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FIBER OPTIC FABRY-PEROT SENSORS FOR SMART STRUCTURES

Thomas K. Edmondson 
Department of Electrical Engineering

ABSTRACT

Optical fiber sensors promise to play a large role in the development of smart 
structures which have the ability to continuously monitor themselves for internal and 
external structural deformation, and even actively change shape. This investigation studies 
one such sensor based on a fiber optic Fabry-Perot interferometer, which detects the 
displacement between two points of a material. Sensor theory and construction are 
discussed, and the tools used to analyze sensor output are developed. The interferometer 
is then tested by attaching it to a large cantilever beam which is deflected to produce 
strain. This experimental data is then used to determine Fabry-Perot cavity performance, 
to predict sensor accuracy and resolution, and to develop a method for relating material 
strain to sensor output.

INTRODUCTION

The search for strong, lighter-weight materials for use in aerospace and advanced 
automotive applications has led to development of replacements for traditional sheet metal 
and aluminum. Much success has been obtained in the area of composites, which are 
materials formed by bonding two dissimilar components to create a more desirable final 
product. One common composite type is constructed from brittle fibers held together by 
a more pliable binding material [1].

Due to the complexity of manufacture and application of composite materials, it 
would be useful to monitor integrity of the material to detect excessive internal stresses or 
delaminations. The class of composites which are able to continuously monitor and even 
manipulate structural characteristics are collectively known as smart materials, or smart 
structures. Methods for constructing these materials involve embedding sensors and 
actuators within the composite itself. These smart structures could improve reliability and 
reduce waste during manufacture, and could continuously adjust themselves in an 
aerospace application, for instance.

Advancements in the area of fiber optic sensors brought smart structures one step 
closer to reality. Fiber optic sensors are ideal for embedding in composites because they 
are very small, lightweight, immune to electromagnetic interference, environmentally 
rugged, and can be incorporated in composite materials [2]. These sensors operate by 
detecting the difference between a reference light signal and a return signal which has been 
perturbed by the sensor measurand. In many cases this measurand is displacement
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between two points on the structure, but cracks or stresses in the material can also be 
detected by optical micro-bend or pressure sensors.

A simple way to measure material strain is by detecting a displacement between 
two points on the structure. This investigation utilized an intrinsic fiber optic Fabry-Perot 
sensor to determine displacement between two points of a material, corresponding to 
strain. The test material was a large aluminum beam cantilevered at both ends. Lateral 
deflection of the center of the beam caused maximum strain in the center and at both 
(fixed) ends, thus the fiber optic sensor was attached at center of the beam. Results 
allowed calculation of sensor parameters, and insight into the relationship between sensor 
output and strain in the beam.

BACKGROUND

Simple fiber optic Fabry-Perot sensors are a fiber implementation of a geometrical 
Fabry-Perot interferometer. Two fibers form an air gap which acts as a low finesse Fabry- 
Perot cavity, whereas interference of light reflected from the glass/air and air/glass 
interfaces produces an output intensity related to the length of the air gap. Construction 
of a reflection Fabry-Perot sensor typically utilizes a single-mode fiber as the input-output 
fiber, and a multi-mode fiber which acts as a reflector, as shown in Figure 1.

S
Sinfle-Mode Fiber

Holiow-Core Fiber

Z 2
Muiumode fiber

Figure 1. Construction of Extrinsic Fabry-Perot Sensor [3].

The far end of the multi-mode fiber is shattered to prevent back-reflections. Fresnel 
reflections from the first (glass/air) interface act as the reference signal which interferes 
with the sensing signal from the second (air/glass) interface in the single-mode fiber. 
When the two fibers are allowed to move in the hollow-core fiber, changes in air gap 
length cause the intensity of the return signal to change due to changes in phase difference 
between the interfering reflected signals.

Interference of the reflected signals can be quantified using a plane-wave 
approximation so that observed intensity at the detector can be shown [3] to be

A* = |^i + U2\ = A? + A\ + 2AtA2 cos(#} -  <j>2) (1)

where Uj(x,z,t) is the complex amplitude of the approximate plane wave for z = 1, 2 for 
the reference and sensing reflections, respectively, given by

£/,(x,r,/)=4exp(.M ), / = 1,2 (2)
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Thus detected intensity can be represented as the sum of the reference and sensing 
reflections.
Equation (1) can be simplified [3] to become

, Ita ( 4 ; ^1 + ----------- p------------ Tcos ----  -H
a + 2stan|sin (A£4)J 1 j

2
ta

a +2stan[sin '(AC4)] (3)

where it is assumed that 4)] = 0 and <t>2 = 2s(27i/X), and X is the vacuum wavelength. In 
Equation (3), a is the fiber core radius, t  is the transmission coefficient of the air/glass 
interfaces, s is the air gap length, and NA is the numerical aperture of the single-mode 
fiber. Using this expression, a plot of normalized intensity versus gap separation is shown 
in Figure 2.

5 10 15

s, pap sepa-aton

Figure 2. Variation of Output Intensity with Increasing Gap Separation [1]

These expressions can be used if the material properties of the sensor are known 
with relative certainty. For the purposes of this investigation, using single-mode fiber, the 
air gap may be further approximated by two parallel glass plates separated by air, and the 
plane wave assumed to be normally incident on the interface. Cavity parameters can then 
be determined without knowing material properties. The parameter F is defined in terms 
of the incident and reflected intensities by [4]

F
I, 1+ F

for normal incidence. Cavity finesse relates the separation of transmitted intensity 
maxima and their half-intensity width, the points on either side of the maxima where 
intensity has fallen to half of its maximum value. Higher finesse indicates sharper 
resolution of reflected intensity minima (transmitted intensity maxima). Finesse is related 
to F by the expression [4]
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(5)
W f
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Another indicator of cavity performance is reflectance R which is related to F by the 
formula [4]

F = 4 R
(1 - r Y

(6)

As R approaches unity, F becomes larger, indicating "better" performance from the Fabry- 
Perot cavity due to increased resolution between maximum and minimum intensity values 
of the reflected signal.

An extrinsic Fabry-Perot interferometer constructed from optical fiber components 
retains high sensitivity but possesses the additional advantages of very small size, light 
weight and ruggedness. The strain sensor assembled for this lab required a fiber Fabry- 
Perot cavity, a laser diode source (X0 = 1300nm), a photo-detector, a directional 3dB 
coupler, and support electronics to power the laser diode and display the received 
intensity signal. By connecting each side of the cavity to points opposite the center of the 
experimental cantilever beam it was possible to measure strain between two points on the 
beam.

EXPERIMENTAL PROCEDURE AND RESULTS

Both the laser diode and the photo detector used FC type connectors for 
attachment to a fiber optic system. Terminating the Fabry-Perot cavity pigtail, directional 
coupler fiber ends, and connecting fibers with compatible FC connectors was the first step 
in constructing the sensor. To accomplish this task, a 3M Field Connector Kit was used, 
which contained necessary tools to epoxy and crimp the connectors, strip and polish the 
fiber ends, and verify proper termination. FC connectors ensured proper core alignment 
with repeated connections and disconnections of single-mode fibers. Unjacketed 5pm 
single mode communications-grade fiber was used in this investigation for economy in a 
laboratory environment. Micro-bend insensitive fiber might be necessary when the sensor 
is incorporated in composite materials, but this difference in connecting fiber would not 
alter the results of this experiment.

As a test material to correlate beam deflection to sensor output, a 2024 T3 
aluminum alloy beam approximately 30cm long was secured at each end to prevent 
translation or rotation. A micrometer plunger was fixed to displace the center of the beam 
to induce strain, and the fiber Fabry-Perot sensor was attached across the mid-point of the 
beam. This experimental configuration is shown schematically below in Figure 3.

- 1 4 2 -



Figure 3. Experimental Cantilever Beam

To verify optimum placement of the strain sensor, MSC/NASTRAN was used to perform 
a theoretical static analysis of the beam. The nodal analysis provided by NASTRAN 
verified that when the beam was displaced at the center, strain was greatest at the center 
and at the cantilevered ends. A plot of strain energy versus distance from the end of the 
beam is shown in Figure 4.

D is ta n ce  Fr om End O F  Beam ( A r b i t r a r y  U n i t s )

Figure 4. Strain Energy in Beam for Center Displacement

A simple system was constructed to utilize the reflection Fabry-Perot sensor. A 
laser diode powered by a Tektronix PS5004 current source was attached to one arm of a 
3dB directional coupler, which was then attached to the sensor cavity. The return arm of 
the coupler was connected to a photo detector which converted reflected intensity to 
voltages which could be displayed on an oscilloscope. The fourth coupler arm was broken 
to reduce noise from back reflections. A block diagram of the assembled sensor is given in 
Figure 5.

Figure 5. Extrinsic Fabry-Perot Sensor Construction
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Once the test beam and interferrometric sensor were assembled, testing could 
begin to correlate the sensor output to beam deflection, thus to strain in the beam. As the 
micrometer plunger was used to increase beam deflection, strain on the beam caused the 
sensor air gap length to increase, changing the relative phase between the reference 
reflection and sensing reflection. As predicted by Equation (3), the reflected intensity 
alternated between maxima and minima as the reflected signals alternately interfered 
constructively and destructively. The beam deflection resulting in several maxima and 
minima was recorded, and is graphed in Figure 6.

Beam Deflection (micrometers)

Figure 6. Experimental Intensity Output with Beam Deflection.

The fringe contrast dropped as displacement increased, which is predicted by Equation (3) 
since the relative intensity of the sensing reflection dropped with respect to the reference 
reflection. As a performance indicator, the highest maximum corresponded to a photo 
detector voltage of 98.5mV, compared to a voltage input to the Fabry-Perot cavity of 
4.88V.

This experimental data was then used to calculate the finesse and reflectance of the 
cavity, and to predict the gap length difference corresponding to the difference in beam 
deflection. Theoretical values can be compared to the calculations, and predictions can be 
made about the correlation between gap length difference and beam deflection.

ANALYSIS

Experimental results above demonstrate the usefulness of the Fabry-Perot 
interferometer as a strain and microdisplacement sensor. Construction was simple to 
ensure small size and ruggedness: the Fabry-Perot cavity is constructed by leaving an air 
gap between a single-mode fiber and a multi-mode fiber. The finesse of this cavity can be 
calculated using Equations (4) and (5) and the experimental values listed above.
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max

= 0.0202 = -------
1 + F (?)

F = 0.0206

Then finesse is

^  =
TTyff

2
0.2255

and reflectance, by Equation (6) is calculated to be

R = 0.0356

(8)

While this finesse and reflectance is low compared to values which can be obtained by 
using mirrored reflecting surfaces, the simplicity of the design obviously is an economic 
advantage when using this sensor. It has been shown [3] that this type of cavity provides 
adequate resolution up to at least 200 pm displacements, and is especially useful for 
detecting very small displacements on the order of a single micrometer.

Intensity maxima and minima also reveal information about gap displacement as it 
relates to beam deflection (material strain). Using the parallel plate approximation with 
normal incidence, as described in the BACKGROUND section, the order of interference 
m for maxima and minima of the reflected signal is given by [4]

m = 2 rtgS
K

(9)

where na is the refractive index of the air gap (« 1), s is the air gap length, and is the 
vacuum wavelength (1300 nm). Intensity maxima for the reflected case correspond to 
half-integral values of m (1/2, 3/2, 5/2, . . .) while minima correspond to integral m values 
(1,2, 3 , . . . ) .

Experimental observation of the number of fringes produced for a given beam 
deflection can then be used to calculate the change in air gap length, thus the strain on the 
beam. From the results shown in Figure 6, a beam deflection of (4.05 - 1.67) = 2.38 pm 
resulted in 6.5 observed fringes. Using Equation 9, the resulting change in air gap length is 
As = 4.2 pm.

To verify this result, Equation 3 was plotted using some typical values for a single­
mode step index fiber and s = 4.2 pm, shown below in Figure 7.
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Air Gap Displacement (urn)

Figure 7. Theoretical Strain Gauge Intensity Output

This ideal fringe data verifies the approximations made in analyzing the Fabry-Perot cavity, 
and reaffirms the interferometer accuracy in measuring displacement to within one 
micrometer. The values obtained regarding displacement of two points can then be used 
to calculate strain for any material under test.

CONCLUSIONS

Fiber optic sensors for smart structures have many advantages over comparable 
electrical systems due to their small size, ruggedness, electromagnetic immunity, and 
compatibility with composite materials. These sensors are relatively easy to incorporate in 
composites during manufacture, and potentially can provide useful information about the 
structural integrity of complex materials.

An extrinsic fiber optic Fabry-Perot interferometer proved to be a very useful 
microdisplacement and strain sensor for use in smart structure applications. Sensor 
construction was simple, requiring a fiber Fabry-Perot cavity, directional coupler, laser 
diode, photo detector, and support electronics. The simple construction provided 
economy and ruggedness, while achieving good resolution up to at least 200 pm gap 
displacements at an accuracy of 1 pm.

By counting the number of intensity interference fringes detected due to a material 
deflection, the sensor gap displacement can be determined by a simple relation. This gap 
displacement can then be used to calculate material strain. Although accuracy of 1 pm was 
achieved in this experiment, higher precision may be possible using a more stable laser 
source.
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