4.38)-(L.43), whereas ry can be obtained directly in one step. If to
were not assumed unknown (a logical assumption is b, = ry), the system
of equations would have been overdeterminate. ry and to are identical
for small pressures, but strangely encugh, their difference increases
with p (Fig. L.4). 1If ry » and not t_ were considered, one would have
reached the erroneous conclusion that the interior yield zone remains
below the neutral axis for all pressures when b/a > 1.60 (correct value
is 1.80).

Using Von Mises's yield criterion, the loading stresses and the
residual stresses after both purely elastic unloading and elasto-plastic
unloading (dotted lines) are studied for b/a = L/3, which corresponds to
p, = .35020y , and various positions of the neutral axis (Figs. L.Sa -
4.10a and Tables 4.7-4.18). Except for the case ¢ = 3.10, for which p
is close to pt , the two solutions agree well. The assumption of elastic
unloading is therefore justified, except for p close to P, (which is ex~
pected from the discussion above, since there is only one yield zone).
The two solutions compare well also with Ingvarsson's solution [1977b],
shown in Figs. 4.5b-L4.10b. Ong reservation, however: at difference
with Ingvarsson, this theory predicts that c cannot reach the value 3.50
(i.e., the neutral axis is always below midthickness) unless p becomes
negative and the corner thickens upon forming (Fig. 4.10a,b).

Results also confirm that radial residual stresses are small and

can reasonably be neglected (Alexander [1959]).
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L.9 Summary
The first part of this study presents a simple, approximate,

close~form expression for the residual stresses caused by sheet bending.
This is a recast of Ingvarsson's solution [1975, 1977b], but has the
advantage of simplicity without much sacrifice in accuracy.

The second part extends Shaffer and Ungar's work [1960] to in-
clude internal pressure. The validity of the assumption of purely

elastic unloading is evaluated.
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Z RESIDUAL STRESSES:

AXTAL AND BENDING COMPONENTS

R . 8] aarel 5 abrel jaarel abrel
o, 0lt .Olcy .omy .Oloy .omy
PBC 1k 0.00 0.0 .376 19.4 0.0 17.3
RFC 1L 0.25 6.5 3.5k 37.3 3.28 37.0
a = .109" 0.50 13.0 6.72 53.9 6.56 55.2
= .18L" 0.75 19.5 11.2 75.5 9.84 T2.4
Py = .6020y 1.00 26.0 13.1 8L.7 13.1 88.9
PBC 13 0.00 0.9 .532 19.8 .001 17.3
0.25 7.8 3.63 3.2 2.89 32.2
a = .102 0.50 15.7 £.22 Ls.1 5.78 L5.8
b= .190 C.75 23.5 10. 60.1 8.67 58.5
Py * .72hcy 1.00 31.3 11 65.7 11.6 0.7
RFC13 0.00 0 .618 19.9 .001 17.3
0.25 .5 3.68 32.9 2.71 30.4
= .0937 0.50 17.0 5.99 Lbi.7 5.2 k2.3
= .185 0.75 25.5 §.63 SL.3 g8.12 53.2
P, 786cy 1.20 34,0 12.8 s8.7 10.8 6L, 0
411 0.20 0.0 331 19.3 0.0 17.3
Corner 1 0.25 1 3.51 38.4 3.6l 39.1
a = .195 0.50 12.2 £.29 £7.7 £.32 59.3
= .31% 0.75 2.3 1.6 2.1 2.2 TELL
s, = 5620, | .30 2b.z | 13.6 2.2 | iaig 56.3 :
;
111 0.00 oy 263 3.1 0.3 17 3‘
Corner 2 5.25 S.u 2.55 2.7 3.62 L2z
a = .227 5.50 2.3 7.22 65,2 7.27 67.3
b = .349 0.75 16.2 12.1 gl.2 2.3 $0.3
> = .hggoy 1.00 21.% 14,5 100 14.5 112.

Oelasto-plastic unloading

L IS :
elastic unloading
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Table 4.1

145

(continued)

AXTAL AND BENDING COMPONENTS

*

. s o aarel 6,bre.'l. f-aarel abrel
P .01t .010 .0lo .0lo .0lo
m N M J
HY 0.00 .0 . 769 20.1 0.0 17.3
corner 1 0.25 9.6 3.77 31.2 2.43 28.1
a = .156. 0.50 19.2 5.62 37.2 L.85 37.7
b = .338 0.75 28.9 8.82 46.6 7.28 L6.7
Pm = .8890y 1.00 38.5 9.70 49.6 9.70 55.k4
HT 0.00 0.0 Jh72 19.6 0.0 17.3
corner 2 0.25 7.3 3.59 35.2 3.03 33.7
a = .227 0.50 1h.7 6.40 48.0 6.06 48.8
b = .408 0.75 22.0 10.5 65.1 9.09 63.0
P = .6790y 1.00 29.4 12.1 71.8 12.1 76.5
HT 0.00 0.0 .961 20.3 .002 17.3
corner 1 0.25 1.4 2.46 25.0 2.02 25.4
a = .203 0.50 22.8 5.06 31.9 L.05 32.7
b = .506 0.75 3k.2 7.63 37.9 6.07 39.4
pm==1.osl+cy 1.00 45.6 8.10 39.5 8.09 46.1
HT 0.00 .0 .T27 20.1 .001 17.3
corner 2 0.25 9.3 3.74 31.6 2.50 28.6
a = .273 0.50 18.6 5.72 38.3 5.00 38.8
b = .576 0.75 28.0 9.0k 4L8.5 7.50 48.3
D, = .8610y 1.00 37.3 10.0 51.8 10.0 57.5
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TABLE 4.2

a=10.0, b =12.0, t = 2.0, p_= .ZlToy, M= 1.1550y,
Pa/pm = .682 (MIn is maximum moment, when p = O.)

s oo ry—a. to-a. to—ry |to-c | c—a

D N % t .01t 01t o1t | °8&s€
0.0 il 462 .462 | 0.00 | 1.52 1
0.1 .L26 .L428 428 | 0.00 0.00 2
0.2 . 375 . 390 .391 | 0.02 1.63 2
0.3 .325 .348 .351 | 0.05 2.59 2
0.4 .275 .296 .301 | 0.10 2.64 2
0.5 .225 .227 .237 | 0.19 1.1k 2
0.6 176 .127 .1k4s 0.35 3.11 1
0.7 .128 [ (-.038)](-.081) 12.8 L
0.8 .080 7.98 L
0.9 .032 3.22 n
1.0 [(-.015) 0.0 in
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TABLE 4.3

LOCATION AND EXTENT OF YIELD ZONE

3.0, b = k.0, P, = .3500y, pa/pm = ,659, M= .2890y

c-g ry-a to—a to-ry c-to c-a cace

£ t t .01t | .01t .01t
0. .46k .Lho 4o | -.008 | 2.k 1
0. L1i2 ) Lkos .Lo6 .009 .63 1
0. .361| .368 .369 .0k6 .85 2
0. .335 347 349 077 1.42 2
Q. .310 . 324 .328 .12 1.80 2
0. 260 | .270 .278 .25 1.82 2
0. 211 .198 .21k .49 .30 2
0. .163 | .092 122 .95 4.08 1
0. 115 11.5 N
0. .092 9.17 L
Q. .068 6.84 4
0. .022 2,22 I
1. (-.023) 0. 4




LOCATION AND EXTENT OF YIELD ZONE

TABLE k4.L

a = 10.0, b = 18.0, P, = .76hoy, pa/pm = ,596, Moo= 16.00y
D c—a ry-a to-a to-ry c—to c—g

D B £ t 0Lt | 0Lt 01t | °@°¢
0.0 Jhot .380 .379 | -.071 | k.82 1
0.1 .372 .34s5 .3h5 .020 | 2.75 1
0.2 .320 . 306 . 309 .20 1.08 1
0.3 .268 . 260 .268 .53 .068 1
0.4 .219 .201 .219 | 1.17 .0L9 1
0.5 AT1 .120 .155% 2.k47 1.63 1
0.6 .125 [(-.006)| .060 5.00 6.54 1
0.7 .080 8.02 4
0.8 .037 3.69 b
0.9 |(~.005) 0

1.0 |[(-.045) 0




TABLE 4.5

LOCATION AND EXTENT OF YIELD ZONES

= 10.0, b = 22.0, P, = 1.0790y, pa/pm = .556, Moo= 3.600y
P o ry—a to-—a -1_:_0_-—1:[ c-—to c—g ti—a case
P, t t t 01t | .01t .01t .01t
0.0 o3 | .31 2339 | -.17 6.32 .03h 3
0.1 . 346 . 306 . 306 .007 3.98 1
0.2 .292 | .267 .27 .35 2.12 1
0.3 .2 .220 .231 1.01 1.00 1
0.4 .192 .159 .182 2.31 .95 1
0.5 .145 .071 .119 5.05 2.61 1
0.6 .100 10.05 L
0.7 .058 5.79 4
0.8 .017 1.72 i
0.9 -.022 0.0
1.0 -.059 0.0

61T



TABLE 4.6

LOCATION AND EXTENT OF YIELD ZONES

10.0, b = 30.0, p_ = 1.6h80y, pa/pm = ,L98, M= 100.00y
D c—g ry-a to—a o~ . c—to ot ti—a case
P t t t .01t _ [ .01t .01t .01t
0.0 . 366 .286 .284 ~.26 8.20 1.97 3
0.1 . 306 .252 .252 ~ .06 5.48 .05 3
0.2 .251 .213 .218 .67 3.27 1
0.3 .199 .165 .180 2.13 | 1.96 1
0.k .151 .099 .132 5.21 [ 1.88 1
0.5 .106 | -.003 .068 | 12.5 3.78 1
0.6 .06k 6.45 4
0.7 .026 2.56 Y
0.8 - .010 0.0
0.9 | - .okk 0.0
1.0 -0.076 0.0

06T



TABLE 4.7

LOADING STRESSES

TABLE 4.8

LOADING STRESSES

¢ = 3.00, p = .332qy, M= .02760y,
At/t = ~14.4%

r Orp/(fy Bep/Oy GZP/G
a=c=3.0 -~.332 -1.487 -.909
a=c=3.0 ~.332 .822 .25

3.1 ~.294 . 860 .283
3.2 | -.258 . 897 .320
3.3 -.222 .933 <355
3.4 | -.188 .967 . 390
3.5 | -.154 1.001 423
3.6 | -.122 1.033 456
3.7 -.0900 1.065 487
3.8 ~.0592 1.095 .518
3.9 -.0292 1.125 .548
b=k.0 | 0.0 1.155 STT

¢ = 3,10, p= .250 , M= .1300 ,

y y
At/t = - 11.1%

" rp/Gy GGP/Uy zp/ay
a=3.0 -.256 -1.h11 -.834
c=3.1 -.294 -1.hh9 -.872
c=3.1 -.294 . 860 .283

3.2 -.258 .897 .320

3.3 -.222 .933 <355

3.4 -.188 .967 .390

3.5 -.15k 1.001 423

3.6 -.122 1.033 .56

3.7 -.0900 1.065 487

3.8 -.0592 1.095 .518

3.9 =.0292 1.125 .S5L8
b=4.0 0.0 1.155 STT

6T



TABLE 4.9

LOADING STRESSES

c=3.20, p=.183 , M= .2060 ,
y y

TABLE L4.10

LOADING STRESSES

At/t = -T7.93%
i Orp/ay oep/oy ozp/o
a=3.0 -.183 -1.338 -. 760
3.1 -.221 -1.376 ~. 798
c=3.2 -.258 -1.h12 -.835
c=3.2 -.258 .897 . 320
3.3 ~-.222 .933 . 355
3.k -.188 .967 . 390
3.5 -.154 1.001 .L23
3.6 -.122 1.033 456
3.7 -.0900 1.065 LL8T
3.8 -.0592 1.095 .518
3.9 -.0292 1.125 .5h48
L.o 0.0 1.155 STT

c=3.30,p= .1120y, M= .2570y,
At/t = -4.85%

r orp/oy cep/oy ozp/oy
a=3.0 -.112 -1.267 -.689
3.1 -.150 -1.305 -.727
3.2 -.187 -1.341 —. 764
c=3.3 -.222 -1.377 -.800
c=3.3 ~.222 .933 .355
3.4 ~-.188 967 .390
3.5 ~.15h 1.001 .423
3.6 -.122 1.033 456
3.7 ~.0900 1.065 487
3.8 -.0592 1.095 .518
3.9 -.0292 1.125 .548
L.o 0.0 1.155 STT

csT
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TABLE L4.11

LOADING STRESSES

3.40, p = .04310 , M = 284 ,
y y

TABLE hL.12

LOADING STRESSES

At/t = -1.87%
T C / o, Oop / o, Ezp / o,
a=3.0 -.0h31 -1.198 -.620
3.1 -.0810 -1.236 -.658
3.2 -.118 -1.272 -.695
3.3 -.153 -1.308 ~.730
c=3.h -.188 -1.3k2 ~. 765
c=3.4 -.188 .967 .390
3.5 -.154 1.001 423
3.6 -.122 1.033 bs56
3.7 ~.0900 1.065 LL87
3.8 -.0592 1.095 .518
3.9 -.0292 1.125 .548
b=4.0 0.0 1.155 STT

¢ = 3.464, p=0.0, M= .2890y,
A/t = 0.0
i rp /Oy “6p /Oy OZP/GY
a=3.0 0 ~1.155 - 577
3.1 .0379 ~1.193 -.615
3.2 L0745 -1.229 -.652
3.3 .110 ~1.265 -.687
3.k .1k ~1.299 -. 7122
c=3.hoh .166 ~1.321 -.743
c=3.464 .166 .989 ke
3.5 .15h 1.001 .h23
3.6 .122 1.033 456
3.7 . 0900 1.065 487
3.8 10592 1.095 .518
3.9 .0292 1.125 .548
b=L.0 .0 1.155 STT

esT



154

TABLE L4.13

RESIDUAL STRESSES

¢ =3.00,p=p, = .3320y, M = .02760y, At/t = -1h. 4%
O * (o] * [¢) *

r ';es/cy Eiies/cy c?ges/oy Bges/oy Sies/cy c':res/cfy
a=c= 3.0 0.0 0.0 -1.155 -2.49 -.577 -1.111
a=c=3.0 0.0 .0 0.0 181 .0981 .0k39

3.1 0.0 -.0051 0.0 .138 .113 .0703
3.2 0.0 -.0086 0.0 .0980 .128 .0959
3.3 0.0 -.0108 0.0 .0606 .1k2 .121
3.k 0.0 -.0117 0.0 .0254 .156 .1L5
3.5 0.0 -.0116 0.0 .0077 .169 .168
3.6 0.0 -.0107 0.0 .0391 .182 .191
3.7 0.0 -.0089 0.0 .0687 .195 .213
3.8 |, 0.0 -.0065 0.0 .0969 .207 .23k
3.9 0.0 -.0035 0.0 .124 .219 .255

b=L4.0 0.0 0.0 0.0 .1k9 231 276

*
elastic unloading

(o]

elasto-plastic unloading
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TABLE 4.1h

RESIDUAL STRESSES

c=3.10,p= .2560y, M= .1300y, At/t = =11.1%
o] * o] * (o]
-res -Tres -res -res -res, -res
T - /oy g /oy 08 /cy oe /cy oz /oy cz /a
a= 3.0 0.0 0.0 -1.155 -1.466 -.577 -.773
c=13.1 -.0379 -.0506 -1.193 -1.670 ~.615 -.865
c=3.1 -.0379 -.0506 .606 .639 .284 .290
3.2 -.0197 -.0310 .48k .519 267 2Th
3.3 -.0062 -.0160 . 369 .ho7 .251 .259
3.k 0033 ~-.0051 .261 .302 .235 .2Ls
3.5 0092 .0022 .160 .203 .220 231
3.6 .0120 .0065 L0647 .110 .205 217
3.7 .0122 .0081 ~.0256 .220 .191 .20k
3.8 0101 .00Tk -.111 ~-.061k 177 L1591
3.9 0059 .00L46 -.192 -.141 .163 178
b=L4.0 0.0 0.0 ~-.270 -.216 .150 .166
* . 0
elastic unloading elasto-plastic unloading
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TABLE L4.15

RESIDUAL STRESSES

c = 3.20, t_ = 3.196, p = .1830y, M= .2060y, At/t = -7.93%
(o] * Q * Q ‘ *
-res =res =res -Ires =-res -res
r ol /oy cr /Gy Oy /cy 66 /cy cz /cy oz /cy
a=3.0 0.0 0.0 -.526 -.625 -. k62 -.ho2
3.1 -.0228 -.0256 -.884 -.960 -.591 -.615
to==3.l96 -.0537 -1.208 -.T12
t, 3.196 -.0537 -1.208 -.631
c=3.2 -.0550 -.0598 -1.210 -1.274 -.632 -. 734
c=3.2 -.0550 -.0598 1.089 1.035 .438 k20
3.3 -.0241 -.0300 .843 .810 . 388 .376
3.4 ~-.0020 -.0085 .612 .598 .339 .333
3.5 L0124 .0059 . 395 . 399 .291 .291
3.6 .0201 .01lk2 .190 211 .2hs .250
3.7 .0221 L0171 -.0038 L0341 .200 .210
3.8 .0190 .0154 -.187 -.134 .157 172
3.9 L011k .0095 -.361 -.293 L11k .13k
4.0 0.0 0.0 -.527 -. ks .0T728 .09TL
* [o}
elastic elasto-plastic unloading

unloading
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TABLE 4.16

RESIDUAL STRESSES

¢ =3.30,p= .1120y, M= .257cry, At/t = -L.85%
S ¥ 5] ¥ 0
-1Tes -res -res -res -res -res

r o] /0y cr /c Oy /O ce /c5y g /oy o /oy
a= 3.0 0.0 0.0 .101 .0388 ~.2kL5 -.26L

3.1 ~-.0039 -.0057 -.338 -.386 -.39k ~.4o8

3.2 -.0209 -.0239 ~.751 -.785 -.537 -.548
c=13.3 -.0489 -.0527 -1.139 -1.161 -.676 -.68k4
c=3.3 -.0k489 -.0527 1.106 1.1k9 .528 Rikal
o= 3.319 -.0423 1.112 .535
o= 3.319 -.0k23 1.112 L6E6

3.4 -.0177 ~-.0216 .873 .863 L2 .408

3.5 .0037 .0002 .593 .595 .348 .348

3.6 L0164 .0128 . 329 .3h2 .286 .289

3.7 .0215 .0185 .080k .103 .225 .231

3.8 .0199 L0177 -.156 ~.123 .166 .176

3.9 .0125 .0113 -.380 -.338 .109 .121
b=Lk.0 0.0 0.0 ~.593 -.542 .0532 .0682

* X o

elastiec unloading elasto-plastic unloading
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TABLE L.17

RESIDUAL STRESSES

c = 3.40, p = .oh3loy, M = .28hoy, At/t = =1.87%
o] * (0] * (o)
-res -res =-Tres =-res -res -res
r cr’ /cxy or /a 06 /oy ce /o g /0y o} /cry
a=3.0 0.0 0.0 .556 .532 -.0815 ~.0886
3.1 .0100 .0094 .0729 .0548 -.238 -. 024k
3.2 .00L9 .0037 -.380 -.392 -.390 -.0395
3.3 -.0133 -.01L47 -.805 -.813 -.538 -.05L0
to = 3.397 -.0k17 -1.196 -.677
to = 3,397 -.0k1T -1.196 -.619
c=3.4 -.0k25 -.0LkL1 -1.197 -1.210 -.620 -.682
c= 3.4 -.0k2s -.0Lk41 1.103 1.100 LT7h 473
3.5 -.0143 -.0158 .791 .792 Lbo2 .Lo2
3.6 .0039 .0025 ek .502 .332 L334
3.7 .0135 .0123 .219 .228 .265 .267
3.8 .015k .01Ls ~.0klk -.0317 .19¢2 .202
3.9 .0106 .0101 -.294 -.278 .13k .139
b=Lk.0 0.0 0.0 -.532 -.512 .0715 L0773
* [o]
elastic unloading elasto-plastic unloading
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TABLE 4.18

RESIDUAL STRESSES

c = 3.46L4, p=0.0, M= .289oy, At/t = 0.0
° * © e * © res res
=res -Treg -Tres =-res - -
r cr /C - " /o O /0y oe /o o /oy g /oy
a=3.0 0.0 0.0 .T60 .T61 -.0031 -.0027
3.1 .0165 .0165 .269 .270 -.161 -.160
3.2 L0171 L0172 -.191 -.190 -.313 -.313
3.3 .00k2 .0043 -.623 -.622 -.h61 ~-. 460
3.4 -.0203 -.0202 -1.031 -1.030 -.604 ~-.60L
£ = 3.440 ~.0330 -1.188 -.660
to=3.hho -.0330 -1.188 -.610
¢ = 3.46L -.0410 -.0k412 -1.196 -1.279 -.618 -.693
c=3.46L4 -.0k10 ~.0k12 1.030 1.030 461 461
3.5 ~.0306 -.0308 .918 .918 .435 L1436
3.6 ~-.0085 ~.0086 .618 .619 .365 .365
3.7 .00k6 - .0045 .335 .336 .297 .297
3.8 .0097 .0097 .0673 .0682 .230 .231
3.9 .0079 .0079 -.187 -.186 .166 .166
b=L4.0 0.0 0.0 -. 428 -.ka7 .102 .103
* . [¢]
elastic unloading elasto-plastic unloading
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Fig. 4.1 Yielded Zone After Unloading
(Case 1)

Fig. L.2 Yielded Zones After Unloading
(Case 3)
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Fig. L.3 Location and Extent of Yield Zones.



162

0.

2



3.0

Gep
g
y
On/0
: + "y
-1.0 0 +1.0
—Tres
g
o /9

o} Q|

<

LOADING 5%
STRESSES e

a=3.00
b=4.00
¢ = 3.00

drn/gy _

-~

-1.

0

O e

L) 1
+1.0 -1.0

RESIDUAL
STRESSES

elastic unloading

. elasto-plastic
unloading

m thinning

Fig. 4.5a Loading and Residual Stresses

e

-T
g

es
/a
Yy

€9t



L.op

3.5

3.0t

L.Op

3.5 F

A

164

LOADING STRESSES

o. /o g /o
Y rp/

0'6/0y cr/cy
— e |
-1.0 0. +1.0 -1.0 0. +1.0
A
-res —res
o]
Tg /oy o, / .
RESIDUAL STRESSES
Thinning
a=3.00 b =4.00

T /o
Z

-1.0 0. +1l.0

%
Z

E‘;GS/O

c=3.00

Fig. 4.5b Loading and Residual Stresses

(Ingvarsson [1977bv])



3.0

N 774

LOADING 2p
STRESSES g
a= 3.00
b=4.00
c=3.10

A W

g
ry

'y L

[ -
.
- g
y
o oe/o
1 +1.0 -1.0
i
[] =1es
AN % /9,

O

!
+1.0 -1.0

STRESSES

elastic unloading

elasto~plastic
unloading

//////] thinning

+—
a
RESTIDUAL EZ

Loading and Residual Stresses

ares/

g

¢9T



L.o

3.2

3.0

L.o

3.5

3.0

166

LOADING STRESSES

Qi
~
Q
Q

o fol g /o
op’' Ty rp/y zp’ ¥

ore/oy c!r/oy GZ/O

—t— A
-1.0 0. +1.0 -1.0 0. +1.0 -1.0 Q. +1.

~res -res —Ires

Gy /cy G /o a /o

r vy z N
RESIDUAL STRESSES
'/////A Thinning
a=3.00 b=1L4.00 c=3.10

Fig. L.6b Loading and Residual Stresses
(Ingvarsson [1977b])



Qi

o
oe/
: .
-1. +1.0
\
\\\ -res
Oq /0y

Qi

<

LOADING %up

STRESSES a

a= 3.00
b=14.00
¢c=3,20

]

o /a
r

) L.
¥

L]

g /a
2y

O v

|

1
+1.0 -1.0

RESTDUAL
STRESSES

elastic unloading

. elasto-plastic

unloading

m thinning

-—res
o %% /o

y

Fig. 4.7a Loading and Residual Stresses

-res
o o/

1
Q +1.

o
Yy

19T



o

- SIS ID
Oep
et
y
| oe/oy
-1, 0 +1.0

Fig.

Qi

|

g
y

LOADING
STRESSES

Qi
Q
<l

a=3.00
b=14.00
c=3.30

4.8a

O wpm

elastic unloading

-— . elasto-plastic
unloading

m thinning

Ot

-res
o /o
r Yy

Loading and Residual Stresses

-Tres
o 7/

g

691



k.0

3.5

3.0

L.o

3.5

3.0

170

LOADING STRESGES

Qt

o /o g__/c
ep/oy FP/ y ZP/ v

ql
~
Q

ce/cy o /o

—t—
-1.0 0. +1.0 -1.0 0. +1.0 =-1.Q0 0. +1.0

b h

-res -res -reg
o o o)
5 / v g, / v I, / .

RESIDUAL STRESSES

LA Thinning
a =3.00 b=4.00 c=3.30

Fig. 4.8b Loading and Residual Stresses
(Ingvarsson [1977])



al

°|

-

-1.

::: Sres
0

al
<4

LOADING
STRESSES

|
<s°

a=3.00
b=4.00
c=3.%0

g /o
ry

-1.

/0y

| |

—

+1.0 -1.Q

RESIDUAL
STRESSES

elastic unloading

- elasto-plastic
unloading

m thinning

ares/0
r y

Fig. 4.9a Loading and Residual Stresses

-re
o' %% /0

LT



172

LOADING STRESSES

- = g /o
Gep/dy Grp/cy zp Y
L&.OF ZZ <~
T
3.5t J
\
3.0k
Bg/o, G./a, a,/9,
———

A )
-1.0 0. +1.0 -1.0 0. +1.0Q -1.0 0. +1.

3.5r ,J

ol A

ages/o Gies/cy azeS/Gy
RESTDUAL STRESSES
Thinning
a=3.00 h=4.Q0 c=3.40

Fig. 4.9b Loading ang Residual Stresseg
(Ingvarsson [1977b])



b

Ql
%QLgD

o

/o
y

Ql
<%l

Ql

STRESSES o

a=3.00
b=L4.00
c=3.46Y4

LOADING zp

g /a
ry

' [1

+1.0 -1

™~

Fig.

-res
06/

4.10a

.0

g
y

Loading and

0 +1.0 -1.0

RESIDUAL
STRESSES

elastic unloading

- elasto-plastic
unloading

+1.

-res
o/

(0]
y

Residual Stresses

-re
o ¢%/a
VA

a

eLT



3.5

3.0

3.5

3.0

17k

-
-

o /o
oep/o orp/Oy 720 %
r—I____—_
o, 3 o /o
oe/oy cr/cy oz/ v
 ——— e —— Pt

-1.0 0. +1.0 -1.0 0. +1.0 -1.0 0. +1.0

N

gres gres ores/c
% /Oy r /Gy % ¥
RESIDUAL STRESSES
a=3,00 b=4.00 e=3.50

Fig. 4.10b Loading and Residual Stresses.
(Ingvarsson L9771



CHAPTER 5

RESIDUAL STRESSES DUE TO COLD-FORMING: EXPERIMENTS

5.1 Introcduction

Residual stresses are in equilibrium and are most often measured
by disturbing this equilibrium by more or less destructive methods and
measuring the effect of this disturbance. Denton [1966a] and Meyer
[1967] have provided very good surveys of the various methods of measur-
ing residual stresses. The following brief summary is not meant to be

exhaustive.

5.2 Literature Survey

5.2.1 Non-Destructive Technigues

Of the non-destructive techniques, measurement by X-ray is the
most frequently used. The locked-in stresses change the crystal lattice
spacing, which can be measured by X-Ray diffraction. However, only sur-
face stresses resulting from a superposition of micro- and macrostresses
can be detected in this way. (Macrosfresses are produced by external

factors influencing various parts of a body differently, even though

the material may be isotropic and homogeneous. On the other hand,
external factors acting uniformly upon the body may give rise to internal
microstresses due to textural inhomogeneities of the material. Micro-
stresses (caused, fof example, by quenching a two-phase alloy) are
usually on a granular scale and often randomly distributed).

Ultrasound techniques have also been used. The velocity of

propagation of sound is a function of the density, which increases in

175
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the presence of compression and decreases in the presence of tension.
Since the ease of penetration is inversely proportional to the wave-
length, ultrasound is more effective than audible sound. Unfortunately,
ultrasonic methods only provide information on the difference between
the principal residual strgqses and not on their absolute magnitude.
It has also been noticed that residual tension makes metal

appear softer and, conversely, residual compression makes them appear
harder than stress-free metals. This is the basis of the hardness test,

used as a non-destructive means to measure residual stresses.

5.2.2 gSemi Destructive Techniques

One relatively non-destructive technique is that of hole drilling.
It can only determine local stresses at depths not exceeding half the hole
diameter. Tebedge et al [1972] provided a detailed description of the
method, together with a discussion of the relative merits of two dif-

ferent methods of strain measurement (electric strain gages gave good

results whereas a mechanical gage did not, when used with the hole~
drilling technique). Ross and Chen [1975], Chen and Ross [1977] used
this technique to measure the variation of residual stresses in the

thickness direction of a circular tube. Only few investigators have

concerned themselves with the distribution of residual stresses over
the thickness. Another such study, on a Jumbo section, was performed

at Lehigh (Brozetti et al [1970]).

5.2.3 Destructive Technigues

Of the destructive techniques, the most commonly used is the

Sachs boring method. It is a bulk machining technique vhich involves
?
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boring out a cylinder or tube in stages and measuring the longitudinal
and circumferential strains at the outer surface at each stage, usually
by means of electric resistance strain gages. .

A common criticism of the Sachs boring technique, criticism
shared by most other destructive techniques, is that it does not account
for the stresses introduced by cutting or boring. One way of overcoming
this difficulty is by using a stress-free way of layer removal, e.g. by
acid etching; this method presents, however, problems of dimension
control and protection of the measuring equipment. Electropolishing
also removes material without introducing additional stresses.

Bending~deflection techniques offer the advantage over bulk
machining techniques of amplifying the strains to be measured. The
measurement of circumferential residual stresses in a thin-walled tube
by slitting it falls under this category. Interferometric techniques

have been used successfully and show promise in this téchnique.

5.2.4 The Method of Sectioning

When a specimen is cut into small "sections", the locked-in
residual stresses are released. The cutting process and measurement
of such released stresses constitute the method of sectioning. If only
longitudinal stresses are measured, the specimen is cut into long and
narrow strips; but, if transverse stresses are measured alsoc, the
strips are further cut into little square pieces. In the latter case,
two-gage rosetites are generally used.

The method of sectioning is described in detail by Sherman [1969],

Tebedge, Alpsten and Tall [1972, 1973] and in Technical Memorandum No.



178

6§ of the Structural Stability Research Council (ssRC [1978]). It has
been used extensively (Huber and Beedle [1954], Beedle and Tall [1960],
Tall [196L4], Ingvarsson [1975, 197Ta, 1977v], Ross and Chen (19751,
Brazetti, Alpsten and Tall [1970], Kato and Aoki) for the determination
of residual stresses in wide-flange shapes, tubes of rectangular or
circular cross-section and other geometries.

Some of the investigators whose works are referred to above use
a mechanical gage of the Whittemore type, placed on two reference holes,
to measure strains. Clearly the procedure does work guite nicely, as
proved by the reproducible results quoted above. But a great desl of
care and experience are required.

Sherman [1969] studied the errors associated with the use of a
mechanical gage on a curved strip (the gage measures the chord length
and not the arc length, the gage points are not aligned with the hole
axis) and derived correction factors. It should be emphasized, however,
that the hole drilling operation is quite difficult, especially on a
curved surface such as a corner. It is necessary to drill the gage
holes in one single pass to insure uniformity of diameter. In addition,
wander of the drill bits may cause poor alignment of the holes; this
would make the Whittemore gage unstable and would give irreproducible
results. For close tubes, whose inside is unaccessible before section-
ing, the gage holes are usually drilled through the thickness. In such
cases, misalignment of the holes may cause significant error if it is
assumed that the initial reference distance between the holes on the
inside is equal to the distance on the outside of the tube.

Also, the

constant need to check and recalibrate the mechanical gage, as recom-
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mended by the SSRC [1978] makes the whole procedure lengthy; the
apparatus heats up slightly with prolonged use and causes significant
errors. A slight difference in pressure with which the gage is applied
over the holes also makes a difference in the readings.

For all these reasons, the use of electric resistance strain
gages was thought preferable. Denton [1966a] discussed some associated
techniques and errors: strain gages are often disconnected during the
cutting process and silver plated brass plugs have been found to pro-
vide reliable means of disconnecting and reconnecting leads; a difference
in temperature of 1°C between the active and dummy gages has been re-

ported to cause an error of about 50 W in/in.

5.2.5 Effect of Cutting on Residual Stresses

In spite of the extensive use of machining in various destructive
methods, studies of the stresses introduced by cutting and poring are
few. It is recommended to use sharp tools and a liberal amount of
coolant to minimize thermal stresses. It is also generally agreed, the
coarser the cut, the greater the disturbance of the stress pattern.

Several investigations of the tensile residual stresses intro-
duced by grinding are cited by Denton [1966a]. Okushima and Kakino
[1972] made an analytical (by the Finite Element Method) and experimental
study of the residual stresses produced by metal cutting. The study
deals with surface cuts, but not with through thickness sectioning as
used in the sectioning method. The parameters of significance are the
depth of the cut, the speed of cutting and the rake angle of the blade.

For a depth of cut of 0.1 mm, tensile residual stresses in the cutting
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direction as high as the yield stress of the cut metal are found in a
subsurface layer, but drop off rapidly to become slightly compressive
at levels deeper than 30 um. Stresses normal to the cut are of the
same sign and magnitude as those parallel to it.

Tebedge, Alpsten and Tall [1973] reported that, for one set of
parameters, the local stress at the saw-cut edge is of the order of
0.5 to 1.5 ksi in compression. Huber and Beedle [1954] showed that
residual stresses of annealed steel sections, measured by the section-
ing method, are very small and of the order of the measurement errors.
This means that annealing effectively removes residual stresses and
cutting introduces negligible residual stresses. This is confirmed by

the author's own measurements.

5.2.6 Accuracy of Measurements

Denton [1966a] reports that agreement within 10% is obtained by
X-Ray diffraction applied to a bent strip of high strength steel with
known surface residual stresses. It is estimated that errors in

estimating the shift of sharp lines after diffraction from steel are

of the order of 1500 psi.

For bending-deflection methods, the validity of the stress-de-

flection relationships is the limiting factor and one can only hope for

an accuracy of £1000 psi. The requirement of the knowledge of stress-

deflection relationships can be avoided by a null deflection technique,
whereby the force necessary to restore, say, a slit cut to its original
dimension is measured.

To be competitive with a bending-deflection method, the stress in

the Sachs boring technique should be measured to £1000 psi, but the
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thickness of the layer removed should not be increased to meet this
demand, if in doing so, a high stress gradient is obscured. This
accuracy has been achieved in autofrettaged gun barrels from a strain
measurement sensitivity of 2y in/in (Denton [1966a]).

Accuracy of about 20% can be expected with the hole drilling
method.

Ingvarsson [1977a] reports errors less than +10MPa (+1.450 ksi)
in measurement of residual stresses in welded box sections with the
sectioning method and electric resistance strain gages. The sections
are made of ordinary steel (cy = 332 MPa or 48 ksi) or high-strength

steel (cy = 817 MPa or 118 ksi).

5.3 Residual Strain Measurements

5.3.1 Description of Experiments

The method of sectioning is used to measure the longitudinal
residual strains in all sections studied (PBClh, RFC 14, PBC13, RFC 13,
H1l, HT7 and HT). Specimens are about 3.0" in length and cut at least
6£.0" from the ends of a member prior to any test. The ends of the speci-
men are machined precisely flat and perpendicular to the specimen axis.
This step is necessary because the specimen is to be held by its ends
in a vice for further sectioning. After scale and grease have been re-
moved with emery cloth and solvent, longitudinal lines are scribed on
both faces of the specimen. These lines serve the dual purpose of
guidelines for mounting the strain gages and for sectioning. The dis~
tance between two adjacent lines is a compromise between several factors.

On the one hand it is desirable to study the distribution of residual
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stresses in as much detail as possible; on the other hand the cuts
should not be too close to the gages to avoid damage and to minimize the
influence of cutting upon the measured strains. The gages are narrower
than 1/8",but the necessity to mount them exactly opposite one another
on both faces of the specimen and to align them with the lines makes a
wider spacing necessary. Other factors are the width of the saw blade
(0.040"; thinner blades tend to break teeth) and clearance for the
wires. From experience, a spacing of no less than 3/8" is found desira-
ble; where little variation is expected in the residual strains, a spacing
of 1/2" is sometimes used.

After the lines have been scribed, the metal surfaces undergo the
usual preparations for mounting gages, the gages are cemented, given
time to cure and wired. The process is tedious and the inside corner

gages especially require some skill.

The sectioning itself is usually done in a single working day to

minimize time-drift of the gages. The temperature of the machine shop

is maintained constant to within 1°C angd cutting is slow enough so that

the specimen only feels warm to the touch during machining. No coolant

is thus necessary. Readings of all gages are taken twice initially and

at least once after each cut.

5.3.2 Results and Discussion

Cn Tables 5.12 to 5.19 a small horizontal line is drawn to indi-
cate the cut which completely severs a section from the specimen

Readings of gages adjacent to a fresh ocut are disregarded because of

the heat generated by machining; but the readings rapidly stabilize and
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the large majority of gages left undisturbed after complete separation
exhibit a drift smaller than 15U in/in, which corresponds to a stress
of 440 psi. The reading of all gages after each cut thus provides a
measure of experimental error. Indeed, if strain relaxation due to
cutting is assumed purely elastic, the cutting sequence is immaterial
and it should only be necessary to record the initial readings before
any cutting and the final readings after all cutting. This simplified
procedure Wouid shorten the experiment significantly but would deprive
the experimenter of a measure of any possible drift. Such a measure
is necessary in interpreting the results. The cutting sequence is left
to the discretion of the machinist.

Since residual stresses are theoretically in equilibrium, another
measure of experimental error is the unbalance strain which is the
weighted average of the measured strains. The weights are either the
physical weights of the coupons or their widths. The unbalance strain
is only meaningful if the strain released on all coupons are available

(i.e. no damaged gages). The available unbalance strains are:

-for RFC 1k:  -20. uin/in
~for PBC 1b: 0.k

-for RFC 13: -91.

-for PBC 13:  -ko.

-for HT: 15.

-for H1l: 21.

-for HT: 1.9

The average of the absolute values of the unbalance strains is
27 uin/in, which corresponds to a stress of 800 psi.
Another source of error, probably the most important, is the

cutting process itself and will be discussed in the next section.
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The relaxation strain patterns, shown in Fig. 5.1 to 5.7, are
roughly symmetrical and exhibit negative values on the convex side.
These observations agree with theoretical predictions (Fig. 4.5 to
4L.10). According to the theory,to each corner geometry (defined by
b/a or a/t) and to each change in thickness At/t of a corner compared
to a flat, corresponds a combination of internal pressure and moment;
this combination, in turn, determines the residual stresses and the
relaxation stresses. The relaxation stresses are worked out in Table
L.1 using the geometrical data collected in Tables 3.2a,b. Comparison
with the experimental data is difficult, as shown in Table 5.22, because
of the large scatter of these data. Ideally, the bending relaxation
strains on both faces of a corner should be equal and opposite; corners
of the same geometry should also relax identically. This is, however,
not the case. Table 5.22 shows that, in general, the ranges of pre-
dicted relaxation stresses corresponding to the ranges of measured
changes in thickness overlap with the ranges of measured relaxation

stresses.

The global average of the relaxation strains over a cross-section

is zero, as required by equilibrium.

It is remarkable that the local average is also zero, within

experimental accuracy, as seen in Figs. 5.1 to 5.7.% The values of

*The average is computed as half the s
values. This is correct for g flat
In all rigor, assuming a linear dist
Ei at the concave face, r=a, ang €6

um of the inside and outside

but only approximate for a corner.
ribution of strain ang the value
at the convex face, r=1:
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axial strain relaxation predicted by theory are virtually zero for no
internal pressure, and small (compared to the bending strain relaxation)
for other values of pressure (Table 4.1). The contribution of the axial
relaxation strain can thus be neglected in the comparison between theory
and experiment in Table 5.22.

There is, surprisingly, no difference between the residual
stresses of press-braked channels and those of cold~formed channels.

9T% (2i6 out of 223) of the data points of residual strains
fall within a band of * 60% of the yield strength of the flat portion
of the relevant cross-section. Of the points that fall outside that
band, all except one occur at the extremities of the sections (Figs.
5.1-5.7).

The residual resultant force in the longitudinal direction of a
corner is not zero if cold-forming occurs under any amount of internal
pressure at all (Table L4.1). This residual force must be balanced by
an opposite residual force in the flats. But this force is small and

cannot explain the experimental observation that all channel sections

the average strain over a unit angle of corner is:

8=1 /b b
J f erdrdf f erdr

0 a & 2 (b2+ab+a2) Eib—eoa ot &y
- =3eg-ey) T tTwoa 7 T3
8=1 (b b b ~a
J { rdrd6 f rdr
a
0 a

The refined formula is considered unnecessary here since corners
contribute only a small part to the total area, and corner residual

strains are small.
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exhibit higher residual stresses at the flats (especially the web)

than at the corners. Pending further study, it is suggested that

these high stresses may be caused by the coiling and uncoiling of the
steel sheet out of which the sections were cold-formed. It is also
possible that these stresses are caused by straightening of the member.
In puzzling contrast, the hat sections exhibit high residual stresses
at the corners and low stresses at the flats. HT shows little residual

stress, except at the tips of the section.

5.4 Sectioning of Annealed Specimens

Five specimens (PBC13, PBC1k , H1l, HT and HT) were stress-
relieved by annealing. The procedure used was keeping them at a tem-
perature of 1200°F for one howr, then slowly cooling them to room
temperature at the rate of 50°F/hr. Chapter T examines this process
in more detail. These specimens were subsequently sectioned, as

described previously, in an attempt to determine the residual stresses

induced by cutting.

Fig. 5.8 shows that, out of 32 dats points, 25 (78%) fall within

* 50 pin/in and 27 (84%) within * 75 Min/in. It was seen previously

that values of 500-6Q0 win/in are common for residual strains due to

cold-forming. Fig. 5.9 shows the results of the sectioning of an

annealed PBC1lL. The strains Obtained are higher than in the previous

experiments, but the switching unit did not work properly and may have

contributed to the high readings.
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5.5 Closure

Residual strains were measured by the sectioning method with
electric resistance strain gages. If the errors intréduced by cutting,
temperature change and gage drift are added, one obtains an estimated
error of 50 + 15 = 65 yin/in (about 2000 psi). This is comparable to
measurement by other investigators (§ 5.2.6).

The cold-forming residual stresses measured here have a completely
different origin from the cooling residual stresses, which have heen
measured extensively, but to the author's knowledge, only on hot-rolled
wide flange sections (Johnston [1976]). In these sections, the parts
that cool the most rapidly (namely the tips of the section, the middle
of thin elements) are in compression and the rest (corners, intersec-
tions of webs with flanges) are in tension. Cooling residual stresses
are often assumed to be uniform across the thickness. Comparison be-
tween these two types of residual stresses on similar shapes would
have been interesting; because of the different origins and mechanisms,

the residual stresses are expected to be gquite different.
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TABLE 5.1

PBCLL4 RESIDUAL STRAINS

Gage Outs;de Gage Insi@e Avergge
# Strai P Strain Strail
(10-9) (10-9) (10-°)
1 -397 2 489 L6,
3a -h1k
3b -84 L 56 =1k
=97 6 185 Lh
=246 8 269 11.5
-201 10 287 43,
11 -ha2 12 254 -8k,
13 -6L40 1k 528 -56.
15 -Lel 16 59k 65.
17 =427 18 547 60.
19 -486 20 581 L7.5
2l -590 22 566 -12
23 -768 2k 581 -93.5
25 -169 26 128 -20.5
27 -202 28 15k4 -2k,
29 ~-280 30 294 7.
31 -85 32 103 9.
33a 55 34 27 L1,
33b ~269
35 -688 36 651 -18.5

Corner width _ 6
Flat width 1.5

Qut-of-balance strain = 0.4 x 10—6
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TABLE 5.2

RFCLL RESIDUAL STRAINS

. Outside | Inside | Average
Gage | Weight | o 50 | Strajn | Strain
# (gram) (10-°) | (20=°) | (10-5)
1 12.865 -334 321 -6.5
2 19.218 -168 -3 -85.5
3 15.682 -169 156 -6.5
4 14.979 -397 34k -26.5
5 22.318 -26 28 1.0
6 15.109 -599 sk -27.5
7 18.479 -582 649 33.5
8 13.51k -594 699 52.5
9 21.174 -361 408 23.5
10 20.418 -207 -2U -115.5
11 14.670 -338 351 6.5
12 16.004 ~153 17k 10.5
13 15.983 -182 -2h -103.
b 15.37h -231 206 -12.5
Out-of-balance strain
- L _average strain x weight:=_20.o x 10—6

L Weight




190

TABLE 5.3

PBCL3 RESIDUAL STRAINS

(coupon a)
oeee | Srrare | Gase | oiae | Sremse® | mhickmess
(10-6) (10-6) | (10-6) e

1 N 2 529 56. .091
3 -820 L 151 ~33k4.5

5 -202 6 131 -35.5 .091
T ~205 8 156 ~-24.5 .091
9 -327 10 478 75.5 .092
11 -41s5 12 322 -46.5

13 834 1k T15 -59.5 .091
15 -T709 16 749 20. .091
17 -6LT 18 709 31. .089
19 -63L 20 679 22.5 .092
21 -711 22 691 ~-10. .091
23 -697 2L 620 -38.5 .091
25 -2h6 26 285 19.5

27 -398 28 273 -62.5 .091
29 -220 30 2ko 1k.5 .091
31 -255 32 140 -57.5 .091
33 =h12 34 315 -48.5 .091
35 -1hoT 36 1305 -96. .092
Corner width _ .585 _ 1.56
Flat width 375

Out-of-balance strain = -39.7 x 10~

6




TABLE 5.k TABLE 5.5

PBCL3 RESTDUAL STRAINS RFC13 RESIDUAL STRAINS

(partial pilot test. Coupon b)
Gage Weight Outs%de Insige Aver?ge
Outside Inside Average # (gram) ?;g?é? ?;g? ? ?ig?%?
Gage Strain Gage Strain Strain
# (10-6) # (10-6) (10-6)
1 20.086 -T0h 3Tk -165
19 -T1h 2 23.486 -933 -212 -572.5
27 -k31 3 19.230 -132 191 29.5
27-29 -361 i 19.060 -289 268 -10.5
29-31 -24h 5 30.332 -116 -2 -59
31 -355 6 22.992 -684 611 -36.5
33 -654 3k 213 -220.5 T 21.235 -537 587 25.
35 -1k26 36 1517 45.5 8 21.463 ~51h 545 15.5
9 19.663 -63h 608 -13.
10 30.419 28 148 -68.
11 20.102 -180 277 48.5
12 21.218 -100 -48 -Th
13 22.1499 -566 -95 -330.5
1k 18.242 ~hh7 476 1k.5

T6T

-6
Out-of-balance strain = -91.1 x 10

_ L average strain * weight
- YL weight




TABLE 5.6

H1l RESIDUAL STRAINS

TABLE 5.7

H7 RESIDUAL STRAINS

Gage | Inside |Outside | Average | Coupon
4 Strain Strain Strain Area
(10-6) (10-0) | (10-9) (in?)
1 -46 11 -17.5 .0Lk087
2 -176 362 93. .oLkh13
3 -199 150 -24.5 .0kL73
i 212 -298 -k3. .0hkos
5 187 6k 125.5 .05428
6 571 -288 1k1.5 .03979
7 -h61 T ~227. .0LT31
8 -58 390 166. .ok72k
9 -152 9k -29. .0L89T

Out-of-balance strain = 20.7 x 10_6

Specimen a
Gage Outs%de Gage Insi@e Avergge
# Strain # Strain Strain
(107°) (107°) | (10-6)

1 610 2 -T2} ~57
3 140 L -694 277
5 246 6 k95 370.5
7 -103 8 223 60

? 513} 10 67 29},
11 529

13 -126 1h 78 -2}
15 -179 16 -253 -216
17 -226 18 -18 -122
19 20 372

21 54 22 400 227
23 797 2

25 826 26 -893 -33.5

c61



‘TABLE 5.8

RESTDUAL STRAIN

Specimen b

TABLE 5.9

HT RESIDUAL STRAINS

Gage Outs?de Gage Insi@e Avergge

# Strain p Strain Strain
(10-6) (10-6) (10-6)

1 662 2 -725 -31.5

3 39 n -507 -234

5 128 6 489 308.5

7 -200 8 164 -18

9 =55 10 1k9 L7

11 212 12 -18 97

13 -1h3 1h 61 -h1

15 60 16 -258 -99

17 -203 18 -6 ~-104.5

19 -12 20 256 122

21 246 22 Ly 145

23 -13k 2h -56 -95

25 1237 26 -1205 16 |

Corner Width

Flat Width

Out-of-balance strain = 15.1 x 10

= 1.25

Gage Outside Inside Average
# Strain Strain Strain
(10-6) (10-0) | (10-6)
1 -196 498 151
2 -211 -205 -208
3 671 -429 ‘ 121
L 136 -371 -117.5
> ~535 232 -151.5
6 -157 1k7 -5
T -117 223 53
8 Ly -2ho -98
9 Tho =751 -4.5
10 1k1 -138 1.5
11 230 329 279.5
Corner'Width = 1.1
Flat Width
6

Out-of-balance strain = 1.9 x 10

€61



RESIDUAL STRAINS (10'6

TABLE

5.10

in/in)

DUE TO MILLING; ANNEALED SPECIMENS

TABLE 5.11

RESIDUAL STRAINS DUE TO

MILLING; ANNEALED SPECIMEN

(switch unit gave trouble)

Specimen > | ppoyg H11 HT HT
Gage ¥
1 -12 -6 304 -38
2 -5 132 | -137 [-120
3 -9 -4 n T0
L -23 2k 21 12
> ~8 20 ~ly .
6 -11 140 33 60
7 23 18 -16 -hh
8 27 0 -3 20

PBC 1k
e | grragn | %% | Giraga | (M9
(10-0) (1079)

1 -25 15 29 i
2 7 16 16 .48
3 114 17 46 .50
i -145 18 -h7 .50
5 65 19 133 .66
6 3 20 -16 .50
7 25 21 -59 .50
8 ~20 22 -97 —
9 ~-66 23 -26 o
10 ~23 2l ~190 é
11 -103 25 10 %
12 ~52 26 59 §
13 -60 27 -152 -
1k -8 28 15

et



PBC 14 RESIDUAL STRAINS (10*6

PABLE 5.12

in/in); detail

Gage #
ouT 1 3a | 3b 5 7 9 | 11 |13 {15 [ 17 (19 |2 |23 |25 |27 |29 | 31 |332.[33b | 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 -23| -6] =5 W -18( -26| 44| -19| 21| 84| 60 8| -12| -29| -23| -13| -6 0 il -9
2 -8 T 12| 212 -5 -17( -37| -13] 28| 9k4|-488] 52| 2T 0| -24| <16 -9 -1 5 6
Cut#| 3 -" 81 12| 17) -6] -16| -35( -13| 30| 94|-486]-583 41 34| -10f -19] -19] -14| -1| 11
i +1| 12| 13| 10| -5| -13| -33| -10| 32| 9T7|-k84|-579|-7T73| 66| 12| -13| -25| -27| -9| 21
) -9 6 7 2| -10| -21| -bk| -20( 20| 87[-49T7|-58L|-778| 61| 11| -17| -30| -33}| -18| 1T
5 2 9 11| 15| -7( -17| -k2| -18] 24| 91]-492|-582|-776|-181| ~-37| -b42| -55| -38]| -15| 31
6 -2 10| 11| 16| -7| -19| -ko| -14| 27| 93|-489|-580|-772]|-166|-205| -5( -h7| -51| -36| 26
7 -12 4 L 16| -15| -23( -ks| -21| 21| 8h|-kok{-585(-778(-168(-208({-285| 43| -77(-103( -8
8 —o4| -9| -6| -20| =30 -52| -28| 12| 78(-498|-592|-784|-174[-213]-293|-104| 102|-k01|-154
9 -13 6 6 Y| ~7| -<17| -39| -15| 27| 92|-487|-580[-7T71L[-163[-199[-280| -82| Lo|-272|-68T
10 -8 9 ol -5| -33]| -45| -39| 30| 118|-436|-482|-579|-T769|-160|-198 |-27T7| -T8| 56|-26k|-680
11 | -11| -11{ -27| ~24| -52| -55| -20| 16]|-482|-451|-502(-600|-T9L|-188|-219|-300[-102| 3L|-290(-T706
12 26 W =32 -53| -64| -53| 62|-646|-bkT70|-436|-488[-584|-776|-1T79|-206(-283| -91| kL8|-276(-693
13 32| -31| -82| -68| -81| -30|-438[-646|-bT70|-435|-48T|-584|-T77|-178|-205[-283| -92| L9|-271]|-691
1L Lo| -k2| -82( -4T| -36|-207|-L28(-643[-L66(-L35|-486(-581|-775(-184 [-20k|-282| -89| 53[-269|-691
15 29]-113(-118| 64 |-265|-212|-433|-652 [-4T79 [-Lk1 [-488|-591 [-778 |-178|-203|-282| -91| 51 |-27h|-691
16 | -92|-460| 70| -93|-254|-205[-419|-673|-465|-433|-L8T[-580|-776|-17k|-201[-281] -85] 53]|-268|-706
17 |-ko2|-419| -89|-102]-247(-199]|-409|-635|-458 |-k27|-480|-575|-768]|-164]|-196|-273] 78] 61]|-264 |-678

—— Jline indicates complete separation

S6T



PBC 14 RESIDUAL STRAINS (10"6

TABLE 5.12 in/in): detail (continued)
Gage #
IN 2 (k4 6 | 8 {10 |12 |1k |16 |18 | 20| 22 |24} 26| 28| 30| 32| 34 36
o]" o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -16| -7 -5| -25| -15| -W5{ -15( 12 19| -65| -25| -16| -22| -16| -9| -12| -5 -8
2 -5 6 3] -15| -4| -31| -5 24| 28| 576[-133| -34| -6 0 L W -1 -1
cut#] 3 -1 18 6| -16| -3[ -31| -6| 22| 27| 579| 557| -96] 1o 19 13| -7| -7 -1
L -1 16 LI -13] -2| -29 2] 23| 28| 598| s561| 597 38 39| 27 0| -13
Lb -11 8 -5 -21| -7| -37| -11| 16 22| 591| 553| 592| 34| 34 18| -11| -17
5 -5 0 -1| -20| -3| =34 -8] 38 23| 579| 557| 594| 123} 65[ 30| -8| -1T
6 -5 16 2| <18 -1| -29| -6| 39| 25| 581 560 598 126| 152 97| 12| -27 14
T -11 1 =8| -22| -7} -37f -13} 34| 19| 575| 552| 591/ 119} 1kT7| 278| 116| -58 26
8 -25 13 -9| -29| -18| -W7| -20| 26| 14| s566| su6| 586 113| 143| 278] 88| -k 167
9 -10 1 o| -17| -15| -34| -7| L2 22 580| 561| 597 127| 158| 294 109 23 645
10 -13| -2 3| -18| -9| -h1| -34| -64| 539 584| 561 599| 129| 158 298| 107| 30 649
11 -22| -19 -11| -15| -3| -32|-154| shi| s525| s562| 543| 5Th| 112| 136f 273] 89| 11 629
12 -5 -8 6| 30| 49| 70| 519 591| 5u48| 582| 558| 591 127| 150/ 290| 101| 23 646
13 -10| -ks5 5| 6h| 125| 259| 520{ 589| Sk6| S5T5| 560 592f 128| 151 291 96| 23 64T
1L 6 -hb 38| 148) 278| 269| 524 593| s5u8| S577| 558 593| 124| 153 288 94| 26 649
15 26| -72 171| 259 275 259| 521| 582| Shé| 575| 553| 593| 130| 150| 289 97| 23 643
16 223| 21 194| 261| 286| 268| 525| 594 548| 561| 563| 594 132| 156 294 95 26 650
17 L84 51 201| 270| 294| 278| 534 601| sSuW7| 585| 569] 596| 135| 160| 301 92| 32 654
——1ine indicates complete separation

96T



Cut #

grams

RFC 14 RESIDUAL STRAIN (10-‘6

TABLE 5.13

in/in): detail

Gage #
ouT 1 2 3 L 5 6 7 8 9 10 11 12 13 1k

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -7 12 o| -22| -58| -28 20] 115 -2l 82| -26 1 23 -2
2 -7 8| -12 -4s| -66 0 6{ 123 2 =77 -2h b 26 -1
3 -7l =12 =22 -29| -1L| -627| -578| 120 Wl 75| -2h 2 29 1
L -6{ =34 -69| -78| -72| -603| -578| 118 31 -77| -27 1 27 3
5 -5 -5k 4| -kos5) -28] -596] -580| 119 w81 -28 0 28 2
6 5| -21| -184| -h03| -29| -600( -581| 117 21 -84 -29 -4 27 0
7 -3h1| -175| -167| -398( -26| -599| -582| 119 3 -88| -30 -5 2k 0
8 -337| -171| -170| -k10[ -27| -600| -582( -605 23| -113| -62] -28 1k 2
9 -337] -170| -173| -bio! -27| -605| -583| -603| -372! -T9[ -18 -25 -5 2
10 | -333| -167| -168| -395| -26| -598| -582| -595| -360| -218| -66| -6T| -20 57
11 | -333| -167| -163| -390 -26| -597| -583| -592| -359| -207| -345| -39 -50 30
12 | -335| -167| -169| -391| -26| -598| -584| -593| -363| -207| -352| -190| -97 -6
13 | -333] -167| -168| -389| -26| -596| -581| -589| -359! -—20h| -334| -153| -182| -231
V4 12.9| 19.2| 15.7| 15.0| 22.3| 15.1| 18.5| 13.5| 21.2| 20.4| 1k.7| 16.0| 16.0 15.4

—— line indicates

complete separation

L6T



Cut #

TABLE 5.13 RFC

14 RESIDUAL STRAIN (10‘6

in/in): detail {continued)

Gage #
IN 1 2 3 1 5 6 T 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0
1 -4 202 o| -20| -u48 8 66 ok 17| -h6|  -27 -6 18 1
2 -8] -18 =L -21| -hW8| -22| 6M1 97 19| -50[ -2b4 -7 18 1
3 -2| -36| -12| -16] -32| 531] 652 98 20| -50| -2k -3 20 N
b -2| -12| -13 31 3| 541 652 98 17l -51| -26 -4 22 N
5 16, -28 25 341 271 547|650 98 17| -50| -2h -h 2h i
6 93| -29 Lh| 339 27| Shh| 650 99 15| -hs| -25 -6 25 L
7 317, -26| 152] 3k2 29| shk| 650 97 15) -h2| -24 -5 25 2
8 317 -1| 156 351 26| 538| 650| 693 Wil -u7| -22| -13 20| -10
9 320 -1bk| 152 355 28| sLh| 650 699 Loo| -kk{ -22{ -15 14 -8
10 321 -8 156 3h2 28| sus|  6éh7| TOO| LO8| -23 70 8 10 -3
11 321 -10| 156) 341 29| sWs|  6u7| 699] ko9l -19| 3k 53 -2 -16
12 326 2| 158 3k 27| s5hk6| 646 699 hos| -26| 3h6| 157 63 12
13 323 L|  160| 3Lk 28| sh7| 646| TOO{ k09| -23( 35k 17kt -2k 206

—1line indicates complete separation

86T



TABLE 5.1k

PBC 13 RESIDUAL STRAINS (coupon a. Detail) 10-6 in/in.
Gage #
103 |5 |7 (9 | |13 ([15] 1719|220 |23 |25 2729 { 31 33] 35
Initial 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0
1 -9 -1 1 1f 11 71 -3| -19| -31| -16| -9| 16| -16| -15[ k7| -36 3
2 =27 -27] -27| -12| 29| 24 5[-667| -35| -20| -10| 14| -16( -16| -h6] -35 6
3 10] -50] -k2] -31 il 72 1|-729] -656] -30| -16| -9| 16| -12| -13 -50 -34 3
Cut i 12| -69| -65| -ks5 2| 132|-8k2|-717|-656| -29| -16| -9| 17| -13| -15| -60[ -33 7
# 5 h2!-119(-132[-117| -52|-k35(-841|-719|-655| -28] -16| -10| 19| -12| -1h4| -s8| -32 9
5b 25|-126[-141] -126( —T7h|{-bhl|-85k[-T731|-665| -hh| -24| -18 6| -23| -2k} -71| -hk2 -5
6 18|-182{ -159|-103| -379| -443[ -860| ~725| -662| -35| -20| -13| 12| -17| -16{ -k2| =37 1
-21|-296] -53|-23k4] -362| -432} -84L| -T720| -659] -34} 18| -11| 13| -15| -15| -h5| -3k 5
-250| -62k4| -221| -219| =364 | -L433| -843| -722| -659| -32| -19| -12| 1k| -16[ -15| -bk5| -35 3
9 -439|-8h41| -212| -207| -348| k21| -832] -712| -648] -21] -9| -4| 23| -18] -8| -27| -26 13
10 [-439[-830]-213|-216|-369]-431] -838| -723| -659 _661| -18| -12| 20| -30| -ho| 78| -57 -2
11 |-kh35|-825|-212| -213| -354| -hk27| ~-833| -718| -655| -652 -711| -11| 51| -15| -31| -84 -T2 11
12 | -431{-820{-203]-208| -342| -418[ -830] ~713| -650{ -649| ~702|-T1LT| 76| -bk2[ -54| -94} -T6 29
13 [-b29[-822| -206] -211| -345| k21| -832] ~T15| -650| -6L46[ ~TOL |-T11|-271| -86]-11h|-13k4|-121 61
14 [ -436|-829(-213| -215| -352| ~L428| -83k4] -T728| -656( -653| -708 |-716[-261 [-401| -53[-1L49|-1Th 52
15 |-439|-832|-212-231|-341|-k29| -834 -T19| -655| -649| -T756 |-753|-273|-k08|-22T7| -80|-264 26
16 |-432|-827[-208|-218(-331| -h29]| -857| -718| -656[ -648| 722 |-T17|-255|-423|-23T7|-276|-331 18
17 | -h30(-828|-219(-215|-336( k26| -863[ -Th9| ~-686{ -666 ~TU3 [-T13[-257 (-395|-22k (-268|-h22 |-1511

—— line indicates complete separation

66T



Cut #

TABLE 5.1hk: PBC 13 RESIDUAL STRAINS (coupon a. Detail) 107° in/in. (continued)
Gage #
2 L 6 8 10| 12 14| 16 | 18y 20| 22| 24| 26| 28| 30| 32| 34} 36
Initial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 -12 9] -2| 29| 10 8 2l -3} 12| 14| 12| 12| -1} -5| -23| -23 3
2 -7l =221 -1{ -8 34| -8 -a7| -84 681 10| 1k 8 5 6| -2| -23| -22 n
3 15| -25| -6 3 sh| 23|-109| 730| 693 16| 12| 11 2| 1k 2| -19[ -20 1
b 27| k6| 19| 12| T2 76| TO3| T32| 693 15| 1k 9| -1| 11| -1| -23| -23 N
5 36| -73[ -34f 65| 204| 296| TO9| T36| 695 15| 14| 12| -1| 218 2| -18[ -~20 7
5b 4i|-100| -54{ hW7| 184| 300| 698| T19| 679 7 6| 4| -17| 20| -18| -37| k2| -13
6 58| -120| -56| 92| 34| 293| 695| T25| 687 13 9 -12| 30| -8} -27| -31 -k
92|-1hk7| 78| 125| Lho| 309| TOT| Te9| 688] 13| 11 -10| 32| =3| =25 =27 0
8 336( 1k| 92| 132/ k71| 308 T08] 729| 692/ 13| 10 9! -10] 33| -3] -23| -27 1
9 485| 146| 108| 1k2| 480 319 T16| T39| TO0O| 22| 19| 21| -12| kL2 9 -11| -1k 11
10 533] 127 110| 133| 4sk4| 310| 705 T731| 690| 661| -63| -7| -12| 21| -1| -15| -36| 8
11 538| 123| 116| 137| 459| 315) T11 '73h 695 676 684 -39 12| Lo| 13| -~9| -kLk 23
12 shi| 127| 119( 1ké6| 463 319| T715| 71| 701} 680| 691 610| T9| L5| -6| -32| -k6 31
13 sh2| 126f 115| 143| L61| 314 T712| Th1| TO1| 678| 691| 609 261| 126| 52| -20| -78 Lo
1k 531| 121 11l0| 136 Ls2| 307| 675 T736| 696| 672 685| 606| 275| 295| 159 81-109 Lo
15 519 119| 11o| 128] hh7| 308 T09| T37| 698 624]| 6L6| 596 257| 275| 229| 117|-152 L7
16 529 129 110| 139 4s57| 310| 614| 737 696| 673| 681L| 609 271| 2ko| 226( 119| 118| 266
17 531 110| 10k4| 1ko| L60f 280| T710| T09 | 6T 655] 677 598 267| 280| 232] 121| 293} 1285

—— line indicates complete separation

0o¢



Outside

Cut #

TABLE 5.15

RFC 13 RESIDUAL STRAINS (detail)
Gage #
1 2 3 L 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0

1 -b2[  -30f -23] -17| -20| -29{ -57| -50| -s7T| -38 3| -b5| -157| -121
2 ~he| vt -u3| 36| -as| -33] —613| -uu| -50] -30| 14| -No| -1s50| _114
3 -2h)  -60] -58/ -34 17| -707) -555| -k6| -s50| -30 11 -k2} -153] -115
4 -6 98| -99| -ho| -157| -677| -534( -26| -33] -1 29 -22| -132| -9k
5 -85 -206 12| -329| -115( -679 -536| -30| -35/ -18 28 -25| -132| -92
6 -158| -368| -161f -286] -114| -679| -531| -29| -34| -16 29 -24| -136] -98
T ~-T2h| -9k8| ~129( -286| -115| -680| -533| -32| -38| -19 25 -27| -136] -97
8 -698| -930| -126| -288| -11k| -687| -531| -586] -48| -35| -12| -64] -160| -120
9 -T03| -932| -133| -290| -112| -689] -539| -514| -653| -22 - -66] -178| -104
10 | -703] -932| -133| -290( -112| -685| -ski| -51k| -632| -314| -108| -156] -220| -58
11 | -703] -935| -134| -292| -112| -687| -5h3| -512 -63h| -285| -183| -133| -248| -60
12 | -703| -935( -138| -296| -112| -693| -542| -s51b| -626| -283| -180| -120| -L87| -201
13 | -713| -9h7| -1k7| -302| -128| -700| -554| -521| -636| -291| -191| -109| -576| -L57
eS| —tok) -933| -132] -289| -116| -684| -537| -51h4| 634 -284| -180| -100| -566| -ukT

—— line indicates complete separation

. . T
w is the coupon weight in grams, €

s . .
in pin/in.

T0¢C



Inside

Cut #

TABLE 5.15: RFC 13 RESIDUAL STRAINS (detail) continued

Gage #
1 2 3 L 5 6 7 8 9 10 | 11 12 13 1k
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -26| 26| -23] -19| -17 7L__~§2, 68 18| -ko 20| -60[ -112 -k
2 -35| -bW6| -35} -23} -21| -hi| L8 70 221 =36 19 -57| -108 -1
3 -27{ =54 -=ki| -20 33| 595 575 70 21| -36 19! -58! -107 -3
I =37 -719| -9| 113} -bo| 620| 593 90| 38| -22| 37| -38] -90| 16
5 -T1| -116| 115| 2kt -1| 613 592 86 35| 24 35| -43| -90 14
6 21| -29| 180| 267 of 614| 592 86 38| -22 3 -u3| -86 14
T 366| -215| 198| 268 -1 613 587 83 35| -23 34| 45| -9 13
8 373| -210f 190} 272 -1| 609| 591 505 -4 -38 20| -65| -11k -6
9 375 -212| 189| 269 -3| 607| 585f shkh| 598 -18 22! =71 -120 L
10 375 -211| 196| 270 -3 608 584| sk6| 607 132 222 -35| -136
11 373 -213| 189 267 -4 606] 583] shhl 611 152 277 28| -136 12
12 373] -212| 191 265 -6 613] 581 542 608| 1kk| 277 -67] -76| 119
13 363 -22k| 181| 2hki| -19| 595 S5TL| 535 598| 131| 268 -60| -106| k66
gres 37h| -212| 191 268 -2 611] 587] sSus| 608| 1W8| 277 -48] -95| W76
W 20.1| 23.5| 19.2| 19.1| 30.3| 23.0| 21.2| 21.5| 19.7| 30.4| 20.1| 21.2| 22.5| 18.2

——— line indicates complete separation

. . . res
w is the coupon weight in grams, €

in pin/in.

c0¢



H1l RESIDUAL STRAIN (lo‘6

203

TABLE 5.16

in/in): detail

Gage #
1 2 3 L 5 6 7 8 9

Initial 0 0 0 0 0 0 0 0 0

1 26 5 -45| -159 -18| -166| -101 2k -16

2 28 3k -30, -136 -3 465, -366 6L =70

3 26 35 -40| =125 5 559 =533 107 31

w b 10 32 b2 127 3 560 k31 -71] -181
8 5 18 L7 -71 -230 169 570 -46k -62| -15k
6 128 6T| -50{ 186 187 576| -L6T| 52| -1b1
T -59 137 -206 20k 187 571 =471 -58| -150

8 | 46| -176] -199 212 187 571 -Lk61 -58| =152

Gage #
1 2 3 4 5 6 T 8 9

Initial 0 0 0 0 0 0 0 0 0

1 15 L6 3 38 159 31 25 3k -Ls

2 15 67 13 =27 176| -355| -138 232 -4

3 20 T6 12 -1k 183 -293 =37 117 -83

b 18 75 15 -7|  190| -292 -3 329 65

d -3/ 107 831 12| 50! 307 5| 388 90|
2 6 9 148 80| -332} 66| =315 T 391 ok
S| 7 -152| -88 lh2)  -288 63 -291 7 389 ok
8 11} 362| 150 -298 6h| 288 7 390 oL

line indicates complete Separation

INSIDE OR LOWER

OUTSIDE OR UPPER



gage >
cut +

TABLE 5.17

H7 RESIDUAL STRAINS (Specimen a. Detail) 10_6

in/in.
25 23 21 19 17 15 13 |' 11 9 7 5 3 1
0 0 0 0 0 0 0 0 ) 0 0 0 0 0
1 822 98 56 26 36 27 16 12 10 16 26 27 1k
2 | 822 7931 107! 53| 34| 20| -13 -6 -1b| 15 18| 2k T
3 8221 187 45 * 10 41 18 17 2 26 24 33 8
4 877| 8uk| 101 26 38 58 92 91y 115/ 1hko| 267 620
5 886 8k9| 110 -~73| -123 36] 192| 253 308| kol 298| 658
6 842] 805 68 -119| -168 -2l 1hkkd| 210 2bs| 254 146 62k
7 8h1| 797 58 -1k9| -301 111] 284 265 179 250 137| 613
8 834 796 56 -148| -298| -126| 316 270 183| 250 1k0j 610
9 837 796 58 -268| ~173( -124 305 266/ 179 2ko| 134 612
10 834 795 58 -231| ~179] -118] 310 273 191] 2k6| 1k6| 612
11 8261 797 5h -226{ -179| -12 529| 513 -103{ 2ko|_ 139 606
€, 826 797 54 -226| =179 -12& 529] 513 -103] 246l 1ko| 610

* Gage damaged

— line indicates complete separation

702



gage >
cut ¥

TABLE 5.17: H7 RESIDUAL STRAINS (Specimen a. Detail) 10'6 in/in. (continued)

{_ﬁ 26 24 22 20 18 16 14 12 10 8 6 4 2
0 0 0 0 0 0 0 0 0 0 0 0 0
1 | -894| 17| 20| 11| 18] 10 8 -6| 18 21| 24| =5
o | -890(  *| s3] 3| 26| 19| -6 8| 10| 29| 25| o
3 -886 his| 66| -22 25 18 1k 26 37 26 28
4 -801 503 48 66 91 58 68 78 95| 212| -663
5 -782 516 189 86 4 22 121| 138! 217 -684| -65k
6 -880 L1k 93 -9 -93 19 90| 100| 507| -680| -T717
T -886 Lhog| 182 -13{ -165| -T73 13k 7| 4oL| -690| -T2k
8 -888 Lot| 182 -6| -165 8L 204 | -bh2| L93| -692| -T2h
9 -893 Loo| 294 50| -2k3 78 214 | -38] k95| -689| -T2k
10 | -893 4o3| 372| -13| -237 i 21| k2| s502| -694| -T22
11 | -893 hoo| 372| -18] -253 92 67 223| k95| -697| -T26
e. | -893 hoo| 372| -18] -253 78 67| 223 L95} -69k| -T2k

¥ Gage damaged

line indicates complete separation

60c



TABLE 5.18

H7 RESIDUAL STRAINS (Specimen b. Detail) 10‘6 in/in. .
gife:' 143|579 ta]13{as|arj19ler]| 23] o2
Initial 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -21| -33| -ho| -59|-127| -61}-123| -91| -55| -ho| -37| -k6] -58
2 12 o -1| -31| -97| -2h|-172! -65| -11| -16| -37| -41| -k9
3 12 -3| -37| -97| -23|-148| k9] -Lo| -23| =3| -12| -25
L 1k 5| =3[ -34] -96| -2h4/-1hs5| 5T|-234| 192 3| -k b1
5 12 -1 -1| -35{ -97| -27|-147| S5T7[-219] -21| 255| 130| 230
5b 22 12 4 -29| -87] -15|-138| 65|-206| -5| 280| 17| 248
6 12 6| -2 -39| -94| -20|-146| 59|-202| -11| 227|-406| 656
18 6 2| -33] -90| -17{-137| 63|-201| -6| 2k6|-131| 1253
-19| -6| -2| -91]|-191| 194]-139| 65[-200| -8| 246[-130| 1237
9 2kl 20| 25| 67| -Th| 215|-135] 66(-197| -3| 252|-129| 12k9
10 283| 226| 363|-211| -54| 211|-139| 64[-197| -10| 248|-132| 1241
11 554 372| 107|-195| -48| 220|-131| 7T0|-189| -3| 253|-125| 1315
12 650 31| 134{-193| -Ls| 223|-131| T3|-190| -1| 258|-125| 12ks5
€ 662| 39| 128[-200| -55| 212|-1k3| 60(-203| -12| 246|-134| 1237

—— line indicates complete separation

90¢



TABLE 5.18: H7 RESIDUAL STRAINS (Specimen b. Detail) 10~

in/in. (continued)

gﬁf5i+ 2 Y 6 8 [10 [ 12| 14 | 16 | 18| 20| 22 | 24 | 26
Initial 0 0 0 0 0 0 0 0 0 0 0 0 0
1 -97| -82| -56( -2| u4| -71| -T73|-100| -66| -k2| -38| -27| -27
2 -60| 46 -9 30[ T9| -28| k2|-111| -60| -44| -30| -13 8
3 -60| -48| -13{ 30| 96/ -30| 62|-263] 1k 8 -s5| -20| -26
N -58] -hs| -7| 28| 167| -30] 64)-260] 17| 145| -96|-117| -28
5 -61| -56 -8| 28| 114| -27| 59|-262| -12| 2k6|-138|-339| -175
5b -54[ -ko 7| 37| 17| -18| 64|-252 0| 262|-114|-319| -162
6 -57| -h3| 10| 32| 214| -26 Go|-257| -5| 256| 33|-756] -623
54| -37| 13| 40| 321| -21| 64|-255| -2| 262| k8| -55]|-1197
. -93| -43| 71| 34| 234 -Ls| 65[-254| 1| 31h| 50| -58[-1195
9 -119| -93| 20| 24 160| -22| 69|-257 2| 321 50| -51|-1200
10 |-358[-ko0| -76| 150 154 -18| 6T7|-257| -6 306| k5| -54|-1204
11 |-599[-789| L4B8o| 168|-k92| -8| T3|-2k7 L 266 5Sh| -46|-1194
12 |-727|-511] k95| 174|-k75[ -5| T3|-245 269| 56| -L46(-1203
e. |-T25-507 489 164 149 -18( 61[-258| -6| 256| kL| -56|-1205

*¥This is only 1/2 of the data.

is the 2nd reading, deemed more reliable after more cooling time.
Shift 5-5b is accounted for.

Bad readings.

*¥*Cut 1-5 on L4/26.

Cut 6-12 on 4/27.
¥Wire leading to gage 10 was a bit loose.

Each reading repeated twice 1-26, 1-26.

——line indicates complete separation.

This

Loze



208

TABLE 5.19

HT RESIDUAL STRAINS (10’6

in/in): detail

outside - upper

%%%3;* 1|2 3| %567 ‘ 81 9 | 1011

Initial 0 0 0 0 0 0 0 0 0 0 0
1 -Th| =21 -13| -79| -81|-1L4T| 157| 29| 61 92| 82
2 -6i -21 6 1] 11 171/ 61} 24, 55| L6
3 -105! -29| 100| -24l-82k|-195| 175| 67| 16| ULu5| 36
L -92| -1| 182|-138{-587|-175! 1T4| 68| 13| L3| 3k
5 -185|-289| 612| 881-553|-170| 17s5| 68| 14| Li| 32
6 -346|-316| 666| 116|-5k1|-16L| 177/ T1 9| 38/ 32
T ~211|-217| 672| 128|-539|-161| 34L| 89| 93| 266| 66
8 ~194|-209| 6T73| 136|-531|-158{-119 T7H 174 27] Tk
9 -196|-208| 6721 131[-531|-150{-119| L3y 7361 262| 246
10 |-196|-211| 6T1| 1b2|-532|-14T7|-11k4] 44| 736 k4s52| 338
11 |-196]-21k| 666| 1kk|-535 -1k7|-102| L5} Th2| 1k1| 230

inside - lower

Gage+| 1 | 2 {3t 4 |5 |67 |89 10|11

Cut ¢

Initial 0 0 0 0 o) 0 0 0 0 0 0
1 -73| -81! -T9| -68! -58} ~84j-117| -77! -L2| -23] -25
2 -6L4| =35 T| -k9|-126 =77 =32 2 17t 11
3 -109|-113} -99!-201!-131| 124| -68| -2k 11| =22/ 20
L -137|-118] -51|-690| 195| 1u5| -6L| -2Lj 14| 25 21
5 66| -12{-759|-405} 223| 1ks| -66] -24| 13| 25| 23
6 343] -665|-4T75|-379] 229| 145| -6L4| -18| 17| 2927+20
T 490 | -219| =434 | -371! 232| 146[-370|-501|-b37|-291|-322
8 495|-203|-430| -370| 233| 145| 215|-301|-217|-109|-168
9 497 -20k|-L26| =371 233| 150| 223|-2L0|-T7T72 T| -2k
10 Lok|-208|-Lk28|-370| 235| 156| 221 -243|-7T72(-4T3 195
11 505|-20k4| -Lk26|-366| 238! 1L8| 225 -23T7|-751|-138| 329

line indicates complete separation

resolder



209

TABLE 5.20

-6 . .
RESIDUAL STRAINS OF ANNEALED SPECIMENS (10°~ in/in)

Specimen %i%%+ 1 2 3 L 5 6 T 8
Initial 0 0 0 0 0 0 {0 0
1 =42 -10 -10 -2k -30 -2k -8 -2
2 -1k =21 -18 -26 -10 -25 -10 -9
3 -13 -9 -22 -30 -9 -12 8 -2
FBC 13 4 0] -2 -12| 36| -9| -12| -18| -8
5 -8 -2 -12 -30 -k -10 22 3
6 -13 -8 -11 =34 -8 -8 23 27
6 -12 -5 -9 -23 -8 -11 23 27
Initial 0 0 0 0 0 0
1 -48 68 -32 -12 b 11k 2 -15
H11 2 -18 102 -12 6 7 120 12 0
3 -8 132 -1 22 18 1ko 20 10
4 -6 132 -4 2k 20 140 18 0
Initial 0 0 0 0 0 0 0 0
1 -96 -30 -10 -10 -58 -29 -23 -1h
g 2 -ko | -180 14 2 -7 -29 -1k -L
3 -ko | -180 -56 =32 -8 1 -6L -28
- b =38 | -120 70 12 -7 60 | bk 20




RELAXATION OF z RESIDUAL STRESSES:

TABLE 5.21

THEORY AND EXPERIMENT

SECTION THEORY EXPERIMENT
pp, % 50 % M/t % 57Ya, 4

PBC 1k 0. to 25. 17. to 37. 1.9 to k.7 I%;{_oz 2. to %—2—5% = 31.
RFC 1k 0. to 25. 17. to 37. .13 to 5.7 i§35_0' = .2 to 1—23%% = 15.
PBC 13 0. to 25. 17. to 32. 3.4 to L.k 11—%13 = 12. to T32—596 = 63.
RFC 13 0. to 25. 17. to 30. 3.4 to 6.5 132% = .15 to 1—93'3'036 = T2,
H11 (1) ~ 25. ~ 39. 4.3 to 8.6 % = L. to i3119600“ = 27.
H11 (2) 0. to 50. 17. to 67. 2.2 to 10.8 12T16% = 1h. to 1%16= 39.
HT (1) 25. to 50. 28. to 38. 11.3 to 15.7 Tls%= 3. to 11‘—583-0—= 32.
HT (2) 33.9 to 39.7 1%20 = 1. to -1?5% = 17.
HT (1) 25. to 50. 25. to 33. 11.6 to 16.3 %%90- = 23. to 1%53% = b1,
HT (2) 25. to 50. 29. to 39. 10.8 to 1k.6 —1%3% = 6. to —1%33?-0 = 29,

(1), (2) refer to corner numbers

0Te
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TABLE 5.22

LIST OF TABLES AND FIGURES

FOR RESIDUAL STRAIN MEASUREMENTS

PBC 1k Fig. 5.1
Tables 5.1, 5.12
RFC 1L Fig. 5.2
Tables 5.2, 5.13
PBC 13 Fig. 5.3
Tables 5.3, 5.4, 5.1k
RFC 13 Fig. 5.4
Tables 5.5, 5.15
H11 Fig. 5.5
Tables 5.6, 5.16
H7 Fig. 5.6
Tables 5.7, 5.8, 5.17, 5.18
HT Fig. 5.7
Tables 5.9, 5.19
Annealed PBC 13, H1l, H7, HT Fig. 5.8
Tables 5.10, 5.20
Annealed PBC 14 Fig. 5.9
Tables 5.11

Comparison theory-experiment Table 5.21



212

Photo 5.1 Residual Strain Measurement:
Channel Section Ready for Sectioning

Photo 5.1 Residual Strain Measurement:
' Channel Section Ready for Sectioning
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Photo 5.3 Residual Strain Measurement:
Channel Section Ready for Sectioning

Photo 5.4 Residual Strain Measurement
Secticning
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CHAPTER 6

COLUMN STRENGTH: THEORY

6.1 Literature Survey

In their two volumes on beam-columns, Chen and Atsuta [1976,
1977] made a complete and detailed survey of analytical methods for
elastic and inelastic beam-columns, including contributions of their
own. This was updated in a recent paper by Chen [1977]. The follow-
ing literature survey follows Chen and Atsuta's classification.

The most important feature of the problem is the development
of a relation between the slenderness ratio and the critical load.
The problem involves a non-linear differential equation. The non-
linearity, due to the dependence of the stiffness upon the loads and
location of the section being considered along the column length, is
the source of the difficulties. Depending on what the main dependent
variable of the differential equation is, the various methods can be
classified as deflection, curvature or moment methods. Some methods

are general so they do not fall under this classification.

6.1.1 Deflection Methods

All of the early solutions and many of the more recent ones are
of this type. It is required to solve the following differential equa-

tion under various boundary conditions:

2 2 2
S (mmD +e X = q(2) (6.1)
dz dz dz

22k
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where z = Jlongitudinal coordinate
v(z) = lateral deflection
EI(z) = stiffness
P = applied axial load

lateral load

o)

N
N

S
1}

Initial deflection may be expressed as an equivalent lateral load.
Once v is known, slope, curvature and moments can be cbtained by
differentiation. In the elastic range, analytically exact solutions
can be obtained in most cases. Beyond the elastic limit, the solution
is difficult because the moment-curvature-thrust relationship for

commonly used structural sections is complicated.

6.1.1.1 Exact Approach: Jezek's Method

Jezek [1934] derived a close-form solution to an eccentrically
loaded, elastic-perfectly plastic column of rectangular section loaded
beyond the elastic limit. The method requires solving the differential
equation (6.1) in three regions: elastic, primary plastic (yielding
on the concave side only), secondary plastic (yielding on both the con-
vex and concave sides) and matching the proper boundary conditions.
Even for such a simple section and stress-strain diagram, the solution
is quite involved and requires elliptic integrals.

Horne [1956] extended the solution to account for a finite droD

at yield in the siress-strain curve of the material

6.1.1.2 Numerical Approach: The Column Deflection Curve Method

™ >
Por more complicated sections g close-form solution is out of

the question. Numerical schemes require the knowledge of the moment
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curvature relationship for a given axial load. This is usually obtained
by an incremental iterative procedure in which the column is idealized
into a number of small, constant strain elements. The axial thrust and
bending moment are computed for each segment for an assumed state of
strain and if these agree with the external loading, the curvature
corresponding to that strain profile is taken as correct. Otherwise
the strain profile is modified and the procedure repeated. The entire
moment-curvature relation corresponding to the given axial thrust can
be traced up to the maximum load.

One particularly efficient variant of the above scheme is the
Column Deflection Curve Method. Von Karman recognized that different
portions of an Equivalent Column under end axial loads only can be
considered as various beam-columns under symmetric or asymmetric axial,
lateral end loads and end moments. The deflected axis of the Equivalent
Column is called a Column Deflection Curve. There is one such curve for
a given equivalent axial end load and end slope. To obtain a CDC for a
given P, one divides the column into a number of intervals, within each
of which the curvature is assumed to vary linearly; one starts at one
end with an assumed slope and marches towards the middle (the CDC is
symmetrical) computing deflection, moment, curvature and slope at each
interval. The CDC method can also be modified to take into account
lateral loads.

The solutions of Schwalla [1928], Ellis [1958], Calambos and
Ketter [1959], Beer and Schulz [1969, 1970] all followed this basic
scheme. T.H. Lin [1950] presented a deflection method which expressed

the initial and final shapes as Fourier series. Ojalvo [1960] developed
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s convenient graphical solution under the form of a series of nomo-

graphs.

6.1.1.3 Approximate Approach: Jezek's Method

Any solution that traces the column behavior over the entire
loading range, as the ones described above, is bound to be quite
elaborate. Westergeard and Osgood (Bleich [1952])) simplified von Karman
and Schwalla's solution considerably by assuming the deflected shape to
be part of a sine wave. A further simplification was made by Jezek who
assumed, besides sinusoidal deflections, an elastic-perfectly plastic
stress-strain curve (Bleich [1952]). Both of these works dealt with
rectangular cross-sections. Chen and Atsuta [1976] extended the same
idea to eccentrically as well as laterally loaded columns of more com-
plicated cross-sections.

Various investigators have confirmed that the assumption of
sinusoidal deflections gives very good results (T.H. Lin [1950], Huber
and Ketter [1958], Batterman and Johnston [1967], Duberg and Wilder
[1952]).

Duberg and Wilder's solution [1952], developed for an idealized
H-section column, is based on the method of collocation and assumes that
the deflections can be expressed as a series of odd sine terms. A
bilinear or a Ramberg-Osgcod stress-strain curve is assumed. Results

indicate that relatively few terms are required for an accurate solution

of the load-deflection history of the column. The column strength is

slightly lower when a second term is included but remains virtually

unchanged when more terms are added to the first two.
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Huber and Ketter [1958] showed that results from a sine curve
approximation are very close to the "exact'" (deflected shape) results
for an eccentrically loaded wide-flange column with residual stresses.
Whether the approximate results fall slightly below or slightly above
the more exact ones depend on the slenderness ratio and the load
eccentricity.

Batterman and Johnston [1967] found that the maximum strength
of wide-flange columns computed with the sine shape assumption are
only slightly less than those obtained from the exact deflected shape
but warned that "no general conclusions can be drawn because this com-
parison was made for only nominal amounts of residual stresses and
initial crookedness".

An example in Chen and Atsuta's book ([1976] p. 265) shows that
Jezek's approximate solution gives a higher strength than the solution
with real stress-strain curve and exact deflected shape. In that par-
ticular example, the assumption of sinusoidal deflection accounts for
a maximum error of L4.5% in strength.

It is interesting to note that Yanev and Gjelsvik [1977] have
demonstrated that the deflected shape of short columns, buckling in

the plastic and strain-hardening ranges, is portions of three sine

curves.

6.1.2 The Modified Deflection Method

A modified deflection method was developed by Keramati, Gaylord
and Robinson [1972]. They set out to find the critical end eccentrici-

ties of a beam-column subject to a given applied axial load. A segment
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by segment numerical integration procedure is employed for both the
deflection curve and the auxiliary curve, which involves the derivative

of the deflection curve.

6.1.3 The Curvature Method

The curvature method was essentially developed by Chen (Chen and
Atsuta [1976]).
The equilibrium equation for a beam-column can be written as:
- M" + Pv" = q(2) (6.2)
where " denotes 2nd order differentiation and M is the moment.
The equation can be expressed in normalized form with the follow-

ing variables:

m= M/M& where M.y = the yield moment = qys , 8 = section
modulus
¢ = ®/®y @,@y are curvature and curvature at yield

(@y = 2€y/D, D = section depth).

av}
= P/P P = = yi
P / v v Acy yield load
.
qa=q/ -
h2 = P/ET
. 1" 2 -
So: m' +h¢ = -q (6.3)

The moment-curvature relations depend on the extent of plasti-

fication:
ad ¢ §_¢l elastic
m=( b-c/Vp ¢l_i ) §.¢2 ! primary plastic (6.4)
2
mpc - d/¢ ¢2 < o : secondary plastic

In the primary plastic state, yielding has occurred in a zone adjoining

the concave edge and in the secondary plastic state, in zones adjoining
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and ¢2 are

both the concave and convex edges. a, b, ¢, 4, mpc, ¢l

functions of the load, the material and the shape of the cross-section.
Substitution of (6.4) into (6.3) results in a second order differential
equation for ¢. Integration gives ¢' = d¢/dz explicitly and in close
form, but ¢ is best evaluated for specific cases. The various integration
constants are determined from the boundary conditions, the conditions of
continuity of curvature and discontinuities of curvature slope (¢' jumps
at boundaries between regimes and at concentrated loads).

Results include curves relating % to the midspan curvature ¢m and
curves of slenderness ratio A versus ¢m. By combining the two sets of
curves, curves of % versus A are obtained. As in the Deflection Method,
an Equivalent Column and a Column Curvature Curve can be defined. These

simplify the solution of asymmetric loading cases.

6.1.4 The Moment Method

The Moment Method was developed by Cheong Siat Moy [19T74] and is
closely related to the curvature method. Equilibrium is now expressed

in terms of moments:

2
&2 = _pg(M,P) - q (6.5)
dz

where ¢ = g(M,P) is the moment-curvature-thrust relationship.

2)

Qe
]

M h
If a/( .

o/3, = g(M,P)/2, = 2(m,D).

o
1}

and

(6.10) takes the form:

2
82 - n®g(n,5) + 4] (6.6)
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The inverse of (6.4) is:

" m/a for | m| <my o elastic
n (gg_)Z m, <|m| <, : primery plastic
= —<m, ) = ﬁ -
(——é;—ﬁl/z m 5_]m\ secondary plastic
mpc—m 2

(6.6) and (6.7) can be integrated rather easily. The complete moment
diagram can be obtained by a forward marching procedure starting, say,

at the section of maximum bending moment.

6.1.5 The Finite Differences Method

The equilibrium equation can be rewritten in the following form:

2
a“uM ~
— + P(® + @io) = ~q (6.8)

dz

where Qio is the initial curvature at point i and M = f(®,P). The
derivative is replaced by a finite difference:

am, . 1
(F5), == (M, -am + M ) (6.9)
dz Az

Since M = f(9,P) is non-linear for elasto-plastic beam-columns,

®i must be solved for by an iterative procedure.

Young [1972) used this method to calculate the ultimate load of

an axially loaded column with initial sinusoidal deflection.

£.1.6 The Finite Element Method

In this particularly versatile numerical method, the beam-column
is divided into an assembly of discrete elements and the element stiff-

ness (or flexibility) is evaluated using an approximate displacement
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(or stress) field along the element length. The set of functions for
displacements (or stresses) are so chosen that they ensure continuity
(or equilibrium) throughout the entire system. The application of the
method to a practical problem requires the solution of a large system
of linear algebraic equations. Detalls can be found in Chen and Atsuta
[1977], to mention just one reference, which also includes a chapter on
a parent method called the Finite-Segment Method.

Epstein et al [1978] used the FEM to study the behavior of in-
elastic beam-columns under large displacements. Seide [1975] compared
the accuracy and convergence rate of the finite-difference method and
two finite-element methods based on the minimum potential energy and

a mixed variational principle for elastic column buckling.

6.1.7 Newmark's Integration Method [1943]

Newmark's integration method is a useful means to compute the
deflected shape from a given curvature distribution. By using this
method, the maximum strength of a beam-column can be examined directly

without tracing closely the load-deflection curve.

6.2 Approximate Determination of Column Strength Using Jezek's Method

An approximate deflection method is used here by assuming a sinus-
oidal deflected shape and an elastic-perfectly plastic, but inhomogeneous
material (Jezek's approximate solution, § 6.1.1.3). The analysis is
similar to the work of Bjorhovde and Tall [1971], who studied the strength
of wide-flange hot-rolled columns, but the geometries and residual stres-

ses in the present work are completely different.
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An initially curved column of length L is subjected to an axial
load P applied at the centroid of its cross-section. The column is

assumed to bend about its weak axis only.

6.2.1 Equilibrium

Let vo(z) and v(z) designate the initial and additional lateral
deflections at elevation z (Fig. 6.1). Under the combined axial load
and bending moment, part of the cross-section may yield. The moment of

the applied load about the centroid of the cross-section is:

M = P[vo(z) + v(z)] (6.10)

Compressive stresses and P are positive. Positive moments cause positive
lateral deflections (+v in the +x direction) and consequently compres-
sion to the left of the centroid (Fig. 6.2).

The internal force and moment are:

v}
1}

in J cdA = E [ €dA + E J eydA (6.11)

A A A

e

y o
€ P (6.12)
where Ey = yield strain of material
X, = abcissa of centroid (Fig. 6.2)
Ae = area of elastic part of section
Ap = area of plastic part of section
A =A + Ap = total area of section

The material is assumed to be elastic-perfectly plastic, but

variations of the vield stress and the presence of residual stresses
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(both due to cold-forming) are accounted for.

6.2.2 Strain-Displacement Relationship

The lateral deflections are assumed to be sinusoidal

Vo(z) = V_sin mz/L (6.13)
v(z) = Vsin 7mz/L (6.14)
So the maximum moment is
M= P[VO + V] (6.15)
where Voo v are the initial deflection and the additional deflection
due to the load
and Vo’V are the maximum values of Ve ¥ at midheight.

In the elastic range v is exactly sinusoidal provided vy is also
sinusoidal. The load-deflection relationship needs only be established
between the load P and the single parameter V. The curve P-V reaches a
maximum P which is the column strength (buckling load of an imperfect
column).

If plane sections are assumed to remain plane, the bending strain

e is related to the deflection v(z) by the familiar relationship:

$ = —2— = v, (6.16)

At midheight and from (6.1k):

£ 2

b T y (6.17)
xo-x 2

(o

6.2.3 Computational Scheme:

For a given V, a value of P is assumed. A first assumption
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may correspond to the elastic solution:

2

P(V + V) = EI (ig'v) (6.18)

where I is the moment of inertia of the cross-section.
Bending strains are calculated according to (6.17), but a value
of the axial strain Ea is assumed. Again a first assumption may corres-

pond to the elastic situation:

e == . (6.19)

The total strain is obtained by summing the axial strain, the
bending strain and the adjusted residual strains, which are discussed
below. The elastic and the plastified parts of the section are deter-

mined and (6.11), (6.12) used to calculate the internal force and moment.

If equilibrium is satisfied, i.e.

P, = P (6.20a)

M, =M (6.20D0)

then a point on the P-7V curve of the column has been found. However,

if Pin # P, Ea is changed and Pin and Min are recomputed. Once equili-
brium of forces is satisfied, equilibrium of moments is checked. If

moments do not balance, the assumed value of P is changed and the process

repeated. After equilibrium is satisfied, V is incremented and a new

iteration started. A flowchart is shown in Fig. 6.3.

6.2.4 Discretization

The problem is complicated by the presence of residual stresses

and the non-uniformity of the yield stress and thickness over the
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cross-section. ©Since the mechanical properties of the material are
measured at discrete locations by sectioning, it is natural to divide
the cross-section, or half of it because of symmetry, into discrete
elements.

The strain field in each element is assumed uniform in the
width dirgction but linearly varying in the thickness direction. The
reasons for the higher refinement in the thickness direction are 1) no
partitioning is performed in that direction, i.e. the thickness of an
element is that of the section and 2) it is desired to account for the
variation of residual strains over the thickness. The locally measured
values of the tensile yield stress and thickness are used for each
element. As discussed in Chapter 3 tensile coupon yield stress is not
appreciably different from compressive yield stress and is not much in-

fluenced by residual stresses.

6.2.5 Residual Strains

The elemental radial coordinate p originates from the midthickness
of an element and is positive outward (Fig. 6.2 and 6.4). For a flat
element, the outward, positive direction is the same as for the previous
curved segment with segment numbering beginning at the axis of symmetry.

Let soj and eij be the values of the resjdual strains at the out-
side and inside faces of element j. Three distributions of residual
strains, of increasing complexity, are studied:

Uniform Distribution:

Residual strains are constant over the thickness. This assumption

is customarily made for thin sections (Sherman [1971], Beedle and Tall
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[1960]).
€.~ =g ,=¢g,, = constant (6.21)
dJ 0J 1J

Linear Distribution (Figs. Bl and B2)

The following is derived in Appendix B:

- e _
S =3 (eoj + eij) + £ (eoj sij) (6.22)

Rectangular Distribution (Figs. B3 and B4)

This distribution consists of two rectangular blocks and incor-
porates the essential features of Ingvarsson's analysis [1975] and those
of the approximate analysis of Chapter 4. A more exact distribution
would complicate the algebra significantly.

Let pnj be the coordinate of the neutral axis. Chapter L4 explains

how P,y con be derived from the thinning of a corner, At,/t..
J

™
1]

. constant fo >
oJ TP P

ej = (6.23)

constant for p < p

m
1l

6.2.6 Experimental Input

It is necessary to relate on’ Eij’ the values of the assumed

residual stress distribution at the surfaces, to the measured values,

—-£ -

oj’ Tij

Uniform Distribution

The average of the measured values is clearly the best estimate.

res ~ -
= (

55 T legy Byl (6.24)

For the other two distributions, equilibrium must be considered.
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The measured quantities are the surface values of the elastic release
of the residual stresses. The force and moment released by sectioning
are equal and opposite to the locked-in force and moment.

Linear Distribution

The released stresses are elastic and therefore linearly distri-

buted.
So: on = Eog
€.. = €,
1J 1J
res 1 /- - P (= -
= = + + - .
and £ 5 (eoj eij) 3 (eoj eij) (6.25)
Rectangular Distribution
The following variables are defined:
.= € .+ €, , € ., ={(u, +w,)/2
uJ oJ 2 0J J J
= (6.26)
= - £. € = \u, - W 2
hE 0J iJ iJ ( J J)/
4. =€ . +E,. € .= (u, +w.,)/2
Y €04 ij 0J J J
= (6.27)
w.=¢€ .- €., €.. = (u, - w,)/2
Y3 T o5 T Rig 1] 3T
=20 ./t,- (6.28)
Cj an J
o= (1 +z,)(1-z.) (6.29)
q)J ( C.J J
B. = width of segment at midthickness
J
2aj = corner angle
B, =t /B,. (6.30)

J Jd
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The following relationships are derived in Appendix B:

-for a straight element:

e = E;j_ + __WSJ——— (6-31&)
0] 2 3(1-cj>
1_-11 7 (5.31b)
€5 7 2"ﬂ1+cﬁ '
—-for a curved element:
2,2 Sos o0 3)
.- (aij 3)(3!1){_.111!L Cjwj (6. 328)
J Aj
- 2.2 2.2
6 2(a B Y.2, + a B, - )
w = aLBJEJ%uJ+ (alBJwJCj a.JBJ B)WJ (6.32b)
J A,
J
where A = 3.[a.8.z.(a.B.0. - 2C.) + a°B° - 3] (6.32¢)
J J737373 3373 J J7J

6.2.7 Equilibrium Corrections:

Due to experimental errors, the measured residual stresses do not
exactly satisfy equilibrium of forces and moments. The following
correction factors, derived in Appendix B, are required.

Axial Strain Correction:

The unbalance force is:

n
-for uniform distribution: F= 1T (Eept) (6.33)

with eges given by (6.24)

-for linear and rectangular distributions:

n
F= ¢ £, (6.34)
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where fj’ the unbalance force for element j is derived in Appendix B:

- - 2, — -
= EB.t - .
fj E 5 j<€oj + eiJ.)/z + Etjocj(eoj eij>/6 (6.35)

This force is computed from the linear strains of relaxation,
rather than the assumed locked-in distribution. aj =.0 for a straight
element.

The axial strain correction i1s given by:

e =

§ ‘EFK (6.36)

Bending Strain Corrections:

~for uniform distribution:
Residual stresses are assumed uniform for each segment and the
resultant force is applied at the centrocid of the segment,whose abcissa

is x .. The unbalance moment is:
cd

n R
M = I Ee,. B,t, {(x -x.) (6.37)

x is the abcissa of the centroid of the entire cross-section and
o]

€§es is given by (6.24).

-for linear and rectangular distributions:

M =
u

L e

[mjcosej + fj(xo - ch)] (6.38)

J=1

where 8. is the angular coordinate of the centroid of the element

(Fig. 6.4), £, is given by (6.35) and m, is the unbalance moment for
J

element j. 2
EB.t,

mj = - ——%Ei (on - Eij) for a straight element (6.39a)



EB.t? t?a? sina,
and m, =-—l ( ,-€H)M——Li)~——lfM'acmwaidﬁmmt(63mﬂ
J 12 N 1] 3B aj

These expressions are derived in Appendix B.

The corrective bending strain is:

M
S - 6.40
€, T (xo x) ( )
where x = xdj + pcosej (6.41)

and I is the moment of inertia of the entire cross-section.

6.2.8 Determination of the Extent of Yield

It is necessary to determine the extent of yleld for each element.

The total strain at any point of element j is given by:

res

. + e + R + + .
€y5 T %y p *E; e * €, (6.42)
where g, = axial strain from Eq. (6.19)

€, = bending strain from Eq. (6.17)

res . X

ey = residual strain from Eq. (6.21), (6.22) or (6.23)

€, = correction for force equilibrium from Eq. (6.36)

€, = correction for moment equilibrium from Eq. (6.L0).

Let pyj be the radial coordinate at which the total strain equals

the yield strain ¢
yd

~-for the uniform and rectangular distributions:

€. =E =€ +e +te oo+ (EE-V %g)( L3)
N tJ a 1 3 2 T ORI Xo'-de-pyjcosej) (6.43
€ +¢e. +e°° ¢
— 0. = ) vy 1
=> v M % 7 de) cos® (6.14)
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eges is given by (6.21) for the uniform distribution and by

(6.23) for the rectangular distribution.

-for the linear distribution:

= L = Yz _z T4 _ _
eyj =g, *te ¥ 2(€Oj-+eij) + tj<€oj sij)-+(L2 v EI)(xo x pyjcos%)
(6.45)
1 2 Mu
€a * El - g E(EOJ.+ 813 * (szf- EI)<X0'-XdJ)
= = 6.46)
> o . = = (
Jd T\'2 M (g . = £as)
u %o i
(V- ==) cosh, -
L2 EI J tj

6.3 Implementation. Effect of Initial Deflection and Direction of

Buckling

The mathematical developments of the preceding section are imple-
mented in a compufer program. Data fed into the program includes the
geometrical properties of the section, the length of the column in-
cluding the end plates and fixtures, the mechanical properties of the
material and the initial deflection of the column. Values of yield
strength and residual stresses come from the tensile coupon tests and
residual stress tests described in Chapters 3 and 5.

Examples are shown here, but most of the results will be discussed
in Chapter 9, together with experimental findings. Figures 6.5 and 6.6
show theoretical results for a PBC13 Column, of length L = 51.0" and
maximum initial deflection Vt = -.004 L (subscript t for theoretical).
The yield strength at specific locations of the cross-section are
obtained from Fig. 3.1L4, specimen a, but the residual stresses are only

half of those corresponding to Fig. 5.3a (this particular result comes
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from a study reported below of the effect of the magnitude of the resi-
dual stresses on column strength). Because the computer program makes use
of the geometrical symmetry of the section, the actual input consists of
the average of these data over the two symmetrical halves of the section.
In this particular example, significant plastification does not occur
until the load reaches about 2/3 of ultimate (Fig. 6.5). Fig. 6.6 is a
plot of the strain on the convex and concave sides. Since the initial
deflection is negative and the load is centrally applied, the column
deflects in the negative direction (i.e. to the left on Fig. 6.2) and
the convex side is the web, the concave side the lips (strains are cal-
culated at the locations of the strain gages, namely at the middle of the
web and at the flanges, near the junctures with the lips). Both figures
show clearly that the load reaches a maximum, then decreases as straining
increases.

Figures 6.7 and 6.8 show studies of the same column, but with
full residual stresses (from Fig. 5.3a); Figure 6.7 is a plot of load
versus lateral deflection (additional deflection due to load) for buck-
ling to the right and to the left about the weak axls, which is perpen-
dicular to the axis of symmetry of the section. The load maxima are
represented by the dotted lines on Fig. 6.7 and also shown on Fig. 6.8
and Table 6.1. As the initial deflection tends to zero and by extra-

poclating from these figures, it is seen that the phenomenon becomes one

of unstable asymmetric bifurcation. Column strength is the limit point

of the equilibrium path of g column with initial imperfection.
In order to compare theoretical with experimental results, a

Southwell plot is drawn for this example (PBC13, L = 51.0". Fig. 6.9,
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Table 6.2). Except for the vicinity of the origin where the load is
small and the measured deflections relatively inaccurate, the points
fall on a straight line. The intercept with the V-axis gives an
initial deflection of VO = ~.,015 in = -.00029 L, equivalent to the
combination of initial deflection and unavoidable load eccentricity.

For Vt/L = -,00030, the computer program predicts a strength Pth =

21.32 k, which compares favorably with the experimental Pu = 21.60 k.
It was not convenient to transform all the experimental records
into Southwell plots. An alternative approach was used, whereby the
computer program was run for various values of VO until a good match
was found between the computed deflections and strains and the actual
ones. In most cases, reasonable agreement was also obtained between
the predicted and the actual value of Pu(Chapter 9). For the example
mentioned above, a good match was found for an assumed Vt = .0004 L

for which Pth = 20.%96 k. OFf course, V_ can be adjusted so the actual

t
and computed column strengths agree exactly, but then the theoretical

strains and deflections will usually not match the actual strains and

deflections exactly.

6.4 FEffect of Residual Stresses

The effect of the magnitude and distribution of the longitudinal
residual stresses on column strength is shown in Table 6.3 for one
example (PBC T3, L = 51.0").

As expected, the strength is highest for no residual stresses.

The first distribution over the perimeter to be studied is close

to the actual one but rendered symmetrical by averaging over the two
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halves of the cross-section. Three distributions across the thickness
are assumed: constant, linear and rectangular (models 1, 2 and 3).

Because the average residual stress across the thickness is close
to zero, model 1 gives strengths close to the case with no residual
stress.

Model 2 accounts better for the presence of residual stresses and
causes a reduction in strength of 5.4% for buckling to the left (negative
deflection) and 6.4% for buckling to the right (positive deflection),
compared to a column free of residual stress.

Model 3 is sensitive to the location of the neutral axis of resi-
dual stresses. It was seen in Chapter L that the location of the neutral
axis depends on the amount of pressure used in cold-forming (Eq. 4.6},
which in turn can be determined from the reducticon in thickness (Eq. k.9).
Tt was also discussed in § 4.8 that the neutral axis is always below the
midsurface of the sheet without ever reaching it. If p is a thickness
coordinate, originating from midthickness and positive outward, then the
coordinate pn of the neutral surface is always negative: pn < Q. For the

case of no pressure, however, it was seen that the neutral surface is

close to the midsurface: p = 0. This value proves to be a convenient

limiting case and gives reductions in strength of 15% for buckling to

the left and 12% for buckling to the right. For smaller values of p
(more negative), the reduction in strength is not as large. If the same
distribution is kept but the magnitude of the residual stresses reduced
to half of the actual values, the reduction in strength is only about

2.5%.

Another distribution consisting of residual stresses at corners
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only is also examined. Since the residual stresses affect only a small
proportion of the cross-sectional area, there is no reduction in strength.

A brief study of the influence of the residual stress distribution
across the thickness (Table 6.4) suggests the effect of residual stresses
is less severe for larger initial deflections. If supported by a more
systematic computer study, this conclusion would differ from Batterman
and Johnston's conclusion [1967] concerning hot-rolled steel columns

(§ 2.3.5).

6.5 Closure

An approximate method of determining column strength was developed,
which accounts for cold-forming effects and initial deflections. The
difference of residual stresses and initial deflections was discussed.

Comparison with experimental data follows in Chapter 9.
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Table 6.1

Effect of Initial Imperfection and Direction

of Buckling on Column Strength

PBC 13 L = 51.0"

3 Pth for Pth for

v, /u[*10” v, = -|v.| v, = [v.|
2.50 17.04 17.18
2.00 17.77 17.81
1.75 18.16 18.16
1.50 18.58 18.53
1.25 19.02 18.93
1.00 19.k49 19.36
.75 20.0k 19.83
.50 20.68 20.36
Lo 20.96 20.59
.30 21.32 20.81
.25 21.58 20.94

.20 22.18 21.07
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Table 6.2

Southwell Plot
PBC 13 L = 51.0"

. Vl V2 Vl/P V2/P
kips 1073 ineh 1073 inch
1 0 0 0 0
2 0 0 0 0
3 1 0 .33 0
I 1 1 .25 .25
5 2 2 Lo Lo
6 N 3 .66 .50
T 5 6 LTl .86
8 7 7 .87 .87
9 8 9 .89 1.
10 10 12 1.0 1.
11 13 1k 1.18 1.27
12 15 16 1.25 1.33
13 18 19 1.38  1.46
14 22 23 1.57 1.64
15 26 27 1.73 1.80
16 32 33 2.00 2.06
17 4o L2 2.35 2.47
18 o) 52 2.72 2.89
19 62 66 3.26 3.h7
20 8k 89 L.20 L.us
21 141 146 6.71 6.95
21.60 Max

Vl and V2 are lateral deflections measured
at locations 1 and 2 (Fig. 6.9)



Table 6.3

Effect of Magnitude and Distribution of

Residual Stresses

on Column Strength

PBC 13, L = 51.0"
A= T8.7 Aa = ,970 xf = .890
Distribution Over Perimeter Magnitude | Model Across |P for P for
(Min/in) Thickness Vi/L = -.000k Vi/L = +.000k
(in) (kips) (%) (kips) (%)
No residual strains 22.80 | 100. 22.30 | 100.
Average over symmetrical halves Actual 1(uniform) 22.7h 99.74 | 22.00 98.65
2(1inear) 21.57 94.60 | 20.86 93.54
3(rectangular)
P, = 0.0% 19.26 8L.47 |19.69 88. 30
P, = -.015%% | 21,99 96.45 | 20.90 93.72
1/2 Actual 3,pn = 0.0 22.28 97.72 | 21.72 97.40
Eres = *750 at corners, *375 adjacent
to corners, 0 elsewhere 22.80 | 100. 22.30 | 100.

¥neutral surface at midthickness
*¥¥pneutral surface at lower third of thickness

64c



250

Table 6.4

Effect of Models of Residual Stresses and Direction

of Buckling on Column Strength

Section L Model P for P for
Vt/L = +,001 Vi/L = -.001

(inch) (kips) (kips)
PBC 1k 33.0 1 20.70 22.60
2 20.63 22.97
3 20.57 22.85
RFC 1L 63.0 1 13.70 12.69
2 13.16 12.65
3 12.99 12.63
PBC 13 51..0 1 20.27 20.63
2 19.55 19.79
3 19.37 19.49
RFC 13 69.0 1 14,03 12.80
2 13.41 12.71
3 13.26 12.68
H11 39.0 1 10.36 10.78
2 10.17 10.73
3 10.17 10.75
HT 45.0 1 37.19 34 .99
2 37.08 35.05
3 36.99 34.95
HT 51.0 1 59.89 60.29
2 60.06 59.53

3 59.95 59.55
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Fig. 6.1 Fig. 6.2 Sign Convention
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Fig. 6.4 Corner Element
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CHAPTER T

STUB COLUMN TESTS

T.1 Purpose

The behavior in compression of an entire section (as opposed to
coupon tests) with its locked-in residual stresses and variations in
yield strength can be studied through stub column tests. A stub column
is short enough so global buckling does not occur, but long enough so
end effects (due to cutting and, possibly, welding of end plates) are
not significant and the residual stress and yield stress distributions

are identical to those of a longer number.

7.2 Length
According to the SSRC Guide Technical Memorandum No. 3, "Stub

Column Test Procedure" (Johnston [1976]), the length L of a stub column
of a cold-formed section should be no less than three times the largest
dimension of the section nor greater than twenty times the radius of
gyration about the weak axis. It is thus required:

- for the C sections: 9.0" =3 x 3.0 <L <20 x .6L8 = 12.96"

- for H1l : 8.25" =3 x2.75 <L <20 x .379 = 7.58"

- for HT : 12.0" 3xL4.0<L <20 x .575 = 11.50"
- and for HT ¢ 13.95" = 3 x b.65 <L <20 x .586 = 11.72"
Clearly, the requirements are contradictory and cannot be met

for the hat sections. A length of 12.0" was chosen for the channel

sections, T7.0" for the hat sections.

258
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7.3 Testing Procedure

The procedure used follow SSRC recommendations (Technical Memo-
randum No. 3, Johnston [1976]). Stubs were cold-sawed no less than
6.0" from the end of a member. The stub ends were milled, then ground
plane to within .0005" and perpendicular to the axis of the stub.
When the cross-sectional area needed to be determined, the stub was
cleaned with a wire brush and a solvent, and its height and weight
measured. Strain gages were mounted at three, sometimes four mid-
height locations. Since these strain gages were used for alignment,
as well as to measure the response to loading, they were placed as far
apart as possible, usually in the middle of the web and near the Junc-~
tion of the flanges and the lips for the channel sections, at the top
and the lips for the hat sections (Figs. T.2~-7.8). The stub was then
centered on the testing machine plates, between 3/4" thick (1/2" thick
for some of the stubs), precisely ground end plates, plane to within
.0005", of high strength steel, and two layers of hydrostone (Fig. 7.1).
The end plates and the hydrostone help ensure uniformity of load. The
bottom layer of hydrostone is spread first on the machine plate, then

the bottom end plate and the stub are placed on top of it, well-centered

with respect to the axis of the machine. Verticality of the stub is

checked with a level and adjusted by pressing on the viscous hydrostone.

The assembly is then topped by the other end plate on which is spread

another layer of hydrostone about 1/2" thick. The head of the testing

machine is lowered until it squeezes out part of the hydrostone and

leaves a uniform layer about 1/4" thick. Although the wet hydrostone

carries no appreciable load, some load may develop in the stub column
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as the hydrostone hardens, a process which takes about 40 minutes.

Alignment is considered satisfactory when strains are uniform to
within * 5% for loads up to 1/3 of the expected ultimate load. If this
criterion is not attained, the hydrostone is broken and the setup re-
peated. Fortunately, this was not necessary in most cases.

A Tinius~Olsen compressometer was used on the lightest sections
(C1L4 and H11) to record strains at one lip. Agreement with the electric
resistance strain gages is good (Figs. 7.2, 7.3 and 7.6).

To investigate the effects of residual stresses, annealed stub
columns were also tested.

Tests were conducted under static conditions; the load was in-
cremented slowly and strain readings taken at various intervals.

Large deformations took place upon failure, which occurred by
yielding. For the channel sections, the web would deform locally out-
of-plane near one end, followed immediately by out-of-plane global
bending of the flanges, accompanied by in-plane, global bending of the
lips. One RFC14 and one PBCl4 stub failed by local buckling of the web
near one end. These tests were repeated. For the hat stubs, out-of-
plane bending of the 1lips occurred. The deformations of the lips were
either symmetrical or antisymmetrical. Because stubs fail by yielding,
initial deformation is considered unimportant.

Before discussing the results of the stub column tests, a few

words about the effects of annealing are called for.

7.4 Effects of Annealing

Crystals which have been plastically deformed, as for instance,

by cold-work, have more energy than unstrained crystals because they are
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loaded with dislocations and other imperfections. Given a chance, atoms
will move to form a more perfect, unstrained array. Such an opportunity
arises when the crystals are subjected to high temperatures, through a
process called annealing. The greater thermal vibrations of the lattice
at high temperatures permit a reordering of the atoms into less distorted
grains.

In full annealing the steel is heated to about 100°F above the
upper critical temperature* and held for the desired length of time,

followed by very slow cooling in a furnace.

The purpose of full annealing is three-fold: to soften the steel
and improve ductility, to relieve internal stresses caused by previous
treatment, and to refine the grain.

In process-annealing (so called because it intervenes between
steps in the process), the steel is heated to a temperature below or
close to the lower critical temperature followed by any desired rate of

cooling. There is no change in the nature of the crystals, only in their

*The critical temperature is the temperature at which the eutectoid
reaction occurs; the eutectoid reaction involves the decomposition of a
solid solution into two other solid phases upon cooling and the reverse
upon heating. The presence of impurities spreads the reaction tempera-
ture over a narrow range about 1333°F, which is the eutectoid temperature
for a pure solid solution of iron and carbon. Thus, one can speak of an
upper and a lower critical temperature. The solid solution is called
Austen%te or Y solid solution and its crystals are face-centered cubic.
Austenite of eutectoid composition (0.8%C by weight) has the simplest
decomgosition behavior: the Austenite phase decomposes into the o solid
soluﬁlon or Ferrite, whose crystals are body-centered cubic, and the iron
?arbldé phase or Cementite (Fe3C). The two new phases form’side by side
in a given ?egion of the Austenite to produce a nodule of Pearlite, the
eutect01q microconstituent. The reverse reaction occurs upon heatin :
the Ferrite-Pearlite or Pearlite-Cementite structures are destroyed iﬁd

transformed to the Austenite crystal fo
rm 3
critical temperature. ry through heating past the
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geometrical shape (they are less deformed) and size. Austenite and its
transformation products are not involved. The principal purposes of
this process are to soften the steel partially and to release internal
stresses.

The recrystallization temperature, detectable by a marked soften-
ing, is not the same for all parts of a specimen but depends on the
degree of cold-work. A highly strain-hardened metal is crystallographi-
cally more unstable than a metal with less cold-work and the metal with
more cold-work softens at lower temperatures. Recrystallization tem-
perature is also affected by the length of time of heating. Since a
longer heating time gives atoms more opportunity to realign themselves,
recrystallization occurs at lower temperatures.

Although for complete release of internal stresses, recrystalli-
zation must occur, a temperature of 1200°F for one hour is considered
necessary to reduce residual stresses to a negligible figure. When
recrystallization takes place, the crystals retain the orientation
caused by cold-work.

Although softening is usually associated with annealing, the
effects of reheating steel on its tensile and yield strength are complex.
Stress-strain curves for a cold-drawn, 0.TL%C steel reheated for one
hour show marked increases in the yield strength, tensile strength and
proportional limits for reheating temperatures below LO0°F. The same is
observed in cold-worked steels tempered for five hours and eight hours
at 5T0°F (Bullens [1948] pp. 22k, 225, 235). The same reference also
shows that the response to annealing depends on the type of steel and

the amount of cold-reduction (i.e. reduction of sheet thickness at a
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temperature below the recrystallization temperature). For instance, a
rimmed steel core annealed at 1200°F for 16 hours exhibits increases of
hardness, which implies increases in yield strength also, for various
amounts of cold-reduction (Bullens [1948] p. 237).

Further information on this topic can be found in: Bullens
[1948], Guy [1951], Clark and Varney [1952], Van Vlack [1964] and

Hanson and Parr [1965].

T.5 Results and Discussion

The results of stub column tests, in the form of load versus
strain curves, both for the annealed and not annealed sections, are
presented in Figs. T.2 to T7.8. Also presented, in dotted lines, are
theoretical predictions using the model developed in the preceding
chapter. In this particular application, strain is incremented but
lateral deflection is kept at zero. Input includes the actual distri-
bution of yield strength, measured by tensile coupon tests, and

residual stresses. The computation is repeated for the case of no

residual stresses.

Model 3 of residual stresses is used, with the neutral axis at

midthickness, P = 0.
nj

Amnealed stubs are gradually yielding because the yield strength

is not uniform over the cross-section. The proportional limit of non-

annealed stubs is lower than that of annealed stubs, a fact attributable

to residual stresses.

From Table 7.1 and Figs. 7.2 to 7.8, the following observations

can be made:
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1) The Cl4 stubs all have lower strength than predicted. The same
is observed for pin-ended columns of A < 1.0 (see Chapter 9). The possi-
bility that this lower strength is due to a lower yield strength than used
in the computer model is investigated in Figs. T7.2b and T.3b. If the
yield strength is everywhere lower by 3.0 ksi for PBC14 and by 3.5 ksi
for RFC1l4 than measured in tensile specimens a (Chapter 3), then the
agreement is more reasonable. This is Jjustified in the case of RFC1k by
the scatter in the measurements of yield strength (Fig. 3.9).

2) For the C1l3 and Hl1l stubs, the yield load is a good estimate of
the ultimate load, i.e. the stub column fails as soon as the entire cross-~
section has yielded.

3) For the heavier sections (H7 and HT), strain-hardening is attain-
ed and the ultimate load is significantly higher than the yield load.

L) All except one annealed stubs have higher ultimate loads than
the non-annealed ones. This increase in strength is small (less than 6%
in all but one case).

Two flat tensile coupons cut from an annealed and a non-annealed
specimen showed that yield strength decreases upon annealing (vy 5.3
and 8.9%). The tensile specimens were cut from the same member,
adjacent to one another. The author can offer no explanation for this
apparent contradiction.

5) The theory developed in Chapter 6 underestimates the effects of
both in lowering the proportional limit and in decreas-

residual stresses,

ing the column stiffness for loads above the proportional limit. It is re-

called that the computer program uses as input the measured residual

strains but assumes a rectangular (model 3) distribution across the

thickness.






TABLE - 7.1

STUB COLUMN TESTS

EXPERIMENTS THEORY

Annealed Not Annealed Annealed Am?c::le a

Section | P P P P P - P -P P P P P -P
_ba _ua _pn un ua _un pa__un _ba _pn A _pa_pn
A A A A 0L P A A A A A

PBC 1L 35.8 | 39.4 | 27.9 | 38.6 2. 7.9 32.1 21.h ho.2 10.7
38.1 | L42.5

RFC 1k ko.5 | 45.7 | 31.4 | k2.9 6. 9.1 4o.1 32.3 Wy 4 7.8

PBC 13 37.5 | 6.9 | 19.4 | uh.2 6. 18.1 35.5 24.8 44,8 10.7
34.12 | b7 | 25.6 | 43.3 3. 8.5

RFC 13 38.3 | 48.1 | 23.4 | L4.2 8. 1h.9 35.8 25.5 Wy, 2 10.3

H 11 50.3 | 56.3 | 37.9 | 53.5 5. 12.4 43,0 3.0 51.6 0.
48.1 ] 9.2 | 38.5] s51.5 -5. 9.6

HT 48.5 | 61.4 | 36.9 | 60.2 2. 11.6 b1.1 26.5 54.8 1k.6

HT 53.5 | 68.7 | Lo. 68.3 6. 13.5 sh,6 1.2 60.7 T.4

W34 | 66.9
P_ = proportional limit load (kips) A = cross-sectional area (in?)
P .
Py = yield load Subscripts a,n for annealed, not annealed
P = ultimate load

c9e
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TABLE 7.2

STUB COLUMN TESTS:
NON-DIMENSIONALIZED RESULTS

Section Columm L 12 kf Pu/ny Aa PU/Pya
inch kips
PBC 1k A 15 a 12.0 2118 .1i07 1.010 .115 0.880
16 n 20.78 0.991 0.863
17 a 22.85 1.090 0.949
RFC 14 B 12 12.0 23.7 .115 1.027 .119 0.955
13 n 22,2 0.962 0.895
PBC 13 c8 a 7.0 30.0 L0617 1.232 .0666 1.0u45
9 n 7.0 28.3 L0617  1.162 .0666 0.986
10 a 12.0 28.6 .106 1.174 .11k 0.996
11 n 12.0 27.7 .106 1.138  .11h 0.965
RFC 13 D 1k a 12.0 30.8 .106 1.255 .11k 1.087
15 n 28.3 1.153 0.999
H 11 E 6 a 7.0 24.87 .112 1.314 .123 1.088
7 n 7.0 23.67 .112 1.250 .l1l23 1.036
8 a 12.0 21.75 .192 1.1k .211 0.952
9 n 12.0 22.75 .192 1.202 .211 0.996
HT F 6 a 7.0 60.8 0753  1.379 .0835 1.119
7 n 59.6 1.352 1.097
HT G 6 a 7.0 128.4 .0843  1.184 0862 1.131
T n 7.0 127.8 .0843  1.178 .0862 1.126
8 n 12.0 125.2 J1hh 1.154 148 1.103
a for annealed n for not annealed
A = cross-sectional area R = radius of gyration
d,¢ = vield strength of flat 9yq = @verage yield strength
ny = Aoyf Pya = Acya
.1 /L - 1 /%1
£ 7/ E R 2 5/ %
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Photo 7.1 Stub Column Test: General Set-up

i
i

Tl

% |
. .
& b —t

T

Photo 7.2 Stub Column Test: Use of Compressometer
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Machine Head

N

~<— Hydrostone

T~ Ground Bearing
Plate

T~ Stub Column

Ground Bearing
"~ Plate

w— Hydrostone

Machine Table

Fig. 7.1 Stub Column Test Set-up
(from Dewolf [1973])
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LOAD STRESS
kips ksi
~ 50.
25.
34.08 k
v o w/o 22,85 k
:' ': a 2
5% o8k
s : 20.78 k
- L0, ’r
20. H
-~ 30.
15. ~
~ 20.

10. =~
W with residual stresses

w/o without residual stresses

a °

n [

Strain Gages
(for n and a,)

compressometer

enswenm theox\vy
l,a2 annealed

n not annealed
.001 in/in

a

Fig. T.2a PBC 14 Stub Column (12.Q")

Theory uses coupon values of specimen a, Table 3.5.
Annealed stub a, failed by local buckling of web near one end,
the others by yielding. Only compressometer record exists for a-
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LOAD STRESS
kips ksi
- 50.
25. -
22,85 k
'TIYLEL L] P unusansRew 21‘ 3 k
o 20.78 k
10 SVI0_A751.18 kips
20, -
- 30.
15. =
.:::
- 20.
lO. - O ::
5
-
5 Strain Gages
s (for n and a2)
5 me——  compressometer
.: amwww theor‘y '
5. "loi & ,a, annealed
i n not annealed
i W with residual stress
: w/o without residual stress
P .001 in/in
L - >
STRAIN

0.
Fig. T.2b PBC 14 Stub Column Tests

Theoretical curves use (0. - 3.0 ksi) and (.963t) where 0 and ©

are coupon values of spgcimen a, Table 3.5.
failed by local buckling of web near one end,
Only compressometer record exists for &

Annealed stub a,
the others by yielding.



271

LOAD STRESS
kips ksi

25. |

— 50.
k.81 k

POXCLL L L Y )

20. -

15.

w with residual stresses
w/o without residusl stresses
a for annealed

10. n for not annealed

Strain Gages

— COmMpressometer
AT T T theory
.001 in/in
0. L —t 3  STRAIN

Fig. 7.3a RFC 1L Stub Column (12.0")

Theory uses coupon values of specimen a, Table 3.8.
Annealed stub failed by local buckling of web near one end
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LOAD STRESS
kips ksi
— 50.
25.
23.T k
n
— 40.
20. 7

15. -

w with residual stress
w/o without residual stress

Strain Gages

- compressometer

LRl theory
a for annealed
for not annealed

n
.001 in/in
STRAIN

Fig. 7.3k RFC 1k Stub Column Tests
v

T%ble 3.8.

Theoretical curves use (o - 3.5 ksi) where ¢ are coupon
Annesled stub failed by local buckling of web near one end.

values of specimen a,



LOAD
kips

28.

2h.

20.

16.

12.

1

STRESS

/L1 LT ¥

ksi
r 60. 30.0 kips
v 28.6 kips
“ v 28.3 kips
- !
v ~a ®
- 50. o .
v ] o a v L]
A .
a a ° a 'Y
v n a, n
- LO. a1 fo a0 A 1 2 . 2
w// w/o
an Je a [
(]
LY £ .Y A
- 30.
(5
e JO
'20. o

28.71 kips

with residual stress

w/o without residual stress

[ 10- a = annealed
Locations of _
Strain Gages n = not annealed
.000k in/in
5 A i 3 i A ‘ .
7.0" Stub 12.0" Stub Theory STRAIN

Fig. 7.4 PBC 13 Stub Column

Tests

ele



STRESS _ 50,

LOAD 6 ksi
iy 30.8 k
30.L kips o .
o0 28.32 k
3 28.3 k
L ] a W
® w/o
o
X 4
as | . 40.
° a
° a
Y A
a
20.}-
~30
®
a
15 'y oI I—
° -
® AI I_ n ~120
[ .
Locations of
hd Strain Gages
10 °
for annealed
*Q,
P for not annealed
with residual stresses
J1i0.
w/o without residual stresses
S+
Theory
. 000k
- - L 1 1 1 | 0.
STRAIN
Fig. 7.5 RFC 13 Stub Column Tests (12.0")

fle
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kips

25. 7

20. -

15. -

10. -

275

STRESS
ksi

- 60.

12.0"

Stub

Strain Gages
ssssuanw dial gage
———  CcOMpPressometer
w  with residual stresses

w/o without residual stresses

al,a2 annealed

nl,n2 not annealed

.001 in/in
—t

.
STRAIN

Fig. 7.6 H1l Stub Column Test
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[ ]

a
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o
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W with residuul slresses
w/o without residual streus
Theory
L0005 in/in

0. —— -~ 1 | . A1 I
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Fig. 1.7

H7 Stub Column Yests (7.0")
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LT
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i
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Fig. 7.8 HY Stub Colwan Tests
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CHAPTER 8

INITIAL DEFLECTIONS AND COLUMN CENTERING

8.1 Literature Survey

The reduction of column strength caused by geometrical imper-
fections is an experimentally verified and well understood fact
(Bleich [1952], Timoshenko and Gere [1951], Chen and Atsuta [1976],
L'Hermite [19T4, 1976]). The presence of initial deflections makes
a qualitative difference: provided the load is centrally applied, a
column with initial deflections bends continuously, whereas a perfectly
straight column remains so until it reaches the bifurcation load, at
which point it begins to deflect.

By using the method of characteristics and expressing the initial
and additional deflections in terms of the buckling modes, it has been
proved that the first term of the additional deflection proportional to
the first buckling mode gets much more magnified than the other terms
when the (first) buckling load is approached (Bleich [1952] p. 128,
Timoshenko and Gere [1951] p. 32, Chen and Atsuta [1976] p. 97).

T.H. Lin [1950] derived formulas for the amplification of initial
deflections and eccentricities both in the elastic and inelastic range.
He expressed the initial deflection as a Fourier Series:

v = ? V sin nmz/L (8.1)
° n=1 on
Similarly éhe aﬁaitional deflection due to the load is:

v = 3 V_sin amz/L (8.2)
n
n=1l

278
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In the elastic range the familiar amplification formula is obtained:

v
v o (8.3)
B % /Pp-1

cr

Clearly, the first term, n=1, dominates the others when P approaches
the critical load Pcr' In the inelastic range, partial yielding causes
the neutral axis to shift away from the geometrical centroidal axis.
There results an eccentricity of the load which may be assumed to be

of the form:

0
]
He18

e sin nmz/L (8.4)

n=1

It can be proved that the rate of increase with respect to the

load of each term of the total deflection is:

A(Vn +Von) _ vn +V0n * en
AP - 2 (8.5)
n Pcr—P—AP

Upon summation: y 2-.omn n 1 0l "1

1 2 -
n=1 n Pcr—P—AP Pcr-P-AP

(8.6)

So again the increase of the first harmonic is much more important than

that of the other harmonics.

This fact has prompted Massonnet to state the following (L'Hermite

. 1
[1976]): "No matter what the real (geometrical) imperfections of a strut

are, 1t behaves, under a load close to the critical Euler load,as if it
9

had an [initial]. deformation affine to the buckled shape of a perfectly

straight strut. (Quelles que soient leg imperfections (

géométriques)

O
réelles de la barre, elle se comporte sous une charge voisine de 1
e la
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charge critique d'Euler comme si elle pessédait une déformation affine
de la charge de flambage qu'elle aurait prise si elle avait été
parfaitement rectilique.)"

In dealing with initial deflections, Chen (Chen and Atsuta [1976]
P. 97) did not require the stiffness to be constant along the length
of the column and his analysis could conceivably be extended to inelastic
buckling. Chen [1970] also studied the effect of initial curvature on
the strength of an inelastic column by the method of equivalent lateral
loads, but the calculations were rather involved and no attempt was made

to include initial deflected shapes other than those affine to the first

buckling mode.

The effect of initial curvature on the strength of an inelastic
column was also studied theoretically by Wilder, Brooks and Mathauser
[1953] using an idealized H-section with a Remberg-Osgood stress-strain

curve. The initial and the additional deflections due to the load were

assumed to be half-sine waves. The authors concluded that the maximum

load for an initially curved column is always less than the maximum load
for the corresponding straight column and may even be less than the

tangent modulus load, depending upon the column proportions, the magni-

tude of the initial curvature and the shape of the stress-strain curve.

Calladine [1973] developed a geometrical construction to predict

the maximum load of a Shanley column with or without initial curvature.

The stress-strain curve is one of two types, elastic-perfectly plastic

*

or gradually yielding.

e tangent modulus formula is sensitive to the precise shape

It turms out that, although the column curve

based on th

of the stress-strain curve, the curves for the imperfect columns are
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insensitive to this shape, except for the stocky columns. A peak in
imperfection sensitivity was found to exist at a slenderness ratio
corresponding to a buckling stress equal to the proportional limit.
This peak imperfection sensitivity had been observed experimentally
by Chilver and Britvec [1963] and obtained by Batterman and Johnston
in their computer study [1967]. Chilver and Britvec explained this
phenomenon by examining the various postbuckling paths: the equilibrium
path 1s stable, i.e. the load increases with lateral deflections, for
a buckling load between the tangent modulus load and the reduced modulus
load; it is neutral, i.e. the load remains constant as deflections in-
crease, when the buckling load equals the reduced modulus load; and it
is unstable, i.e. the load decreases with increasing deflections, for a
buckling load between the reduced modulus load and the Euler load. This
is similar to the concept of inelastic buckling gradient introduced by
Johnston [196L4].

Gilbert and Calladine [1964] extended Calladine;s geometrical con-
struction to account also for the effects of local imperfections. They
concluded that the addition of local imperfections to a column already

possessing an overall imperfection has little effect on the peak load.

Batterman and Johnston [1967] found through computer similation

that the effect of initial imperfections on the strength of columns

diminishes with increasing slenderness ratio and with increasing yield

strength of the material.

8.2 Measurement of Initial Deflections

As the testing of columns Progresses, three different models of

measuring initial deflections are used.
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8.2.1 Method 1

The telescope of a transit is aimed at various locations along-
side a column placed vertically about ten feet away (Fig. 8.1). Read-
ings are taken of a ruler marked to 1/100" positioned perpendicular to
the column surface. Deviations from the straight line joining the two
end stations are computed. Thus it does not matter if the column axis
deviates slightly from the vertical,or the axis of rotation of the tele-
scope from the horizontal. For best accuracy and ease of computation
these two conditions should, however, be fulfilled. The horizontality
of the ruler is checked by aligning its graduations with the cross-hair
of the telescope. The position perpendicular to the column surface is
found by slightly rocking the ruler back and forth in a horizontal
plane; this position corresponds to the smallest reading. Shimming
is sometimes necessary to provide a stable support for the column.

Accuracy is estimated to be of the order of 1/100".

8.2.2 Method 2

The column lies horizontally on a plane surface and a dial gage,
whose support rests on the surface, is used to measure the elevation of
various points of the column (Fig. 8.2 a,b). Self-weight deflection,
usually negligible, is accounted for when the column is simply supported
at its ends by the end plates. Of course, when the column rests on the
table along its entire length, there is no dead weight deflection.

For short columns (L < 4') a ground steel table, whose surface
can be con;ideréd perfectly plane, is used. For longer columns, such
a surface is not available and the imperfections of the table are ac-

counted for by the scheme shown in Fig. 8.2 ¢c: one set of X, measure-
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ments is taken, then the column is turned upside down and a set of x2
measurements is recorded. Provided xl and x2 are measured with respect
to the same table location, the imperfections of the table can be
eliminated from consideration and the initial out-of-straightness of
the column is the average of X and Xy

When a good plane surface is used as reference, the measurements
are as accurate as the dial gage (1/1000"). When the reference surface

is not as good, the accuracy is estimated to be no better than 5/1000".

8.2.3 Method 3

This method is developed for long columns, as an alternative to
the second method. The column rests horizontally on its two ends and
a telescope placed about ten feet away is aimed along the column axis
(Fig. 8.3 a). At the end of the telescope is mounted an optical micro-
meter (Fig. 8.3 b),which consists of a thick, parallel-faced glass plate,
which can be rotated. A surveyor's scale is placed at various stations
on the column surface and perpendicular to it (by the same techniques
described in Method 1). A light ray emanating from the scale undergoes
various vertical translations in a plane perpendicular to the axis of
rotation of the glass plate, depending on the angle of incidence of the
ray with the glass plate. It is thus possible, by rotating the glass
plate, to always aim at the same graduation on the scale as the scale is
positioned at various stations and as the graduation moves up or down by
minute amognts. The micrometer is calibrated so that distances, rather
than angles can Be read directly. To check for possible movement of the
telescope assembly, a sight is frequently taken of a fixed reference

point; this is especially important since a small angular deviation



28L

causes a large linear displacement. The computed dead weight deflections
are subtracted or added to the initial deflections depending on the
direction of the latter.

The accuracy of the optical micrometer is 1/1000".

8.3 Computations

n
Let voj be the elevations at locations Zj of the column. The
deviations from straightness, ;oj’ are:

2, - 2

- _ = _v " N ] Iy, 5.
VOJ = VO(Zj) = vOj - [VOI + (VOF - OI) ZF - ZI]’J—l’g’...n (8'7)

<2

where the subscripts I and F refer to the measurements closest to the
column ends. These readings are never at the ends themselves because
of the presence of the end-welds.

Considering the horizontal column as simply supported, the self-

weight deflection is:

v (8) = ﬂfih—é— 2t - 28 + )] (8.8)
384 ER
where L = column length
£ = z/L = abcissa
w = density of steel = L90 lb/ft3
E = modulus of elasticity = 29,500 ksi
R = radius of gyration

The computation of column strength described in Chapter 6 assumes
initial sinusoidal deflections. These assumed values are now related
to the measured initial deflections. It is convenient to approximate

the dead load deflection by a half sine wave also, an approximation
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accurate to 2%:

L
s(g) = 22

o 5 sinmE = Ssin g (8.9)
38LER

where S = 5th/38hER2.
Since ZI and ZF are not the column ends, a least-square fit of

a half-sine wave to voj is of the form:

voj = vo(F,'j) = Asinﬂc’;j - B (8.10)

Minimization of

n
g - E _— 2= . - _- 2
j:l(voj VOJ.) g(As:Ln'nEj B voj) (8.11)
requires
?5.: 3 1 - 3 -
A 2‘12.2(51n1rEj)(Asn.nTr&:j B - voj) =0 (8.12)
g _ . -
5% = —2§(ASlnTTEj - B - voj) = 0 (8.13)
A and B are therefore determined by the system:
2
Z [ A - . - - - —
(,j sin TrEJ.) (?smﬂEj)B JZ_(VOJ. 51n'n'£j)— 0 (8.1k4)
(Zsinm&,) A - - 7 =
J.sm EJ) nB § voj 0 (8.15)
from which:
B = (AZsin'n'Ej - Zw—roj)/n (8.16)
n(Zv_,sinwg ) - (L% )(ZsinmE&))
= 04 J
A 2 d (8.17)

n(Z sin21T£j) - (z sinTTEJ)2
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8.4 Results

Results are presented in Tables 8.1 - 8.11 (the ultimate load
of the columm is also recorded on these Tables as a means of identifi-
cation). The sign convention follows that of Chapter 6: positive
deflections go from the web toward the lips. The maximum measured
deflections are about one-thousandth of the length, but the maximum

amplitude of the sinusoidal fit is usually less.

8.5 Errors

Sources of error include:
- Limitations of measurement techniques. Although the best methods are
theoretically. accurate to 1/1000", it is unrealistic to expect an
accuracy better than 2/1000" or 3/1000". Since initial deflection
calculations involve the difference between nearly equal gquantities,
the relative error is sometimes high (up to 10%). This is explained
in more detail below.
- Superposition of local and overall imperfections. To smooth out the
local imperfections, which are of the order of 1/1000", would have
required a greater number of readings than realistically feasible.
Measurement stations are usually no closer than 6.0".

- The actual initial deflections are not sinusoidal.

8.5.1 Relative Error of Measurement of Initial Deflection

Let us assume the extreme readings to be at the column ends,

drop the subscript j and rewrite Eq. (8.7) as:

L NN z 2
6= oI oF oI’ L o L ol L oF
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Differentiation gives the error in v_:

o
5% —3—?95” LA sy LB _sy _L-zgy _Zgy (8.19)
VoS n VoA Vo1t v Vor - Vo T T L oI L ~'oF :
v ov v
o) ol oF

The worst error is given by:

__r\_, L-2 v g_’\;
Gvo = Gvo + 53 6VOI + i SVOF (8.20)

Since the measurements are equally accurate, with a measurement

error A:

v =8v _=8v = A and §v_ = 2A (8.21)

Example: For a 72" column, at a location where the initial

deflection is .072" and with A = .003",

8.6 Column Centering

In the testing of columns, the experimental procedure of column
centering described in the next chapter, calls for the application of
load at a small eccentricity to compensate for the initial deflection
of the column. The criteria of load alignment are uniformity of strain
and absence of appreciable lateral deflection at midheight for loads
up to 1/3 or 1/2 or the expected ultimate. It is interesting to see
how the introduction of load eccentricity, in effect, reduces the

initial deflection.

A column with sinusoidal initial deflection,

v, = Vo sinmz/L, (8.22)
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is loaded eccentrically (Fig. 8.4). Its behavior, considered only

in the elastic range, is compared with that of an elastic, centrally

loaded column also with sinusoidal but smaller initial deflection

W, = WO sinmz/L. (8.23)

8.6.1 Curved Column Under Eccentric Load

Let v(z) be the additional deflection caused by the eccentric

load. Moment equilibrium requires:

EIv" = Ple - (vo sinmz/L + v)] (8.2L4)
or v' o+ ELIV = ‘§I— (e - VO sinle—). (8.25)

e is the load eccentricity and " denotes double differentiation with

respect to z.

Using the boundary conditions v(o) = v(L) = o and the notation

2
k2 = 52— = Pg and £ = z/L
cr T EI
the solution is:
cosTk -~ 1 2
v(E) = -e cosTkE + e “iomk sinmkE + 1._k2 V031nﬂ£ + e (8.26)
the midheight deflection V is:
Tk k2
v = v(1/2) = e(1 - sec ) + v (8.27)
2 l-k2 o)

A similar analysis gives the midheight deflection W of a centrally

loaded column:
W= =<y (8.28)
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Using the notations i = Vo/e and § = Wo/e, the last two equations

can be rewritten as:

2
v Tk _ kK (8.29)
e

1]
)

}
17}]
(®
0

+

n

=

W k -
and A

= — 8.30
5 H (8.30)
Tt is possible to find 1 such that the midheight deflection of the
eccentrically loaded column coincides with that of the centrally loaded

column:

-=l-k2

V = W implies u-u (sec TE _ 1) (8.31)
k

2 2

Tt is remarkable that U - U varies little and almost linearly with K2

K2 1 .2 3 A .5 .6 7 .8 .9

u-7 1.237 1.241 1.244% 1.248 1.252 1.256 1.260 1.26L 1.269

The average value, (u-—ﬁ)av = 1.25, provides a good approximation

over the whole range of elastic loading.

W=V - 1.2% (8.32)

So, if one was to align the column load by shifting the column
ends while monitoring the midheight deflection, one ends up loading the
column eccentrically and, in effect, reducing the initial sinusoidal
out-of-straightness by 5/4 the eccentricity.

So far, only the midheight deflection has been considered. It is
interesting to see how close the deflected shape of the eccentrically

loaded column is to a half sine wave, which is the deflected shape of

the centrally loaded column.
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Fig. 8.5 shows that the curve v/e = £(&), Equation (8.26), can
be approximated fairly closely by a half sine-wave for values of u<1.10
or £>1.40. It is clear that the portions of the deflected shape close
to the ends are to the left (when the eccentricity is to the right) of
a half-sine-wave passing through the middle of the column.

If alignment is judged by absence of deflection or uniformity of
strain at midheight, then the range 1.10 < u 5_1.&0 corresponds to very
good alignment. This is so because the column deflects in one direction
close to the ends and in the opposite direction in the middle region
(Fig. 8.6). TFor the greatest part of the loading, however, the maximum
deflection is not at midheight.

Fig. 8.7 shows a reversal of the midheight deflection as the load
increases for 1.23 < u < 1.27. No such thing occurs for the quarter-
point deflection. The value u = Vo/e = 1.25 can be considered the best
alignment, judging from midheight deflection: wup to P = l-P s |V|‘§

2 "cr

.0025 e.

Example: A 100" long column with initial deflection Wo = L/1000
.10" is loaded with an eccentricity e = .0k0". (8.32) gives V_ = .100 -
1.25 x .0k0 = .050" and V_/e = 1.25. So up to P = P_ /2, |v| < .0025 x
.ol = .0001". A very small deflection, not measurable even with a dial

h"

gage sensitive to 10~
So, even with such average initial deflection as L/1000 and for

rather long columns, the midheight deflection can remain virtually

negligible up to .1/2 the buckling load by judicious load alignment.

Tt should be emphasized, though, that the column cannot be considered

straight since the midheight deflection in this case is not the maximum
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deflection.

8.6.2 Generalization

If the initial deflection is generalized to:

v = % vV sinanz/L (8.33)
Q n:l on .

it is easily shown that:

costk -1
sinTk

o<

= -~cosmkf + sinmkE + g( sinamg) + 1 (8.34)

where M, = Von/e.

It is well known that, near the buckling load, the n=1 term
dominates and deflection reversals occur for the parts of the column
which were initially deflected in the direction opposite to the first
buckling mode (Timoshenko and Gere [1961)). Load eccentricity hastens
these reversals.

The above was derived in the elastic range, which is the range of

interest in the alignment process.

8.7 Summary
The effect of initial deflections on column strength was surveyed,

initial out-of-straightness were measured by three different methods and

the process of load alignment was examined. Since the maximum deflections

are not always at midheight, monitoring deflections at the quarter points

during the alignment process is justified.
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TABLE 8.1

PBC 14, GROUP 1: INITIAL DEFLECTIONS

Column A3 Bu= 20.20 k Column AS 3u= 19.30 k
L =240" # z Vo L = 36.0" # z To
Method 2 1 6.0 0.0 Method 3 1 6.0 0.0
A= 3.1 2 12.0 0.9 A= 11, 2 12.0 -1.75
B = 2.2 3  18.0 0.0 B = -5.7 3 18.0 -6.50
S = -.099 S = -.5 L 24.0 -4.25
VO/L = .21 VO/L= -.48 5 30.0 0.0
Column A P,=13.95 k Column All Eh= 11.20 k
L = 540" # Z ;o L =66.0" # 2 Vo
Method 2 1 6.0 0.0 Method 2 1 6.0 0.0
A = -kL9. 2 12.0 -18.0 A= -33 2 12.0 -1lk.o
B = -18. 3 18.0 -25.0 B = -12. 3 18.0 -18.0
S = -2.5 L 24,0 -U43.0 S = -5.6 L 2h.0 -28.0
Vo/L =-1.3 5 30.0 -27.0 Vo/L==.78 5 30.0 -28.0
6 36.0 -1k.0 6 36.0 -20.0
7 L2.0 -9.0 7 42.0 -11.0
8 48.0 0.0 8 148.0 5.0
9 sk.0 6.0
10 60.0 0.0
Column A13 P = 10.50 k Column AlL gi= 8.20 k
L = 75.0" # z Vo L =86.0" # z Yo
Method 3 1 2.0 0.0 Method 3 1 2.0 0.0
A = 25. 2 8.0 32.1 A= -.92 2 1L.o 2.k
B = -10. 3 1k.0 30.2 B=5.1 3 26.0 7.2
S =9.k4 L 20.0 26.2 S = 16.3 L 38.0 1.8
Vo/L = .33 5 26.0 33.3 Vo/L =-.24 5  50.0 -11.7
6 32.0 31.h4 6 62.0 -1k.1
7 38.0 29.5 7 Th.0 -25.5
8 Lhk.0o 29.6 8 8k.o 0.0
9 50.0 32.7 _ _3 -3
10 56.0 32.7 A,B,8,v_ in 10 ~ inch, VO/L in 10 .
11 62.0 30.8 Column length without end plat
12 68.0 26.9 gth withou nd plates.
13 Thk.o 0.0 2z 1in inch.



Column Al P,
L = 18.0" #
Method 2 1
A=1.7 2
B = .90 3
S = .031 4
Vo/L=.15 5
Column AL Pu
L = 30.0" #
Method 2 1
A = 36.0 2
B =21.0 3
S =-..24 i
VO/L =1.9 5
Column AT Pu
L = 42,0" #
Method 3 1
A =23.7 2
B=1.2 3
S = -.93 L
V/L=-082 5

6

T

Column AlQ Pu

L = 60." #
Method 1 1
A=T1.5 2
B = 0. 3
S = 0.

V /L=-.10

o}

Column length
A,B,S in 10-3
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TABLE 8.2

PBC 14, GROUP 2: INITIAL DEFLECTIONS

= 19.0 k Column A2 P = 16.9 k
z 7, L =24.0" # z Yo
3.0 0.0 Method 2 1 2.0 0.0
6.0 3.5 A = 31. 2 11.0 23.3
9.0 1.0 B = 8.1 3  13.0 22.7
12.0 -=2.5 S =-.099 L 22,0 0.0
15.0 0.0 VO/L =1.6
= 16.3 k Column A6 P = 1h.h x
z Vo L = 39.0" # 2 Vo
6.0 0.0 Method 1 1 0.0 0.0
12.0 1k.o A = 35, 2 18.0 35.0
15.0 1k.o B = 0.0 3 0.0 0.0
18.0 13.0 S = 0.0
2h.0 0.0 V,/L = .97
= 13.5 k Column A8 P,= 13.66 k
A Vo L = 48.0" # z Vs
6.0 0.0 Method 2 1 5.0 0.0
12.0 -1k.o = -26, 2 11.0 0.1
18.0 -2.0 B=-3.5 3 17.0 -T7.7
21.0 0.0 S=-~1.6 4  23.0 -1k.s
24.0  -3.0 VE/L= -65 5 25.0 -19.5
30.0 -9.0 6 31.0 -33.3
36.0 0.0 T 37.0 -=kL6.2
8 L3.0 0.0
= 10.45 x Column Al2 P =9.50 k
Z Vo L=T2." # A GO
0 0. Method 2 1 6.0 0.
30. -6. A = -9k, 2 12.0 -17.
60. 0. B=-2hk, 3 18.0 -3k,
S = 8.0 L 2h.0 -38.
VJI=-1.5 5 30.0 =~T3.
6 36.0 =73.
T L2.0 -69.
8 L48.0 -62.
9 Zh.o -5k,
wit 10 0.0 =3k,
ithout end plates. 11 56. 0 0.

inch, VO/L in 10'3, z in inch.

N



Column Bll

L = 81.9"
Method 3
A = 26.

B = -1.5
S = 13.

v /L = .46
(o]

20l

TABLE 8.3

RFC 14, GROUP 1: INITTIAL DEFLECTIONS

i
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N O\ &FW N S
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=
[oNoNeoNoNoNeoNe]

8.80 k

1L,
26.
38.
50.
62.
TL.

.
OO O000OO0

9.05 k

10.
16.
22.
28.
3k.
Lo.
L6.
52.

6L.

T0.
76.

ARG RURC IRV, RVEG RV RV VIRVIRV, V)|

[an
[eR o NeolNei-]
[NV Ne)
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OFOM1IFHFOWAIKFFONNOO

[eRV NORVEGRV NG

Column BL

L = 36.0
Method 2 -
20.
4.3

5
L=.66

<nw
~unonon

(o]

Column B6

L = L4L8.0"
Method 3
A = 23,
B=7T.3

S = 1.6
Vo/L=-.66

Column BlO

P =18.0 k
u
# z Vo
1 3.0 0.0
2 9.0 11.8
3 15.0 13.6
L 21.0 13.4
5 27.0 12.2
&  33.0 0.0
Bu— 15.5 k
# z v
1 6.0 o?o
2 12.0 10.8
3  18.0 10.7
L 2k.0 1k4.5
5 30.0 1L4.3
6 36.0 1k4.2
7 L2.0 0.0
P,=8.00 k
# z Vo
1 2.0 0.0
2 8.0 37.1
3 1h.o 7.2
4 20.0 45.3
5 26.0 L. L
6 32.0 L9.5
7T 38.0 8.6
8 Lk4k.0 47.8
9 50.0 L6.9
10 56.0 L€.0
11 62.0 ho.1
12 68.0 Lho.2
13  Thk.0 8.3
ik 76.0 0.0

Column length without end plates.

A,B,S in 10~

z in inch.

3

inch. VO/L in 10 ~.

3



295

TABLE 8.k

RFC 14, GROUP 2: INITIAL DEFLECTIONS

Column Bl Pu= 18.5 k Column B3 Pu= 16.3 k
L =2k0" # z Vo L = 36.0" # z
Method 2 1 2.0 0.0 Method 2 1 6.0
A = 20. 2 11.0 11.5 A = 36. 2 1l2.0
B = 5.1 3 13.0 17.5 B = 18. 3  17.0
S =-.099 L 22.0 0.0 S = -.50 L  19.0
vV/L=1.0 Vo/L=1.5 5 24,0
6 30.0

Column B7 Pu= 1.0 k Column B8 ﬁl= 11.5 k
L = L48.0" # z Vo L = 60.0" # z
Method 2 1 3.0 0.0 Method 1 1 0.0
A= Th, 2 10.0 3k.2 A=1T.0 2  30.0
B = 1k, 3 17.0 51.3 B = 0. 3  60.0
S =-1.6 L 23.0 56.8 S = 0.
Vo/L=1.8 5 25.0 60.2 V/L=.12

6 31.0  57.7 ©

T 38.0 28.8

8 45.0 0.0

Column length without end plates.
A,B,S in 1073 inch; VO/L in 1073

z in inch.

¢« O

el el o
ORI o I
[V AVl SRV, Ne]

o 3 O 4l
[eoNeNe]
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Table 8.5

PBC 13, GROUP 1: INITIAL DEFLECTIONS

Column C3 P = 26.40 x Column Ch B, = 21.60 k
L = 36.0" # z Yo L = L48.0" # z Vo
Method 2 1 6.0 0.0 Method 2 1 6.0 0.0
A =1T7. 2 12.0 4.5 A = 10. 2 12.0 8.8
B =9, 3 18.0 1lo. B = 3. 3 18.0 5.7
S = -.5 L 24,0 5.5 S = -1.6 I 2k.0 5.5
Vo/L=.72 5 30.0 0.0 VO/L =.25 5 30.0 7.3
6 36.0 4.2
7 42.0 0.0
Column C5 Py=15.85 k Column C6 Py= 9.95 k
L = 60.0" # z Vo L =79.0" # z - A
Method 2 1 6.0 0.0 Method 3 1 6.0 0.0
A = =30. 2 12.0 -=7.0 A=-7.8 ) 12.0 0.36
B = -11. 3 18.0 -=22.0 B = -.05 3 18.0 -3.3
S = =3.9 L 2h.0 -=3k4.0 S = -12. N oh.0 -2.L4
V/L==.T4 5 30.0 -16.0 v/L=-.25 5 30.0 -6.0
° 6 36.0 -11.0 3 36.0 -T7.7
T k2.0 -1.0 7 h2.0 -5.8
8 k8.0 -=k4.0 8 48.0 -T.4
9 54.0 0.0 9 sL.0  -9.1
10 60.0 -=10.7
11 66.0 -12.4
12 72.0 0.0
Column CT Pu-‘- 7.70 k
L =97.0" # z Vs
Method 3 1 2.0 0.0
A= -19. 2 1k.0 -18.0
B=.73 3 26.0 -16.0
3 ;L:félhé g gg:g :ig:g Column lengfg without end platfg.
°© 6 62.0 -15.0 A,B,S in 10 ~ inch; VO/L in 10 ~.
g gg:g -ig:g 2z in inch.
9 95.0 0.0
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TABLE 8.6

PBC 13, GROUP 2: INITIAL DEFLECTIONS

Column C1 B = 35.00 k Column C2 P = 23.38 k
L=2k0" # =z Yo L =2L.0" # Z Yo
Method 2 1 6.0 0.0 Method 2 1 6.0 0.0
A= 0.0 2 12.0 0.0 A = 10. 2 12.0 3.0
B = 0.0 3 18.0 0.0 B=17T.2 3 18.0 0.0
VO/L =-.10 VO/L =.72
Column length without end plates.
A,B,S in 1073 inch. VO/L in 10'3,
TABLE 8.7
RFC 13, GROUP 2: INITIAL DEFLECTIONS
Column D3 B = 35.0 k Column DL §l= 22.3 k
L =2k.0" # z v = " 7
o L =2k4.0 #

Method 2 1 6.0 0.0 Method 2 : vo

1 6.0 0.0
A= 0.0 2 12.0 0.0 A= 3.1 2 12.0 0 9
B : 0.0 3 1800 0.0 B = 2.2 3 18.0 0.0
S = -.099 S = -.099
vo/1.=-h.1 VO/L =,21

A,B,S in 1073 inch; V_/L in 1073

Column length without end plates, z in inch

The initial deflections of the columns of Group 1, RFC 13 were measured
by method 1 and are not tabulated.
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TABLE 8.8

H 11, GROUP 1: INITIAL DEFLECTIONS

Column E1 E,;= 18.50 k Column E3
L = 16.4" # z Vs L = 25.0"
Method 2 1 2.25 0.0 Methed 2
A = Lo. 2 8.25 23.5 A = 39.

B = 16. 3 1h.25 0.0 B = 9.6

S = .063 S = .3k
VO/L = 3.k VO/L = 1.9
Column Eb B,= 11.8 k Column E5

L = 36.0" # z Vo L = L8.o"

Method 2 1 2.0 0.0 Method 2

A = =24, 2 10.0 -7.8 A = =19,

B = "h‘ol 3 1700 —19-9 B = -93

S = -1.5 L 19.0 -=19.9 S = 4.6

v/L=-.83 5 26,0 =22.9 VO/L= -.48
© 6 3k.0 0.0

Column length without end plates.
A,B,S in 10'3 ineh, VO/L in 10-3, z in inch

TABLE 8.9
H1l, GROUP 2: INITIAL DEFLECTIONS

Column E2 B,=15.Tk

L = 20.0" # z 75
A=9.2 1 3. 0.0
B=L4.2 2 10. 5.0
S ==.14 3 1T7. 0.0
v/L = .66

o

Column length without end plates.

A,B,S in 1073

O O oW WD H R

18.20 k
z ;o
2.0 0.0
6.5 17.6
12.5 29.0
18.5 19.4
23.0 0.0
7.00 k
z Vo
0.0 0.0
6.0 -9.0
12.0 =16.0
18.0 -23.0
2hk.0 -13.0
30.0 =19.0
36.0 -18.0
L2.0 -8.0
48.0 0.0

inch; VO/L in 10'3, z in inch.



Column F1

= 28.0"
Method 2
A= -17.

3. 8
+.23
= -.75

<1Ulm
\\u i

Column F3

= 39.4"
Method 2
A= -23.7
B = -3.2
S .91
Vo/L = "-66

A,B,S in 10

P
#
1l
2
3
N
>

v
ﬁ"

e I ANV F ~a UV RN \O T i '

4]
S"

O3 0N\ FW N

inch.

299

TABLE 8.10

H 7: INITIAT DEFLECTIONS

= 45,00 k Column F2
A s L = 36.0"
2.0 0.0 Method 2
8.0 -9.5 A= -5.4
14,0 -13.L4 B=-1.L
20.0 -10.5 S = -.63
26.0 0.0 VO/L = -,21
39.60 k Column FL4
z v, ‘ = h2.0"
1.69 0.0 ' Method 2
7.69 -10.3 = A = -25.3
13.69 -18.7 B = -12.
19.69 =21.0 S =1.2
25.69 -16.3 V/L=-.92
31.69 -10.7
37.69 0.0
30.90 k L
: |
Z Vv,
6.0 o?o
12.0 0.0
18.0 -22.0
23.0 8.0
25.0 19.0
30.0 38.0
36.0 k9.0
L2.0 0.0
. -3
Vo/L in 10 ~.

Column length without end plates, z in inch.

OV £ D H 3k

B
w - gm

= 41.80 k

= 39.40 k

Z ?b
0. 0.
18. =L,
36. 0.
Z h'a
6.0 8.0
12.0 -3.2
18.0 -13.0
24.0 -16.0
30.0 -6.8
36.0 0.0
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TABLE 8.11

H T INITIAL DEFLECTIONS

Column Gl P = 97.40 x Column G2 P = 78.00 k
- u
L = 2L.9" # z Vo L = 36.0" # z Vo
Method 2 1 2.0 0.0 Method 2 1 2.0 0.0
A = =3.6 2 6.5 -4.9 A= -16. 2 9.0 -3.1
B =-.82 3 12.5 -2.5 B = -3.6 3 16.0 -12.
S = .14 L 18.5 .9 S = -.61 L 20.0 -16.
VO/L = -.17 5 23.0 0.0 VO/L = -.57 Z 2{.0 -7.9
34.0 0.0
Column G3 Pu= 65.80 k -~ Column Gk Pu= 42,75 k
L = 48.0" # z Vo L = g2.4" # z To
Method 2 1 6.0 0.0 Method 3 1 6.0 0.0
A=1T7.6 2 12.0 L.5 A= -3.3 2 12.0 -0.9
B = 3.0 3 18.0 10.0 B=-.21 3 18.0 -1.8.
S =1.9 L 23.0 5.1 S = -5.7 i 24.0 -2.7
v /L = .26 5 25.0 2.9 v /L= -.15 5 30.0 0.k
6 30.0 0.0 6 36.0 ~L.L
7 36.0 -0.5 T 42,0 -5.3
8 L2.0 0.0 8 48.0 -3.2
9 54,0 -2.1
10 60.0 0.0
Column G5 Pu= 35.40 k
L = 68.0" # z Vs
Method 2 1 6.0 o.g 3
A = 20. 2 12.0 -3. s =2 s .
gy 3 18.0 11.0 A,B,S in 193 inch;
s = -7.8 L 2k.0  16.0 V/Lin 10 7, z in inch.
VO/L = .30 2 ggg lgg Column length without end plates.
7 k2.0  10.0
8 48.0 L.o
9 54.0 7.0
10 60.0 0.0
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Fig. 8.2 Measurement of Initial Deflections: Method 2
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Fig. 8.3 Measurement of Initial Deflections: Method 3
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CHAPTER 9

COLUMN TESTS

Of central importance in this investigation is the experimental

determination of column strength.

9.1 Review of Various Procedures

In the research proposal that initiated this work,Pekdz [1975]

listed the three principal methods of column testing procedures:

9.1.1 Dynamic Method

In the Dynamic Method (European Convention Testing Method), "the
load is gradually and continuously increased and readings are taken at
certain load increments without stabilizing the load. The initial im-
perfections are carefully measured and the column is centered in the
test machine only geometrically with respect to the ends. The evalua-
tioﬁ includes the effect of initial geometric imperfections. The
geometric cross-sectional imperfections are not included in the evalu-

ation. A static ultimate load is not obtained in this test." (Pekdz

(19751).

9.1.2 Modified Dynamic Method

The -‘Modified Dynamic Method (New Lehigh Procedure. SSRC Technical
Memorandum No. U4, Johnston [1976]) is only different from the Dynamic
Method in that it also obtains a static ultimate load. Upon reaching
 the maximum dynamic test load as above, the load is stabilized (usually

. a drop in load occurs) while the column shape is unchanged. For a screw-
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type machine this can be achieved by maintaining the cross-head in a
stationary position. For a hydraulic machine, this can be done by
slowly opening the bypass valve further until further lateral deflection
of the column at midheight ceases. After recording the maximum static

load, the test is resumed dynamically.

9.1.3 Static Method

In the Static Method, the load is slowly increased and stabilized
at every load increment before readings are taken. The ultimate load
obtained is the ultimate static load of the column. Column centering
is elaborate and usually requires that stresses be uniform within certain
tolerances at certain sections along the column.

The two dynemic methods are faster than the static method, at
both stages of centering and testing. The dynamic methods also indicate
the effect of initial imperfections directly. In the static method, it
is possible to find the combined magnitude of initial imperfection and
load eccentricity by a Southwell plot.

The static test is more appropriate than the dynamic tests for
verifying the tangent modulus load. The static test has been used for
all the cold-formed column tests conducted to date (Pekdz [1975]).

For consistency, it is also used here.

9.1.4 Boundary Conditions

Technical Memorandum No. 4 of the SSRC (Jomnston [1976]) compares

the fixed-end and the pinned-end conditions:

"In testing columns under the fixed-end condition, the full

restraint may not be provided in the entire range of the test loads;
3
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thus the effective length of the column is not a constant but a function
of the applied load. This may be due partly to the fact that the rigid-
ity of the testing machine varies with the applied load and partly to
the indeterminate nature of the stress distribution at the column ends,
particularly in the load range in which the material yields. These
problems are eliminated by using pinned-end conditions because the
critical condition exists at about the midheight cross~section."

A further advantage of the pinned-end condition is that, "for
the same effective slenderness ratio, it requires the use of only half
the column length used for the fixed-end condition."”

The pinned-end condition is used here.

9.2 Description of Procedure

Columns are cut from relatively straight portions of stock, no
closer than 6.0" inches to any flame cut ends. The column ends are
cold-sawed perpendicular to the column axis at its ends. Due to initial
deflections, the end surfaces are generally not exactly parallel, although
deviations from parallelism are minimal and can be accommodated for by
the use of hydrostone during alignment. 3/4" thick, rectangular end
plates, ground flat to .0005 inches are welded to the column ends, so
the centroidal axes of the plates and those of the column at its ends
coincide. To minimize welding residual stresses, short fillet welds
are placed sequentially and symmetrically so any given weld is allowed
to cool before an adjacent weld is placed. The result is a continuous

weld on both the inside and outside faces of the column.
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Tnitial deflections are measured by the methods described in
Chapter 8. Strain gages are mounted at various midheight locations
after the necessary surface preparations. These gages monitor the test
and are especially useful for alignment. Since uniformity of strain at
midheight is the criterion used for load alignment, it is judicious to
place the gages on opposite sides of the axes of bending and as far from
them as possible. In the early column tests, up to eight gages are used,
two at each cormer; but in the later ones, only three are used. For the
chennel sections, one gage is placed at the middlie of the web, the other
two on the flanges, near their jumcture with the lips. All gages are
on the outside face (since there is no local buckling, it is not necessary
to have gages in pairs on both faces). For the hat sections, one gage is
at the top, the other two at the middle of the lips, but on the other
face. At the same time as strain gages are mounted, strings to attach to
dial gages are glued to the surface of the column at the corners between
web and flanges.

Next, the column is placed in a hydraulic press between two end
fixtures which have been centered on the machine plates beforehand.
These end fixtures are basically knife edges and allow rotation in one
direction only with negligible friction. The fixtures were devised by
Pekdz [1967] and used successfully in several research projects. Each
fixture, shown in Fig. 9.1, has two separate sets of wedges which allow
compensation for any lack of parallelism between the column ends in the
direction parallel to the axis of rotation (i.e. the axes of rotation
of the ends, say yy, are coplanar but not parallel).

To compensate for

lack of parallelism in the other direction, (i.e. the xx axes of the two
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ends are coplanar but not parallel), two layers of hydrostone are laid
between the column base plates and the end fixtures. Sets of bolts on
all four sides of each fixture allow precise positioning of the column
base plates. They are used to move the xx axes of the column ends into
the same vertical plane. The same can be done about the yy axes. Dis-
placement of the base plate is possible, even after the hydrostone has
set, if wax paper is placed between the hydrostone and the end fixture.

In chronological order, the bottom and top fixtures are first
placed and centered in the testing machine. The wedges are brought back
to the neutral position (both sides level) and the fixtures checked for
any rotational restraint. A sheet of wax paper is placed on the bottom
fixture, on which a layer of hydrostone, about 1/4" thick is spread.

The column is then placed on top of the hydrostone, well centered with
respect to the fixture and the bottom machine plate. Hydrostone is laid
on top of the column and covered with wax paper. The top fixture attached
to the machine cross-head is then lowered until it touches the hydrostone.
The verticality of the column is checked with a level tube. To prevent
motion from the vertical position, a small load of about 100 pounds is
meintained while the hydrostone sets. This load may vary as setting
progresses.

Load alignment is of crucial importance and the criterion used is
uniformity of strains at midheight (the absence of lateral deflection is
usually not stringent enough a criterion).

Alignment is considered satisfactory when strains are uniform to
within * 5% for loads up to 1/3 of the estimated ultimate. This goal

is achieved by adjusting the wedges and shifting the base plates. On
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occasions, the column had to be removed from the machine, the hydrostone
chipped off and the whole process repeated anew. These occasions are
fortunately rare, but in all cases load alignment is a time-consuming
and tedious process which may take days.

In shifting the base plates, a minute load eccentricity is, in
effect, introduced to compensate for the initial deflections of the
column. Chapter 8 examined the effect of this procedure.

After the load has been aligned, dial gages are attached to the
strings or placed directly against the column. Typically, two gages are
used to measure deflections in the direction of the strong axis, two in
the direction of the short axis. Since bending occurs about the weak
axis, deflections parallel to it are negligible and in the later experi-
ments are not measured.

The column is loaded statically. Readings of strains and deflec-
tions are taken at various loads after the load has stabilized. Load
increments are chosen smaller near the ultimate load than at the beginning.
The load reaches a peak, then decreases rapidly and finally stabilizes.

The column has failed by then and shows large lateral deflections.

9.3 Results and Discussion

Results are reported in Tables 9.la to 9.12bv. Records of indivi-

dual tests, in the form of plots of strains and lateral deflections versus
load as well as collective results plotted on non-dimensionalized column

curves are shown in Fig. 9.2 to 9.77. On these tables and figures, pre-

dicted values based on the theory of Chapter 6 and on the measurements

of yield strength and residual stresses of Chapters 3 and 5 are also shown
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for comparison.

Column results are non-dimensionalized in a way that incorporates
the yield strength of the material, thus allowing results for steels of
various strength to be plotted on the same column curve. Loads are
non-dimensionalized with respect to the yield load of the section Py =
Acy; slenderness ratios A = L/R are non-dimensionalized with respect to
the slenderness ratio lo for which the Euler critical stress equals the
yield stress:

W2E
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Ter x2 vy o} o]
o
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Cold-forming destroys the homogeneity of the material; as a result,
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the yield strength is not uniform and the question arises, what value of

the yield strength to use for non-dimensionalization. The average value

Lo A,

of yield strength, Uya = —ieEL—L ,» Where Gyi and Ai are the yield strength
i

‘and cross-sectional area of coupons, is the most logical choice. This
average value may also be obtained by full section test. TFull section
tests or coupon tests that cover the entire cross-section are, however,
difficult, time-consuming and rarely performed in practice, and the yield
strength of the flat portions Gyf is commonly referred to as the measure
of the yield strength of the section. Both alternatives are used here.
For the channel sections, the yield strength of the flats Oyf is about
the same fdr the ‘web and flanges (Fig. 3.5, 3.9, 3.14 and 3.17); for the

hats, the flange value is chosen as cyf (Fig. 3.20, 3.24 and 3.28).
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Tensile yield strength is used here, rather than the more logical
choice, compressive yield strength. The reason is, tensile tests are
much easier to perform than compressive tests and give about the same
results for steel; tensile test values are also used in practice.

Column results are separated in two groups. In group 1, computer
predictions and experimental observations match more or less closely.
In group 2, no such match is found.

The channel sections of (thickness) gage 14, be they press-braked
or roll-formed, exhibit strength markedly below (up to 25%) the SSRC
Curve and theoretical expectations, for slenderness ratios A <1.0
(Fig. 9.16, 9.17, 9.29 and 9.30). For RFCl4, tensile coupon tests (Fig.
3.9) show an atypically large spread in yield strengths. The upper limit
is the yield strength values of coupon a, the lower limit is about 5.0
ksi less. This lower limit is used in the computer model (Table 9.3a)
for the short, low-strength columns; even then, predictions are higher
than actuality, except in one case, column B6, where agreement is good.
Limited tensile coupon tests for PBCl: justify the assumption that all
PBC1lk columns have the same mechanical properties. The behavior of the
Cl4 columns during the tests was identical to that of the C1l3 columns,
which did not exhibit this puzzling low strength. Appendix D examines
alternative buckling modes of the Cl4 columns.

Four of the Cl3 columns had much higher strength than expected
(c1,D1,D3 and D5). It is possible some end restraint was inadvertently

introduced, thus reducing the effective lengths (D1 was tested with

knife-edges rather than the regular fixtures). On the other hand, one
3

RFC13 column (D2) was much weaker than expected because it failed by
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local buckling of the web, near one end weld; this weld may have caused
some larger than usual local distortion.

All the other columns behave fairly much in agreement with theo-
retical predictions. The error between theory and experiment hovers
about 5%, which is what other investigators have obtained with the

assumption of sinusoidal deflection.

9.4 Column Curves

Linear regressions by ordinary least squares (OLS) as well as by
generalized least squares (GLS) and analyses of variance are performed
on the column test results (Tables 9.13-9.23, Figs. 9.76-9.80). The
model fitted to the data by OLS assumes constant variance (homoscedasticity)
whereas that fitted by GLS does not(heteroscedasticity). For more details
the reader is referred to standard texts of econometrics (Goldberger
[1964], Johnston [1972], Theil [1971]). Statistical concepts relevant
to the analysis of variance are reviewed in Appendix C, which is largely
taken from Draper and Smith [1966]. In particular, if the data fell
exactly on the regression line, then the correlation coefficient R would
equal *1 (+ for positive slope, ~ for negative slope. For higher order
regressions, the line is no longer straight and the quantity R2 called
the multiple correlation coefficient is used). Table 9.13 lists the
regression lines and correlation coefficients corresponding to the fol-

lowing data sets:

a) all the test results of the present work (80 points)
b) nearly all of them, with the exclusion of five points, C1,D1,D2,D3 and
D5, which fall far from the remaining points. Compared to the previous
b

set. the correlation coefficient is much better (75 points).
b
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c) another set excludes the five points mentioned above and the stub
columns. The correlation coefficient goes back to approximately
the same value as in a) (55 points).

d) Karren's results, 17 points listed in Table 9.24, are pooled to the
present 75 points. Karren's tests [1967] involve hot-rolled semi-
killed double~channel (gage 10) and double-hat (gage 9) sections
bolted or riveted together (92 points).

e) so far, ordinary least-square regressions, which assumes a constant
variance about the regression, are performed. Inspection of the data
reveals, however, that the scatter of the data is worse for the inter-
mediate columns than for short or long ones. This has some theoretical
justification as well.* A parabolic standard error s(X) is assumed:

s(X) = -.OTOX2 + .12X + .040 if the average yield strength is used

and s(X) = —.O69Xl2 + .09TX + .066 if the yield strength of the flat is

7%

Note that if the coefficients of s(X) are multiplied by a common

2|
o |

used, where X = A = . AlsoY=P /P.
u y

factor results will not change.

¥Applied Mechanics Reviews summarize Perry's work as follows:
(Perry, S.H. "Statistical Variation of Buckling Strength" PhD Thesis
University College, London, -1966). ’
"(This is a) study of random imperfections in columns; over the

total range of slenderness ratios of a columm, three disti;ct forms of
post-buckling are possible: for long columns, stable, elastic post-
buckling occurs, showing little dependence on geometric imperfections;
for very short columns, stable plastic post-buckling occurs again ’
showing little dependence on imperfections; in the intermediate range
of slenderness ratios, post-buckling can be Plastic and unstable %n
the three ranges, the dependence of collapse load on initial im érfec—
tions takes different forms; this leads +o scatter of load becoﬁing

more serious at the intermediate loads than a
of the range of slenderness ratios." © the two extreme ends
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An ordinary least-square regression is fitted to the transformed
variables:

X' = X/s(X) and Y' = ¥/s(X).

This generalized least-square regression is performed on the same
92 data points mentioned in d). An improvement in the correlation
coefficient results.

The above statistical analysis is done twice, using the average
yield strength and the yield strength of the flat. It is seen that a
straight line fits the data quite well (the correlation coefficient is
between -.87 and -.97) and the five different schemes a-e produce results
fairly close to one another.

A closer look is taken of scheme d), which contains the most data
and assumes a straightforward uniform variance. Let Ul and U2 define
the ratios of the actual column strength to that predicted by the linear
model and by the SSRC parabola respectively (SSRCO(X) = l-X2/h for X <
/5’ = l/X2 for X > ¥2. Tables 9.17 and 9.22). The mean, variance,
standard deviation and coefficient of variation of these ratios are
determined. If the average yield strength is used, the SSRC parabola
slightly overestimates column strength (mean of U2 less than 1.0) but
the data exhibit a smaller variance about the parabola than the straight
If the yield strength of the flats is used, there is little

line.

difference between the SSRC parabola and the linear model, as far as
Ul and U2 are concerned.

Fig.'9,76 and 9.77 show the column data, non-dimensionalized by
using the average yield strength and the yield strength of the flats

respectively. The regression line using 75 of the 80 points (scheme b),
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its corresponding 95% confidence interval, the SSRC curve (dotted line)
and a minimum curve are also shown. All points, except one, D2, fall
above the minimum curve, which is governed by the PBC1lhk and RFClY4 columns.

If the average yield strength is used, the minimum curve is:

Y = .787 ~ .292X for .847 < X < 2.0
¥ =1.218 - 1.307TX + .599)(2 for .182 < X < .847 (9.2)
Y =1.0 for X < .182

If the yield strength of the flats is used, the minimum curve is:

Y=1.122 - .T26X + .1l4X°  for A7k < x <200

(9.3)
Y

1.0 X < .17k

Fig. 9.78 and 9.79 show the column data obtained in the present
work (80 points) and Kar;en's data (17 points). Also shown are the
regression line using generalized least-squares (scheme e) and the
corresponding 95% confidence interval. (The interval of confidence

looks different from the theoretical work of Bjorhovde {19721 who

assumes Pu/Py = 1.0 at A = 0.0. The reason is, at the limit of zero
length, all the variations in column strength are due to material
properties and are included in Py. In the present work, P_ is based
on measurements on one set of coupon tests).

Finally Fig. 9.80 compares the SSRC parabola (called here curve 0),
the SSRC curves 1,2 and 3 (Johnston [1976]), the Swedish Code design
curve (European Recommendations [1979]) and the two straight lines
obtained by scheme b) using 75 data points.,

A brief summary of the fihdings described in this Section is given
in Section 10.2. The following are the equations for the various approaches

discussed above.



SSRC curve 0:

- for 0 < A< /2

- for A > /2
SSRC curve 1:
- for .15 < A < 1.2
- for 1.2 < A < 1.8

for 1.8 < X < 2.8

SSRC curve 2:

- for 0 <A <L .15

- for .15 < X < 1.0

- for 1.0 < A < 2.0
SSRC curve 3:

- for 0 < A < .15

- for .15 < A < .8

- for .8 <A <2.2

Swedish design curve:

- for 0 < A < .30

- for .30 < X £ 1.85
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Pu/Py

Pu/ Py'
Pu/ Py
Pu/ Py

Pu/ Py

Pu/Py
Pu/Py

Pu/ P

Pu/ Py’
Pu/ Py

Pu/Py

Pu/Py

Pu/Py

1.0 - (X
1.0/(%)?
1.0

)2 /4

990 + .122% - .367(%)2

.051 + .801(X)

B (9.4)

.008 + .9h2(i)'2

1.035

1.093 -

-.128 +

1.0

1.126 -

Linear regression using average yield strength

_forOiXi.lSh

- for .15u4 < x <2.0

Pu/ Py

Pu/Py

Linear regression using yield strength

_foro_ﬁif_.h28

- for .428 < X _<_2.0

Pu/Py

Pu/Py

202X - .222(0)%  (9.5)
636(0)L + Lo87(X)"2

.622) (9.6)
707(0)7Y - L102(3)72

- (9.7)
L19x

(scheme b)

1.0

_ (9.8)
1.065 - .Lk23)
of flats (scheme b)
1.0

- (9.9)
1.225 - .526])
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9.5 Effect of Transverse Residual Stresses

It was assumed in Chapter 6 that yielding occurs when the total
strain including the longitudinal residual strain equals the uniaxial
yield strain (Eq. 6.43 and 6.45). In light of the results of Chapter k4,
which reveals that the transverse residual stresses oges are larger than
the longitudinal residual stresses Ozes, this assumption needs to be
reexamined.

Preliminary studies showed that the inclusion of the transverse
residual stresses in the computations may lead to S to 15 percent

reduction in the computed column strengths. Further more definitive

studies are needed.

9.6 Closure

Column tests were described and their results compared with
theoretical predictions. Agreement is satisfactory, except for the
thinner channels (Clk). The column data fall fairly closely along a
straight line. The effect of transverse residual stresses deserve

further attention.
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TABLE 9.1a

PBC 14, GROUP 1: COLUMN TEST RESULTS

EXPERIMENT THEORY

Column L L/R VO/L Pu Vt/L Pth Ae/A Error

inch 1073 kips 1073 kips %
A3 27.0  41.7 21 20.20 .50 21.50 k49.0 6.4
AS 39.0 60.2 -.48 19.30 -1.0 20.75 L7.h 7.5
A9 57.0 88.0 -1.3 13.95 .50 15.1h  81.7 8.5
A 11 69.0 106.5 -.78 11.20 .50 11.53 8L4.5 2.1
A 13 78.0 120.4 .33 10.50 -.05 10.62 99.3 1.1
A 1k 89.0 137.3 -.24 8.20 .10 8.16 96.5 .5

Cross-sectional area A = .538 in2 Radius of gyration R = .648 in

A = area of part of cross-section that remains elastic when
©  paximum theoretical load is attained.
Vt = midheight initial deflection used in computer program.

Column length includes end plates and

end fixtures.

TABLE 9.1b

PBC 1L, GROUP 1l:

NON-DIMENSIONALIZED COLUMN TEST RESULTS

Column Af Pu/ny Ag P'u/Pya
A3 .h82 .963  .517 .839
AS .696 .920 .T7h6  .B02
A9 1.018 .665 1.090 .579
Al1 1.232 .53k 1.320 .L4é65
A 13 1.393 .501 1.Lho2 436
A1k 1.589 .391 1.703  .3L1

Yield strength of flat

Average yield strength of cross-section ¢
= 24,08 kips

P .= A0

Ve vt = 20.97 kips

£ E R

Oyf = 38.98 ksi

Pya = Acya

a

a E

¥ =% /32
T

= LU 75 ksi
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TABLE 9.2

COLUMN TEST RESULTS

Column L VO/L P, L/R Pu/Pyf Af Pu/Pya Aa
inch 1073 kips

Al 21. .15  19.00 32.41 .906 .375 .789  .Lo2
A2 27. 1.6 16.90 L41.67 .806 .482 .702  .517
Al 33. 1.9 16.30 50.93 CTTT .589 67T .631
A6 39. .97 1k.ko 60.18 .687 .696 .598  .T46
AT 45, -.08 13.50 69.Lk 6Lk .803 .561  .861
A8 5.. =-.65 13.66 T78.70 .651 .911 567 .976
A 10 63. -.10 10.45 97.22 .501 1.125 .436 1.205
A 12 75. =1.5 9.50 115.7 453 1.339 .394 1.L435

For explanations of notations see Table 9.1.
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TABLE 9.3a

RFC 14, GROUP 1: COLUMN TEST RESULTS

EXPERIMENT THEORY
Column L L/R VO/L P, Vt/L Pth Ae/A Error Remark
inch 1073 kips 103 kips % %

B2 27.0 bi.7 .95  19.50 1.0 21.10 32.5 5.5 o 5.
B &4 39.0 60.3 .66  18.00 1.0 19.36 53.4 7.6 o 5.
B S 51.0 78.8 -.38 16.00 -.5 16.62 178.8 3.7 o, 5.
B 6 51.0 78.8 -.66 15.50 -1.0 15.44 77.7 .39 o, 5.
B9 80.5 124.Lk -.83 8.80 -.25 9.27 97.9 5.3

B 10 80.5 124.k4 .35 8.00 -1.0 8.5 94,6 5.6

B 11 84.9 131.2 R 9.05 10 8.65  99.3 L.u

Notations are explained in Table 9.la

Unless otherwise noted, theoretical strengths are based on yield strengths
determined by tensile coupon test, specimen a, as reported in Table 3.8 and
Fig. 3.9. (dy—S) means theoretical strengths are based on a yield strength
which is everywhere lower by 5.0 ksi than for coupon a.

A= .518 in2, R = .64T in.

TABLE 9.3b

RFC 14, GROUP 1: NON~-DIMENSIONALIZED COLUMN TEST RESULTS

Column ‘Xf Pu/ny i; Pu/Pya
B2 .516 .85 .535 .786
B L4 .T45 . 780 .T73 .725
B 5 <975 .693 1.011 . 645
B 6 975 672 1.011 .625
B9 1.539 .381  1.596 .355
B 10 1.539 347 1.596 .322
B 11 1.623 .392 1.683 .365
Notations are explained in Table 9.1b.

strength of specimen &,
used here, not cy—S.ksi.

L7.91 ksi.
2k .81 kips.

The actual values of yield
Table 3.8 and Fig. 3.9, are

cyf = Lh,.5h ksi, oya
ny = 23.07 kips, Pya
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TABLE 9.4

RFC 14, GROUP 2 COLUMN TEST RESULTS

Column L v, /L Py L/R Pu/Pyf 'Xf Ph/Py& A
inch 1073 kips
B 1 27.0 1.0 18.50 Li.73 .802 .516 LTUE  .535
B 3 39.0 1.5 16.30 60.28 .706 .T45 65T .773
B 7 51.0 1.8 14.00 78.82 .607 .975 .564 1,011
B8 63.0 .12 11.50 97.37 .Lk98 1.20k 463 1.2k49
Pgs Pya’ 7%"Xa based on o, of coupon a, Table 3.8.
TABLE 9.5a
PBC 13, GROUP 1: COLUMN TEST RESULTS
EXPERIMENT THEORY
Column L L/R Vg/L ‘ Pu Vt/L Pth Ae/A Error
inch 1073 kips = 107- kips % %
c3 39.0 60.2 .72 26.Lb0  -1.0 2h.b2  47.5 -7.5
C L 51.0 78.7 .25 21.60 -.b0 20.96 76.0 3.1
¢S 63.0 97.2 -.T4 15.85 +.50 15.76 80.8 ~-.57
c 6 82.0 126.5 -.25 9.95 .50 10.37 89.0 4.2
c7 100.0 154.3 -.46 7.70 10 7.79  96.3 1.2
A= .640 in2 R = .648 in

Notations are explained in Table 9.la
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TABLE 9.5b

NON-DIMENSIONALIZED COLUMN TEST RESULTS

Column A

Pu/P

X

Pu/P

f yf a ya
c 3 .688 1.08L LTh2 .919
Ch .890 .887 .970 .752
Cs 1.111 651 1.199 .552
Cc6 1.Lh7 409  1.560 .351
cT 1.76L .316  1.903 . 268
Gyf = 38,05 ksi cya = 44,26 ksi
ny = 24,35 k Pya = 28.71 k

Notations are explained in Table 9.1lb

TABLE 9.6

PBC 13, GROUP 2: COLUMN TEST RESULTS

L VO/L P, L/R Pu/ny xf Pu/Pya xa
inch 1073 kips
27.0 -.10 35.00 L1.7 1.437 .476 1.219 .sS1l4
27.0 .72 23.38 1.7 .960  .L76 .81k .514

Notations are explained in Tables 9.1.
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TABLE 9.Ta

RFC 13, GROUP 1l: COLUMN TEST RESULTS

| EXPERIMENT " THEQRY
Column L L/R VO/L Pu Vt/L Pth Ae/A Error

inch 107 kips 107> kips % %
D6 39.0 60.2 -.1h  29.50 .50 29.45  50.7 -.17
D7 45.0 69.4 17.7 24h.50 .50 22,92 54,2 6.4
D8 51.0 78.7 .83 23.00 .13 21.82 65.4L -5.1
D9 57.0 88.0 1.7 20.00 -.10 18.99 83.0 =5.0
D 10 63.0 97.2 -1.1 16.00 -.15 16.53 89.3 3.3
D11 69.0 106.5 .30  13.35 .35 1h,14k 86.8 5.9
D 12 75.0 115.7 =~.62 12.20 -.35 12.07 93.5 =1.1
D 13 87.0 134.3 9.03 1.0 8.97 86.7 -.67
A= .640 in® R = .648 in

Notations are explained in Table 9.la

All above initial deflections were measured by method 1.

TABLE 9.7b

RFC 13, GROUP 1: NON-DIMENSIONALIZED COLUMN TEST RESULTS

Column Af Pu/ny Ka Pu/Pya
D6 .691  1.202 T2 1.0M1
DT LT197 .998 .856 .865
D8 .903 .937 .970 .812
D9 1.009 815  1.085 .T06
D 10 1.116 652 1.199 .565
D 11 1.222 54 10313 AT
D 12 1.328 97 1.ket 431
D 13 1.541 . .368 1.655 .319

o p = 38.34 ksi Oa = Lh.27 ksi ny = 2h.5h k Pya =28.32 k

Notations are explained in Table 9.1lb
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RFC 13, GROUP 2: COLUMN TEST RESULTS

Column L Vo/L P, L/R pu/Py A Pu/Pya Ay
inech 10_3 kips
D1 19.25% 34,20 29.71 1.394% .341 1.208 .366
D2 21.0%* 17.00 32.41 .693  .372 .600 .4oO
D3 27.0 .21 35.00 41.67 1.426 478 1.236 .514
DL 27.0 -4.,1 22.30 L41.67 .909  .L478 787 .51k
D5 33.0 34.50 50.93 1.406 .584 1.218 .628
*¥D 1 tested with knife edge fixtures, not the regular ones.
*¥¥D 2 failed by local buckling of web, near weld.
Notations are explained in Tables 9.1.
TABLE 9.9a
H 11, GROUP 1: COLUMN TEST RESULTS
EXPERIMENT THEORY
Column L L/R VO/L Py v, /L P, AJA  Error
inch 1073 kips 1073 kips % %
E1l 19.k4 51.2 3.k 18.50 1.0 19.26 67.1 k4.1
E 3 28.0 73.9 1.9 18.20 .3 17.89 91.2 1.7
E L 39.0 102.9 -.83 11.80 -.15 11.88 98.4 67
E S 51.0 13k.6 -.L8 7.00 -.25 6.96 97.2  -.5T
A = .LLk2 in? R = .379 in
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TABLE 9.9b

H 11, GROUP 1l: NON-DIMENSIONALIZED COLUMN TEST RESULTS

Column A Pu/Py ¢ Ay FPulPyg
El .621 .977 .682 .811
E3 .896 .961 .984 .T97
Bh 1.248 .623  1.370 .51T
ES 1.632 .370 1.792 .307
= 3 = S1. i =18.93k P =22.85%k
cyf 42.83 ksi Oya 5L.62 ksi ny 18.93 va
TABLE 9.10
H 11, GROUP 2: COLUMN TEST RESULTS
Column L Vo/L Bu L/R Pu/Pyf Xf Ph/Pya ka
inch 1075 kips

E 2 23.0 .66 15.70 60.7 .829 .T36 687 .808

Notations are explained in Tables 9.1.
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TABLE 9.1la

H7 COLUMN TEST RESULTS

EXPERIMENT THEORY
Column L L/R Vé/L Pu Vi/L Pth Ae/A Error
inch kips 10'3 kips % %
F1 31.0 53.9 -.75 45,00 -1.0 46.90 L7T.6 5.8
F2 39.0 67.8 -.21 41.80 -.10 L45.39 66.5 8.6
F 3 ok  73.7 -.66 39.60 -.30 L4L0.80 81.2 3.0
F b 45,0 78.3 -.92 39.4o .50  39.99 8kL.5 1.5
F5 51.0 88.7 .29  30.90 -.17 32.34 90.4 4.8
. 2 .
A = .960 in R =575 in

Notations are explained in Tables 9.1

TABLE 9.1lb

H 7 NON-DIMENSIONALIZED COLUMN TEST RESULTS

Column T gJ%f T PJP

T a ya

F1l 667 1.021 .ThoO .829
F 2 .839 .98 .931 .T70
F 3 .912 698  1.012 .729
FL .968 .893  1.074 .726
F5 1.097 701 1.217 .569

O o = 4.5 ksi Ia = 54.85 ksi ny = hk.09 k Pya = 54.31 k

Notations are explained in Tables 9.1.
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HT COLUMN TEST RESULTS

Notations are explained in Tables 9.1.

HT NON-DIMENSIONALIZED COLUMN TEST RESULTS

TABLE 9.12b

Column L L/R VO/L 'Pu Vt/L Pth Ae/A Error
inch 1073 kips 1070 kips % 7

G 1 27.9 b7.6 -.17 97.L0 -.50 96.72 s5L.2 T
G2 39.0 66.5 =.57 T78.00 =-.50 85.26 76.6 9.3
G 3 51.0 87.0 .26  65.80 .40 65.61  97.L -.29
Gk 65.4 111.6 -.15 L2.75 .10  L43.16 98.8 1.0
G S 71.0 1l21.2 .30 35..40 .17 36.Lko 100, 2.7
A=1.97 in2 R = .586 in

Column X% Ph/ny X; FL/Pya
G1l 672 .898 .687 .858
G2 .939 .T19 .961 .687
G 3 1.228 .607  1.256 .580
G4 1.575 394 1.611 377
G5 1.710 .326  1.7hkg .312
g .= 58.00 ksi =

ytf

Notations are explained in Tables 9.1.

o = 60.6 i
va 9 ksi ny

108.46 x Pya = 113.5 k
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TABLE 9.13

LEAST SQUARE REGRESSION ON COLUMN DATA

Data | Yield Ordinary ¥odel Corr, Origin

Base | Strength| or General Y = Coeff.

a)80 | Average | OLS 1.090 - 437X |-.886 | Dat's column tests
b)T5 " " 1.065 - .k23X (-.936 | Exclude C1,D1,D2,D3,D5
c)55 " " 1.069 - .L27X |-.885 | Exclude stubs also
d)92 " " 1.096 - .L27X [-.906 |Dat's 75 + Karren's 17
e)70 " " 1.150 - 472X |-.86L4 | Dat + Karren - stubs
£)92 " GLS 1.088 - .433X |-.967 | Dat's 75 + Karren's 17
2)80 | Flat OLS 1.255 - .543X [-.877 |Dat's column tests
b)75 n " 1.225 - .526X |-.926 | Exclude C1l,D1,D2,D3,D5
c)s55 " " 1.225 - .525X [-.872 | Exclude stubs also
d)oz2 " " 1.241 - .520X |-.913 |Dat's 75 + Karren's 17
e) 70 " " 1.275 - .551X |-.867 | Dat + Karren - stubs
£)92 LGS 1.241 - .531X '-.929 'Dat's 75 + Karren's 17

- P
ey _3=L1l/XL "
Note: X =2 = T R ° ?
0 may be the yield strength of the flat or the average yield strength.
Yy

Column data are gathered from Tables T.2, 9.1b, 9.2, 9.3b, 9.4, 9.5b, 9.6
9.7b, 9.8, 9.9b, 9.10, 9.11b, 9.12b and 9.26
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TABLE 9.1k

ANOVA USING AVERAGE YIELD STRENGTH

DAT'S 80 DATA POINTS

Model ¥ = 1.000 - 437 X

Correlation coefficient R = -.886
ANOVA

Source Sum of Squares Degrees of Freedom Mean Square
Regression (bo) Lk.10 1
Regression (bl|bo) 4.256 1 MS, = 2.063°
Residual 1.169 78 32 = .0150
Total, uncorrected
for mean 49,52 80
Estimated standard error of slope bl .0259
95% confidence interval for slope -. 488 < bl < -.385
Estimated standard error of intercept bo .02L8
95% confidence interval for intercept 1.041 < v < 1.139
o)
Define UL = actual Y/¥
U2 = actual Y/SSRCO(X)
where SSRCO(X) = 1 - x2/h for X < /2
= /% for X < /2
represents the present design curve of the SSRC. Then
~ "Mean Variance Standard Coefficient
Deviation of Variation

Ul 997 .0232 .152 .153

U2 .9k3 .0209 J1bh .153
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TABLE 9.15

ANOVA USING AVERAGE YIELD STRENGTH

DAT'S 75 DATA POINTS (ALL EXCEPT Cl,D1,D2,D3,D5)

Model Y = 1.065 - .423 X
Correlation coefficient R = -.936

ANOVA

Source Sum of Squares Degrees of Freedom Mean Square
Regression (bo) 38.76 1

2
Regression (b [b ) 3.901 1 MSp = 1.975
2
Residual .5b9 73 s° = .00752
Total, uncorrected
for mesn L3.21 75
Estimated standard error of slope (bl) .0186
95% confidence interval for slope -.460 < by < -.386
Estimated standard error of intercept (bo) .0182
95% confidence interval for intercept 1.028 < b < 1.101
Closest point to Euler curve: X =1.70, Y = Euler = .3k6
Mean Variance Standard Coefficient
Deviation of Variation
.998 .01k2 119 .119

3:; .928 013k 116 125

UL and U2 are defined in Table 9.1k
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TABLE 9.16

ANOVA USING AVERAGE YIELD STRENGTH

55 DATA POINTS (DAT'S 75 - STUBS)

Model ¥ =1.069 - .b27 X
Correlation coefficient R = -.885

ANOVA

Source Sum of Sguares Degrees of Freedom Mean Square
Regression (bo) 20.58 1
Regression (bllbo) 1.525 1 MSp = 1.2352
Residual Riv 53 g2 = .00799
Total, uncorrected
for mean 22.53 55
Estimated standard error of slope bl .0309
95% confidence interval for slope -.h89‘< b, < -.365
Estimated standard error of intercept b, .0353

95% confidence interval for intercept

Closest point to Euler curve: X = 1.70, ?
Mean Variance Standard
Deviation
Ul 997 . 0170 131
U2 : .. .895 .0119 .109

Ul and U2 are defined in Table 9.1k

+999 < b < 1.140

.343, Euler = .346

Coefficient
of Variation

ol3l
.122
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TABLE 9.17

ANOVA USING AVERAGE YIELD STRENGTH

92 DATA POINTS (DAT'S 75 + KARREN'S 17)

Model ¥ =1.006 - .427 x

Correlation coefficient R = -.906

ANQVA

Source Sum of Squares Degrees of Freedom Mean Square
Regression (bo) 52.40 1
Regression (bllbo) 4.286 1 MS, = 2.070°
Residual .930 90 s2 = .0103
Total, uncorrected
for mean 57.62 92

Estimated standard error of slope b

95% confidence interval for slope

1l

Estimated standard error of intercept bo

95% confidence interval for intercept

Closest point to Euler curve:

Mean Variance
Ul . 995 .0192
U2 .956 .0153

Ul and U2 are defined in Table 9.1k

.0210

.0198

X = 1.hbb, ¥ = Buler = .479

AStandard

Deviation

.139
.12k

Coefficient of
Variation

-139
.130

--469 < b, < -.385

1.057 < b < 1.136
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TABLE 9.18

ANOVA USING AVERAGE YIELD STRENGTH

TO DATA PGINTS (DAT'S 55 + KARREN'S 15. NO STUBS)
Model ¥ =1.150 - 472 X
Correlation coefficient R = - .864

ANOVA

Source Sum of Squares Degrees of Freedom Mean Sgquare
Regression (bo) 31.410 1
Regression (b [b ) 2,200 1 MS_ = 1.483°
Residual .Th5 68 s2 = .0109
Total, uncorrected
for mean 3L4.355 T0
Estimated standard error of slope b .0333

1
95% confidence interval for slope
Estimated standard error of intercept bo

95% confidence interval for intercept

Mean Variance Standard

Deviation
Ul .997 .0208 .1Lh
U2 .933 L0157 .125

Ul and U2 are defined in Table 9.1L4

=539 <b, < -.ho6
.0361

1.078 < b, £ 1.222

Coefficient
of Variation

L1k
134
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TABLE 9.19

WEIGHTED LEAST SQUARES AND ANOVA

USING AVERAGE YIELD STRENGTH

Assumed standard error

s(X) = -.07 x2 + .12 X + .0k
Transformed Variables X/s = X' Y/s =Y
Model Y' =1.088 - .433 ¢
Multiple Correlation Coefficient R? = .935 or R = -.967

2.040 x 10‘1‘t -1.353x 1o'h

Variance-Covariance Matrix of Parameters =( _ -h)

Source Sum of Squares Degrees of Freedom Mean Square
Ss (bo) 1.134 x 101L 1 1.131”:10LL
3 3
Ss (b1|bo) 2.325 x 10 1 2.325x 10
2 2
Residual SS 1.62h x 10 90 s©=1.805 =
1.3&32
N
Total SS 1.383 x 10 92

Standard error of slope s.e.(bl) = 0117

Standard error of intercept s.e. (bo) = ,01L43

Mean Variance Standard Coefficient
Deviation of Variation
un 1 1.016 . 0194 +139 .137
U2 .956 .0153 .12k -130

Ul and U2 are defined in Table 9.14
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TABLE 9.20

ANQVA USING YIELD STRENGTH OF FLAT

DAT'S 80 DATA POINTS

Model ?=1.255- .543 X
Correlation coefficient R = -.877

ANOVA

Source Sum of Squares Degrees of Freedom Mean Square
Regression (bo) 57.84 1
Regression (bllbo) 5.848 1 M8y = 2.418°
Residual 1.750 78 52 = ,0224
Total, uncorrected
for mean 65.44 80

Estimated standard error of slope bl

95% confidence interval for slope
Estimated standard error of intercept bO

95% confidence interval for intercept

.0336

-.610 < b, < =476

1.195 < bo < 1.316

Mean Variance Standard Coefficient
Deviation of Variation
Ul .997 .0261 162
U2 1.038 .0360 .183

Ul and U2 are defined in Table 9.1k
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TABLE 9.21

ANOVA USING YIELD STRENGTH OF FLAT

DAT'S 75 DATA POINTS (ALL EXCEPT C1,D1,D2,D3,D5)

Model ¥ =1.225 - .526 X
Correlation coefficient R = -.926

ANOVA

Source Sum of Squares Degrees of Freedom Mean Square
Regression (bo) 50.71 1
Regression (bllbo) 5. 344 1 MSp = 2.310°
Residual -890 73 s° = o122
Total, uncorrected
for mean 56.95 75
Estimated standard error of slope bl .0251
95% confidence interval for slope -.576 < by < -.L76
Estimated standard error of intercept bo 0231
95% confidence interval for intercept 1.179 < bo <1.271

Closest point to Euler curve: X =1.55, Y = 410, Euler = .416

Mean Variance Standard Coefficient
Deviation of Variation
. . .130
UL .998 0168 130
U2 1.018 .02k9 .158 .155

UL and U2 are defined in Table 9.1h.
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TABLE 9.22

ANOVA USING YIELD STRENGTH OF FLAT

55 DATA POINTS (DAT'S 75 - STUBS)

Model ¢ =1.225 - .525 X
Correlation coefficient R = -.872
ANOVA
Source Sum of Squares Degrees of Freedom Mean Square
Regression (bo) 26.69 1
Regression (b, |b,) 2.078 1 MSy = 1.141°
Residual .655 53 s? = .o12k
Total, uncorrected
for mean 29.42 55
Estimated standard error of slope b, .0ko5
95% confidence interval for slope -.606 <oy < -.4hs
Estimated standard error of intercept bo .0h3lh
95% confidence interval for intercept 1.138 < b < 1.311
2,2
Mean Variance Standard Coefficient
Deviation of Variation
Ul .998 .0198 .1k .11
u2 .962 0177 133 .138

Ul and U2 are defined in Table 9.1k
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TABLE 9.23

ANOVA USING YIELD STRENGTH OF FLAT

92 DATA POINTS (DAT'S 75 + KARREN'S 17)

Model ¥ =1.241 - .520 X
Correlation coefficient R = -.913

ANQVA

Source Sum of Squares Degrees of Freedom Mean Square
Regression (b)) 66.25 1

2

Regression (bl|bo) 5.655 1 MSp = 2.378
Residual 1.12k 90 s = .0125
Total, uncorrected
for mean 73.03
Fstimated standard error of slope bl .024Y
95% confidence interval for slope -.569 <by < - ol
Estimated standard error of intercept bo .0218
95% confidence interval for intercept 1.198 < b £ 1.285

Closest point to Euler curve X=1.777T Y = Euler = .3167

Mean Variance Standard Coefficient of
Deviation Variation
Ul .996  .0LT9 .13k .13k
) 1.038 .0230 .152 .16

Ul and U2 are defined in Table 9.1L.
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TABLE 9.2L

ANOVA USING YIELD STRENGTH OF FLAT

70 DATA POINTS (DAT'S 55 + KARREN'S 15. NO STUBS)

Model ¥=1.275 - .551 X
Correlation coefficient R = -.867
ANQVA
Source Sum of Squares Degrees of Freedom Mean Square
Regression (bo) 39.086 1
Regression (bl[bo) 2.650 1 MS, = 1.628°
Residual .873 68 52 = ,0128
Total, uncorrected
for mean 42,609 70
Estimated standard error of slope bl . 0384
95% confidence interval for slope -.628 _<_bl < =.b75
Estimated standard error of intercept .0392
95% confidence interval for intercept 1.197 < bo < 1.354
Mean Variance Standard Coefficient
Deviation of Variation
Ul .997 .0199 L1k 1l
U2 .996 .0190 .138 .138

Ul and U2 are defined in Table 9.1hL
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TABLE 9.25

WEIGHTED LEAST SQUARES AND ANOVA

USING YIELD STRENGTH OF FLAT

Assumed standard deviation

Transformed Variables

X/s = X'

Model

Y' = 1.2k - .531 X¢

Multiple Correlation Coefficient

Variance-Covariance Matrix of Parameters

92 DATA POINTS (DAT'S 75 + KARREN'S 17)

s(X) = -.069 x2 + .097 X + .066

Y/s = Y!

1}

.864 or R = -.929

N
L

-2.41k x 10

( 3.335x 10"

2.4k x 107 2.402x 10"

L
L

)

Source Sum of Sguares Degrees of Freedom Mean Sguare
ss (b,) 9.669 x 10° 1 9.669 x 103
2 2
ss (bl|bo) 9.007 x 10 1 9.007 x 10
2 2
Residual SS 1.423 x 10 90 s°=1.58] =
1.2572
L
Total SS 1.071 x 10 g2

-2
Standard error of slope s.e. (b;) = 1.550 x 10

Standard error of intercept s.e. (bo) = 1.826 x 10~

Ul
U2

Mean Variance
1.010 0179
1.038 .0230

Ul and U2 are defined in Table 9.1k

2
Standard Coefficient
Deviation of Variation
.134 .133
.152 .1L6



Section

Double Channel

HRSK 10-3T7.0
ny = 45.6 ksi
o = U7.8 ksi
ya
Double Hat
HRSK 9-30.7
Gyf = L46.8 ksi
lof = 50.0 ksi
ya

KARREN'S COLUMN TEST RESULTS
HOT-ROLLED SEMI-KILLED DOUBLE

Specimen

Stub
CT 1
2

@ 3 O v W

Stub
CT 9
10
11
12
13
1k
15

TABLE 9.26

346

HATS AND DOUBLE CHANNELS

(KARREN [1967])

Pu/ny
224
.0L48
.017
.00L
.SbT
.960
.960
-945
.862

H O e

1.184
1.015
.91L
.726
.T31
.880
.968
1.017

.0T00
460
.576
.69
.806
.806
.922
.806
1.108

112
.532
.758
.967
1.160
.980
.T39
.198

Pu/P

va

1.167
1.000
971
. 960
.90k
.916
.916
.902
.822

1.108
. 950
.856
.680
. 684
.824
-906
-952

L0717
U7
.589
. 707
.825
.825
.9kh
.825
.13k

.115
.550
. 784
1.000
1.199
1.013
.76k
.515

Bolted or
Riveted

oW ow W W W o ow

w0 W W w W W

Effective length of stubs was taken as 0.6 * total length, assuming
nilled ends nearly fixed.



347

TTelsq
:q488], uumTo) JuoT 26 o030ud

“a""'\ _.__. L Ta

dn-q8g TBISUSY
1983, uumto) TFuoT]

Vet M
—

——

16 030uUd




348

] .
Dm:LmI YL S/
3/k in.
e - gre=
|
IZZDIET I o - e
L e

(a) Section Through Support in
Direction of Flexural Buckling

(b) Section A-A

Fig., 9.1 End Fixture for Column Tests
(from Pekdz [1967])
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CHAPTER 10

CONCLUSIONS

10.1 Contributions

This study of the strength of cold-formed steel columns contri-
butes the following:

- Experimental data on the residual stresses due to qold-forming.
Press-braked channels, roll-formed channels and hats were sectioned and
the release of the longitudinal residual stresses measured with strain
gages. The residual stress pattern is symmetrical about the axis of
symmetry of the section. The released strains are negative (contrac-
tion) on the convex face of the section, positive on the concave face,
but the average is zero. Surprisingly, there exist large residual
stresses in the flat portions of a section. However, no systematic
or significant difference between the residual stresses of press-braked
and those of roll-formed sections is observed.

- Experimental data on the behavior and strength of cold-formed
colums. Sixty pin-ended columns were loaded centrally and the strains
and deflections at midheight recorded. In addition, twenty stub columns
were tested under fixed end conditions. The tests span the inelastic
range of flexural buckling.

- A simple theory of residual stresses due to sheet bending per-
formed by a combination of end moments and radial pressure. It is
assumed that loading brings the section to full plastification and
unloading is purely elastic. Agreement is satisfactory with a more
jcated theory, which assumes elasto-plastic loading and purely

compl
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elastic unloading.

- A less simple theory of residual stresses due to sheet bending.
Full plastification is still assumed upon loading, but unloading may
be inelastic. When no radial pressure is exerted, results reduce to
previously published work.

- A pumerical scheme for predicting column behavior and strength.
Tnitial and additional column deflections are assumed sinusoidal. The
program accounts for variations in yield strength over the.éross;séétion
and the presence of residual stresses. Three distributions of residual
stresses across the thickness are assumed: uniform, linear and "rectan-
gular'". A limited parameter study suggests the influence of residual
stresses decreases as initial out-of-straightness increases. Buckling
to the right or to the left of the weak axis, which is here perpendicular
to the axis of symmetry of the section, produces different strengths.
This computational scﬁeme can be extended to other geometries.

~ A study of the process of column centering. If alignment is
monitored from midheight deflections, then introducing a small load
eccentricity is equivalent to reducing the initial out-of-straightness

by 5/4 the eccentricity.

- Column curves are discussed in more detail below.

10.2 Conclusions

Except for the channels of gage lh,agreement between actual and
predicted column strength is satisfactory. It is‘thus felt that all
important parameters have been accounted for, namely, initial out-of-
straightness, variations in yield strength and presence of residual

stresses over the crogs-—section.
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A statistical study of the column test results is presented in
SectiSn 9.4 on page 314. Various combinations of test data are analyzed
and various regression curves tried. The results that are most signi-
ficant from a practical column design point of view are summarized below.
For this summary, the basis will be the analyses of all the column tests
of the author except 5. These 5 tests out of a total of 60 column tests
will be disregarded because they were not reproducible and fell far from
other similar tests results.

The following regression equations are obtained on the basis of the

data described above.
- if the average yield strength of the section is used:

P/Pya = 1.069 - .h427 xa (10.1)

- if the yield strength of the flat is used:

P/Pyf = 1.225 - .525 xf (10.2)

X; and K} are defined in Table T7.2. These column curves are expressed
as the ratios of the ultimate load to the yield load versus ratio of
the slenderness ratio to the slendermess ratio at which Euler buckling
stress equals the yield stress.

The mean and the standard deviation of the ratios of the actual
column strengths to those predicted by Eq. 10.1 are given in Table 9.16
as .997 and .131, respectively. Those for Eq. 10.2 are given in Table
9.22 as .998 and .141, respectively. A graphical representation of
Eq. 9.9 which is very close to Eq. 10.2 and the SSRC parabola along

with the test results can be found in Fig. 9.7TT.
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The present SSRC parabola appears seriously unconservative when
used in conjunction with the average yield stress. The mean and the
standard deviation of the ratios of the actual strengths to those pre-
dicted by the SSRC parabola are given in Table 9.16 as .895 and .109,
respectively. These parameters become .962 and .133, respectively,
as given in Table 9.22 where the yield strength of the flats is used.

When the test results of Karren are considered along with the
data described above, the difference in terms of the means and tne
standard deviations between the results obtained using the above regres-
sion curves and the SSRC parabola becomes less significant.

As can be seen, for example, in Fig. 9.77 and as indicated by
the standard deviations computed, the test data has a significant
amount of scatter which should be considered in deciding upon a factor

of safety or a resistance factor.

10.3 Future Work

- The influence of transverse residual stresses deserves further
attention. The combination of a rectangular longitudinal residual stress
distribution and itsacorresponding transverse component can be shown to
be equivalent to a bilinear longitudinal residual stress distribution.

This is the logical next step after the three models used here:

uniform, linear and rectangular.

- Using the computer program developed here, a systematic study
of the combined effects of residual stresses and initial deflections for

various slenderness ratios and yield strengths can be done. Residual

stresses may be distributed in various ways over the perimeter as well

as across the thickness.
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-~ Cold forming residual stresses need to be investigated further.
A sheet bending experiment can be performed using a combination of end
moments and radial pressure. Actual industrial processes can also be
instrumented.

- The author's long column tests suggest a straight line to be
a better basis for design than the present SSRC parabola. The present
design curves for beam-columns, columns subject to torsional-flexural
buckling and to local buckling are based on the SSRC parabola and thus

also appear in need of revision.
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APPENDIX A

COMPUTATION OF FORCES AND MOMENTS IN CHAPTER L

Case 1: Derivation of Equations (4.43) and (L.L42).
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Case 2: Derivation of Equations (4.56) and (L.55)
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APPENDIX B

EFFECT OF RESIDUAL STRESSES ON COLUMN STRENGTH

B.1l Elemental Force and Moment for Assumed Residual Strain Distributions

The subscript J and superscript res are dropped here.

B.1.1 Linear Strain Distribution, Straight Element (Fig. B.1l)

Let the element dimensions be B¥t and the residual strains at

the outside and inside edges be Eo and si. The residual force is:
f = EBt(eo + ei)/2'

The moment sign convention is such that positive moment creates

less compression on the outside than the inside.’

= - €, 6.22
e= (g, + e )/2 + (e - € )o/t ( )
t/2
2
- m= EB epdp = EBt (eo - ei)/l2 (6.392a)
-t/2
B.1.2 Linear Strain Distribution, Curved Element (Fig. B.2)

Let R be the average radius, B = 20R the width and ¢ the radius

of the centroid of the element. From Roark and Young [1975]:

2
2sina o _t, (R+t/2)7
3 a 2 2R
2 2 .
B t o sino
= = —_—) /= . B.1l
or c=5 (1 + ) ) ) ( )

Lho
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The residual strain distribution is:

so+t—:i Eo-ai r—R
g = 5 + 5 8 where R = €7§
The residual force is:
R+t/2 o (R+t/2 N .
f = 28 J erdfdr = E f [(eO + ei) + (so - Ei)B](§8+R)§d8dB
0 R-t/2 o R-t/2
EBt Etza
f = == (EO + Ei) + g (EO - Ei) (6.35)

The residual moment is:

o R+t/2

e *e, € -,
o m= j EedA(x-c) = 2E (252 + 0L §)(raras) (reosé - c)
A =0 R-t/2
m 1 t t
- = J [s0+si + (so-ei)BJ(EB +R)[(‘2'B+ R)cos8 - c]dRas
-1 9=0
42 2 Rto 254
_ - . Rta sina ¢
= (so-+si)(12 sino, + R"sina - Rea) + Z (eo-ai)[~*af—-- R]

Introducing (B.1l) and R = B/2a:

. 2 2
sino (1 - T a )

o 3B2

2
_ EBt
-m = =75 (EO - Ei)

(6.39b)

B.1.3 Rectangular Strain Distribution, Straight Element (Fig. B.3)

Let 7 = ZQn/t. The residual force is:

- t t = EBt
f = EBeO(2 - pn) + EBe:i(2 + pn) == ((1 - c)eo + (l+2;)ei]
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The residual moment is:

- t 1t t
-m = EBE-:O(2 - on)2(2 +0 ) + EBei( + pn)
EBtZ
=5 (1 +z)(1 -C)(eo - ei)

B.1.4 Rectangular Strain Distribution, Curved Element: (Fig. B.h4)

Let subscripts o and i refer to the ocutside and inside parts,

separated by the neutral axis.

the average width and thickness are:

= T =
Bo 2Roa °
= T. =
Bi 2Rid i
The centroid is: .
c =R sSind (l +
o o o
¢, =R, 28 (1 +
1 1 a

The residual force is:

f E€O2ROaTO + Eei2RiaTi

2

R =R + %ﬁ— +p ) =R+ %(1.+ z)

(¢/2)(1 -¢)

(¢/2)(1 +T)

EBt [(go + ei) - C(Eo - ei)] + 5 L+ z)(1

For each part the average radius is:
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The residual moment is:

2
. t2 TO
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o0 Q0 o 12R2 o) 12R2
e}
+ 2EaR,T.e. 2222 [R(1 + ) -R. (1 + )]
17i71 1232 i 12R2
i
2 .
= B (1 D)1 - a)(e, - e B
3
Et .
+ 1o z(1 + z)(1 - C)(EO + si)31na
L
Bt .
- 213 (L+1z)(1 - C)(eo - Ei)a51na

B.2 Relation of Experimental Results to Assumed Rectangular Distribution

Let m, £ designate the moment and force resultants of the linear

stresses of relaxation

-m = +m
f=-F
B.2.1 Straight Element
2 2
EBt _ BBt" - -
—157-(1 +g)(1 C)(eo ei) = =33 (ao - ai)
EBt EBt ,— -
_— - + + = —
> (1 C)eo (1 .C)ei] > (eo + ei)
E + E, € - €,
e = Q 1 O 1
B 2 3(1 + )

+ g, £ - &€,
1 + 0 1
0 2 3(1 - )

(Y]
i
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B.2.2 Curved Element

2
EBt sina
. (l+c)(1-c)—a—(eo-ei)
LEC )L - £)(si
15 G z)(1 -t (sma)(eo + ei)
- -g%ﬁ (1 +2)(1 - g)al(sina)(e - ei)
_ EBt2 (1 t a ) sina (8 )
12 3B2 a o i
Boi(e, + ;) - aleg = e )] + B (1 - &P)(e, - e
EBt /- - Etea - -
_"—2—(504'%)+ 6 (EO-EI)

Let u =€ +€;, WIE -E4s U=E +E€;, WEE -E,, B=t/B and y=(1+g)(1-g).

The above equations reduce to:

30laBz(aBh - 20) + o282 - 3]w=60BYr T +2(a8%yc + o%8% - 3)F
(6.32)
suloBz(cBy - 20) + o28° - 3lu= (a®8% - 3)(3)d + 2c7)
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APPENDIX C

ANATYSIS OF VARIANCE

The following is taken from Draper and Smith [1966].

1 Xi is fit by least-squares to the

data (Xi,Yi). An analysis of variance (ANOVA) table measures the pre-

The linear model Qi = bO + b

cision of the estimate of the regression line. Let Y be the mean of the

Y.'s.
i
The equation:
-2 ~2 A =2
- = - + -
Z(Yi Y) Z(Yi Yi) Z(Yi Y)
i.e. Sum of Squares  _ Sum of Squares N Sum of Squares
about the mean about regression due to regression
(residual)

"shows that, of the variation in the Yi's about their mean, some of the

variation can be ascribed to the regression line and some, Z(Yi-?.)z

i/ to

the fact that the actual observations do not all lie on the regression
1ine." Thus, a way of assessing the usefulness of the regression line
as a predictor "is to see how much of the sum of squares (8S) about the

mean has fallen into the 5SS due to regression and how much into the SS

about regression. We shall be pleased if the S5 due to regression is

much greater than the SS about regression', i.e.

2 _ 5SS due to regression _ 1.0
R = SS about mean :

The total variation ZY? can be split into two parts. '"The quantity

n§2 would be the sum of squares about bo, SS(bO), if the model Yi==bo+ei

L55
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were fitted (bO = constant, ei = error). The remainder

=2 2 2
Z(Yi -Y)" = ZYi - (ZYi) /n

thus measures the extra SS removed by bl when the model ?i =bO +bl Xi + si

is used.”

"The mean sgquare about regression, sg, provides an estimate based
on n-2 degrees of freedom of the variance about the regression.

If the regression equation were estimated from an indefinitely
large number of observations, the variance about the regression would
represent a measure of the error with which any observed value of Y would
be predicted from a given value of X using the determined equation.”

The notation SS (blibc) is read "the sum of squares for b, after

allowance has bheen made for bo."



APPENDIX D

ALTERNATIVE BUCKLING MODES FOR Clu

It was observed in Chapter 9 that the PBClL and RFC1lL4 column
strengths fall consistently below the predicted ones. It is therefore
necessary to examine other modes of failure, namely local buckling of
the plate elements, torsional and torsional-flexural buckling. The
sections were chosen so these buckling modes should be irrelevant as
the following calculations prove, and indeed they were not observed to
occur. Since these buckling modes did not occur in the thinner sec-

tions, they need not be checked for the thicker sections.

D.1 Local Buckling

The web and the lips (stiffeners) are checked for local buckling.
The flanges, being narrower than the web and being adequately stiffened

so their boundary conditions are similar to those of the web, need not

be checked.

D.1.1 Determination of the Critical Stress in the Inelastic Range

of Buckling
The following formula is worked out in Bleich [1952] p. 343:

Gcr TT2E

——— = K
T 12(1-V3) (/)P

(D.1)

critical stress

where )

cr

T = Et/E = ratioc of tangent modulus to Young's modulus E
v = Poisson's ratio

w = plate width

45T
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t

plate thickness

K buckling coefficient depends on boundary conditions.

The edges of the web are close to being both fixed (X = 6.97).
A very conservative estimate is K = 4.0, which corresponds to simply

supported edges.

g 2
cr _ o T 29500 5 = 91. ksi
T 12(1-.09)(2.50/.073)
Again, a very conservative estimate for the stiffemer is K = .L25,

which corresponds to one simply supported edge, one free.

o} 2
_er _ 425 T 29500

/T 12(1 - .09)(.50/.073)>

= 2U41. ksi

Bleich [1952] pp. 343, 3LL tabulates values of O.r corresponding
to various ratiocs Ocr//? for two steels with yield strength ¢ = 33 ksi
¥

and ¢ = L5 ksi.
NA

oy = 33 ksi cy = L5 ksi
ccr//? ocr/csy Or /Oy
90 .98 .96
250 1.00 1.00

The yield strength of the flats of the Cll sections is about
39 ksi. It can therefore be concluded that Gcr/cy ® 1.0, i.e., local
buckling will not occur before yielding. Global flexural buckling will

have occurred before.

D.1.2 Effective Width of Web

The current philosophy of the AISI [1977] is to use the concept

of effective width.
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For the present case:

W 2.50 W 221 221
Actual —=—== 34,2 < (<o) = —== —— = 35.4
t 073 t 1im VE;- /§§

S0 the web is fully effective.

D.1.3 Adequacy of Stiffener (Desmond [1978])

The adequacy of the stiffener 1s determined by the following

formula:
L4 _ -6 3
(I/t7) ., =36.1x 10 [(w/tWWo_ - 71.7] (D.2)
S ad y
where IS = moment of inertia of stiffener about its own
centroidal axis parallel to the stiffened
. L
element, in .
t = thickness of stiffener and of flange, in.
w = flat width of edge stiffened flange, in.

For the present case:
(Is/tu)ad = 36.1 x 10‘6[(1.20/.073)/§§ - 1.71% = 1.07

/th = -———;23———-= 26.8 > (I /th)
Actual Is = . . .

3

12 x .073 d

So the stiffener is adequate.

D.1.4 Effective Width of Flange (Desmond [1978])

The effective width of an adequately stiffened flange is:

(k )

E(k )
_ W'a.S. - .209 w'a.s.
(W/t)eff = 0.95 oy (l. W/t O,y ) (D.3)

modulus of elasticity, ksi

=
H

where

(k)

-5D /w + 5.25 when D _/w > 0.25 (D.k)
w'a.s. s s

buckling coefficient for adequately stiffened flange
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D = unstiffened flat width of the stiffener plus the
corner radius.

For the present case:

Ds/w = .7/1.20 = ,583 and <kw)a.s. = 2.33

29500(2. 33) (1 .209 \/29500(233) ) = 18.6

(w/t) pp = 0495 39 © = 71.20/.073 39

Actual w/t = 1.20/.073 = 16.4 < (W/t)eff
So the flanges are adequately stiffened and fully effective.
It can be concluded that local buckling is of no concern for the
Clh sections.

D.2 Torsional-Flexural Buckling (Chajes, Fang and Winter [1966],
ATST [19771)

In the elastic range, the flexural, torsional and torsional-

flexural buckling loads are expressed by the following formulas:

Tr2EIX
P = (D-S)
crx (KL)2
X
NEEI
= —=L (D.6)
ery (KL)2
1 1T2ECw
Pn= 5 |G+ o2 (D.7)
To T
P =-l—(P + P - /(P +P)2 Lgp
TFO 28 crx T erx T/ T crxPT) (D.8)
where Pcrx = flexural buckling load about x
cry = flexural buckling load about y
P = torsional buckling load
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PTFO = torsiocnal-flexural buckling load

KLk = effective length

B =1 - xi/ri = shape factor = .LO17

Ix = moment of inertia about x = .712 inh

Iy = moment of inertia about y = .219 inh

J = St. Venant torsion constant = .000928 inl‘L

C, = warping constant = .605 in6

E = Young's modulus = 29500 ksi

G = shear modulus = 11300 ksi

x, = distance between centroid and shear center = -1.629 in

r, = polar radius of gyration about shear center = YL 435 in
Also A = cross-sectional area = .522 in2

The numbers above have been worked out for the thin channels (Clh).

In the inelastic range, a parabolic formula applies to the above

phenonmena.

For flexural buckling:

= for o < g /2
o) ccry ery S y/
g (D.9)
o= l.O——L)c for o__ >0 /2
( hocry Yy cry vy
The same formula applies for buckling about x.
For torsional buckling:
= for o <ag /2
g OT <9,
(D.10)

Q
]

o]
oL
(1.0 o )cy for OT > oy/2
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For torsional-flexural buckling:

= < 2
G = Oppg for Oppo < oy/

(D.11)

g
= ———JY-—- >
o] (l.O MGTFO)GY for - Oy/2

where o] = buckling stress
ery = elastic flexural buckling stress about the y-axis
OT = elastic torsional buckling stress
OTFO = elastic torsional-flexural buckling stress
Gy = yield stress = 39. ksi.

Table D.l compares the buckling loads obtained from the above
formulas with the actual buckling loads, Pu. The boundary conditions are
such that (KL = L, (KL = (KL = L/2.

( )y ( )x ( )T /2 Pp, Prp and PCry now denote
the torsional, torsional-flexural and flexural about y buckling loads,
elastic or inelastic. It is seen that the flexural buckling load sbout

the weak axis is lower than the torsional or torsional-flexural buckling

loads.

D.3 Conclusion

The possibility of local buckling (web or stiffener), torsional
and torsional-flexural buckling was examined in this Appendix. These
buckling modes were found to occur at higher loads than the studied mode,
flexural buckling about the weak axis.

It was noted in Chapter 8 that the addition of local imperfections
on a column already possessing an overall imperfection has little effect
on the peak load (Gilbert and Calladine [196L4]). The introduction of a

small eccentricity of the load reduces the initial overall imperfection.
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Load eccentricity and overall imperfection affect the same buckling mode

and the possibly catastrophic effect of mode coupling need not be feared.

TABLE D.1

BUCKLING LOADS FOR C1llu

PBCLlk RFC1L
L PT PTF Pcry Pu Pu
in kip kip kip kip kip
27.0 19.9 19.8 19.2 16.9 18.5
20.2 19.5
33.0 19.7 19.6 18.6 16.3
39.0 19.4 19.3 17.9 k. k 16.3
19.3 18.0
45.0 19.1 18.9 17.1 13.5
51.0 18.7 18.5 16.1 13.7 16.0
15.5
1L.0
57.0 18.3 18.1 15.1 13.9
63.0 17.9 17.6 13.9 10.4 11.5
75.0 17.0 16.5 11.2 9.50
80.5 16.5 16.0 9.84 00
8.80

84.9 16.1 15.5 8.85 9.05







205

NT
TITLE(I)

210

N1
N2
N3
Nk
N5
NA
NB
NN
NMOD
NST

IRO
IWRITE
ISTUB

215
A

B

C
Rl
R2
PSI1

pPSI2
FACTOR

E
EN

APPENDIX E

INPUT FOR PROGRAM COLUMN

READ(II,205) NT,(TITLE(I),I=1,NT)
FORMAT(I2,25A1)

< 25 is total number of characters in TITLE
any title of NT characters

READ(II,210) N1,N2,N3,N4,N5,NA,NB,NN,NMOD,NST,MI,
IRO,IWRITE,ISTUB

FORMAT(1L4TI5)

number of segments in lst flat
— corner
— 2nd flat
—_ corner
— last flat
number of data points for yield stress and thickness
— residual strain
nunber of points in final P-V graph
number of residual strain models to be considered
number of strain outputs
near maximum of P, DELV is divided by MI for a
detailed look
=0 if all RON(I)=0, #0 otherwise
=] if detailed output wanted, O otherwise
=] if stub column, O otherwise

READ(II,215)
FORMAT(8D10.0)

A,B,C,R1,R2,PSI1,PSI2,FACTOR

length (inch) of lst flat
_ 2nd flat
— last flat
radius of lst corner
— 2nd corner
angle (degrees) of lst corner
—_ 2nd corner
+1.D0 for channel, -1.DO for hat
READ(II,215) E,EN
modulus of elasticity (KSI)
stop when P/PMAX=EN

Lk



XY(I)

SIGYL(I)
T1(I)

XR(I)
RSOL(I)

RSI1(I)

RON1(I)

Is(1)

255

NET

MAX1
NAX1
Cl
c2
2

F3
FL

MOD(I)

NL(I)

L6s5

READ(II,215) XY(I),SI6Y(I),T1(I)

location of data along perimeter of section,
starting from axis of symmetry

yield stress (KSI)

thickness (inch)

READ(II,215) XR(I),Rs01(I),RSI1(I),RON1(I)
location of data

outward (+ or convex face)
residual strain

inward (- or concave face)
residual strain
coordinate (in thickness direction w.r.t. middle
surface) of neutral surface for model 3 residual
strain distribution.

For these variables, refer to sign convention.

algebraic opposite of
experimentally measured
elastic release

READ(II,210) (Is(I),I=1,NST)
segment number at whose outer (+) face strain
is to be output

READ(II,255) NET,MAX1,NAX1,C1,C2,F2,F3,Fk
FORMAT(313,5D10.0)

=0 if following 7 variables have default wvalues.
This card is then blank.

#0 if following variables are input.

=20 by default. Maximum number of iterations for
force equilibrium loop.

=20 by default. Maximum number of iterations for
moment equilibrium loop.

=2.D-4 by default. Convergence criterion for
force equilibrium.
=1.D-3 by default.
moment equilibrium.

Convergence criterion for

=5.5D0 by default. (PA+DL(K))/(V(I)+W)/F2y scaling
=.,90D0 by default. PA=F3#PY factors
=1.0D0 by default. EA+ (PA~P)/(E*AE)*FL )that
affect
convergence

The above parameters are used in Subroutine LOADI.

READ(II,210) MOD(I),I=1,NMOD),(NL(I),I=1,NMOD)
Residual strain model number (1 for wuiform, 2 for
linear, 3 for rectangular, 4 for no strain. L only
works for stub columns, i.e., axial straining but
no lateral deflection).

Number of column lengths for each model.
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READ(II,285) (NCOEF(I,J),J=1,NLI)
285 FORMAT(20I3)
NCOEF(I,J) number of ratios of initial deflection/length for
each model and each length.
READ(II,260) MOD(I),RLL(I,J),COEFF(I,J,K),
ovi(I,J,K),vi(1,J,X),EC(I1,J,K)
260 FORMAT(I5,5D10.0)
MOD(I) residual strain model number
RLL(I,J) column length
COEFF(I,J,K) ratio of initial deflection/column length
DV1(I,J,K) deflection increment
V1(I,J,K) first imposed deflection
EC(I,J,K) eccentricity.

READ(II,210)

EXAMPLE
OF PARTS i, j and k OF INPUT

(MOD(I),I=1,NMOD),(NL(I),I=1,NMOD)

D025 I=1,NMOD
NLI=NL(I)

25  READ(II,285)

(NCOEF(I,J),J=1,NLI)

D030 I=1,NMOD
NLI=NL(I)

D030 J=1,NLI

IJC=NCOEF(I,J)
D030 K=1,1JC

30  READ(II,260) won

I

(1),RLL(T,J), COEFF(I J,K),DV1(I,J,K),
vi(I,J,K)

,EC(I,7,K)

210 FORMAT(1L4I5)
260 FORMAT(I5,5D10.0)
285  FORMAT(20I3)

Suppose there are NMOD=2 models of residual strains to be con-

Let these two models be MOD(1)=2 and MOD(2)=3.

There 1is

NL(1)=1 column of length RLL(1,1)=60.0DC with MOD(1) distribution to be

This column is to be tested twice with NCOEF(1,1)=2 different

tested.

initial deflections, COEFF(1,1)=1.D-3 and COEFF(1,2)=5.D-4.
For MOD(2)=3 distribution let there be NL(2)=2 columns of length

RLL(2,1)=70.D0 and RLL{2,2)=80.0D0. Each of these is tested with the
?
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same initial deflection COEFF(2,1)=COEFF(2,2)=1.D-3. Let DV1(I,J,K)

v1(I,J,K)=1.D-3 and EC(I,J,K)=0.DO.

MOD(1),MOD(2),NL(1),NL(2)

NCOEF(1,1)
NCOEF(2,1) ,NCOEF(2,2)
MOD(1),RLL(1,1),COEFF(

MOD(2),RLL(2,1) ,COEFF(
MOD(2) ,RLL(2,2) ,COEFF(

1,1
MOD(1) ,RLL(1,1),COEFF(1,1
2,1
2,2

1st Subscript I: model number

2nd Subscript J: column number

3rd Subscript K: 1initial deflection number

FORMAT 210 2
285 2
285 1
260 2
260 2
260 3
260 3

The input looks as follows:

,Dvi(1,1,1),v
,Dv(1,1,2),
,Dv(2,1,1),
,Dc(2,2,1),

1
1(
1(
1(

(
1
2
2
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PROGRAM COLUMN
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PROGRAM CGCLUMN

THE PRCGRAM COLUMN CCMPUTES THE LCAD VERSUS LATERAL
DEFLECTION CURVE OF AN INITIALLY IMPERFECT COLUMN
UNDER ECCENTRIC LOAD. IT IS ASSUMED THAT:

- THE CROSS-SECTION IS A LIPPED CHANNEL (C) CR A HAT
(OMEGA) SHAPE.

- THE COLUMN IS HINGED AT 80TH ENDS AND BENDING CCCURS
ABCUT THE WEAK AXIS ONLY.

- THE APPLIED LCAD REACHES ITS MAXIMUM LONG BEFCRE
ANY LOCAL COR TORSTONAL BUCKLING CCCURS.

- CROSS-SECTIONAL GEOMETRY AND MATERIAL PRCPERTIES 0O
NOT VARY ALONG THE AXIS OF THE CCOLUMN. CONSEQUENTLY,
DISTORTION OF THE CRQSS-SECTICN WITH INCREASING LCAD
IS NEGLECTED.

- THE INITIAL ODEFLECTION AND ANY ADDITIONAL DEFLECTION
ARE SINUSQOIDAL.

- THE MATERIAL IS LINEARLY ELASTIC, PERFECTLY PLASTIC.

-~ PLANE SECTICNS REMAIN PLANE.

THE SIGN CONVENTION IS AS FCLLOWS:

- POSITIVE MCMENT PRODUCES POSITIVE LATERAL DEFLECTION
(TC THE RIGHT OF THE CENTRQID).

- COMPRESSION IS POSITIVE, TENSION NEGATIVE.

- FOR THE THICKNESS COORDINATE, + IS RADIALLY QUTWARDS
- INWARDS. FLATS FOLLOW SAME SIGN CONVENTICN AS
PREVIOUS CCRNER. FOR FIRST FLAT, + IS TQ THE LEFT.

- ANGLES ARE MEASURED COUNTERCLOCKWISE FROM THE +
HORIZONTAL AXIS.

FCUR DIFFERENT MODELS OF RESIDUAL STRESS DISTRIBUTION
ACROSS THE THICKNESS CAN BE USED:

- MODEL 1: UNIFORM DISTRIBUTION

- MODEL 2: LINEAR DISTRIBUTION

MODEL 3: RECTANGULAR DISTRIBUTIQON

MODEL 4: NO RESIDUAL STRESS.

IMPLICIT REAL *8 (A-H,0-Z)

REAL *8 L1l,L2,L3,L4

LOGICAL =1 TITLE(25)

CUMMUN/AI/U(IOO)vT(lOO)qPHIl(lOO)vPHIZ(lOO)rXC(lOO)1
XD(100),YI(100),+PI,E.+NsNN

CDMMON/AZ/RSC(lOO)7RSI(100)7RON(100)QEY(IOO,1XQ1AG1YO’
RL +MODEL

COMMGN/A3/VSO(100)yVSI(lOO)vV(lOO)1PF(100)1519N10ELV9
CF,0OM,AEL(100),PY, 1P

COMMCN/A4/U(100),ST(100,4),15(4)+NST

CIMENSION XY(ZS),XR(ZS),9501(25),RSII(25),RONl(ZS),

1SIGY1(25)+5(25),COEFF(4y2048),RLL(4520),T1(25), V1
2(4920,8)y DV1(4,20,8) yINDEX(25) ,MOD(4) yNL(4) o NCOEF
3(4,20)y  EC(4,20,8)

[1=5
I0=6
PI=4.00*DATAN(1.D0)
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20

25

30

60

65

70
75
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READ (1I1,205) NT,(TITLE(1),I=1,NT)

WRITE(10,505) (TITLE(I),I=14NT)

READ (II,210) N14N2yN3yN&4,N5,NA,NB,NNy,NMOD4NST,MI,
1IRG, IWRITE, ISTUB

N=N1+N2+N3+N4+N5

WRITE(IO,510) NyN1,N2y,N3,N4sNS,NA,NByNNyNMODsNST,MI,
1IRC, ISTUB

READ (I1,215) A,B,C,R1,R2,PSI1,PSI2,FACTCR
WRITE(IO,515) A,B,CsR1,R2,PSI14,PSI2,FACTOR
PSI1=PSI1*P1/180.D0

PSI2=PS12*P1/180.D0

READ (II,215) E,EN

WRITE(I0,520) E,EN

WRITE(1IO,525)

DC 5 I=1,NA

READ (II,215)  XY(I),SIGYL(1),TL(I)
WRITE(IO9530) I.XY(I),SIGY1(1),T1(I)
SIGY1(I)=SIGYI(I)/E

WRITE(IO,535)

DC 10 I=1,NB

READ (1I,215) XR(I),RSC1(I)4RSI1(I),RONI(T)
WRITE(IQ,540) I,XR(I),RSOL(T)4yRSTL(I)yRONLI(I)
READ (11,210) (IS(I),I=1,NST)

READ (11,255) NET,MAX1,NAX1,Cl,C24F2,F3,4F4
WRITE(10,565)

READ (I1,210) (MOD(I),I=1,NMOD),+(NL(I),I=1,NMOD)
0C 25 I=1,NMOD

NLI=NL(I)

READ (I11,285) (NCOEF(IsJ)sJd=1,NLI)

DC 30 I=1,NMCD

NLI=NL(I)

DC 30 J=1,4NLI

1JC=NCQOEF(1,J)

DO 30 K=1,1J4C

READ (11,260) MCD(I),RLL(T,J),COEFF(I4J,4K),DV1(1I,J,K),

1VI(I,4dsK) yEC(I,4J4K)
WRITE(IO,595) MOD(T),RLLET4J)+COEFF(I4JyK)sDVI(I,JsK),

1VLI(I s JsK) sEC(I+dsK)

CONT INUE
IF(NST.EQ.1) WRITE(IO,545) IS(1)

IF(NST.GT.1) WRITE(ID,550) (IS(1),I=1,NST)
IF (NET.NE.O) WPITE(IC,555) MAX1,NAX1,C1,C2,F2,F3,F4

COMPUTE SEGMENT LENGTH

DO 60 I=14N1
D(1)=A/DFLOAT(NL)

0o 65 I=1,N2
D(N1+1)=R1*PSI1/DFLCATINZ)

p0 70 I=1,N3
D(N1+N2+1)=B/DFLOAT(N3)

Do 75 1=1,N4
G(NL+N2+N3+1)=R2*PSI12/DFLCAT(N4)

po 80 I=1,N5



80

85

OO0

S0

95

100

105

OO0

110

115

116

120

125

130

471

DUNL+N2+N3+N4+1)=C/DFLOAT(N5)
U(l)=D0(1)*.500

CC 85 1=2,4N
UCI)=U(I-1)+.500%(D(I-1)+D(1))

INTERPCLATE CATA

CALL SPCOEF (NA,XY,T1,S,INDEX)

DO 90 I=1,N

T(I)=SPLINE (NAyXY,T1l,S+INDEX,U(1))
CALL SPCOEF (NA,XY,SIGYl,S, INDEX)

DO 65 I=1,N

EY{I)=SPLINE (NA,XY,SIGY1l,S,INDEX,U(]))
CALL SPCOEF (NB,XR,RSCl,S, INDEX)

DO 100 I=1,N

RSO(I)=SPLINE (NByXRyRSO1lsS,INDEX,U(I))
CALL SPCOEFf (NB+XR,RSI1,S,INDEX)

0O 105 I=1,N

RSI(I)=SPLINE (NBsXRyRSI1,S,INDEX,U(T))

CCMPUTE SQUASHK LOAD

PY=0.D0

CO 110 I=1,N
PY=PY+D(I)*T(T)*E=EY(])
PY2=2.D0*PY

CALL LAYQUT (FACTCR,A484CsR14R24PSI1,PS12)
CALL YNERTA

WRITE(IC,570) AO,YO,XO

IWl=1

IW2=1

I=1

MOGDEL=MQOD(I)

IF (MODEL.LT.4) GO TC 116

CF=0.00

CM=0.D0

El1=0.00

GO TC 157

IF(MCDEL.EQ.2) GO TOQC 125
IF(IWl.GTeleCR.IW2.GT.1) GO TO 155
WRITE(IO,600)

IWl=IWl+l

D0 120 J=1,N

WRITE(IO,605) J,0(J)sT(J)4XD(J) sXCUJ) yEY(J),RST(J],
1RSI(J)

GC TC 155

IF(IW2.GT.1) GO TO 155

IN2=IW2+1

IF(IRO.EQ.0) GO TQ 135

CALL SPCOEF (NBsXR,RON1+S,INDEX)

D0 120 IM=1,N
RON(IM)=SPLINE(NB,XRyRONY1,SyINDEX,U(IM))
GO TC 145



135
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155
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160

165

200

205
210
215
255
260
285
505
510
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CC 140 IM=1,N

RCN(IM)=0.D0

CALL ALTER

WRITE(IO,610)

DO 150 J=1,N

WRITE(IO,615) JyDUJ)sT(JI)sXD(J)+XC(J)HEY(J),RSO(J),
IRSI(JS),RON(J),VSO(J),4VSI(Y)

CALL RESIDU

WRITE(ID,620) MCDEL,0OF,EL,OM,PY2

J=1

RL=RLL(I,J)

K=1

W=RL*=COEFF(I,J4K)

V(1)=V1i(I,J,K)

DELV=DV1(I1,J,:K)

ECC=EC(I,J4K)

WRITE(IC,625) (TITLE(IL),IL=1,NT)
WRITE(ID,630) MODEL,RL,COEFF(I,J,K),ECC
IF (ISTUB.EQ.O) CALL
1LOAD1(MINET,MAX]1 s NAX]1,IWRITE,C1l,C2,4F29yF3,F44EN,ECC)
IF (ISTUB.EQ.1l) CALL
1LO0AD2(MI 4 NET 4MAX]1 4 NAX1, IWRITE,C1,C2,F2,F3,F4,EN,ECC)
K=K+1

IF(K.LE. NCOEF(I,J)}) GO TQO 165

J=d+1

IF(J.LES.NL(I)) GO TC 160

I=1+1

IF(I.LE.NMOD) GO TC 115

STQOP )

FORMAT(12,25A1)

FORMAT(1415)

FCRMAT(8010.0)

FORMAT(313,5D10.0)

FORMAT(15,5010.0)

FCRMAT(2013)

FORMAT(// 10X, 25A1)
FORMAT(//* NUMBER OF SEGMENTS IN SECTIONcecececcccecs'y

1'eeeccoccsces's12//' NUMBER OF SEGMENTS IN FIRST FLAT'
Zy'oocooooooooooooooo-oo',12//' NUMBER OF SEGMENTS IN !
3,'FIRST CURNER......Q..ooo.oooooo'1I2//' NUMBEP CF '1
4'SEGMENTS IN SECOND FLAT..-.-....--.-.;...-.'112//

5¢ NUMBER OF SEGMENTS IN SECOND CORNERe e eecccssccenca'y
6 'eo'y12//" NUMBER CF SEGMENTS IN LAST FLATceececces'y
Tt ee...v,12//' NUMBER OF DATA POINTS FOR YIELD'
8,% STRESS AND THICKNESS.',12// 'NUMBER OF DATA PCINTS®
9,! FCR RESIDUAL STRAINoo‘oooooooooo-'712//

gt NUMBER OF PCINTS',

ll ON P-v GRAPH.O0.00.1.00.0..0....0.0."IZ//‘ NUMBEP'Q
2' GF MODELS CF RESIDUAL STRAINS.....C.......o..o',IZ
3//' NUMBER OF STRAIN OUTPUTs.............Q....00."..’
4'c00ce's12//! NEAR MAXIMUM DEFLECTICN INCREMENT IS ¢,
51DIVIDED BYeoooeo's12// ' IF IR0=0, ALL RON1(I)=0. ',
6'1R0=.....¢¢oooooococooooooo-'1IZ// v IF ISTUB=17 '1
71THIS 1S A STUB COLUMN. ISTUB=cacosvecsscee'y12)



515

520

525
530
535
540
545
550

555

565

570

595
600

605
610
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FORMAT(/ * LENGTH COF FIRST FLAT(INCH)eeveeecnacceecss'y
1'cecacenceea!y1PDl1e4//" LENGTH OF SECOND FLATeceeee'y
2..oo....ooo'o.o-oocoooooocl1011.4// ! LENGTH OF LAST',
3' FLAT...O........-..-00-000000000001000'701104//

4' RADIUS OF FIRST CORNER¢eeccsecosaccacscccacccscocone’
59'ee'yD11.4//" RADIUS OF SECOND CORNEReevecaceccsaasae'y
6'ececcscscnsceases'D11o4//" ANGLE CF FIRST CCRNER ',
7'(DEGREE).oooooooooocoonooooccco'QZPDIICB// ! ANGLE '1
8'OF SECOND CCRNEROOO-..o...o.‘..o.......QOQ..Q..',
9011.3// ' FACTOR=-1 FOR HAT SECTION, +1 FOR CHANNEL',
l1'eeoeosooceese! 1PDLI1.3])

FORMAT(/*' MCDULUS CF ELASTICITY (KSI)eeceecoocsccccss’
lyYececocenes'y1PD11.4//" STOP WHEN P/PMAX =ececsccoss
Zy'ooouooooooooooo'7Dlla4)

FORMAT(*1',12X,'LOCATION" 411X,*'YIELD STRESS',11lX,
L*THICKNESS'/)

FORMAT(5X,12 44Xy1PD11.4+10X92PD1143,10X,1PD11.4)

FORMAT(//13X,'LOCATION',14X, 'CUTSIDE*,14X,*INSIDE"',
113Xy "NEUTRAL AXIS'/29X,' RESIDUAL STRAIN',6X,
2'RESIDUAL STRAIN')

FORMAT(5X412+4X91PD11.4,3(10X4D11.4))

FORMAT(//' STRAIN IS CCMPUTED AT + FACE OF SEGMENT ',
2'NUMBER seeeeaa'yl2)

FORMAT(//' STRAIN IS COMPUTED AT + FACE OF SEGMENT v,
1 'NUMBERceseeesa'912523(2X,12))

FORMAT (/ ' MAXIMUM # OF ITERATIONS IN FORCE v,
1'EQUILIBRIUM LOCP...",12/7/' MAXIMUM # OF ITERATIONS ¢,
2'IN MOMENT EQUILIBRIUM LOOP...',12//' SCALING FACTOR?',
3' Cloooco-oooo-ooooo.o.o.ooooo.ooo.o.g..',1lel.4//

4' SCALING FACTGR CZooooooooocooacococnoo.oo.oooo.oooo'
57'-0'901104//' SCALING FACTGR FZo-ooo.occoto.oooooﬁo',
6'00.....0.-00.000'1011.4// ¢ SCALING FACTOR F3-0¢ooo'7
7'ocoooooooooooo-oooooo.oooocooo'7011.4/’ ' SCALING "
S'FACTOR F4o-oooooo-o..o-.ooto--o-.ooocoo.oo-oo'701104)

FORMAT(//4X, *MODEL " 94X, "COLUMN' 10X, "INITIAL v,
1*CEFLECTION' 47X, 'DEFLECTION', 10X, *FIRST IMPOSED',11X,
2'LOAD'/13Xs"LENGTH" y11X,'/ CCLUMN LENGTH',9X,
3*INCREMENT ', 12X, 'DEFLECTION',10X, "ECCENTRICITY!)

FORMAT(/' AREA OF HALF CROSS=SECTIONuaeseevnnannnadt
l1'ceecnceeseat, 1PD1l1.4//7 Y MOMENT OF INERTIA OF HALF !¢
2'CROSS=SECTIONececeaaecnaa'yD11.4// * ABCISSA QF ¢
3'CENTROID OF HALF CRUSS-SECTIGNOOOQOQQDQQ'7011.4)

FORMAT(5X s 12,4X92PD11e4,4(10X,1PD11,.4))

FORMAT( 'ISEGMENT',ZSX,'ABCISSA',SX,'ABCISSA',BX,
1'YIELD',7X, "OUTSIDE", 7Xs " INSIDE'/* NUMBER',3X,'WIOTH',
26Xy ' THICKNESS'y9X, *OF "4 13X, '0F ', 10X, '*'STRAIN" » 6X 4
3'RESIDUAL',6X,'RESIDUAL'/36X,'MIDDLE‘,SXy’CENTROID',
420Xy "STRAIN',8X, *'STRAIN®)

FORMAT(1X 91247(3X+1PD11.4))

FORMAT( "1SEGMENT' 22X+ " ABCISSA' 45X, ' ABCISSA' ,6X,
1'YIELD',6X, *QUTSIDE ', 5K, ' INSIDE ', TXy 'NEUTRAL 'y 4 X,
2'OUTSIDE' »5X,*INSIDE"/* NUMBER',3X, 'WIDTH',3X, ¢ THICK®
3YNESS's6Xy 'OF *19Xs 'CF 'y 9X 4 * STRAIN' 35X, ' RESIDUAL ' 54X ,
4'RESIDUAL' 96X, ' AXIS' 16X+ 'MODIFIED' 14X, '"MODIFIED "/

!
?
?

?
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530X, 'MIDDLE"* 46X, 'CENTROID',16X,y *STRAIN®, 6X, 'STRAIN',
618X, *RESIDUAL', 4X,'RESIDUAL'/102X,*STRAIN®,6X,
T'STRAINY)

FORMAT(1X,12,410(1X,1PD11l.4))
FORMAT('1*///28X,*MODEL"',12//*' RESIDUAL FORCE / ',
l'MODULUS EO...0......0‘0.C‘........‘O',1P011.4//
2' AVERAGE CORRECTIVE STRAIN‘.............Q..‘...l.‘..'
29'e+¢'4D11.4//"' RESIDUAL MOMENT / MODULUS Eeeecececce'’y
4'.0.0..-0.-...0..'901104// ' SQUASH LOAD *2.........',
5'0000-0...onoococooooooo.o.o.oo'1011.4)

FORMAT(*1'," *%&kx¥kk*%x RESULTS FOR ',25A1, "*x%xxkkkxx*x!)
FORMAT(/* MODEL OF RESIDUAL STRAINS USEDeeeeccoccccecss’
1,'00.00.....',12//. COLUMN LENGTH...OO.......'OO..O..'
2,'0..0.0..00.00.0..0‘.'12P01103//' PATIO OF INITIAL .,
3'0EFLECTION TO LEMGTHeeeeoeensoeseeces'ylPD1la4//
4' LOAD ECCENTRICITY.O.................0.‘.‘..........'
59'«e'yD1ll.4)

END
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SUBRCUTINE SPCOEF (NyXN,FN,S,INDEX)

THE SUBROUTINE SPCOEF AND THE FUNCTION SPLINE ARE
TAKEN FRCM *'NUMERICAL COMPUTING' BY SHAMPINE AND
ALLEN. THE SUBROUTINE SPCOEF AND THE FUNCTION SPLINE
CALCULATE THE NATURAL CUBIC INTERPCLATORY SPLINE FIT
TC THE DATA SPECIFIED BY THE ARRAY CF NODES XN, WITH
CORRESPONDING FUNCTION VALUES IN THE ARRAY FN. THE
NODES XN MUST BE DISTINCT.THE SPLINE IS DETERMINED IN
SPCOEF AND EVALUATED IN SPLINE.SPCOEF ARRANGES THE
NCGDES IN INCREASING ORDER AND STORES THIS CORDER IN THE
ARRAY INDEX. THE ARRAY ITSELF IS NOT ALTERED. SPCOEF
THEN CALCULATES THE ARRAY OF SECOND DERIVATIVES NEEDED
TC DEFINE THE SPLINE. THE ARRAYS XN, FN, S AND INDEX
MUST BE DIMENSIONED IN THE CALL ING PROGRAM.

IMPLICIT REAL *8 (A-H,0-7)
DIMENSION XN(N),FN(N),S{N), INDEX{(N),

SPCOEF IS WRITTEN TO HANDLE PROBLEMS WITH UP TO 25
NODES. IF MORE NODES ARE USED, ONLY THE NEXT STATEMENT
NEED BE CHANGED. THE DIMENSION CF THE ARRAYS RHO AND
TAU MUST BE AT LEAST N.

RHC(25),TAU(25)
NM1=N-1

ARRANGE THE NODES XN IN INCREASING CRDER. STORE THE
CRDER IN THE ARRAY INDEX.

0O 1 I=1,N

INDEX(I)=1"

DO 3 I=1,NM1

IP1l=1+1

DO 2 J=IP1l,N

II=INDEX(1I) -
IJ=INDEX(J)
[IF(XN(IT).LE.XN(IJ)) GO TO 2
ITEMP=INDEX(I)
INDEX(I)=INDEX(J)
INDEX(J)=ITEMP

CCNTINUE

CONTINUE

NM2=N-2

CALCULATE THE ELEMENTS CF THE ARRAYS RHO AND TAU.

RHO(2)=0.D0
TAU(2)=0.D0

CC 4 1=2,NM1
ITML=INDEX(I-1)
II=INDEX(1I)
ITP1=INDEX(I+1)
HIML=XN(II)-XN(IIM1)
HI=XN(IIP1)=-XN(II)
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TEMP=(HIM1/HI)*(RHO(I1)+2.D0)+2.D0
RHO(I+1)=-1.D0/TEMP
D=6.D0*((FN(IIPL)-FN(IT))/HI-(FN(II)-FNC(IIM1))/HIM1)
1 /HI

TAUCI+1)=(D-HIMLI*TAU(I)/HI)/TEMP

COMPUTE ARRAY OF SECOND DERIVATIVES S FOR THE NATURAL
SPLINE.

S(1)=0.D0

S(N) =0.D0

DC 5 I=1,NM2

IB=N-1
S(IB)=RHO(IB+1)*S(IB+1)+TAU(IB+1)
RETURN

END
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FUNCTION SPLINE (N,XNsFNySs INDEX,X)

THE FUNCTICN SPLINE ACCEPTS AS INPUT THE QUANTITIES N,
XN, FN, S AND INDEX AS DEFINED IN THE SUBROUTINE
SPCOEF AND A NUMBER X AT WHICH THE SPLINE IS TO BE
EVALUATED. SPCOEF IS CALLED ONCE FOR EACH FIT, BUT
SPLINE IS CALLED ONCE FOR EACH ARGUMENT AT WHICH WE
REQUIRE THE VALUE OF THE FIT.

IMPLICIT REAL *8 (A-H,0-2)
DIMENSION XN(NJ}sFN(N),S(N), INDEX(N)

IF X<XN((CINDEX(1)), APPROXIMATE FUNCTION BY THE
STAIGHT LINE WHICH PASSES THROUGH THE POINT
(XNCINDEX(1)),FNCINDEX(1))) AND WHCSE SLCPE IS HALF
THE SLQPE OF THE SPLINE AT THAT POINT.

I1=INDEX(1)

IF( X<GE.XN{I1)) GO TC 1

I2=TINDEX(2)

H1=XN(I12)-XN(11)
SPLINE=FNCIL)+(X=XN(IL))I*((FN(I2)-FN(I1l))/HI-HL1%*S(2)/
16.D0)*.500

RETURN

IF XeGEXN(INDEX(N)), APPROXIMATE FUNCTIGCN BY THE
STRAIGHT LINE WHICH PASSES THROUGH THE POINT
(XNCINDEX(N))+FNCINDEX(N))) AND WHOSE SLOPE IS HALF
THE SLCOPE OF THE SPLINE AT THAT POINT.

IN=INDEX(N)

IF(X.LEXN(IN}) GO TO 2

INM1=INDEX(N-1)

HNM1 =XN(IN)-XN(INM1)
SPLINE=FNCIN)#{X~XN(IN) )% ((ENCIN)=FN(INM1) )/ HNML +HNM]
RETURN

FOR XN(INDEX(1))<LE.X.LE.XN(INDEX(N)) CALCULATE SPLINE
FIT.

DO 3 I=2,N

1I=INDEX (1)

IF(X.LE.XN(IT)) GO TO 4

CONT INUE

L=1-1

IL=INDEX(L)

ILP1=INDEX(L+1)

A=XN(ILP1)=X

B=X-XN(IL)

HL=XN(ILPL)=XN(IL)
SPLINE=A%S(L)*(A*A/HL=HL)/6.D0+B*S(L+1 )% (B*B/HL~HL ) /
1 6.D0+(A*FN(IL)+B%*FN(ILP1))/HL

RETURN

END
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SUBRCUTINE LAYCUT (FACTCR, A,ByC,R1,R2,PSI11,PST12)

LAYOUT OIVIDES THE CROSS-SECTION INTO SEGMENTS AND
COMPUTES THEIR GECMETRICAL PRCPERTIES. CROSS~SECTION
GEOMETRY AND SEGMENT LENGTHS ARE INPUT. SEGMENTS CAN
BE EITHER STRAIGHT OR CURVED BUT NOT CURVILINEAR.
SEGMENTAL LENGTH MAY BE MCODIFIED BY PROGRAM TO WITHIN
.01 INCH TO INSURE NO CURVILINEAR SEGMENT.

IMPLICIT REAL*8 (A-H,0-7)

REAL*8 Ll,L24L3,L4

COMMON/AL/D(100),T(100) ,PHI1(100),PHIZ2(100),XC(10Q),
XD(100),YI(100)4+PI4EsNyNN

I1C=6

CP1 =DCOS(PSI1)

SP1 =DSIN(PSTI1)

XCENT1=R1
XCENT2=R1*(1.00-CP1)+B*SP1+R2*CP1*FACTOR
L1 = A + RI*PSIL

L2 = L1 + B

L3 = L2 + R2*PSI2

L4 = L3 + C

$=0.00

X=0.,00

J=0

FIRST SEGMENT BEGINS AT QRIGIN

J=J+1

§=S+0(J)

IF (DABS(S~A).GT.l.D-2) GO 70O 11
C(J)=D(J)+A=S

S=A
IF(S-A.GT.1.D-2) GO TC 12
THETA =PI

WRITE(6,105) JsX,THETA,S5,0(J)
CALL STRAIT (JsX,1.00,THETA)

GC TC 10
FIRST CORNER

THETAL=P1I
IF (DABS(S-L1).GT.1.D-2) GO TC 14

D(J)=D(J)+L1=S
s=L1

IF(5-L1.6T.1.D-2) GC TO 15
THETA2=THETAL1-D(J)/R1

CALL CORNER (THETAL,THETA2,XCENT1,R1,J,1.00,X)
J=J+1

s=5+C(J)

JHETA1=THETA2

Go TO 13

SECOND FLAT
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32

40

50
45

IF (DABS(35-L2).6T.1.0-2) G2 TC 16
C(J)=D(J)+L2-5S

S=L2

IF(S=L2.GTa1.0=-2) GC TC 17

THETA =P [-PSI1

CALL STRAIT (JsX31C0,THETA)
NENE DY

S=S+C(J)

GC TC 15

SECOND CORNEF

IF(FACTOR .EC.-1.00) GC TO 18
THETA1=PI-PSI1
THETAZ=THETAL1-0(J) /%2

GC 7C 19

THETAZ2==PSI1

THETAL=THETAZ2 + DJ(J)/R2

IF (DABS(S-L2).GT.l.0-2) GO TC 20
C(Jd)=0(J)+L2-S

S=L3

IF(S-L3.6T.1.0-2) GC TC 30

CALL CORNER(THETALl, THETAZ2 XCENT2422,J,FACTCP,X)

J=d+1

$=S5+0(J)

IF(FACTOR.EQ.-1.00) GC T1Q 22
THETAL=THETAZ
THETA=THETA1-0(J) /%2

GC TC 19

THETAZ2 = THETAL

THETAL = THETAZ2 + O(J)/R2

GO TC 19

LAST FLAT

IF(FACTOR.EQ.1.D0) THETA  =P1-PSI1-PSi2
IF(FACTOR.EC.-1.D0) THETA  ==-PSI14PSI:

1F (DABS(S-L4).GT.1.D-2) GO TC 325
ClJ)=0(J)+La=-S

S=L4

CCNT INUE

CALL STRAIT (J.X,FACTCP,THETA)
J=J+1

IF(J.GT.N) GC TO 40

S=S+0(J)

GO 1O 32

IF(DABS(S-L4).LEL.1.D0~-2) GO TC 50
WRITE (I1Q,45)

RETURN

FCPMAT (' x®xxexxaxkkx ERRCR IN LAYCQUT sxxtasnsant)

END
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SUBRQUTINE YNERTA

YNERTA COMPUTES THE AREA, ABCISSA CF CENTROIC AND
MCMENT OF INERTIA ABOUT THE WEAK (Y) AXIS QF HALF THE
CROSS-SECTION.

IMPLICIT REAL*8 (A-H,0-17)

REAL*8 Ll1,L24L3,L4%4

COMMON/A1/D(100),T(100),4,PHIL(100),PHI2(100),XC(100},
XD(100),YI(100)4PI4EsNsyNN

COMMON/A2/RSC(100) 4RST(100),RON(100),EY(100),X0,A0,Y0,

RL yMODEL
PL = 0.D0
A0 = 0.D0
YO = 0.D0
00 10 J=1,N
P1 = PL + T (J)*D(J)*XC (J)
AQ = AC + T(J)*D(J)
YO = YO + YI(J)
XG0 = P1/AO
DO 15 J=1,N :
YO=YO+( XC(J)=XO)*(XC(J)-XC)*D(J)*T(J)
RETURN
END

SUBRQUTINE STRAIT (J,X,FACTCR,THETA)

STRAIT COMPUTES GEOMETRIC PROPERTIES OF A STRAIGHT
SEGMENT

IMPLICIT REAL*8 (A~-H,0-1)
COMMON/A1/D0(100),7(100),PHI1(100),PHI2(100),XC(100),

XD(100),YI(100),PI4EsNyNN
PHI1(J)= THETA

PHI2(J)= THETA
ST =DSIN(THETA)

CT=DCOS(THETA)
XC(J)=X+D(J)*ST*,5D0*FACTOR

XD(J) = xXCJ)
YI(J)=T(J)*D(J)/12.00%(T(J)I*T(J)*CT*CT+D(J)=D(J)*ST=*

ST)
X = X + D(J)*ST*FACTOR

RETURN
END
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SUBRQUT INE CCRNER (THETAl,THETAZ2,XCENT,R, JyFACTOR,X)

CCRNER COMPUTES GEOMETRIC PROPERTIES OF A CCRNER
SEGMENT

IMPLICIT REAL*8 (A-H,0-2)

CCOMMCN/A1/D(100),T(100)4PHI1(100),PHI2(100),+XC(100),
XD(100),YI{(100),PI,E9NsNN

T12 =(THETAl1-THETA2)*.5D0

THETA = (THETAL+THETAZ2)*,.5D0

PHI1{(J)= THETAl

PHIZ2(J)= THETAZ2

ST1 =DSIN(THETA1l)

CTl =DCOS(THETALl)

S§T2 =DSIN(THETAZ2)

CT2 =DCOS(THETA2)

ST=DSIN(THETA)

CT=DCCS(THETA)

S=DSIN(T12)

C=DCCS(T12)

RDO=R+T(J)})*=,5D0

XD(J)=XCENT + R*CT

PL=S*2.D0*(RD-T(J)+RD%=RD/(2.D0%R) ) /(3.00*T12)

XCUJ)=XCENT+PL=*CT

Gl= T(J)}/RD

Q2= 1.D0-1.5D0*%Q1+Q1*Ql-.25D00%Q1*Q1*Q1l

€3= T12+S*C=~2.00%S%S5/T12

Q4=T(J)*T(J)*S*S*(1-DO‘Ql+Q1*Ql/6.DO)/(éoDO*RD*R*TlZ)

Y1=ROD*RD*RO*T(J 1*(Q2%Q3+Q4)

Y2=RD*RD¥RD*T(J)*Q2*(T12-5%C)

YI(J)=Y1*CT*CT+Y2%ST*%ST

X = X + (CT2~-CT1)*%R*FACTOR

RETURN

END
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SUBRCUTINE RESIDU

RESIDU COMPUTES THE EQUILIBRIUM CCRRECTICNS TO THE
RESIDUAL FORCES. CM AND OF ARE THE FORCE AND MOMENT
CORRECTIONS, E1l IS THE AXIAL STRESS CORRECTICN. ALL
QUANTITIES HAVE BEEN DIVIDED BY THE MODULUS OF
ELASTICITY E.

IMPLICIT REAL*8 (A-H,0-Z)
CCMMCN/A1/D(100),T(100),4PHI1(100),PHI2(100),XC(100),

1 XD(100),YI(100),PI,EsNyNN

CCMMGN/ A2/RSC(100)4RSI(100),RON(100),EY(100),XC,AC,YO,

1 RL4MCDEL

"CCMMON/A3/VSC(100) ,VSI(100)+V(100)+PF(100)+E14sW,DELV,

1 OF,CM,AEL(100), PY, IP

CMP=0.00
IF (MODEL -2) 2,20,20

MODEL 1: UNIFCRM RESIDUAL STRAIN ACROSS THICKNESS.

O 5 J=1,N
CF =0F+0(J)*T(J)* .SDO*(RESTRC(J)+RESTRI(J))
CM=0M=,5DO0*(RESTRO(J)+RESTPI(J})*D(J)*=T(J)*(XC(J)=-XC)

GO TO 60

MODEL 2: LINEAR RESIDUAL STRAIN ACRCSS THICKNESS.
MODEL 3: TWO RECTANGULAR BLCCKS STATICALLY EQUIVALENT
TC MCDEL 2. USER SPECIFIES NEUTRAL AXIS.

DO 30 J=1,N
THETA=.5*(PHI1(J)+PHI2(J))
ALFA=(PHI1(J)=-PHI2(J))*.5D0

CT=DCOS(THETA)
p1=  +D(J)*T(J)I* .5DO*(RESTRO(J)I+RESTRI(J))
Q1=P1*(X0-XC(J))

IF ( ALFA.NE.O0.DO) GO TC 22

P2=0.00
02=(RESTRI(J)=RESTRC(J))*D(J)*T(J)=T(J)/12.00

GO TO 25 i
p2=T (J)%T (J) *ALFA* (RESTRO(J)=FEST® 1(J))/6.00

G =(T(J)*ALFA/D(J) ) **2/3.00
cz:(RESTRI(J)—RESTRC(J))*O(J)*T(J)*T(J)IIZ.DO*(l.DO-Q)
1*DSIN(ALFA)/ALFA

CF=0F+P1+P2

CM=0N+Q1+Q2*%CT +P2*(X0-XC(J))

CMP=0MP+Q2

CONTINUE

El = -0F / AO

RETURN

END
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SUBROUTINE STRAIN (RQ4J+1.EA,ET)

STRAIN COMPUTES THE STRAIN AT A POINT.

EB = BENDING STRAIN; ER = RESIDUAL STRAINS

ET = TOTAL STRAIN; EA = AXIAL STRAIN (FRCM LOAD)S
E2 = BENDING CCRRECTIVE STRAIN;

E1l = AXTAL CCORRECTIVE STRAIN (FROM RESIDU)

IMPLICIT REAL*8 (A-H,0-21)

COMMON/A1/D(100) ,T(100},PHI1(100),PHI2(100),XC(100),
1 XD(100),¥I(100),4PI,EsNysNN

CCMMCN/ A2/RS0D(100) ,RST(100),RON(100),EY(100),X0,AC,YC,
1 RL 4MODEL
CCMMON/A3/VSD(100),VSI(100),V(100),4PF(100)+ELlyWsDELV,
1 OF ,OM,AEL(100),PY,IP
CT=DCOS((PHI1(J)+PHI2(J))*.5D0)

EB ==PI*PI *V(I)/(RL*RL)*(XD(J)+RO*CT~-X0)
E2=0M/YO*(XD(J)+RO*LT~-X0)

IF(MODEL.EQ.4) ET=EA +EB

IF(MCDEL.EQ«4) RETURN

IF(.MODEL‘Z) 11273

ER=.500%(RSO(J)I+RSI(J))

GG TC 5
ER=.5DO*(RSO(JI+RSI(J))I+(RSC(JI-RSTI(J))*RO/T(J)

GO TC 5

IF(ROLGTLRCN(J)) ER=VST(J)

IF(ROLLTLRON(J}) ER=VSI(J)

IF(ROLEQ«RON(J) <ANDLIP.EQ.1) ER=VSC(J)
[F(RC.EQ«RON(J)AND.IP.EQa2) ER=VSI(J)
ET=EA+EB+ER+EL1+E2

RETURN

END
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SUBRCUTINE ALTER

ALTER COMPUTES THE MAGNITUDES OF THE RECTANGULAR
BLOCKS OF RESIDUAL STRAINS IN MCDEL 3. ALTEP CAN ALSO
COMPUTE THE RESIDUAL FCRCE AND MOMENT WHICH ARE EQUAL
TC THOSE OBTAINED BY RESIDU FOR MODEL 2.

IMPLICIT REAL*8 (A-H,0-1)
COMMCN/A1/D(100),T(100),PHI1(100),PHI2(100),XC(100),
1 XD(100),YI(100) +PI 4E+ Ny NN

COMMCN/ A2/RSC(100) ,RSI(100),RON(100),EY(100),X0,AC,YO,
1 RL yMODEL

COMMON/A3/VS0O(100) ,vSI(100),V(100),PF(100),ELl W,DELV,
1 CF,OM,AEL(100),PY, IP

DC 20 J=1,N

A =(PHI1(J)-PHI2(J))*.5D0

2=2.00%RAN(JI/T(J)

C=(1.D0+Z)*(1.D0-2)

P= RSC(JI+RSI(J)

C= RSC(J)=-RSI(J)

IF(A .NE.0.DO) GO TO 5

STRAIGHT SEGMENT

VSO(J)=P*x,500+Q/(3.00*(1.00~-2))
VSI(J)=P=%,500-Q/(3.00*(1.D0+2))
GG TC 10

CURVED SEGMENT

B=T(J)/D(J)

$=DSIN(A)

F=(A%B)*%2-3 .00
G=3.D0*CH(A*B*I*(A%B*C~2.00%Z)+F)
PV=(3.D0*C*P+2.00%Z*Q) *F /G
QV=(6.00%A*B*C*Z%P+2.D0*( A*ASB*BXC*Z+F ) *Q) /G
VSO(J)=.500% (PV+QV)

VSI(J)=.500% (PV=QV)

CONT INUE

CONT INUE

RETURN

END
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SUBRCUTINE INTERN (EA,P,RM,AE,I)

INTERN COMPUTES THE INTERNAL FORCE AND MOMENT
FOR MODEL 1 AND 2 OF RESIDUAL STRAINS.

IMPLICIT REAL*8 (A~H,0-2)

CCMMON/A1/D(100),T(100),PHI1(100),PHIZ2(100),XC(100),
XD(100),YI(100),PI4EsNsNN

CCMMCN/A2/RrSQ(100) ,RST(100),RCON(100),EY(100),X0,A0,Y0,
RL ,MODEL

COMMCN/A3/VSC(100) ,vSI(100),V(100),PF(100),ELl,W,DELV,
OF yCM,AEL(100),PY,1IP

AE=0.00

P=0.D0

RM=0,.00

DC 40 J=1,N

CT=DCOS((PHI1(JI+PHI2(J))*.5D0)

ALFA=(PHI1(J)-PHIZ2(J))*,500

S=DSIN(ALFA)

STRAINS AT EXTREME FIBERS.

CALL STRAIN ( T(J)*.5D0,J,1, EA,ETO)

CALL STRAIN (-T(J)*.5D0yJ,y1, EA4ETI)
IF(ETO.LE.EY(J).AND.ETI.LELEY(J)) GO TO 10
IF(ETO.GE. EY(J).AND.ETI.GE« EY(J)) GO TQO 15

ELASTO-PLASTIC.OUTER FIBEP YIELD OR INNER FIBER YIELD?
COMPUTE YIELD FRONT
TEyTP = THICKNESS OF ELASTIC AND PLASTIC SEGMENTS.

IF(ETC.GT.EY(J)) F=+1.00

IFIETI.GTLEY(J)) F=-1.D0
ROY=(EY(J)-(ETO+ET I )*.5D0)}*T(J)/(ETC-ETI)
TE=T(J) *.500+RAY*F

TP=T(J)*.5D0-ROY*F

IF(F.EQ.+1.00) ET=ETI

IF(F.EQ.~1.D0) ET=ETO

IF(ALFA.NE.O.DO) GO TC 7

STRAIGHT SEGMENT

SAE SEGMENTAL AREA, ELASTIC

SEP = SEGMENTAL ELASTIC L0OAD

SPP = SEGMENTAL PLASTIC LCAD

SEM1= MOMENT ABOUT CENTRQID OF ELASTIC SEGMENT DUE TO
STRESS GRADIENT

SEM2= MOMENT OF ELASTIC LOAD ABQOUT CENTROID OF SECTION

SPM = MOMENT OF PLASTIC LOAD ABQUT CENTRCID OF SECTION

1]

SAE=D(J)*TE

SEP=SAE*E*,5D0%(EY(J)+ET)

SPP=E*EY(J)*D(J)*TP
SEM1==E*D(J)*TEXTE/12.00%(EY(J)-ET)*F*CT
SEM2=SEP* (XO=XD(J)- .5D0*(ROY=F%.5D0%T(J) ) %CT)
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SPM=SPPX( X0~ XD(J)-.500%(RCY+F*,5D00%T(J) )*CT)
GC TC 9

CURVED SEGMENT

DE=D(J)+ALFA*(ROY-F*T(J)*.5D0)

OP=D{J) +ALFA*(ROY+F*T(J)*.500)
GE=(TE*ALFA/DE)**2/3.00

QP=(TP*ALFA/DP)*%2/3.D0

R=D(J)/(2.D0*ALFA)
CE=.5D0*DE*S/(ALFA*ALFA)*(1.00+QE)-R

CP=.500*DP*S/ (ALFA*ALFA)*(1.D0+QP)-R

SAE=DE*TE

SEP=SAE*E*.5CO0*(EY( J)+ET)+E*TE*TE*ALFA*(EY(J)-ET)I*F/
1 6.00

SPP=DPXTP*E*EY(J)
SEMl=~E*DE*TE*TE/12.D0*(1.D0-QE)*S/ALFA*(EY(J)-ET)*F*
1 CT

SEM2=SEP*(XO-X0(J)-CE*CT)

SPM=SPP*(X0-XD(J)-CP*CT)

SP=SEP+SPP

SM=SEM1+SEM2+SPM

WRITE(6,+55) J,RCY,SEP,SPP,SPM,SAE,SEM]1,SEM2

GO TO 30
FULLY ELASTIC

SAE=C(J)*T (J)
SP=SAE*E*.500% (ETO+ETI)+E*T(J)*=T(J)*ALFAX(ETO-ET!)/

1 6.00

SM1=SP*(X0-XC(J })

IF(ALFA.NE.O0.DO) GC T 12
§2==-E*D(J)*T(J)*T(J)/12.00*(ETO-ETI)*CT

GO TC 13

QE=(T(J)*ALFA/D(J) )**2/3.00
§2=-E*D(J)*T(J)*T(J)/12.00*(1.00-QE)*S/ALFA*(ETO-ETI)
1 *CT

SM=SM1+S52

GO TC 30

FULLY PLASTIC

SP= D(J)*T(JI*E*EY(J)
SM=-SP*(XC(J)=-XC)
SAE=0.D0

pP=P+SP

RM=R M4+SM

AE=AE+SAE

CONTINUE

RETURN

END
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SUBRCUTINE INTER3 (EA,P,RM,AE,I)

INTER 3 COMPUTES THE INTERNAL FGRCE AND MOMENT FCR
MODEL 3 OF RESIDUAL STRAINS.

IMPLICIT REAL=*8 (A-H,C-2)
CCMMCN/AL1/D(100),T(100),PHIY(100),PHI2(100),XC(100),
1 XD(100),Y1I(100),PI,E4NyNN
COMMQON/A2/RSC(100) 4RST(100),RCN(100),EY(100),X0,AC,YC,
1 RL,MODEL
CCMMON/A3/VSC(100),VST(100)},V(100),4PF(100)+EY,W,DELV,
1 CF+CM,AEL(100),PY,IP

AE=0.D0

P=0.D0

RM=0.00

PI=4.D0*%DATAN(1.DO)

CQ 80 J=1,N

ALFA=(PHIL(JI)I=-PHIZ2(J})*.5D0

S=DSIN(ALFA)

CT=DCOS{.5D0*=(PHI1(J)+ PHI2(J)))

BO=T(J)*.5D0

BI=RCN(J)

IP=1

STRAINS AT QUTSIDE, INSIDE EDGES AND BOTH SIDES CF
NEUTRAL SURFACE (FOR RESIDUAL STRAINS).

CALL STRAIN (BO,J,I,EA,ETO)
CALL STRAIN (BI,.J,I,EA,ETI)
IF(ETO.GEEY(J)ANDETILGELEY(J)) GC TO 40
IF(ETC.LT.EY(J)LAND.ETI.LTLEY(J)) GO TO 50

ELASTO-PLASTIC

IF(BO.EQ.+T(J)*.5D0) ER=VSO(J)
IF(BI.EQ.-T(J)*.5D0) ER=VSI(J)

LCCATION OF YIELD FRONT.

ROY=(EY(J) *(BO-BI)+ETC*BI-ETI*BC)/(ETO-ETI)
IF (ETO.GE.EY(J)) F=+1.D0

IF (ETILGE.EY(J)) F=-=1.D0

IF(ALFANE.0.DO) GO TQO 20

IF(F.EQ.-1.D00) GC TQ 10

STRAIGHT, QUTER SEGMENT.,

Bl=BC
B2=8B1
ET=ETI
GO TC 15

STRAIGHT, INNER SEGMENT
SAP = SEGMENTAL AREA PLASTIC
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SPP = SEGMENTAL PLASTIC LCAD

SPM = SEGMENTAL PLASTIC MOMENT

SAE = SEGMENTAL AREA ELASTIC

SEP = SEGMENTAL ELASTIC LCAD

Ql = MOMENT ABOUT CENTROID OF ELASTIC SEGMENT DUE TO
STRESS GRADIENT.

SEM = TOTAL MOMENT OF ELASTIC SEGMENT ABOUT CENTRCID
OF SECTICON.

10 B1=8BI1
E2=8C
ET=ETOC

15 SAP=D(J)*(Bl-ROY)*F
SPP=SAPXE*EY (J)
SPM=SPP*(XO-XD(J)-.5D0%(B1+ROY)*CT)
SAE=D(J)*(ROY-B2)*F
SEP=.5D0% (EY(J)+ET) *E*SAE
Q1=E*D(J)*(ROY=B2)*(ROY=-B2)*(ET-EY(J) )*F/12.D0*CT
SEM=SEP*(X0-XD(J)=.5D0%(B2+ROY) *CT)+Ql
GO TO 35

CURVED, QUTER SEGMENT
DP,TP LENGTH, THICKNESS OF PLASTIC SEGMENT
DE.TE LENGTH, THICKNESS OF ELASTIC SEGMENT

[

20 IF(F.EQ.~-1.00) GO TC 25
DP=D(J)+ALFA*(BO+RCY)
DE=D (J)+ALFA*(BI+ROY)
TP=8C-ROY
TE=RCY-81
ET=ETI
GC TC 30

CURVED, INNER SEGMENT
CE,CP = DISTANCES CENTRQOID TO QUTERMCST FIBER CF

ELASTIC, PLASTIC SEGMENTS.

25 [P=D(J)+ALFAX*(BI+RCY)
DE=0D(J)+ALFA*(BO+RQY)
TP=RCY-BI
TE=8C-RAY
ET=ETC
39 QP=TP*ALFA/DP
CP=DP*.5D00%( 1.D0+QP*QP/3.00)*S/ (ALFA*ALFA)-D(J)/
1 (2.DO*ALFA)
SPP=E*EY(J)*DP*TP
SPM=SPP*(X0-XD(J)=CP*CT)
QE=TE*ALFA/DE
CE=DE*.5D0%(1.00+QE*QE/3.00)*S/ (ALFA*ALFA)-D(J)/
1 (2.D0*ALFA) :
SAE=DE*TE
SEp:gtsAE*.SDO*(EY(J)+ET)+E*TE*TE*ALFA*(EY(J)—ET)*F/

6.D0
1Q1=E*DE*TE#TE/12.DO*(l.DO-QE*QEIB.DO)*S/ALFA*
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(ET-EY(J) }*F*CT
SEM=SEP*({ XC-XD(J)-CE*CT)+Ql

SUM ALL SEGMENTAL VALUES

F=P+SEP+SPP
RM=RM+SEM+SPM
AE=AE+SAE

GC TC 70

FULLY PLASTIC

TE=BGC-BI
CE=D(J)+ALFA*(BQO+BI)
SAE=0.DO

SP=E*EY(J ) *TE*DE

€1=0.00

IF(ALFA.NE.0.DO) GO TC 60
GO TC 55

FULLY ELASTIC

TE=BC-BI

DE=D(J)+ALFA=(BO+B1I)

SAE=TE*DE

SP=.5D0%( ETO+ETI)*E*SAE+E*(ETC~ETI )*TE*TE*xALFA/6.00

IF(ALFA.NE.Q.DQ) GO TQ 60

Ql=E*D(J)*TE*TE*(ETI-ETO)/12.00*CT

SM=SP*(X0-XD(J)~.500*(BO+B81)*CT)+Q1

GC TC 65

QE=TE*ALFA/DE

IF(SAE.NE.O0.DO)

Ql=E*DE*TE*TE/12.00*(1.D0-QE*QE/3.D0)*S/ALFA*
(ETI-ETO)*CY :

CE=DE*.5D0*(1.00+QE*QE/3.00)*S/ (ALFA*XALFA)-D(J)/
(2.00*%ALFA)

SM=SPx( XO-XD(J)-CE=CT)+Q1

SUM ALL SEGMENTAL VALUES

pP=P+SP

RM=RM+SM

AE=AE+SAE

IP=IP+1

IF(IP.GT.2} GO TQ 80

REPEAT FOR INNER SEGMENT

BO=RAON(J)
BI=-T(J)*.5D0
GO TC 5
CONTINUE
RETURN

END
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SUBRCUT INE LOAD1(MI,NET,MAX1,NAXl,IWRITE,C1l,C2,F2,F3,
F44EN,ECC)

FCR EACH VALUE OF MIDHEIGHT LATERAL DEFLECTION Vv LOAD
COMPUTES THE AXIAL LCAD PF.

NET=0 (1 BLANK CARD) FOR DEFAULT VALUES

MAX1= MAXIMUM NUMBER OF ITERATIONS FCR LOAD
EQUILIBRIUM (QOCP.

NAX1= MAXIMUM NUMBER CF ITERATIONS FOR MOMENT
EQUILIBRIUM LCCP.

F2,F3,F4= SCALING FACTORS THAT AFFECT CONVERGENCE

IMPLICIT REAL*8 (A~H,C-2)

COMMCN/Al1/D(100),T(100),PHI1(100),PHI2(100),XC(100),
XD{(100)4YI(100)+PI4E4NsNN

COMMON/A2/RSO(100) yRSI(100)4RCN(100)4EY(100) +XQ4AC,YC,
RL yMODEL

COMMON/A3/VSO(100) ,VvSI(100),V(100)+PF{(100)4ELl,W,DELV,
OF yOM,AEL(100),PY, 1P

COMMON/A4/U(100) 4ST(100+4)+1S(4)4NST

DIMENSION DL(3),PS(3)

IC=6

IF(NET.NE.O) GO TO 1

MAX1=20

NAX1=20

Cl=2.D-4

c2=1.0-3

F2=5.500

F3=.9D0

F4=1.0D0

1IF (NST-1) 7,10,15

WRITE(ID,630)

GO TC 18

WRITE(10,640) U(IS(1))

GO TO 18

WRITE(IOQ,650) (UCIS(L)),L=1,4NST)

WRITE(IO,652)

=1

MREACH=0

PMAX=0.00

K=1

MAX=0

NAX=0

FIRST ASSUME SECTION IS ENTIRELY ELASTIC.

pA= FI#PI*EXYO#V(I]/(RLERL*(V(1)+W=-ECC))
EA=PA/(E*AQ)

MAX=MAX+1

IF (MAX<GT «MAX1) GO TO 100

IF (MODEL.EQ.3) CALL INTER3 (EA,P,RM,AE,1)

IF (MODEL-NE.3) CALL INTERN (EA,P,RM,AE,1)
[F(IWRITE.EQ.1) WRITE(65210) I,PAsEA,P,RMyAE,V(I)
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DOES THE INTERNAL LCAD P EQUILIBRATE THE EXTERNAL
LCAD PA ?

IF(DABS((P=-PA)/P).LT.Cl) GO TC 40
IF(AE.LT.AQ0*.1D0.AND.P.LT.PA) PA=F3*=PA
IF(AE.LT.AQ*,1D0.AND.P.LT<PA) GO TO 20
IF(AE.NE.O.DO) GO TO 35

EA=PF(I-1)

GO TC 20

EA=EA+(PA-P)/(E*AE) XF4

GO TQ 30

DOES THE INTERNAL MCMENT RM EQUILIBRATE THE EXTERNAL
MCMENT XM ?

NAX=NAX+1

IF(NAX.GT<NAX1) GO TC 100

XM=Px{(V(I1)+W-ECC)

DL(K)=RM=XM

PS(K) =P

IF(IWRITE.EQel) WRITE(6+,220) Ky XM4DL(K) ,PS(K)

MAX=1

IF(DABS(DL(K)/RM).LT.C2) GO T 50

IF(K=2) 44,45,4,46 :

SCLVE DL=RM-XM=Q BY A MODIFIED SECANT METHOD, IE FIND
WHERE CURVE DL-PA INTERSECTS AXIS DL=0 (REFERRED TC
HEREAFTER AS AXIS).FIND ANGQTHER POINT ON DL-PA CURVE
BY ASSUMING A DIFFERENT LCAD.
PA=PA+DL(K)}/(V(I}+W~-ECC)/F2

K=K+1 R

GQ TG 20

CCNT INUE

IF(IWRITE.EQ.1) WRITE(6,260) DL(1),PS(1)

LINE JOINING THE FIRST 2 POINTS INTERSECTS LOAD AXIS
AT NEW PA.

PA=PS(1)=DL(1)/(DL(23-DL(1))*(PS(2)=PS(1)]

K=K+ 1

GC TC 20

CCNT INUE

IFCIWRITE.EQ.L1) WRITE(65290) DL(L1),PS(1),DLI2),PS(2)

KEEP THE 2 PCINTS NEAREST QR CN BCTH SIDES OF AXIS

IF(DL(2)%DL(3).LT.0.D0) GO TO 47

IF(OL(1)%0L(2).LT.0.00) GC TO 48

IF(DABS(DL(1)).GT.DABS(DL(2)).AND.DABSI(DL(1)).GT.
1DABS(DL(3))) GC TO 47

IF(DABS(DL(2)) .GT.DABS{DL(1)) .AND.DABS(DL{2)).6T.
1DABS(LL{3))) GO TO 48
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GC TO 110

- PCINT 1 REJECTED: TAKE INTERSECTION OF AXIS WITH LINE
2-3. CONVERGENCE MAY BE DIFFICULT IF NEXT MOVE IS
BASED ON 2 PCINTS CN BOTH SIDES OF AXIS BUT ONE MUCH
FURTHER AWAY FROM AXIS THAN THE OTHER. MOVE THE FAR
POINT CLOSER TO AXIS SO THE RATIO CF THEIR DISTANCES
TO AXIS IS 2. (2 WORKS BETTER THAN 1 OR 0).

PA=PS(3)-DL(3)/(DL(2)-DL(2))*(PS(2)-PS(3})
IF(DL(2)/DL{3).LT<~2.00)

.1 PA=(2.D0*DL(3)*PS(2)-(DL(2)+

2 DL(3))*PS(3))/(DL(2)~-DL(2))
IF(DL(3)/0L(2)LT<-2.00)
1 PA=(2.D0%0L(2)*PS(3)~-(DL(3)+
2 DL(2))%PS(2))/(DL(2)~-DL(3))
DL(1)=DL(3)
PS(1)=PS(3)
GC TC 20

POINT 2 REJECTED.

PA=PS(1)-=-DL(1)/(DL(3)-DL(1))*(PS(3)=-PS(1))
IF(DL(1)/DL(3)eLT.~2.D0)
1 PA=(2.D0*DL(3)*PS(1)-(DL(1)+
2 DL(2))*PS(3))/{DL(3)-DL(1))
IF(DL(3)/DL(1l)«LT.-2.00)
1 PA=(2.D0*DL(1)*PS(3)-(DL(3)+
2 DL(1))*PS(1))/(DL(1)=-DL(3))

DL(2)=DL(3)

PS(2)=PS(3)

GC TC 20

EQUILIBRIUM OBTAINED

PF(1)=P

PFD=2.D0*P

AEL(I)=AE/AQ0*100.00

IF (NST‘l) 60170180

WRITE(10,635) 1,v(1),PFD,AEL(T)

Go TC 90

CALL DEFORM (TCIS(1))*%.5D0,IS(1),1,EA,ST(I,1))
WRITE(10,645) 1,V(I1),PFDsAEL(1),ST(I,1)

GO TC 90

pCc 85 J=1,NST
CALL DEFORM (T(IS(J))*.5D00,1S(J),1,EA,ST(1,J))

WRITE(6,655) ToV(I)PFDLAEL(T) 4 (ST(I,J)+yJ=1,NST)

INCREMENT V.

IF(1.GT.1.ANC.MREACH.EQ.0) CALLCMAX (I,MREACH, [REACK,
1 IR1,C1lyPMAX,PF)

[=1+1
IF(1.GT.NN) GO TO 120
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IF(PF(I-1).LT. EN *=PMAX.AND.MI.EQ.1l) GO TC 120
IF(PF(I-1).LT. EN *PMAX.AND.MREACH.GT.2) GC TC 120
NAX=1

K=1

IF(MIL.EQ.1) GC TQ 93

IF(MREACH.EQ.1.0R.MREACH.EQ.2) CALL MORE (I.MREACH,
1 IREACH,IR1,MI,DELV,V)
IF(MREACH.EQ.1.0R.MREACH.EQ.2) GO TC 20

V(I)=Vv(I-1) +DELV
IF(DABS(AQO-AE).GT.1.0-3.AND.T.GT.3) GO TC 95

PAM= PI*PI*EXxYO*=V(I)/(RL*PL*(V(I)+w—ECC))

IF (PAM.LT..90D0*PY) PA=PAM

GG TO 20

LINEAR EXTRAPCLATICN.

PA=(PF(I-1)=-PF(I=2))*(V(I)=-V(I=-2))/(V(I=1)=V(I-2))+
1 PF(1I-2)

GG TC 20

WRITE(ID,250)

GO TC 120

WRITE(IC,150)

RETURN

FORMAT(' NOT MONOTONIC')

FORMAT (! == e e e e e e e '
1t '/' 1=',12," PA =',1PDll.4,' EA =',D1l.4,
2 P ='9D11l.4s' RM =',D11.4,"' AE =',D1lle4,'V(I)=",

3 Dll.4)

FORMAT(' K="',12,"' XM=',1P011l.4y"' DL(K)=',Dll.%,
1 ' PS(K)=',Dll.4)

FORMAT(// ' *%x=%x%x NOQ CONVERGENCE *%x%xxx1)

FORMAT(' DL(1)='41PD1ll.4,"' PS(1l)=',D11.%)

FORMAT (' DL(1)="',1PD11.4," PS(1l)='4,D1l1.4,"' DL(2)=",

1 Dll.4y' PS(2)=',D11.4)

FORMAT(/8X,' DEFLECTION',5X, 'LOAD %2',5X,
1 'ELASTIC AREA 3'7/)

FCRMAT(3X,12,3(3X,1PD11.4))

FORMAT(/*' STRAIN IS CCMPUTED AT + FACE AT THE ',
1'FOLLOWING LOCATIONS ALONG THE PERIMETER: ',1PD1l1.4//
26Xy 'DEFLECTICN',5X,'LCAD *21,4X,
3YELASTIC AREA %',3X,'STRAIN'/)

FCRMAT(3X,12+4(3X,1PD11.4))

FORMAT(/' STRAIN IS CCMPUTED AT + FACE AT FOLLOWING ',
1'LOCATIONS (1,2+3,4) ALONG PERIMETER: '24(1PD1l.441X))

FCRMAT(/9X,'DEFLECTION' ,5X, ' LCAD *2',4X, '"ELASTIC AREA'
1, %',3X, "STRAIN 1*,5X,*STRAIN 2',7X,?'STRAIN 3' 45X,
2'STRAIN 4'/)

FORMAT(3X,I12,7(3X,1PD11.4))

END ’
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SUBRQUTINE LCAD2(MI 4 NET,MAX1yNAX1,IWRITE,C1l+sC2,F2,+F3,
1 F4,EN,ECC)

IMPLICIT REAL*8 (A-H,0-2)
COMMON/A1/D(100),T(100),PHI1(100),PHI2(100),XC(100),
1 XD(100),Y1(100)+PI 4E+NyNN
COMMON/A2/RSO(100)4RSI(100)4RON(100)+EY(100),X0,4A0,Y0,
1 RL 4MODEL

COMMON/A3/VS0O(100) 4VSI(100),V(100)},PF(100)4EL1yW,DELV,
1 OF,OM,AEL(100),PY, IP
COMMON/A4/U(C100),ST(1004+4),15(4) 4NST

I10=6

EA=0.D0

WRITE(IO,5)

DO 2 I=1,34

V(1})=0.D0

EA=EA+]1.D-4

IF(MODEL.EQ.3) CALL INTER3(EA,P,RMyAE,T)

IF(MODEL .NE«3) CALL INTERN(EA,P,RM,AE,I)

PFD=2 .D0O*P

AEL(1)=AE/A0*100.D00

WRITE(10,10) I,EA,PFD,AEL(I)

CONT INUE

RETURN
FORMAT (/10X *'STRAIN',9X, 'LOAD"'y 66X, 'ELASTIC AREA %'/)

FORMAT(3X,12,43(3X,1PD11l.4))
END

SUBROUT INE MORE (I,MREACH; IREACH,IR1,MI4DELV,V)

FOR DETAILS, 'MORE' DECREASES THE DEFLECTION INCREMENT
-AND INCREASES IT BACK TO ITS INITIAL VALUE ONCE THE

DETAILED INTERVAL PASSED.

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION V(100)
IF(1.NE.IREACH+1) GO TO 10

DELV=DELV/DFLOAT(MI)
IF (MREACH.EQ.1) V(I)=V(IREACH)-DFLOAT( MI-1)*DELV

IF(MREACH.EQ.2) V(I)=V(IREACH)-DFLOAT(2%*MI-1)=*DELV
RETURN

v(1)=V(I-1)+DELV
IF(V(I).EQ.V(IR1)) V(I)=V(I)+DELV
IF(V(I).EQ.V(IREACH)) GO TQ 20
RETURN

DELV=DELV*DFLOAT(MI)
v(I)=V(IREACH)+DELV

MREACH=3

RETURN

END
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SUBRCUTINECMAX (1,MREACH,IREACH,IR1,Cl,PMAX,PF)
FINDS THE MAXIMUM LOAD

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION PF(100)
IF(DABS(PF(I)-PF(I-1))eLT.C1%PF(1}/10.D0) GO TC 10
IF(PF(1)-PF{1-1).LT.~-C1*PF(1)/10.D0) GO TO 15
PMAX=PF(1I)

RETURN

MREACH=1

GO TO 20

MREACH=2

IREACH=I

IR1=1~1

RETURN

END

SUBRCOUTINE DEFORM (RQO,J,1,EA,EAP)

COMPUTES STRAIN IN ABSENCE OF RESIDUAL STRAINS
(AXI AL AND BENDING CNLY).

IMPLICIT REAL*8 (A-H,0-2)

COMMGON/A1/D(100),T(100),PHI1(100),PHI2(100),XC(100),
XD(100),YI{100),+PI,E,N,NN

COMMON/AZ2/RSC(100) 4RSI(100),RAON(L0OQ}4EY(100)4XCyAQ, YO,
RL,MODEL

COMMON/A3/VSO(100),VSI(100),V(100)4PF(100)4El,W,DELV,
OF ,OM, AEL (100) ,PY, IP

CT=DCOS((PHI1(J)+PHI2(J))*.5D0)

EB =~PI*PI *V(I1)/(RL*RL)}*(XD{J)+RO*CT-X0)

EAP=EA+EB

RETURN

END
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SHEET BENDING

SHEET BENDINGC WITH PLASTIC RESIDUAL STATE AT INTERICR,
CCNCAVE EDGE CR BOTH. D1, DL CORRESPCND TQ LQOGD1,
LCGD2 IN PAPER: 'MECHANICS OF THE SHEET BENDING
PRCCESS' BY B.W.SHAFFER & E.E. UNGAR, J. APPLIED
MECHANICS, TRANS. ASME, MARCH 1960. HERE LOADS INCLUDE
MCMENT AND INTERNAL PRESSURE. EQUATION NUMBERS REFER
TC CHAPTER 4 (WAS 3) COF THESIS.
INPUT
= # OF EXTERNAL RADII
= # OF PRESSURES OR NEUTRAL AXIS LOCATIONS
PT=0 INPUT NEUTRAL AXIS, I0PT=1 INPUT PRESSURE.
= # OF INTEGRATICN PQINTS FCR FORCE & MOMENT
CEFAULT 50.
U=1.D0 FOR TRESCA, 2.D0/DSQRT(3.00) (DEFAULT) FCR VCN
MISES. FOR DEFAULT, LEAVE BLANK.
FCR DEFAULT , LEAVE BLANK.
PR = RATIO OF MAXIMUM PRESSURE TC SMALLEST PRESSURE
RA = INTERNAL RADIUS
RRB(I) = EXTERNAL RADII
RINC(I)= RADIUS INCREMENT AT WHICH STRESSES QUTPUT
RCC(J) LCCATION OF NEUTRAL AXIS (IOPT=0)
(STARTING FRCOM RA)
QUTPUT

NB
NP
I1C
M

F = PRESSURE

pM MAXIMUM PRESSURE (RC=RA)

AP P/PM

PRA = P AT WHICH INTERICR YIELD ZCNE REACHES CONCAVE

FACE.

RC = RADIUS OF NEUTRAL AXIS

TO, TI = TRANSITION RADII TOQ PLASTIC RESIDUAL ZCNES

A, B8y Cy D1, DLy H = COEFFICIENTS OF INTEGRATION

CM MCMENT

RY LIMIT OF FULLY ELASTIC UNLOADING ZQONES

TD =CT= % OF THICKNESS IN INTERIOR THAT UNLOADS

PLASTICALLY.

TY = % OF THICKNESS AT CONCAVE EDGE THAT UNLOADS

PLASTICALLY.

R = RADIUS

SRy ST, SZ = RESIDUAL STRESSES IN RADIAL, TANGENTIAL

AND AXIAL DIRECTIONS

TR = ST - SR = + QR - 1 AT YIELD

CN+ YNy ON, YT = NON~-DIMENSIONALIZED RCy RY,TO, TI1
(SAY CN = (RC-RA)/(RB=~RA) )

D1 = % DIFFERENCE BETWEEN TO AND RY

NGTICE FACTOR U WITK WHICH P, OM, SR, ST, SZ ARE

MULTIPLIED.

TC OBTAIN DIMENSTONALIZED VALUES MULTIPLY BY YIELD

STRESS.

THIS PROGRAM WRITTEN FOR POSITIVE PRESSURE AND MCMENT

AND RC.GE.RA.
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MAIN

IMPLICIT REAL*8 (A-H,0-2)

CIMENSION RRB(5),RINC(5),RCC(5,10)

READ (5,50) NB4yNP,ICPT,M,U

READ (5,60) PR,RA,(RRB(1),I=1,NB),(RINC(I),1I=1,NB)
IF(IOPT.EQ.1) GO 7O 10

00 5 I=1,NB

READ(5,60) (RCC(IyJ)’J=19NP)

IF(U.EQ.0.D0) U=2.D0/DSQRT(3.D0)

DO 40 I=1,NB

RB = RRB(I)

RIC=RINC(I)

HN=( (RB/RA)*%2-1.,D0)**2-4 ,DO0*(RB/KA*DLOG(RB/RA) ) *%2
PM=DLOG(RB/RA]

CALL PCON (RA,RB,PCR,y1.D0-5)

PRA=PCR /PM

PMM=PMx|)

WRITE (6470) RA,RB,PMM,PRA,U

DC 35 J=1,4NP

1FLAG=1,2,3 MEANS PROBLEMS: TC NOT FCUND IN SOLVE,
BISECT OR CONCAV RESPECTIVELY (ALSO TI NCT FOUND IN

LAST CASE).

IFLAG=0
1F2=0

1F3=0

RY=0.00

IF(IOPT.EQ.0) GC TO 15

P=DFLOAT(J=-1)*PM/PP

RC=DSGQRT(RA*RB*DEXP(~©))

GO TO 16

RC=RCC(I,J)

p=DLCG(RA*RB/ (RC*RC))

AP=P /PM

THIN=P*50 .00

CN = (RC-RA)/(RB-RA)

CM=( RAXRA+RB*RB=2.DO*RA%RB*DEXP (=P))/4.D0-CA*RB*P/
1 2.00

CMM=CM=y

IF (CM.EQ.0.CO0) GO TO 110

IF(P.GT.1.1000%PCR) GC TO 110

ZETA=RA*RA*P/0OM

RY2=2.D0% (RB*RB-RA*RA)*DLOG(RB/RA)=C.5D0*ZETA*C A%PA*HN

IF(RY2.LT.0) GO TO 110
RY=RA*RB/(RB*RB-RA*RA)*DSCRT(RYZ)

YN = (RY-RA)/(RB=PA)
1F(RY.GT.RC) GO TO 20

CASE 1: RY < RC
IF(IF2.G6T.1) GO TC 110
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IF (P.EQ.0.D0) CALL PSOLVE (IFLAG,RA,RB,RC,P,B,TC)
IF (P.NE.0.DO) CALL SCLVE (IFLAGyRA,RByRC4+P,B+TQ,RY)
IF2=1F2+1

IF{IFLAG.EQ.1) GC TC 30

TD=(RC~-TO)/(RB-RA)*1.02

CN = (T0O-RA)/(RB=RA)

01 = (TO-RY)/TO*1.D02

WRITE(6,80) AP,RC,0OMM,TQ0,B,RY,TDyCN,YNsON,DI,THIN
IF(TO.LE.RA)} GC TQ 110

IF(T0.GT.RC) GO TO 30

CALL STRES1 (M,IF3,R1C,B,TG,RA,RB4RC,P,U)

GO TG 33

CASE 2: RY > RC

IF(IF2.GT.1) GO TO 110

CALL BISECT(IFLAG,RA,RB,RC,P,B,TO,sRY)

IF2=1F2+1

IF(IFLAG.EQ.2) GO TC 20

T0=(TO~RC)/(RB-RAJ}*1.D2

CN (TO-RA)/(RB-RA)

D1 (TO-RY)/TC*1.D2

WRITE(6,80) AP4RC,CMM,TC,BsRY,TDsCNyYNsON,DI,THIN
IF(TC0.LT.RC) GO TO 20

CALL STRESZ2 (M,IF3,RIC,B,TO,RA,RB,RC,4P,U)

CASE 3: INTERIGCR AND CONCAVE EDGE UNLOAD INELASTICALLY

IF(IF3.EQ.0) GO TQO 35

CALL CONCAV(IFLAG,RA,RB4RC,+P,TO,TI)
IF(IFLAG.EQ.2) GO TG 34
TY=(TI-RA)/(RB-RA)*1.D2
YT=(TI-RA}/(RB-RA)

CN (TO-RA)/ (RB-RA)

DI (TO-RY)/TC*1.02
T0=(RC-TO)/(RB-RA)*1.D2

WRITE(6,90) AP+RC,OMM,TO,TI, RY,TY,TD4CN,YN,ON,D1,YT
1 THIN

CALL STRES3 (M,RIC,TO4TI4RAyRB4RC,P,U)
GQ TC 35

[}

CASE 4: RY.LE.RA

TD=(RC~-RA}/(RB-RA)*1.D2

WRITE(6,4150) AP4JRC,CMM,TD,CN,THIN

CALL STRES4 (M4RIC,RAyRB,RC,4P,U)

IF (IFLAG.EQ.O0) GO TO 35

WRITE(6,100) P4RC,yOMMyRY,CN,¥YN

CONTINUE

CONTINUE

FORMAT (415,D010.0)

FORMAT(8D10.0)

FORMAT(/' RA=',1PD10.3," RB=,D10.3,°? PM=',D10.3,
1* PRA=',010.3,' U=',010.3) -
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80 FORMAT(/'AP =',1PD10.3,' RC=',Dl0.3,' CM=',010.3,
1* 7C=',Dl10.3y' B =',D10.3,' RY=',D10.3,' TD=',
2010.3/' CN=',D10.3,' VYN=',010.32,' ON=',D10.3,

3' DI=',Dl0.3,' PERCENT THINNING=',D10.3)

90 FORMAT(/'AP =',1PD10.3,*' RC=',D10.3,' OM=',010.3,
1* 7T0=',D10.3,' TI='yD10.3,' RY=',D010.3,' TY=',
2010.3,* TD=',D10.3/' CN=',D10.3+"' VY¥YN=',D10.3,

3* ON=',Dl0.3,'* DI=',D10.3,' YT=',D10.3,
4' PERCENT THINNING=',D10.3)

100 FORMAT(/' AP=',1PD10.3, * RC=',Dl0.3,' OCM=',D10.3,
1* RY=',D10.3/*' CN=',D10.3,' YN=',010.0/' ABOVE ',
2'RESULTS ARE INVALID IF OBVIOUSLY CCNCAVE EDGE CANNCT'
2,*YIELD")

150 FORMAT(/' AP=',1PD10.3,' RC=',Dl0.3,' 0OM=*,D10.3,
1' TD=',D10.3,* CN=',Dl0.3,

2' PERCENT THINNING=',010.3)
STCP
END
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SUBRCUTINE VALUF (TC,RA,RB,RC,Q2,8,F,P)

CASE 1. SUBSTITUTES (3.42) INTO (3.43).
F = 0 GIVES TC

IMPLICIT REAL*8 (A-K,C-2)
Ql=-1.00+2.D0*DLOG(RC/RB)-2.D0*0OLCG(TO/RA)+TC*T 0*QZ
B=P/Q1

C3=((TO*TO-RA*RA)/RA)**2/2.D0
Q4={RB*RB-RC*RC)/(2.DO*RB*RB)*(RB*RB-TO**4/(RC*RC))
F=(RA*RA+RB*RB~2.D0*%RC*RC)/4.D0+TO*TO*P/2.00+8%(Q4-Q2)
RETURN

END

SUBRGQUTINE VALUG (TC,RA,RB,RC,B,G,+P)

CASE 2. SUBSTITUTES (3.55) INTC (3.56).
G = 0 GIVES TO

IMPLICIT REAL*8 (A-+H,C-2)

€l=1.D0/(RB*RPB)-1.D00/(RA%RA)

G2=Q1+1.D0/ (RC*RC)

03=(RA*RA+RB*RB-2.DC*RC*RC)/4.D0
€4=1.D0+2.DO*DLCG(TC*RA/(RB*RC) ) -TO*TO*Q2

B=P/Q4 ,
C=Q3+P*RC*RC*0.5D0+B*RC*RC=TC*TO*Q1*0.5D00+0. 5DO*B* (RB*

1 RB-RA*RA) +B*(RC*RC-TO*TU)*DLOG(PB*RC/(RAXTQ})

RETURN
END

SUBROUTINE VALUK (RA,RB,RCsTO,TI,P,F)

SALVE FOR TOQ FROM EQUATION (3.72) THEN CALCULATES
RIGHT HAND SIDE OF (3.72). F=0 GIVES TI.

IMPLICIT REAL *8 (A-H,0-2)
ALFA=1.D0/ (RB*RB)=1.00/(RC*RC)=(1.00+P+2.DO*DLOG(TI/

IRA)I/(TI=*TI)

BETA=1.D0+P+2.D0*DLOG(TI/RA)+(RA*RA-RB%RB+2,DO0*RC*RC) /
(2.00*TI*T1)

GAMA=(-RA*RA+3,D0*RB*RB=~4,DO%RC*¥PC)/2.D0

TO=0SQRT((-BETA-DSQRT(BETA*BETA-4.DO*XALFA%*GAMA) )/
(2.D0*ALFA))

Ql=(TO/TI)**2

Q2=1.D0/(RB*RB)~1.D0/(RC*RC)~1.0/(TI*T1)

F=Ql*2.00*%DLOG(RA/TT)+DLOG(RB*TO*TQ/ (RA *%3))
+TO*T0*Q2~(Q1-2.D0)*P+1.D0

RETURN

END
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SUBROUTINE PSGLVE (IFLAG,RA,RB,RC,P,B,TO)

CASE 1. TO < RC
ggth FOR TO FOR P = 0 AND INTERIOR PLASTIC UNLCADING

IMPLICIT REAL*8 (A-H,0-12)

WRITE(6,20)

H=RB~RA

TO=RA

Q2=1.D0+(H/RA)/(RB/RA)*%*2
G=1.D0+0LOG((TC/RA)**2*RB/RA)-(TQ/RA)%x%2%*Q2
0G=2.00/T0-2.00*%T0*Q2/(RA*RA)

D=-G/DG

T0=TC+D

IF(DABS(D/T0).LT.1.D-5) GO TO 5

GC TC 1 -
Ql=(TQ/RB)**2%(1.D0+3.D0*%H/RA+(H/RA})**2)-2,D0+(RA/TC)*

2%2%(1.D00-H/RA=(H/RA}*%2)
B=(H/TQ)**2/(2.D0%Q1)
RETURN
FCORMAT(/' SUBROUTINE PSCLVE USED. P=0 AND TQ < RC')

END

SUBROUTINE PCON (A,B,X,EPS)

SOLVE FOR PRESSURE AT WHICH INTERIOR YIELD ZCNE
REACHES CONCAVE FACE (RY=RA). EQUATION (3.75)

IMPLICIT REAL*8 (A~H,0-Z)
C=B/A
§=(C*C-1.D0)*%2 ~ (2.D0%C*DLOG(C) )*x*x2
Q=(C*C-1.D0)*DLOG(C) ~ 500*%((C*C-1.D0)/C)*=2
Ql=5+2.00*C*Q
Q2=2.00*C*Q
03=(1.D0+C*C)*Q
X=Q/ S*(1.D0-C)**2
SOLVE Ql*X + Q2*DEXP(-X) - Q3 = 0
F=Ql%X+Q2%*DEXP(~X)~Q3
G=Q1-Q2*DEXP(-X)
=~F/G
IF(DABS(D/X) .LT.EPS) GQ TC 10
X=X+D
GO TC 5
RETURN
END
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SUBRCUTINE SRO (A,B,C4H,RByRsySRyST+SZ,TR,U)

STRESSES FOR QUTSIDE ELASTIC UNLCADING REGICN
EQUATIONS (3.32)

IMPLICIT REAL*8 (A~H,C-1)
C=-DLOG(RB/R)+2.00*B*DLCG(R) +C+H
SR=Q+A/(R*R)+B
ST=Q+1.D0-A/(R*R)+3.D0%*8
TR=ST-SR

SZ=.5D0+DLOG(R/RB) +.6D00*(2.D00%B*(1.00+0DLCG(R))+C+H)
SR=U=*SR

ST=U*ST

SZ=U=*SZ

RETURN

END

SUBRCUTINE SRI(A,B,CyP,PA,R,SR,ST,SZ,TR,U)

STRESSES FOR INSIDE ELASTIC UNLOADING REGICN
EQUATIONS (3.30)

IMPLICIT REAL*8 (A-H,0-2)
Q=—~P-DLOG(R/RA)}+B*2.00*DLCG(R)+C
SR=Q+A/(R*R)+B

ST=Q-1.D0-A/ (R*P)+3.D0*B
TR=§T-SR
SZ==+5D0-P-DLOG(R/RA)+.600%(2.00*%B%(1.D0+DLOG(R))+C)
SR=U*SR

ST=U*ST

SZ=U*SZ

RETURN

END
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SUBRCUTINE SPM (D1,+RB4yRySRyST»SZyTR,U)

STRESSES FCR PLASTIC MINUS UNLOADING REGION
EQUATIONS (3.31)

IMPLICIT REAL*8 (A-H,C-1)
SR = -DLOG( R/RB) =Dl
ST=-1.D0+SKR

TR=-1.D0

SZ=0.5D0*(SR+ST)

SR=U*SR

ST=U=*ST

SZ=Ux*S.

RETURN

END

SUBRCUTINE SPP(D14yRBsRsSRyST4SZ,TR,U)

STRESSES FOR PLASTIC PLUS UNLOADING REGION
EQUATIONS (3.44)

IMPLICIT REAL*8 (A-H,0-1)
SR=DLOG(R/RB) +D1
ST=1.D0+SR

$Z=0.500*%({ SR+ST)

TrR=1.00

SR=U*SR

ST=U=*ST

§Z=U*SZ

RETURN

END
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SUBRCUT INE SCLVE (IFLAG,RA,RB4RC,+P,B8,T0C,RY)

CASE 1. SOLVE (3.43) AFTER SUBSTITUTING FOR B FRCM
(3.42). SOLVE FOR TO AND B WHEN TO < RC.

IMPLICIT REAL*8 (A-H,0-2)

WRITE(6,80)

Q2=1.D0/(RA*RA)~1.D0/ (RB*RB)+1.00/ (RC*RC)
DC 5 I=1,16,5
TL=RY*(1.DO-DFLCAT(I)*1.D-2)

TR=RY*( 1. DO+DFLOAT(1)*1.D-2)

CALL VALUF (TL+RA,RByFCyQ2,BL+FLyP)

CALL VALUF (TR,RA,RB,RC,Q2,BP,FR,P)
IF(FL*FRLLE.O) GO TQ 7

5  CONTINUE
GO TC 65

7 TM=0.500%(TL+TP)

CALL VALUF (TM,RA,RB,RC,Q2,BM,FM,P)

10 IF(FM.EQ.0) GO TO 30
IF(DABS((TR~TL)/(RB-RA)).LE.2.D-5) GO TQ 30
IF(FL*FM.GT.0) GO TO 20
TR=TM
FR=FM
TM=0.5D0%(TL+TR)

CALL VALUF (TM,RA,RE,RCsQ2,BMyFM,P)
G0 TO 10

20 TL=TM
FL=FV
TM=0.500%(TL+TR)

CALL VALUF (TM,RA,RB,RC,Q2,BM,FM,P)
GO TO 10

30 TO=TM
B=BM
GG TC 100

65 IFLAG=1
WRITE(6490) RY,TL,FL,TR,FR

90 FORMAT(' PROBLEM IN SCLVE. IFLAG = 1 RY=',1PD10.3,

2' TL=',D10.3,' FL=',D10.3,' TR=',D10.3,' FR=',010.3)

80 FCORMAT(/' SUBROUTINE SCLVE USED. ASSUME TQ < RC')

100 RETURN
END
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SUBROUTINE BISECT({IFLAG,RA,RB,RC,P,B,T0,RY)

CASE 2. SOLVE (3.56) AFTER SUBSTITUTING IN (3.55)
SOLVE FOR TO WHEN RC < TO

IMPLICIT REAL*8 (A-H,0-2)

WRITE(4+80)

0O 5 I=1,16,5

TL=RY*(1.00-0DFLCAT(I})*1.D0-2}
TR=RY*(1.D0+DFLOAT(1)*1.D-2)

CALL VALUG (TL,RA,RByRCyBL,GL,P)

CALL VALUG{TR.+RA,RB,RC4BRyGR,P)
IF(GL*GR.LE.Q) GO TC 7

CONT INUE

GO TGO 65

TM=0.500%(TR+TL)

CALL VALUG(TM,RA,RB,RC,BM,GM,P)

IF(GM.EQ.0) GQ TO 30
IF(DABS((TR-TL)/(RB-RA))«.LE.2.D~-5) GO TO 30
IF(GL*GM.GT.0) GD TO 20

TR=TM

CR=GM

TM=0.500%(TL+TR)

CALL VALUG(TM,rRA,RB,RC,BM,GM,P)

GC TO 10

TL=TM

GL=GM

TM=0.500%(TL+TR)

CALL VALUG(TM,RA,RB4RC,BM,GM,P)

GO TO 10

TO=TM

B=8M

GC TO 100

IFLAG=2

WRITE(6+901 RY,TLsGL,TR,4GR

FORMAT (/' SUBRCOUTINE BISECT USED. ASSUME RC < T0QO4')
FORMAT(' PROBLEM IN BISECT. IFLAG = 2 RY=',1PD10.3,
2¢ TL=',D10.3," GL=',010.34"'" TR='4010.3»' GR=',D10.3)

RETURN
END
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SUBROUTINE CCNCAV (IFLAG,RA,RB+RC,P,TQ,TI)

SCLVES EQUATIGONS (3.72) AND (3.73) FOR TIl.
CASE: YIELDING AT CCNCAVE EDGE AND INTERICR MINUS.

IMPLICIT REAL *8 (A-H,0-Z7)
WRITE(6,80)
TL=RA
CALL VALUK (RAyRB+RC,TO,TLyP,FL)
IF{FL.EQ.0) GO TO 40
CC 5 I=1,13,4
TR=RA+(RB~-RA)}*1.D-2%(DFLJAT(I))
CALL VALUK (RPA,RByRCyTO,TR4P,FR)
IF(FL*FR.LT.0) GO TO 15
IF(FR.EQ.0Q0) GO TO 50
5 CONTINUE
GC TC 60
15 TM=0.5D0%(TL+TR)
CALL VALUK (RPAyRByRCyTGCyTM,P,FM])
IF(DABS(TL-TR)/(RB=RA).LT.2.D-6) GU TO 30
IF(FM.EQ.0) GO TO 30
IF(FL*FM.GT.0) GO TQ 20
TR=TM
FR=FM
GC TC 15
20 TL=TM
FL=FM
GO TC 15
30 Ti=TM
GC TC 100
40 TI=TL
GO 7O 100
50 TI=TR
GO TC 100
60 IFLAG=3
WRITE(6490) TL.FL,TR,FR
80 FORMAT(/' SUBROUTINE CONCAV USED!')
S0 FORMAT(' PROBLEM IN CCNCAV. IFLAG=3 TL=*,1PD10.3,
2 FL=',D10.3,"' TR=',D10.3,"' FR=',D10.3) ‘
100 RETURN
END
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SUBRCUTINE STRES1 (M,IF3,RIC,ByTO,FA,RB,RCy+F,U)

CALCULATES A,C, Dy H FRCM EQUATIONS (3.38)-(3.43)
CASE TO < RC

IMPLICIT REAL%*8 (A-H,0~2)

A=B=TC*TQ

C=P-A/(RA*RA)-B*(1.00+2.D00=DLOG(RA))
CT=(RC-TO)/(RB-RA)*1.D2
H=-A/(RB*RB)-B8%(1.D0+2.D0*DLCG(RB))~C

D1 =2.00%(1.00+B8)*DLOG(RB/RC)+A*{(]1.D0/(RB=*=FB)~1.D0/
1 (RC=%=R(C))

WRITE(6,480) AsCyHyD1,CT

0C 30 K=1,100

R=RA+RIC *DFLCAT(K~-1)

IF(R.GE.RB) GC TC 70

1IF(R.EQ.TO0.CR.R.EQ.RFC) GC TO 20

IF(R.LTTO) CALL SPI (A4B+CyP4sRAF,SP,ST,S2,TR,U)
IF(RoGToTOLANDR.LT.RC) CALLSPM(D]14PBy&ySP4ST4SZ.TF,U)
IF(R.GT.RC) CALL SRC (A4B+CyHyRByRySRyST+S2,TkyU)
WRITE (6490) R,SR,ST,SZyTR

IF(R.GT.RA) GO TO 30

CHECK YIELD CRITERICN AT CONCAVE EDGE

1F(DABS(TR).GT.1.00) IF3=1

CONT INUE

R=RB

CALL SRO (AyByCyHyRByRySR,4ST,SZ,TR,U)
WRITE(6,90) RySR,ST,SZ,TR

R=TQO

CALL skl (AQBQCQPvnAvgvSQvSTySZ'TR'U)
WRITE(6,90) ReySPyST4SZ,TR

CALL SPM ( Dl'PBonSR,ST'SZ'TP,U)
WRITE (6,90) RySRyST+SZ,yTR

R=RC

CALL SPM ( DlvFBerSRvSTvSZQTQvU)
WRITE(6,90) R,SRyST,SZ,T°

CALL SKC (A’B'C'H'QBYQ'SQVST'SZ'TC'U)
WRITE(6,50) RySR,ST4SZ,TE
NI=H*(TD‘QA)/(PB-QA)
PH=M*(?C‘TO)/(RB‘GA)
FC=M*(RB‘RC)/(RB°RA)

RF1=0.00

RMI=0,00

RFM=0.00

RMM=0.00

RFC=0.,00

RM0=0.00

DPI=(T0‘RA)/DFLO‘T(H!’

pC 5 I=1,MI
9:RA+(DFLUAT(I,'0o5C0)‘OQI

CALL SR1 (A!BQCOPOR“’RvSvaTvSZQTR,U)

RF[=RFI+SI*R*DP1
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RMI=RMI+SZ*R*R%DR]

CCNTINUE

1F(MM.EQ.0) GO TO 12
DRM=(RC-T0O)/DFLCAT(MM)

DC 10 I=1,MM
R=TO+(DFLOAT(1)~-0.500)%0RM

CALL SPM (DlsRBsR,SRyST,SZ,TR,U)
RFM=RFM+SZ*R*DRM

RMM=RMM+S Z*R*R*DRM

CCNT INUE

ORC=(RB-RC)/DFLOAT(MO)

bC 15 I=1,MO
R=RC+(DFLOAT(I)-0.5D0)*DRO

CALL SRQ (A,B,CyH,RBsR,SR,ST,SZ,TR,U)
RFC=RFO+SZ*R*DRQ

RMO=RMO+SZ*R*R*DRD

CONTINUE
Q=(RB**%4~RA**4)}/2.00-(RB**3-RA**3 )% (RA+RB)/3.D0
RF=RFI+RFM+RFO

RM=RVI+RMM+RMC
RAS=2.D0*%RF/(RA*RA~-RB=*RB)
RBS=(RB-RA)*RM/Q

WRITE(6,20) RF,RM,RAS,RBS

RETURN

FORMAT(/* Z RESIDUAL FCRCE=',1PD10.2,9X,

1'Z RESIDUAL MOMENT=',D10.3/' AXIAL RELAXATION STRESS=!
24010.34' BENOING RELAXATION STRESS=',D10.3)

FORMAT( * A =',1PD10.3,* C =',010.3,' H =*,D10.3,

1' D1=',D10.3,' CT=',D10.3/T5,'R*',TL7,"'SR*,T29,7ST",
2T41y'SZ*,T53,'TRY)

FORMAT(/1X,5(1PD104342X))
END
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SUBROUTINE STRES2 (M, IF3,RIC4B,TOyRA;RB,RC4P,U)

CALCULATES Ay Cy Dy H FROM EQUATIONS (3,50)-(3.5
(3.54). CASE RC < TGQ. ' ( 2) AND

IMPLICIT REAL*8 (A-H,0-Z)

A=B*xTC*TO

C=P-A/(RA*RA)-B*(1.00+2.00*DLOG(RA})
CT=(RC-TQ)/(RB-RA)*1.D2
=-A/(RB*RB)-B*(1.00+2.00*DLCG(RB)}-C
DI=B*(1.D0+2.00*DLOG(TO/RB}I~(TO/RB)*%x2)
WRITE(6,80) AyCsH,01,CT

00 30 K=1,100

R=RA+RIC *0DFLOAT(K-1)

IF(R.GE.RB} GO TO 70

IF(R.EQ.TJ0.0R.R.EQ.RC) GC TO 30

IF(R.LTLRC) CALL SRI (A,B+CsPsRAsRySF9yST+SZ,TR, U]}
IF(ReGT «RCeANDRLTSTC) CALLSPP(DL14RB4R4SP4ST+SZ,HTK, U}
IF(R.GT.TOJ) CALL SRC (A,B4yCyHyRByR4SR4STyS5Z,TR,U)
WRITE (6490} Ry4SR,ST,SZ,TR

IF(R.GT.RA) GC TO 30

CHECK YIELD CRITERICN AT CONCAVE EDGE

IF(DABS(TR) .GT.1.00) IF3=1

CCNT INUE

R=RB

CALL SRO (AyBsC+HyRB4yRySR,ST,SZ,TR,U)
WRITE(6,90) RySRyST4SZ,yTR

R=RC

CALL SRI (AyByCyPyRA,RySR,ST,SZ,TF,U)
WRITE(6,90) RySReST4SZyTR

CALL SPP | Dl1,RByRySRyST,SZ,TR,U)
WRITE(6,90) PySRyST,SZ, TR

R=TO

CALL SpPP ( D1,RByRySRyST4SZy TR, U)
WRITE (6,90) RySRyST,SZ,TR

CALL SRO (AyByCyH,RB,R4SR,ST,SZ,TR,U)
WRITE(6+90) RySRyST,SZ,TF
NI=M*(RC‘RA)/(RB'RA)
NP=M*(T0‘RC)/(RB~QA)
MO=M*(RB’TU)/(RB—9A)

RFI'—'OQ Do

RMI=0.D0

RFP=0.00

RMP=O.DO

RFC=0.00

RMO=0.D0

DRI=(RC‘QA)/DFLCAT(VI)

po 5 I=1,MI
R=PA+(DFLOAT(I)‘O.SCO)*DQI

CALL SRI(A939C191RA1R95RySTvSZ,TR,U)
RFI=RFI*SZ*R*0RI

RNISR"I*SZ*R*R*DQI



5 CCNT INUE
IF(MP.EQ.0) GC TC 12
DRP=(TO-RC)/OFLOAT(MP)
D0 10 I=1,MP
R=RC+(DFLOAT(1)-0.5D0)=DRP
CALL SPP (D14RByRySRyST+SZyTP,U)
RFP=RFP+SZ*R*DRP
RMP=RMP+SZ*R*R*DRP

10 CONTINUE

12 DRO=(RB-TO)/DFLCAT(MO)
pc 15 I=1,MO
R=TO+(DFLCAT(1)-0.500)*DRC
CALL SRO (A,BsyCyHsRByR,ySRyST4SZ,TR,U)
RFC=RFC+SZ*Rr*DRQ
RMO=RMQO+SZ*R*R*DRO

15 CCNTINUE
Q=(RB**4~RA¥X*4) /2.D0-(RB**x3-RA**3 )x(RA+RB)/3.D0
RF=RFI+RFP+RFQ
RM=RMI+RMP+RM(C
RAS=2.D0*RF/ (RA*RA-RB*RB)
RBS=(RB-RA)*RM/Q
WRITE(6,20) RF,RM,RAS,RBS
RETURN

20 FORMAT(/' Z RESIDUAL FCRCE=',1PD010.2,9X,

1'Z RESIDUAL MCMENT=',D10.3/' AXIAL RELAXATION STRESS='
2y010.3,"' BENDING RELAXATICN STRESS=',010.3)

80 FORMAT( ' A =',1PD1C.3,* C =',D10.3,' H =',D10.3,
1' D1='yD10.34" CT='4yD1043/T54'R*yT17,*'SK*",T2G,°*ST"*,
2T41ly*SZ'4yT53,'TRY)

90 FORMAT(/1X,5(1PD10.3,2X))

END
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SUBRCUTINE STRES3 (MyRIC,TQ,TI,RA,RB,RCsP,U)

CALCULATES A, Cy Dy H FROM EQUATICNS (3.65)=(3.70)
?gSiDgéL PLASTIC STATE AT CONCAVE EDGE AND INTERIQOR

IMPLICIT REAL*8 (A-H,C-2Z)

B=TI*TI/(TI*T1-TOxTQ)

A=B*TC*TO

Ql1=1.D00/(RC*RC)~-1.D0/(RB*RB)

Q2=1.D0/(TI*T1)-1.00/(RB*RB)

D1=(B+1.D0)*2.00*%DLOG(RB/RC)—-B*TO*TO*Ql

C=2.D0*DLOG{TI/RA)-B*(TO/TI)*%2-B*(1.D00+2.D0*%DLOG(TI})
+P

H=B%2.D0%DLOG(TI/RB)-2.D0*DLOG(TI/RA)+B*TOxTO*=Q2~P

CL=DLCG(RB/RA)

WRITE(6,80) A4BsC,D1,4DL,H

00 30 K=1,100

R=RA+RIC *DFLOAT(K-1)

IF(R.GE.RB) GO TO 70

IF(R.EQ.TU.ORREQ.RC.OR.R.,EQ.TI) GC TO 30

IF(R.LT.TI) CALL SPP(DL,RB4yRySRySTySZ,TR,U)

IF(ReGT«TI.AND«R.LT.TO) CALL SRI(A4B,CsP+RA,R,SR,ST,
SZ+TR,LU)

IF(R.GT «TOANDeRLLT<RC) CALLSPM(D1,+RB4yRySR4ST4SZ,TR,U)

IF(R.GT .RC) CALL SRC(A,B,CyHyRBsR4SR4STySZ,TR,U)

WRITE(6,90) R,SR,ST,SZ,TR

CONT INUE

R=RB

CALL SRO (A,ByCs4HsRByR4SR4STySLZ,TR,U)

WRITE(6+490) RySR,4ST,SZ,TR

R=T1

CALL SPP{(DLsRBsR,4SRyST+SZ,+TR,U)

WRITE(6490) RySR4ST+SZ,yTR

CALL SRI (AsBsC4P4PAsR,4SR4ST,SZ,TR,U)

WRITE(6590) RySRyST+SZ,TR

R=TO

CALL SRI (AsBsCsPsRAJRySRyST+SZ+TR U}

WRITE(6,90) RySRyST+SZ,TR

CALL SPM(D].,RB,R,SR,ST,SZvTRvLJ)

WRITE(6,90) RySR,ST,SZ,TR

R=RC

CALL SPM(D1+RBsR4SRyST,SZyTR,U)

WRITE(6490) RySF,ST,SZ,TR

CALL SPO (AyBsC9HsRByRy SR, ST+ SZ,TR,U)

WRITE(6,90) RySRsST,SZ,TR

MP=M*(TI-RA)}/(RB-RA)

MI:M*(TU-TI)/(RB-RA)

MM:M*(RC'TC)/(RB—RA)

MC=M* (RB=RC)/ (RB=RA)

RFP=0.00

RMP’O.DO

RFI=0¢DO

RMI:O-DO
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RFM=0.D0
RMM=0.D0
RF0=0.00
RM0=0.DO0
IF(MP.EQ.O0) GO TQ 4
DRP=(TI-RA)/DFLCAT(MP)
DO 3 I=1,MP
R=RA+(DFLOAT(I1)~-0.500)*DRP
CALL SPP (DL,RB4RySR,ST,SZ,TR,U)
RFP=RFP+SZ*R*DRP
RMP=RMP+SZ*R*R*DKP
3 CONTINUE
4 DRI=(TO~-TI1)/DFLOAT(MI)
DC 5 I=1,MI
R=TI+(DFLOAT{I)-0.5D0)*DRI
CALL SRI(A4B,C+P4RA4R4SRySTySZ,TR,U)
RFI=RFI+SZ*R*DRI
RMI=RMI+SZ*R*¥R%DR1
5 CONTINUE
IF(MM.,EQ.0) GO 70O 11
CRM=(RC-TO)/DFLOAT(MM)
DC 10 I=1,MM
R=TO+(DFLOAT(1)-0.500) =*DRM
CALL SPM (D1l,RBsRySRyST,SZ,TR,U}
RFM=RFM+SZ*=R*DRM
RMM=RMM+S Z*R*R%=DRM
10 CONTINUE
11 DRC=(RB-RC)/DFLOAT(MO)
DO 15 1=1,M0 '
R=RC+(DFLOAT(1)-0.5C0)=*DRQ
CALL SRO (AyB+CyHyRB4yRySR4ST,4SZ,TR,U)
RFC=RFO+SZ*R*[R0O
RMC=RMO+SZ*R*xR*DRO
15 CONTINUE
0= (RB**4-RA%*%4)/2.D0-(RB*x*%3~RA%*3)*(RA+RB)/3.D0
RF=RFP+RFI+RFM+RFQC
RM=RMP+PMI+RMM+RMO
RAS=2.00%RF/ (RA%XRA-RBx*QB)
RBS=(RB-RA)*RM/Q
WRITE(6420} RF4RM,RAS,RBS
RETURN
20 FORMAT(/' Z RESIDUAL FCRCE=',1PD10.3,9X,
1'Z RESIDUAL MOMENT=',D10.3/' AXIAL RELAXATICN STRESS=!
2+D010.3,' BENDING RELAXATICON STRESS=',010.3)
80 FORMAT(' A =',1PDl0.34y"' B =',D10.3,' C =',D10.3,
1* D1=v,D10.3,%Y DL=',D010.34y' H ='4D10.3/T5,'R*",T17,
2YSRY 4 T294'ST"4T41,'SZ*',TS53,'TR?)
90 FORMAT(/1X45(1PD10.3,2X))
END
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SUBRCUTINE STRES4 (V,RIC,RA,RB,RC,P,U)

CALCULATE STRESSES FCR CASE RY.LE.RA
EQUATIONS (3.81)-(3.83)

IMPLICIT REAL*8 (A-H,0-2)

H=0.D0

D1=-DLOG(RA/RB)

BC=2.D0*DLCG(RB/°C)

E=(RB*RB-RC*RC)

Ql=(RA*RA+RB*RB=2 .DO*RC*RC)*E/2.D0 - RB*RB*RC*RC*xP=*BC
B=Ql/({RB*RC*BC)**2~E*E)

A= (P+B*BC)*(RB=RC)*x*2/E
C=~A/(RB*RB)-B*(1.D0+2.D0*DLCG(RB))
WRITE(6,80) As8+C+D1l,H

pDC 10 K=1,100

R=RA+RIC *DFLOAT(K-1)

IF(R.GE.RB) GO TO 70

IF(R.EQ.RC) GO TO 10

IF(R.LT.RC) CALL SPM (D1,RB4+RySRySTySZ4TR,yU)
IF(R.GT.RC) CALL SRC (AyByCyHyRByP4SP,ST,SZ, TR,y U)
WRITE(6,90) RySR,ST,SZ,TR

CONT INUE

R=RB

CALL SRO (AyByCyHyRByRySR,ST,SZ+TR,U)
WRITE(6+90) RySRyST,SZ,TR

R=RC

CALL SPM (D1+RByRySRyST,SZyTR,U)
WRITE(6490) PySRySTySZ,TR

CALL SRO (AyB'C'vaevRvSRvsTvsszR1U)
WRITE(6,90) RySRyST,4SZ,TR
MM=M*(RC-RA) /(RB-RA)

MO=M#% (RB=RC)/(RB-RA)

RFM=0.00

RMM=0.D0

RFC=0.00

RM0=0.D0

1F(MM.EQ.0) GO TO 16
DRM=(RC-RA)/DFLOAT(MM)

pg 15 I=1,MM
R=RA+(DFLDAT(I)’O-SCO)*DQM

CALL SPM(DlyRB,R9$R15T7521TQ9U)
RFM=RFM+SZ*P*DFM

RMN=RMM+SZ*R*R*DRM

CONT INUE

DRO=(RB“RC)/DFLCAT(MU’

Do 20 I=1,MO
R=PC+(DFLDAT(I)‘0.500)*DRO
CALL SRO (A'B’C,H'PB!RysRvST'SZ,TR,U,
PFC=RFO+SZ*R*ORU
RHC=RMO*SZ*R*R*DRO

TINUE
gg?RB**4-RA**4)/2.00‘(?8**3‘RA**3)*(RA+QB)/3.DO
RF=RFM+RFO
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RM=RMM+RMQO

RAS=2.D0*%RF/ (RA*RA-RB*RB)

RBS=(RB-RA)*RM/Q

WRITE(6,25) FF,RM,RAS,RBS

RETURN

FORMAT(/' Z RESIDUAL FORCE=',1PD1043+9X,
1'Z RESIDUAL MOMENT=',D10.3/*' AXTAL RELAXATICON STRESS=!
24010.3,' BENDING RELAXATICON STRESS=',010.3)

FORMAT(* A =',1PDl0.3,' B =',010.3,' C =',D010.3,
1* D1=',D10.3,"' H =',D10.3," STRES4 USED'/TS5,'R"',
2T174 'SR T29, STy T41,'SZ"',T53,'TR")

FCRMAT(/1X,5(1PD10.3,2X))

END
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