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Introduction 

• Spectroscopy represents an interaction between light and 
targeted materials in order to examine behavior of the light and 
recognize spectral signatures of the materials from their 
electromagnetic spectrum.

• Spectrum describes the intensity of light in different wavelengths. 
It helps to understand how much of light is emitted, reflected, or 
transmitted from a target. The typical way of representing  the 
spectrum is on a graph of reflectance vs. wavelength. 



Introduction 

• Hyperspectral Imaging 
 A combination of imaging and spectroscopy

 Each pixel has a light spectrum that can help identify objects/materials or 
detect processes associated with them.

 It is a collection of thousands of images in various wavelengths.

 Characterization of vegetation, mineral, and food products 
 Reflectance spectra can be analyzed to identify features. 

 For example, infected/healthy leaves can be distinguished.



Introduction 

• Key Factors in Hyperspectral Imaging
 Proper illumination with the bandwidth of a light source at 

least matching that of the camera
 Reflectance references (dark and white references)
 Distance and spatial resolution 
 Wavelength range



Introduction 

• Headwall Co-Aligned Dual-Sensor 
Hyperspectral Camera (400 – 2500 nm)
VNIR (400 – 1000 nm) and SWIR (900 – 2500 nm)



Introduction

• Technical Specifications
Camera VNIR SWIR

Spectral range 400-1000nm 900-2500nm

Image resolution at 
4-6 ft. away 

1-2 pixel 1-3 pixel

Spectral pixels 270 267

Spatial pixels 640

Max frame rate 350 Hz 200 Hz

Typical applications Airborne and ground remote sensing that require 
coverage between 400-2500nm

Size Approx. 10.7” x 8.2” x 6.5” 
(272mm x 208mm x 165mm)

Weight 6.25 Ib (2.83 kg)



Objectives
• To develop an open-source catalogue of 

concrete and steel surfaces and their 
spectral/spatial features (discoloration, 
characteristic wavelength, roughness, texture, 
shape, etc.), 

• To extract spatial/spectral features of 
hyperspectral images,

• To develop/train a multi-class classification or 
regression classifier through machine 
learnings (supervised and/or semi-supervised),

• To validate the classifier as a decision-making 
tool for the assessment of concrete crack and 
degradation processes, in-situ concrete 
properties, and corrosion process in steel 
bridges.



Experiments 

• Mix of Mortar Specimens by Weight (kg/m3)
Types of mortar samples C1 C2 C3

Water 288 270 245

Ordinary Portland cement 480 540 615

Missouri river sand 1482 1482 1482



Experiments

• Steel Specimens
Hot rolled 
A 36 steel

Dimension Solution Corrosion method HSI scanning 
time

Outcome spectrum 
with corrosion rate 

Sample_1 2.5” long × 2.5” 
wide × 0.5” thick 

18 g NaCl+ 
500ml H2O

Half Immersed in 
solution

Scanned after 71 
day (1704hrs) 

high reflectance with 
low corrosion rate 

Sample_2 2.5” long × 2.5” 
wide × 0.5” thick 

36 g NaCl+ 
500ml H2O

Half Immersed in 
solution

Scanned after 71 
day (1704hrs) 

low reflectance with 
high corrosion rate  

Sample_1’ 3.0” long × 3.0” 
wide × 0.5” thick 

18 g NaCl+ 
500ml H2O

Applied five drops 
each 5ml of solution

Scanned after 71 
day (1704hrs) 

high reflectance with 
low corrosion rate  

Sample_2’ 3.0” long × 3.0” 
wide × 0.5” thick 

36 g NaCl+ 
500ml H2O

Applied five drops 
each 5ml of solution

Scanned after 71 
day (1704hrs) 

low reflectance with 
high corrosion rate 



Experiments

• Test Setup
Distance: 3.6 ft
Reference: white
Light source: LED
Software: 

Hyperspec III
Frame period and 

exposure time: 
adjusted to have  
60% of saturated 
light intensity on
a grey canvas



Experiments

• Data Acquisition
Software: SpectralView



Experiments

• Data Processing
For pre-processing, dark reference is deducted 

from an image to eliminate the background 
noise and increase the signal to noise ratio.

With white reference, the light reflectance is 
calculated by

R=I/Is

Is represents the reflected light intensity of a standard 
grey canvas (with 50% reflection), and I represents 
the reflected intensity of the sample.



Experiments

• Hyperspectral Image of a Mortar Specimen
 (a) raw
 (b) after subtraction of dark reference
 (c) after dark and white reference deduction



Material Classification

• Machine Learning
 K Nearest Neighbors (KNN)
 Support Vector Machine (SVM)
 Class A, B, C for a w/c ratio of 0.6 (C1), 0.5 (C2), 0.4 (C3)



Material Classification

• Support Vector Machine (SVM)
A linear classifier with maximum margins that 

divides the data into two sets



Material Classification

• Normalization of Reflectance
Min. and Max. represent the minimum reflectance 

and the maximum reflectance of the whole data 
set during each test day, respectively



Results and Discussion 

• Reflectance from a Mortar Specimen within 
the First 14 Days
Reflectance increases over time due to changes 

in moisture, color, and density.
The combination of OH and H2O corresponds to 

1920-1980 nm. 

w/c=0.6



Results and Discussion

• Average Reflectance between 1920 and 
1980 nm within the First 14 Days 



Results and Discussion

• Classification Accuracy after 2, 5, 8, and 14 
Days of Testing by Support Vector Machine
C=103 and σ=10



Results and Discussion 

• Compressive Strength of Three Mortar 
Specimens in the First 14 Days



Results and Discussion 

• Mean Reflectance vs. Compressive Strength
The compressive strength of mortars increases 

exponentially with the average reflectance (1920-
1980) over 14 days, which can be used to 
monitor the hardening process of mortar.



Results and Discussion 
• Spectra Library of Cement/Concrete Ingredients
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Results and Discussion

• Spectra Library of Cement/Concrete 
Ingredients
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• Average reflectance of corroded steel after 48 
hours of immersion in 18g NaCl solution

• Average reflectance of corroded steel after 48 
hours of immersion in 36g NaCl solution
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• Average reflectance of corroded steel after 336 
hours of immersion in 18g NaCl solution

• Average reflectance of corroded steel after 336 
hours of immersion 36g NaCl solution 
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• Average reflectance of the transitional zone between 
the corroded and non-corroded steel after 71 days 
(1704 hours) of immersion in 18g NaCl solution
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• Average reflectance of pitting corrosion locations 
on a steel sample surface after 71 days (1704hr) of 
applied drops of 36g of NaCl solution
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Conclusions
• The average reflectance in 1920-1980 nm wavelength 

increases logarithmically with time because water molecules 
on each sample surface are gradually reacted during the 
hydration process. As the water content of mortar is reduced, 
less light is absorbed and more light is reflected. The average 
reflectance can be accurately predicted from the curing time 
with their correlation coefficient of over 0.9.

• The SVM classification model with C=103 and σ=10 are the 
best fit to the test data with a prediction accuracy of 
approximately 90%.

• The compressive strength of mortar can be exponentially 
related to the average reflectance in 1920-1980 nm 
wavelength with a correlation coefficient of over 0.95. With 
this strong exponential relation, hyperspectral imaging can 
be used as a rapid and nondestructive evaluation tool to 
predict the compressive strength of mortar.



Conclusions 
• Accomplishments

 “Hyperspectral imaging features for mortar 
classification and compressive strength 
assessment”. Construction and Building Materials. 
https://www.sciencedirect.com/science/article/pii/S0
950061820309405. 

 There are potentially interesting features related to 
steel corrosion products that can be evaluated 
using the hyperspectral imaging technique.

• Planned Activities
 Correlate the feature reflectance of hyperspectral 

images with the steel mass loss due to corrosion
 Correlate the hyperspectral images with 

corresponding  NextEngine 3D laser scanner’s 
images of corroded steel samples
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