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ABSTRACT

Real options (ROs) extend the financial option pricing theory to the valuation

of real asset investment and managerial flexibility under uncertainty. However, dif-

ferences between financial and non-financial markets, and the complex real world

environment of applications, build obstacles for the domain translation from financial

options to ROs.

This dissertation is motivated by the challenges of domain translation and de-

veloped in two essays. The first essay studies the incentive function of ROs (named

the RO incentive). The essay develops an option-game framework to model the RO

incentive, examines the change of investment behavior caused by the RO incentive,

and values the collaboration improvement. A general framework for designing RO

incentives is also developed in the essay for different forms of public-private part-

nerships (PPPs). The second essay focuses on dynamic capacity expansions, a rep-

resentative RO application, and analyzes important factors of RO practices for the

problem. These include economies of scale, capacity expansion mode, opportunity

cost of waiting, terminal value of expansions, and capacity cap. Theoretical insights

are obtained through the analysis, which are able to efficiently support the dynamic

expansion decisions and explain observations from the numerical solution.

The work of this dissertation has reduced the gap between the option theory

and RO practices. It also has built a scientific foundation for exploring advanced

RO problems such as the incentive design for multiple (more than two) agents and

dynamic capacity planning with resource constraints during a mission.
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1. INTRODUCTION

1.1. OVERVIEW OF REAL OPTIONS

Projects, especially those with either long lives or radical innovations, often

involve a high degree of uncertainty. Such projects include infrastructure construction

and operations, research and development (R&D), and new products introduction,

and so on. For example, the price of raw material or the demand for a high-tech

product. Uncertainty raises a number of challenges for project management. It may

cause decision makers hesitant when investing in high risk projects. Uncertainty is not

always a bad thing, however. It makes managerial flexibility valuable, allowing new

information to be obtained as a project evolves. The decision maker can use this new

information to revise a decision to increase profit, reduce loss, or both. Uncertainty

may, in fact, allow a project to produce more value than originally expected.

Traditional project valuation methods, such as the discounted cash flow (DCF)

approach, have crucial limitations. They do not consider the uncertainty in decisions

and the ability of decision makers to flexibly react to uncertain environments [1].

The real options (ROs) approach is considered to be a more effective tool in assisting

decision makers in the face of uncertainty. ROs extend the financial option theory to

the valuation of investments in either physical or real assets [2]. An RO gives its owner

a right, but not an obligation, to change actions as new information becomes available,

thus increasing the project value by either improving its upside potential or limiting

its downside losses [3]. Unlike traditional techniques based on the assumption that

project cash flows will be certain, ROs enable managerial flexibility to be factored

into the valuation model and show that uncertainty itself can generate value that
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should not be ignored. Therefore ROs provide more accurate estimates of investment

returns under uncertainty and better supporting investment decisions.

In practice, decision makers may not have to choose between either investing

or not investing. They may have flexibility, such as to wait and see, to expand or

contract, to abandon, or to shut down and resume the project, at various points in

time. These various flexibilities can be modeled as different types of ROs. Trigeorgis

(1996) [4] classified classic real options into seven categories: options to defer, time

to build options (staged investment), options to alter operating scale (e.g., either to

expand, contract, and shut down and restart), options to abandon, options to switch

(e.g., product or process flexibility), growth options, and multiple interacting options.

These typical types of ROs are summarized in Table 1.1.

Since Professor Stewart Myers coined the term “real options” in 1977 [5], nu-

merous researchers have valued investment opportunities under uncertainty in an RO

approach. RO applications have been extended from nature resource investments

(e.g., [6, 7]) to varies others, including manufacturing (e.g., [8, 9]), real estate (e.g.,

[10, 11]), R&D (e.g.,[12, 13]), and infrastructure (e.g., [14, 15]). The business commu-

nity also appears to have a growing interest in ROs. Many world famous companies,

such as BP [16] and Boeing [17], have adopted the RO technique for both project

valuation and investment decision making.

1.2. COMPARISON BETWEEN FINANCIAL OPTIONS AND ROS

The RO valuation extends the option pricing theory to options on real assets.

An RO, in many ways, resembles a financial option. For example, the opportunity to

invest in a project is often seen as a call option, of which the underling asset is the

present value of the project. Similarly, an option to abandon a project is analogous

to a put option on the project value. The analogies between financial options and

RO are summarized in Table 1.2.
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Table 1.1. Typical Types of RO
Types of RO Description Corresponding

Option
Option to defer Hold investment opportu-

nity to the best time
Call option

Time to build option To commit investment in
stages giving rise to a series
of valuations and abandon-
ment options

Compound option

Option to alter oper-
ating scale

To expand/contract/shut
down/restart operation to
meet realized demand

Call(to expand or
restart)/ put (to
contract or shut
down) option

Option to abandon Abandon current operations
and realize the salvage value

Put option

Option to switch Switch between different
models of operation

Call option + put
option

Growth option An early investment is a
prerequisite to open up fu-
ture growth opportunities

call options

Multiple interacting
options

The value of options af-
fected by other options

Compound option

Source: L. Trigeorgis, 1996, Real Options: Management Flexibility and Strategy in
Resource Allocation. MIT Press.

ROs, however, are more complicated than financial options. They are generally

distinguished from financial options by several major differences as following [4]:

• Non-tradability and preemption.

– Financial call options are traded with minimal transaction costs. ROs

are not generally traded. The non-tradability of ROs may lead to early

exercise. For example, a firm anticipating both an increase in demand and

a competitive entry may rush to expand its own production/sales capacity

early to preempt the competition. In the absence of such competition,
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Table 1.2. Analogy between Financial Options and ROs
Financial Option Value Drivers RO Value Drivers
Financial asset price (e.g. stock
price)

S Real asset value (e.g. Project value)

Exercise price K Cost to carry out the RO (e.g. cap-
ital investment)

Stock price volatility σ Asset value uncertainty
Time to expiration T Time until the opportunity expires
Risk free interest rate r Risk-adjusted growth rate
Dividend q Value leakage

Source: M.A. Brach, 2002, Real Options in Practice, John Wiley & Sons.

it might prefer to wait for the uncertainty surrounding future demand to

resolve itself.

• Non-exclusiveness of ownership and competitive interaction.

– Financial options on a common stock are proprietary. Only the owner can

exercise it without worrying about competition for the underlying assets.

Some ROs (patents, licenses) are also proprietary. Others are shared and

can be exercised by any firm in the particular industry. For example, the

opportunity to introduce a new product is unprotected by the possible

introduction of close substitutes.

• Strategic interdependence and option compoundness.

– Financial options are relatively independent of each other. Multiple ROs,

however, may be embedded in a project. For example, a firm may have

the flexibility to defer investments, either expand or contract production

capacity, switch the output types, and abandon the operation in a single

project. ROs are often interdependent, affecting the values of one another.

ROs existing early in the decision horizon may be prerequisites for those to
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follow. The presence of the later ones may impact the values of the earlier

ones.

1.3. FROM FINANCIAL OPTIONS TO ROS

The path from financial options to ROs is not straightforward. It is not a simple

domain extension, but rather a domain translation [18]. When compared to financial

options, which are usually well-defined and traded in standard, mature financial mar-

kets, an RO is often used in non-financial markets. Great effort is required to identify

options, develop models, estimate parameters, and probe solutions. The differences

between financial options and ROs, and the complex real world environments, build

obstacles for applying the option theory to the valuation of investments in real assets.

Assumption violation is a major problem. The options pricing theory is built on

strict assumptions. Some of these are often violated in practice in the RO applications

in practice (e.g., the complete market assumption and no arbitrage assumption). The

no-arbitrage pricing approach in a financial option is based on the use of a portfolio in

traded securities that replicates the payoff of an option. The key assumption is that

the underlying assets can be traded in an efficient market. Many real assets, however,

are not tradable. Thus the no-arbitrage principle seems to lose its foundation. The

initial value of the underlying asset, the appropriate rate of return, and the discount

rate may all be difficult to be determine [19]. Some researchers developed rectifying

assumptions to support the use of the financial option pricing theory for real assets.

For example, finding a traded “twin security” that is highly correlated with the real

asset value[4], and proposing the market asset disclaimer [20].

The difficulty in parameter estimation is another typical issue. Unlike the values

of financial assets which usually follow some well-defined stochastic processes, such as

geometric Brownian motion (GMB), the evolution of real asset values may not easily

be described by a simple stochastic process. Alternative stochastic processes other



6

than GMB, such as jump processes, mean reverting processes, and combinations of

these, have been used to model the processes of underlying assets (e.g., [21, 22, 23]).

Estimating the model parameters of ROs is also difficult. For example, value drivers,

growth rate, volatility, and interest rate may be time and/or state dependent (e.g.,

[24, 25]). The volatility of an underlying asset is difficult to properly estimate due to

the lack of either historical data or traded option prices (e.g., [26, 20]). The exercise

price could include several payments over time or be lumpy (e.g., [27]). The exercise

date may be unknown in advance.

Interactions between multiple options complicate the valuation of RO as well.

Multiple options may exist in a project, either in a parallel or a sequential manner.

They may affect the values of one another, making the values of the multiple options

non-additive. Both the pricing and interacting rules of multiple options have been

partially studied in the past (e.g., [28, 29]).

Behavior interactions between competitors and collaborators also affect both

the values and exercise decisions of ROs and may invalidate the traditional option

valuation. Some ROs may be shared by multiple owners. Both the value and exercise

strategy of an RO may be affected by the behavior of competitors due to the non-

exclusiveness of ownership. For example, the value of the option can be eroded

by competitors; the preemption effect reduces the threshold of ROs’ exercise (e.g.,

[30, 4]).

Behavior interactions between collaborators can also significantly affect both

the value and exercise of ROs. Some ROs are naturally embedded in the project. For

example, the flexibilities in deferring the investment, expanding or contracting the

capacity, or abandoning the operation. There are only RO owners but no issuers in

such ROs. Other ROs may be offered by the issuers to the owners for some specific

purposes. The RO issuers and owners often collaborate as principals and agents, such

as a government agency and a concessionaire, or a retailer and a vendor. ROs usually
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act as incentives in these principal-agent relationships. The behavior dynamics of

the participants in the cooperative relationships may impact the value and exercise

policy of the ROs. For example, in a highway build-operate-transfer (BOT) project,

a government agency offers a concessionaire the option to continue operating the

project after concession. The toll cap set by the government agency may influence

the decisions of the concessionaire at the toll level and construction investment. Thus

affecting the value and exercise of the continuation option. Conversely, the presence

of ROs can change both the option issuer and owner’s behavior. For example, the

continuation option provides an opportunity for the concessionaire to gain profit in

a longer time. Thus may stimulate it to improve the construction and maintenance

quality of the highway. The effects of behavior dynamics in the RO framework make

the traditional option evaluation invalid. A game framework can be introduced to

the RO evaluation to address the behavior issue. Additionally, the incentive function

of the ROs is unclear and needs to be studied.

Some practical issues in RO applications challenge the option theory as well. For

example, the economies of scale impact investment decisions. The increasing economy

of scale favors a one-time large investment to benefit from a volume discount. The RO

literature yet often suggests a sequential capital investment in that the investment

is often irreversible (or at last partially irreversible) under uncertainty. The capacity

expansion mode may impact investments as well. The capacity of a project may be

built progressively, in infinitesimal units, as most of the RO literature assumes. For

example, knowledge often grows continuously over time. Capacity may also be added

in large, discrete units. For example, the expansion of highway capacity must be at

least one lane. The opportunity cost of waiting also needs to be considered. The RO

literature usually suggests a conservative investment (better late than early) due to

the value of waiting for more information under high uncertainty. However, they often

fail to consider the opportunity cost of waiting: that is, the profit forgone during the









11

examining these various types of RO. For example, McDonald and Siegel(1986) [24]

and Paddock et al (1988) [35] examined the option to defer and apply it into project

evaluation. Myers and Majd(1990) [36] analyzed the option to abandon for salvage

value. They evaluated the investment opportunities on the project embedding option

to abandon and introduced the salvage value into the valuing function. Trigeorgis

and Mason (1987) [37], and Pindyck (1991) [38] examined options to alter operating

scale or capacity choice. Baldwin and Ruback (1986) [39] noted that the uncertainty

in the future asset price generates an option to switch benefits short- term projects.

Kulatilaka and Trigeorgis (1994) [40] proposed the evaluation model for the option to

switch in productive factors. For the sequential investment, Carr (1988) [41] and Tri-

georgis (1993) [28] dealt with valuing staged (compound) investment. Majd Pindyck

(1987) [42] analyzed the option to delay sequential construction for projects that take

time to build. Hevert et al (1998) [43] studied the sensitivity of growth options to

the changes of interest rate brought on by inflation.

Early literature mainly focuses on valuing individual real options. However,

in practice, many investment projects involve several embedded real options. The

options might interact and change the value of the project as well as the optimal

exercising strategies. Valuing real options in isolation has limited the practical value

of real options theory. Brennan Schwartz (1985) [44] examined the combined value

of the option to shut down a mine, and to abandon it for salvage. Trigeorgis (1993)

[28] showed that the combined value of a collection of real options may differ from

the sum of separate option values. Kogut Kulatilaka( 1994) [45] analyzed the impact

of interactions among a collection of real options on their optimal exercise schedules.

The option pricing theory in financial assets, which was devised by Black Scholes

(1973) [46], Merton (1973) [47], and Cox et al (1979) [48], built the quantitative

foundation of the real options theory. A comprehensively review on the methods of

option pricing is available in Broadie and Detemple (2004)[49].
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The Black-Scholes formula is the most important and broadly applied closed-

form model for option pricing. It applies the financial option pricing model directly

into RO evaluation. Margrabe (1978) [50] generated a analytic solution for an option

to exchange one risky asset for another. The major difference between these two

models is on the strike price of the option, which is treated as a certain number in

Black-Scholes model and as a random variable in Margarbes model. Geske (1979) [51]

valued a compound option, which may mainly be applied in sequential investment

decisions, such as R& D investment projects. Based on Margarbe and Geskes work,

Carr (1988) [41] examined compound exchange option with stochastic strike price.

However, the Black-Scholes formula is not sufficient for pricing some non-standard

or complex RO. For example, compound options, American options, or the projects

that have multiple uncertainties, state and/or time dependent parameters. Contin-

gent claim is a more general theoretical method for option pricing. This method

assumes a given stochastic process for the underlying asset, such as GBM, and then

derives and solves an appropriate partial differential equation (e.g., [1, 52]).

The closed-form solution to partial differential equation rarely exists. Therefore,

numerical methods, such as lattice methods or simulation, are used to approximate the

solution. Lattice/tree methods are based on the seminal work of Cox et al (1979) [48].

They developed the binomial option pricing model which approximates the behavior

of an asset price by the upward and downward changes in a particular interval time.

Trigeorgis (1996) [4] and Mun (2002) [31] summarized the basic principles of valuing

various RO via simple binomial trees. Other lattice methods include trinomial tree,

adaptive mesh model, etc. The lattice/tree approach provides a more simplified

method to value options. It has been widely used to price both vanilla and some

exotic options.

Monte Carlo simulation, initially used by Boyle (1977) [53], is used to approxi-

mate the continuous-time stochastic process by generating discretely sampled paths.
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It is a very useful technique to value American-type options, especially when more

than one factor affects the value of the options. Hulland White (1987) [54] suggested a

control variate technique to improve computational efficiency when there is a deriva-

tive similar to the one being valued and has an analytic solution available. Broadie

and Glasserman (1997) [55] designed a Monte Carlo method to value the American fi-

nancial option that incorporated early exercise, multiple-state variables, multi-choice

decisions and temporal optimality. Maung and Foster (2002) [56] used Broadie and

Glassermans method to simulate the option values under two marketing alternatives

in the hog industry.

2.2. CHALLENGES OF REAL OPTIONS IN PRACTICE

It is challenging to translate the financial option into RO. Some researchers have

identified difficulties in applying RO in practice when they establish the path from

financial options to RO. For example, Lander and Pinches (1998) [19] discussed three

major difficulties in applying option-based model in corporate decision-making. First,

existing RO models are not well understood by practitioners. Also, using these models

requires high mathematical skills. Second, many of the required assumptions in option

theory are often violated in the RO application in practice. Third, mathematical

tractability limits the scope of application. Miller and Park (2002) [57] summarized

the drawbacks of RO assumption in the six parameters that impact the option value:

underlying asset, risk, exercise price, expiration date, interest rate, and dividends.

To defend the use of financial option pricing for real assets, rectifying assump-

tions are developed. For example, with respect to the non-tradability of the real

assets, Mason and Merton (1985) [58] argued that the real asset contributes to the

market value of the publicly traded firm, and thus the real asset can be treated as

if it were traded by itself. Trigeorgis (1996) [4] claimed that the returns of an RO

can be replicated by a portfolio including shares of its twin security and risk-free
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costs, illustrate the trade- off between the value of waiting and the strategic com-

mitment value under different competition structures. Kulatilaka and Perotti (1998)

[64] studied the investment strategies under uncertainty and imperfect competition

where there is a first mover advantage brought by investing in a strategic growth

option. Huisman and Kort (2003) [65] analyzed the new technology adoption strate-

gies in a duopoly setting. It was shown that, under a certain scenario, the strategies

of the two firms turn from competition into joint adoption. Perotti and Kulatilaka

(1999) [66] considered the decision to invest in a time-to-market option under Cournot

quantity competition with the first mover benefit. They conclude that the value of

such option is unambiguously increasing in demand uncertainty, and higher uncer-

tainty level justifies earlier exercise of the option. Grenadier (1999) [67] took the

situation of asymmetric information into account to develop a more general equilib-

rium framework for option exercise games. It is found that an informational cascade

can arise endogenously when all the agents exercise immediately. Pawlina and Kort

(2001) [68] examined the impact of investment cost asymmetric on the value of firm

and on the optimal strategies of exercising real options under imperfect competition.

Different levels of cost asymmetry result in different type of equilibriums. Weeds

(2002) [69] derived a continuous time, duopoly option- game framework to study op-

timal investment strategies for firms competing for a patent with uncertainties in the

probability of technological success of the project and in the economic value of the

patent. Economic uncertainty generates a tendency of waiting. However, the fear

of preemption counteracts the incentive of delay. Grenadier (2002) [70] provided a

general and tractable solution approach for deriving equilibrium investment strategies

in a continuous-time Cournot-Nash oligopolistic setting. It finds an equilibrium that

is analytically simple and potentially widely applicable. The impact of competition

on exercise strategies leads to a rapid erosion in the option to wait and brings the

investment trigger to a level that is very near the zero net present value. Lambrecht
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and Perraudin (2003) [71] incorporated incomplete information and preemption into

an equilibrium model in which groups of firms invest strategically. It suggested that

the optimal investment strategy may lie anywhere between the zero-NPV trigger level

and the optimal strategy of a monopolist, depending on the distribution of competi-

tors costs and the implied fear of preemption. Huisman and Kort (2003) [65] treated

the technology adoption decision of a firm in a duopoly framework. Outcomes ranged

from preemption equilibrium to equilibrium with second mover advantages, depend-

ing on the time of the new technology comes and the level of advantage of producing

with new technology comparing with the monopoly profits are gained by adopting the

current technology. Huisman (2004) [72] extended the model of Dixit and Pindyck

(1994) [1] by introducing a new technology coming in an uncertain time of the future.

Results showed that taking into account the possible occurrence of a new technology,

the preemption game in Dixit and Pindyck (1994) [1] could be turned into a war of

attrition, which is a game where the second mover gets the highest payoff. Bouis

et al (2009) [73] extended the duopoly model of Dixit and Pindyck (1994) [1] to the

oligopoly context with three or more symmetric firms. This is the first study that

contributes to the problem of strategic real option with more than two competitors.

Smit and Trigeorgis (2009) [74] proposed a methodology for valuing infrastructure

investment using option games approach and illustrate it by a case of evaluating

airport infrastructure expansion investments. They take the infrastructure of each

airport as an asset with sequential expansion options in a competitive environment

and developed an option game for modeling European airport expansion.

The joint analysis of real options and game theory is also suitable for deriving

RO strategies for collaborators under uncertainty (e.g., the private sector and the
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public sector in a PPP project); however, this topic has attracted little attention

among researchers.

2.4. REAL OPTIONS AS INCENTIVES

Previous literature has identified and modeled connections between incentives

and RO. Some researchers modeled and valued the incentives, such as subsidies and

guarantee offered by the public sector to the private sector in PPPs, as RO.

Mason and Baldwin (1988) [14] claimed that many subsidies and guarantee

have features of options, and thus they modeled and valued government subsidies

to large-scale energy projects as put options. Using the Taiwan High-Speed Rail

Project as a case study, Huang and Chou (2006) [75] illustrated that the minimum

revenue guarantee (MRG) can be modeled as a series of European style call options

and evaluated an option to abandon, as well. Results from their study showed that

both the option to abandon and MRG create values, which are reduced if they were

combined. Cheah and Liu (2006) [76] modeled the MRG as a put option and the

governments right of repayment as a call option in a bridge project, and used a Monte

Carlo simulation to price the options. Alonso-Conde et al (2007) [77] evaluated the

incentives of options to defer payments, options to delay payments, and options to

terminate the concession period early, for a large toll road project. They further

illustrated the ways in which real options affect the incentives to invest and measured

the value that the public entity may transfer to the private entity through government

guarantee. Liu and Cheah (2009) [15] treated the guarantee on production volumes

of a waste water treatment plant as a put option written by the government and the

cap on the tariff as a call option owned by the government. Their study showed that

incentives for a PPP project, if they have option features, will expand the feasible

negotiation range for both the public and private entities. Wang and Liu (2008)

[78] designed an option contract to coordinate a retailer-led supply chain. The option
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contract motivates the supplier to produce more products than that in the benchmark

situation to satisfy the potential extra orders from retailer when the market demand

is realized. Results show that such an option incentive can coordinate the retailer and

supplier to act in the best interest of the channel. The profit in the entire channel is

improved and the two parties are brought to a win-win situation.

These previous studies focused on modeling existing types of incentives as real

options, and valued them solely from the viewpoint of option owner. Little work has

designed real options for incentive creation. The behavioral dynamics between the

option writer and option owner are also rarely discussed in the literature.

2.5. CAPACITY PLANNING USING REAL OPTIONS

The RO literature on capacity related problems is rich. Intensive discussions

on this topic were provided by, for example, Dixit and Pindyck (1994) [1], Trigeorgis

(1996) [4], Amram and Kulatilaka (1999) [32], and Schwartz and Trigeorgis (2001)

[33]. Typical literature is summarized in Table 2.1. In early RO literature, capacity

investment mainly focused on determining the optimal timing to invest in a certain

project. For example, McDonald and Siegel (1985) [79] derived the optimal timing

to shut down a plant to maximize the expected production profit when the demand

followed a Wiener process. Majd and Pindyck (1989) [80] considered a competitive

firm whose costs decline with the cumulative output and the price of the firm’s output

evolves stochastically. An optimal decision strategy that maximizes the firm’s market

value was found: to produce when the price exceeds a critical level, which is a declining

function of cumulative output. Dixit (1995) [81] examined the thresholds of investing

incremental irreversible capital when profit is diffusing and the marginal return first

increases and then decreases. A review of Dixit and Pindyck (1994) [1] by Hubbard

(1994) [82] pointed out that the RO theory had focused more on the timing of the

investment and did not offer specific predictions about the level of investment. Clearly,
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the size of capacity investment is also an important issue. In practice, firms usually

face a range of capacity choices, but not just the ”invest or not” choice.

Table 2.1. The RO Literature on Capacity Planning

Category Literature (e.g.)

Timing of investment McDonald and Siegel(1985)[79]; Majd and Pindyck
(1989) [80]; Dixit and Pindyck (1994) [1]; Benavides et
al (1999) [83]; Dangl (1999)[84]; Bar-Ilan and Strange
(1999) [85]; Harchaoui and Lasserre (2001) [86]; Dri-
ouchi et al (2006) [87]; Chronopoulos et al (2011) [88];
Hagspiel et al (2011) [89]

Capacity choice Pindyck (1988) [90]; Fine and Freund (1990) [91]; He
and Pindyck (1992) [92]; Dixit (1993) [93]; Abel et al
(1996) [94]; Dangl (1999) [84]; Benavides et al (1999)
[83]; Bar-Ilan and Strange (1999) [85]; Dixit Pindyck
(2000) [52]; Birge (2000) [95]; Liang and Chou (2003)
[96]; Decamps et al (2006) [97]; Chou et al (2007)
[98]; Qin and Nembhard (2010) [25]; Chronopoulos et
al (2011) [88]; Hagspiel et al (2011) [89]; Qin and Nem-
bhard (2012) [99]

A strand of RO studies, especially more recent ones, considered the size of in-

vestment besides the timing. For example, Pindyck (1988) [90] examined the initial

capacity choice considering irreversible incremental investment opportunities, uncer-

tain returns, and opportunity costs. He and Pindyck (1992) [92] extended this analysis

to include flexible capacity and compare this to the situation when only dedicated

equipment is used. Fine and Freund (1990) [91] presented a two-stage stochastic

model of the tradeoff between flexible capacity and the increased cost of acquiring it,

as compared with dedicated or non-flexible capacity. Dixit (1993) [93] evaluated a

model with irreversible choice among mutually exclusive projects with different levels

of capacity. Decamps et al (2006) [97] reduced this model to two alternative projects
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and introduced parameter restrictions to the model. Abel et al (1996) [94] discussed

a two-period model where the expandability and the reversibility of investment were

completely available within the first period but were restricted within the second

period. The flexibilities in capacity expansion and contraction were modeled as call

options and put options respectively. Benavides et al (1999) [83] studied the optimal

scale, type, and timing of IC manufacturing capacity expansion with the demand fol-

lowing a geometric Brownian motion process. They found that the deployment policy

should be conservative because of the presence of uncertainty and larger, more effi-

cient facilities. Dangl (1999) [84] used ROA to determine optimal timing and capacity

choice of a once and for all investment under uncertainty. Results showed uncertainty

in future demand leads to an increase in optimal installed capacity but delay of the

investment. Bar-Ilan and Strange (1999) [85] considered both the timing and inten-

sity of investment under incremental and lumpy investment. Birge (2000) [95] applied

the results of option theory to capacity planning problems with constrained resources.

Risk was incorporated into planning models by adjusting capacity and resource levels.

Harchaoui and Lasserre (2001) [86] statistically tested the validation of option theory

of irreversible investment. They derived the value of options to invest in capacity

using contingent claims valuation and proved that this model explained investment

size and timing satisfactorily from both the statistical and the economic points of

view. Chronopoulos et al (2011) [88] also took into account both timing and size of

investment by analyzing the impact of risk aversion as well as operational flexibility

in the form of suspension and resumption options on these decisions. Hagspiel et al

(2011) [89] compared the optimal capacity decisions between firms with and without

production flexibility. They found that the flexible firm invests in higher capacity

than the inflexible firm and the capacity difference increases with uncertainty.

Although the above literature studied the optimal size of capacity, it considered

only the initial capacity choice. A few RO researches addressed the dynamic capacity
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planning issue. For example, Liang and Chou (2003) [96] utilized the RO theory in

determining dynamic capacity choice. They validated that the geometric Brownian

motion model can reasonable represent the demand process of the semiconductor

industry using the historical data and showed that the option based approach, in

long-term, could generate a capacity plan that requires less investment and generates

higher operating income. Chou et al (2007) [98] modeled the highly volatile demand

of semiconductor industry as a geometric Brownian motion process. Based on this

assumption, they provide a framework for formulating long-term capacity strategy

and integrating capacity planning with business planning. Qin and Nembhard (2010)

[25] modeled the workforce planning problem as sequential investments in workforce

capacity during the product life cycle. They illustrated that the RO-based workforce

agility could reduce the sensitivity of production quality to market risks, allowing

manufacturers to rapidly and economically adapt to the unexpected changes in the

market. The dynamic capacity strategy is very complex thus was solved in these

studies using numerical methods. However, the numerical results may not be able

to get much theoretical insights. Theoretical analysis may be needed to reveal more

essential features of the optimal dynamic capacity policy.

Some of the RO literature on capacity planning assumes the capacity changes

continuously, for example, the capacity is differentiable as respect to time (e.g.,

[84, 25]). However, the capacity is usually non-differentiable, say, can only be added

by large discrete units. For example, in manufacturing industry, capacity often ex-

panded by plants; at least one lane should be added once in highway expansion.

How to address the capacity planning problem when highly diffused demand and

non-differentiable capacity occur jointly would be challenging.

As to the timing of investment, RO literature usually suggests that the capacity

policy should be conservative (better late than early) because of the value of waiting

under high uncertainty (e.g.,[83, 84, 89]). However, they often fail to consider the
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opportunity cost of waiting, that is the profit loss during the waiting time. An

exception is Dixit and Pindyck (2000) [52], which assumed the cost of the incremental

capacity increased with time. A more common case in practice is, the capacity is

adjusted dynamically after the product is on the market and making profit. Therefore,

the capacity installed in a late time can serve and generate profit only for a short

period when the product life is limited. Opportunity cost of waiting will counteract

the benefit of waiting for more information and may change the optimal capacity

policy.
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3. ESSAY ONE: THE INCENTIVE FUNCTION OF REAL OPTIONS

3.1. PROBLEM STATEMENT

Public infrastructure projects such as the construction and operation of high-

ways, railways, or airports usually have long lifetimes and require a great deal of

capital. Future economic and operating conditions can change substantially over a

project’s life. Public-private partnerships (PPPs) provide a means to finance large

infrastructure projects in a way that gives private enterprises attractive business op-

portunities while allowing governments to acquire financial resources, transfer risks,

and increase service efficiency. However, many popular PPP forms, such as build-

operate-transfer (BOT), consider risks within the concession period, which is shorter

than the service life of infrastructure. The public sector is exposed to great risks

during the post-concession period. Moreover, excluding the post-concession period

from revenue management is contrary to the growing attention to sustainability.

Recently, a method of risk mitigation, which involves using incentives offered

by the public sector to the private sector, captures particular interest. Incentives

such as subsidies, guarantees, and rights of expansion or abandonment have shown

to alleviate the private sector concern with risks associated with PPPs. However,

little work has been done to assess the benefits that the public sector may gain from

offering incentives in PPPs. Also, the mechanism of incentives in PPPs is still unclear.

ROs valuation provides a way to model flexibility-type incentives and optimizes the

incentive functionality. The public sector is the option writer if it offers the private

sector some flexibility in operating a PPP project (e.g., an option to abandon the

operation before the expiration of the concession period). This flexibility encourages

the private sector to collaborate in the PPP by alleviating its concern with risks. If it
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decides to take the option, the private sector pays a premium and become the option

owner. Moreover, when used as incentives, ROs may change the behaviors of both

parties to an option contract. The behavior dynamics of option owner and writer are

rarely modeled in the RO literature.

In this essay, an option game framework is built to examine the incentive func-

tion of RO in the cooperative relationships and the effects of behavior interaction of

option issuer and owner on the value of RO. A highway build-operate-transfer (BOT)

project is used as an example to demonstrate the proposed framework. Designing

specific RO incentives for different PPP forms is suggested to promote better PPPs.

3.2. RO INCENTIVE SCHEME: AN EXAMPLE IN A BOT PROJECT

3.2.1. A BOT Contract Without Options. BOT is a PPP agreement of-

ten applied to transportation infrastructure projects. Figure 3.1 illustrates change in

ownership in a typical BOT project. The private concessionaire (PRI) is responsible

for infrastructure construction. As a reward, it retains ownership of the infrastructure

for the concession period, (0, Tc], and gains profits from operating it. The govern-

mental agency (GOV) takes over the infrastructure after the concession period and

continues to operate it until the end of its service life, T .

Figure 3.1. Change in Ownership in a BOT Project Without Options
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To measure and demonstrate the desired effects of RO incentives, a highway

BOT project without options is first modeled. The design of a BOT contract is a

complex process. This paper assumes that the contract negotiation has reached the

stage at which some issues have already been settled through negotiations between

the GOV and the PRI. These issues include the length of the concession period, Tc,

the toll price, P , the minimum requirements for construction quality, h, and the

PRI’s minimum required return, πc. Now, the GOV is planning the highway capacity

to maximize the social welfare offered by this project. As the highway builder and

owner of the highway during the concession period, the PRI is the appropriate party to

control construction quality. To inform the decision of the PRI, the total construction

cost, I, and the maintenance cost, M , are defined as follows.

Assumption 1: The total construction cost increases linearly with highway capacity

and construction quality; that is,

I(k, C) = (h+ k)C, (1)

where h is the minimum requirement of construction quality and k, the quality im-

provement factor, is the unit cost of quality improvement.

Assumption 1 is consistent with empirical findings, for example, in Levinson and

Karamalaputi (2003) [100].

Assumption 2: The annual maintenance costs are proportional to the highway ca-

pacity, and the unit maintenance cost for each year is relevant to the construction

quality and road age; that is,

M(k, C, t) = mk−θeλtC, m, θ, λ > 0, (2)
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where m is the capacity coefficient, θ is the quality improvement factor, and λ is the

aging factor.

Maintenance costs usually increase linearly with highway capacity. Practical experi-

ence indicates that increasing the investment in quality can reduce maintenance costs,

but at a reduced rate because of diminishing marginal returns. Therefore, the unit

maintenance cost is assumed to be a decreasing convex function of k. Moreover, the

aging of a highway can quickly increase the difficulty of maintenance, making the unit

maintenance cost an increasing convex function of highway age.

The decision process for BOT without options is a two-stage game of complete

and perfect information. The players are the PRI and the GOV, as illustrated by

Figure 3.2.

Figure 3.2. Contracting Process for the BOT Without Options: A Two-stage Game
of Complete and Perfect Information.

The PRI wants to maximize the expected profit from the concession by opti-

mizing the investment in quality improvement, k, for any given capacity, C; that is,

E[UPRI(k
∗, C)] = max

k

{
−I(k, C) +

Tc−1∑
t=0

e−rt
[
R(Q̂t)−M(k, C, t)

]}
, (3)
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where r is the discount rate, Q̂t denotes the expected traffic volume during [t, t+ 1),

and R(Q̂t) = PQ̂t calculates the expected toll revenue during that period. By solving

equation (3), the PRI determines the optimal investment in quality improvement:

k∗ =

(
θm

Tc−1∑
t=0

e(λ−r)t

) 1
θ+1

. (4)

Equation (4) shows that the PRI’s optimal action is independent of that of the GOV.

The GOV’s objective is to maximize the social welfare created by the project.

The general social welfare, W , is defined as the sum of the consumers’ and producers’

surplus realized over the entire service life, T , of the highway ([101]). Therefore, it is

calculated as

W (k, C) = −I(k, C) +
T−1∑
t=0

e−rt
[
B
(
Q̂t

)
− T

(
Q̂t, C

)
−M(k, C, t)

]
. (5)

where B(Q̂t) represents the expected benefit of travelers who use the highway during

[t, t+ 1), which is an increasing function of the expected traffic volume, and T (Q̂t, C)

is the travel time cost, calculated as

T
(
Q̂t, C

)
= βQ̂tt

0
[
1 + a(Q̂t/C)b

]
, (6)

where β is the average time value per traveler per unit time, t0 is the travel time

under free flow conditions, and t0
[
1 + a(Q̂t/C)b

]
is the traditional BPR (Bureau of

Public Roads) travel time function that measures the time needed to travel a certain

route ([102]).

To make the BOT contract attractive to the PRI, the GOV must ensure the

profitability of the PRI by planning highway capacity, a tactic called the second-best

social optimum problem ([103]). Knowing the PRI’s action, k∗, the GOV chooses the
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necessary to pay off the initial investment and maintain the highway throughout its

service life. For instance, if actual revenue is lower than expected, the GOV will have

to find additional funds to make up the shortfall. At node (t, i) on the binomial tree,

the extra funding needed by the GOV is represented by max[M(k∗, C∗, t)−R(Qti), 0].

The present value of the expected total shortages during the post-concession period,

FBS(k∗, C∗), is given by

FBS(k∗, C∗) =
T−1∑
t=Tc

t∑
i=0

e−rtP{Qti}max [M(k∗, C∗, t)−R (Qti) , 0] . (9)

If traffic volume is higher than expected, the GOV is likely to generate revenue in

excess of the required maintenance costs, yet travelers suffer heavy traffic congestion.

Excess toll revenue cannot easily be applied to alleviate traffic congestion or gain

other benefits in practice.

3.2.3. A BOT Contract With Options. The GOV can address the afore-

mentioned risk by adding options to the BOT contract. Besides the rights and obli-

gations specified for the concession, the GOV can offer the PRI an option to continue

operating the project after the concession expires. If it exercises the option, the

PRI can still choose to terminate operation of the highway at any time during the

post-concession period. The first option is a European-style (i.e., the option can be

exercised only at maturity) continuation option; the second option is an American-

style (i.e., the option can be exercised on or before its maturity) abandonment option.

This abandonment option is compounded with the continuation option because the

former is valid only if the PRI exercises the latter. These two options allow the PRI

to capture potential opportunities for additional profits when future conditions ap-

pear favorable, and to avoid possible losses if conditions appear unfavorable. Clearly,

the options are value-added to the PRI. The GOV prices the options to determine

the option premium, which allows it to cover the possible shortage in maintenance
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funds or to create more social welfare from the project. The options have potential

to improve the BOT scheme presented in Section 3.2.1.

When the PRI exercises either of the two options, ownership of the highway is

transferred from one party to the other, as shown in Table 3.1. In the BOT contract

without options, the GOV is the owner of the highway after the concession expires.

In a BOT contract with options, however, the PRI can now choose to exercise the

continuation option, in which case ownership of the highway is transferred from the

GOV back to the PRI. It is returned to the GOV permanently if the PRI exercises

the abandonment option.

Table 3.1. Change in Highway Ownership in the BOT With Options

Time Concession Period Post-concession Period

GOV

Highway (if the continuation option is ex-
pired)

Ownership PRI PRI GOV

(if the continuation
option is exercised;
until the abandon-
ment option is exer-
cised)

(once the aban-
donment option
is exercised)

Ownership of the highway is different from the options; the PRI is the owner

of the continuation and the abandonment options, whereas the GOV is the writer of

these options.

With the RO incentive to continue the operation, the PRI faces decisions about

option acquisition and exercise. The GOV must price the options and, if it sells them

to the PRI, decide how to use the premium. A valuation of the options in a game-like

framework helps them derive their optimal decisions.
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This work evaluates the project in a risk-neutral world after the continuation

and abandonment options are added to the BOT contract. Risk-neutral valuation is

essential in option pricing. In a risk-neutral world, all individuals are indifferent to

risk ([2]). A problem can be transformed from the real world to the risk-neutral world

by measuring the uncertainty in the underlying asset using a risk-neutral probability,

p, and discounting cash flows using the risk-free rate, rrf . Decision outcomes in a

risk-neutral world are the same as those in the real world; however, the risk-neutral

decision making process is easier because no risk-adjusted rate need be estimated for

each party and for various times in the life of the project ([2]). The estimation of the

risk-neutral probability is shown in Figure 3.3.

The GOV determines the premium by pricing the RO incentive. Since the aban-

donment option is compounded with the continuation option, the value of the contin-

uation option is dependent on that of the abandonment option. Therefore, the aban-

donment option is evaluated first. Let At be the PRI’s action at t = Tc, Tc+1, ..., T−1.

Whereas ATc is derived from the valuation of the continuation option, subsequent ac-

tions, {At|t = Tc + 1, Tc + 2, . . . , T − 1}, are derived from the abandonment option.

At t = Tc, Tc + 1, . . . , T − 1, the beginning of each year, the PRI determines whether

terminating the operation starting the next year will maximize the expected value-

to-go:

Z(Qti, At) = max
At+1

{R(Qti, At)−M(k∗, C∗, t, At)

+ e−rrf∆t
[
pZ(Q(t+1)i, At+1) + (1− p)Z(Q(t+1)(i+1), At+1)

]}
,

(10)

where At+1 ∈ {“operate”, “abandon”}. Equation (10) shows that the decision in At+1

is made only if At is “operate” because the PRI can no longer operate the highway

after it has abandoned the right. Therefore, Z(Qti, “abandon”) is equal to 0. The
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expected value-to-go for any time t is determined by dynamic programming (DP)

([108]). The backward recursion process of DP stops at Tc when the PRI must decide

whether to exercise the continuation option:

Z(QTci) = max
ATc
{Z(QTci, ATc)} , (11)

where ATc ∈ {“continue”, “expire”}. If the PRI decides to exercise the continua-

tion option, it obtains the abandonment option for the post-concession period, and

Z(QTci) = Z(QTci, “continue”) = Z(QTci, “operate”). Otherwise, the continuation

option expires and Z(QTci) = Z(QTci, “expire”) = 0.

The expected present value of Z(QTc) is the value of options to the PRI:

VPRI(k
∗, C∗) = e−rrfTc

Tc∑
i=0

Z(QTci)P{QTci}. (12)

Here, the term VPRI(k
∗, C∗) represents the options value for the PRI because it

can vary with the decisions of the GOV and the PRI according to Equation (10).

The GOV will operate the highway only in two situations: first, if the PRI

decides not to exercise the European option of continuation and, second, if the PRI

terminates the continued operation early. Therefore, at decisions k∗ and C∗, the

expected shortage of maintenance funding for the GOV becomes:

FOS(k∗, C∗) =
T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}max

 M(k∗, C∗, t, “abandon”)

−R(Qti, “abandon”), 0

 . (13)
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3.2.4. Change in PRI Behavior Motivated by the RO Incentive. Given

the benefits associated with the options, the previous decisions on highway capacity

and quality improvement may no longer be optimal. This possibility is indicated

by Equation (12). For example, the PRI may further increase the option’s value

by changing the investment decision. Options may influence the behaviors of both

the option owner and the option writer; therefore, a standard RO valuation cannot

determine the optimal decisions. The option-related decisions must be put in a game-

like framework to formulate the interaction between the GOV and the PRI.

Since the RO incentive is an add-on to the BOT contract, the GOV’s decision on

capacity, C∗, remains unchanged, although it may not be theoretically optimal. The

PRI is more flexible: The BOT contract without options defines only the minimum

requirement for construction quality, and the PRI itself can determine the level of

its investment in quality beyond the minimum. Therefore, this paper discusses only

the change in the PRI’s investment behavior stimulated by the RO incentive. As

shown in Figure 3.4, in a complete and perfect information dynamic game, the GOV

determines the premium of the RO incentive first. Then, on the basis of the premium,

the PRI decides on the options purchase. If the PRI decides not to buy the options,

the decision regarding quality improvement remains the same as that for the BOT

without options. If the PRI buys the options, it will determine a new investment in

quality improvement to maximize the expected profit from the entire project.

After the options for the post-concession period are added to the BOT contract,

the PRI’s evaluation function for the project changes:

E[ŨPRI(k̃
∗, C∗)] = max

k


−I(k, C∗)

+
∑Tc−1

t=0 e−rrf t
[
R(Q̂t)−M(k, C∗, t)

]
+VPRI(k, C

∗)−G

 , (14)
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Figure 3.4. Contracting Process for the BOT With Options

where G is the premium determined by the GOV. The value of G should be no greater

than VPRI(k̃
∗, C∗) to persuade the PRI to purchase the options.

The options that the GOV offers to the PRI yield several benefits, which are

summarized in the following lemma and propositions (See Appendices B-D for the

proofs).

Lemma 1:The optimal investment in quality improvement when the RO incentive is

offered, k̃∗, is no less than that when no RO incentive is offered. That is, k̃∗ ≥ k∗.

Lemma 1 suggests that by offering the options, the GOV motivates the PRI to aug-

ment its investment in quality improvement, thus reducing maintenance costs. This

change further increases the social welfare produced by the project and reduces the

expected shortfall in maintenance funds facing the GOV. This effect is expressed as

follows:

Proposition 1: The RO incentive that the GOV offers to the PRI increases the

expected social welfare produced by the project. That is, W (k̃∗, C∗) ≥ W (k∗, C∗).

Proposition 2: The RO incentive that the GOV offers to the PRI reduces the

expected shortfall in maintenance funds facing the GOV. That is, FOS(k̃∗, C∗) ≤

FBS(k∗, C∗).
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3.2.5. An Expansion Option as a Means to Improve Social Welfare.

The benefit of the option premium to the GOV is not limited to provision of a

financing resource when toll revenue is insufficient to pay for highway operation.

If future traffic volume is significantly higher than expected, the planned highway

capacity, C∗, may not be sufficient to ensure a reasonable travel time, causing heavy

traffic congestion. The GOV may consider using the premium to generate more social

welfare from the project. This paper assumes that travelers utility increases with

expanded capacity. Therefore, the GOV considers using the premium as a resource

to finance expansion of highway capacity and maintain the added capacity throughout

the service life of the highway. The toll from the added capacity is collected by the

PRI, so the PRI’s revenue remains unchanged (due to the rigid demand assumption).

This paper assumes that capacity expansions can be properly managed to minimize

the impact on the operation of the existing highway; therefore, capacity expansions

will be no disadvantage to the PRI.

To ensure that the premium is properly used to support capacity expansions,

the GOV must evaluate a series of decisions: whether to expand the highway, when to

expand the highway, and how much capacity to add. These decisions are formulated

as a DP problem with the objective to maximize the expected increment in social

welfare during the entire project service life. The term Ct represents the highway

capacity at time t, and Ct ∈ {c0, c1, c2, . . . , cm}, with c0 < c1 < . . . < cm. The

initial capacity, C0, is equal to C∗; that is, C0 = C∗ = c0. The expansion decision

is made at the end of each year, and new lanes become available the following year.
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Let V ∗(Qti, Ct) designate the expected maximum increment in social welfare at time

t and thereafter, which is produced by capacity expansions. Then,

V ∗(Qti, Ct) = max
Ct+1

{
v(Qti, Ct, Ct+1) + e−rrf∆t

[
pV ∗(Q(t+1)i, Ct+1)

+(1− p)V ∗(Q(t+1)(i+1), Ct+1)
]}
,

(15)

where v(Qti, Ct, Ct+1) is the improvement in social welfare during (t, t+ 1], calculated

as

v(Qti, Ct, Ct+1) = [T (Qti, C
∗)− T (Qti, Ct)]

−
[
M(k̃∗, Ct, t)−M(k̃∗, C∗, t)

]
−
[
I(k̃∗, Ct+1)− I(k̃∗, Ct)

]
.

(16)

The optimization problem in (15) is solved through a backward recursion, and

at time zero the expected improvement in social welfare, V ∗(Q0, C
∗), is found, which

is V ∗(Q00, C0).

By retrieving the optimal expansion strategy from the solution of (15), the

expected present value of expansion-related costs, FE, is determined. This value

includes the construction investment and maintenance costs for the added capacity.

The option premium may not be equal to the expansion-related costs; therefore, the

social welfare added by the option premium is calculated as

min[G/FE, 1]V ∗(Q0, C
∗). (17)
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3.2.6. Total Social Welfare Added by the RO Incentive. The RO incen-

tive produces additional social welfare from two channels, as calculated in Sections

3.2.4 and 3.2.5 respectively. First, the RO incentive stimulates the PRI to increase the

investment in quality improvement, thus producing ∆Wk. Second, the premium of

the RO incentive finances possible capacity expansions, which produces ∆WC . That

is,

∆W = ∆Wk + ∆WC

=
[
W (k̃∗, C∗)−W (k∗, C∗)

]
+ min[G/FE, 1]V ∗(Q0, C

∗).

(18)

The value of ∆Wk is nonnegative according to Proposition 1, and that of ∆WC

is nonnegative since V ∗(Q0, C
∗) is the value of the expansion option.

3.2.7. The Options Premium. The premium charged for the continua-

tion and abandonment options is the key factor affecting implementation of the RO

incentive scheme. The GOV takes a variety of objectives into account when it deter-

mines the option premium. In particular, it considers the need to secure the desired

public benefit from the project, to increase the possibility that the project will be

self-liquidating, and to ensure the profitability of the private sector.

The PRI expects a reasonable profit from continuation of the project; therefore,

G ≤ VPRI(k̃
∗, C∗) − πo, where πo is the minimum required return of the PRI for

the post-concession period. The GOV hopes that the option premium is an effective

financing resource for possible highway maintenance and capacity expansions; there-

fore, G ≥ FOS(k̃∗, C∗) +FE. If FOS(k̃∗, C∗) +FE ≤ VPRI(k̃
∗, C∗)−πo, there is a room
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to negotiate the option premium; otherwise, G = VPRI(k̃
∗, C∗) − πo. Therefore, the

option premium, G, is set to

min
[
FOS(k̃∗, C∗) + FE, VPRI(k̃

∗, C∗)− πo
]
≤ G ≤ VPRI(k̃

∗, C∗)− πo. (19)

3.2.8. Numerical Studies. This paper provides a numerical example to

demonstrate the analytical results described above. The data in the example is not

from a real case, but is set very close to the reality. For example, the toll, 10 yuan, is

set according to the toll level of most Chinese highways, 0.34 0.5 yuan per kilometer;

the construction cost of the 30-kilometer highway in this example is 925 million yuan,

matching the average construction cost of highway in China, which is 30 40 million

yuan per kilometer. In addition, a sensitivity analysis is performed to generalize the

example.

3.2.8.1. A numerical example. The numerical example is based on a

highway project in western China. To support economic development, city A is

developing a new industrial zone in its exurb. City B is close to the new industrial

zone; however, it is accessible only by an old provincial highway passing by it. To

meet the exploding commuting and freight transport demands, city B’s department

of transportation (GOV) decides to construct a 30-kilometer expressway connecting

the urban area of city B and the industrial zone. The expressway is expected to have

a useful life of 30 years. This expressway can cut travel distance by 25 kilometers

and reduce travel time from 50 to 20 minutes. Faced with a large investment in

construction and deep uncertainty over the lengthy service life, the GOV authorizes

a private company (PRI) to develop the expressway under a BOT agreement. After

several rounds of negotiation, the BOT contract is drawn up with an average toll
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rate of 10 yuan per vehicle, a 20-year concession period, and a minimum construction

quality requirement of 6.2 yuan per unit of capacity.

Initial projections forecast approximately 20 million vehicles in the first year

of operation. The growth rate of the travel volume is estimated to be 4% per year,

with a standard deviation of 15%. Clearly, the new expressway is shorter than the

existing provincial highway, has a higher speed limit, and charges a reasonable toll;

therefore, demand will not be affected significantly by the degree of congestion. The

high volatility in traffic volume promises great uncertainty in toll revenues. To better

manage future revenue, improve social welfare, and motivate the PRI to enhance

construction quality, the GOV is considering offering the PRI a right to continue

operating the expressway after the concession period and, if it takes the options,

to terminate the operation early with a one-year notice. Table 3.2 summarizes the

parameter values for this example.

Table 3.2. Parameter Values and Formulas for the Numerical Example

Parameter Value Unit

Q0 20 million vehicle/year
T 30 year
Tc 20 year
µ 0.04 –
σ 0.15 –
λ 0.05 –
rrf 0.05 –
P 10 yuan/vehicle
δ 0.05 –

T (Q̂t, C) 5Q̂t [1 + 0.15(Qt/C)4] yuan/year
M(k, C, t) 2k−0.2e0.06tC yuan
I(k, C) (20 + k)C yuan
Ct {C∗, C∗ + 17.4} million vehicle/year
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The minimum required profit of the PRI during the concession period, πc, is set

to maintain the PRI’s equivalent annual rate of return at 10% during the concession

period:

πc =
(
e(0.1−rrf )Tc − 1

)
I. (20)

Initially, the PRI passes the option premium, G, to the GOV; however, the

option will yield no return until the concession period expires in 20 years. The PRI

requests an 8% annual rate of return for the opportunity cost of waiting, plus a

reasonable profit from the options, for example, a 10% annual rate of return from the

premium during the post-concession period. The marginal return from the options

investment, πo, is determined by

G = VPRIe
−[0.08Tc+0.1(T−Tc)−rrfT ],

πo = VPRI −G.
(21)

3.2.8.2. Results for the numerical example. Table 3.3 summarizes the

results for the numerical example. Without an RO incentive, the optimal capacity is

32.1 million vehicles per year (about 4 lanes, assuming the average capacity per lane

is 1000 vehicles per hour), and the optimal quality factor is 6.2 yuan per capacity

unit.

Offered the RO incentive, the PRI increases the quality factor from 6.2 to 8.8

yuan per capacity unit. Consequently, the initial investment is increased by 10.1%,

from 839.8 to 925.0 million yuan. The RO incentive is then worth 776.9 million yuan

to the PRI.
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Table 3.3. Numerical Results for the Example

With Options Without Options

Variable Value Variable Value Unit

PRI k̃∗ 8.8 k∗ 6.2 yuan/veh year

Decisions GOV C∗ 32.1× 106 C∗ 32.1× 106 vehicles/year

G 258.6 – – million yuan

I(k̃∗, C∗) 925.0 I(k∗, C∗) 839.8 million yuan

PRI E[ŨPRI ] 2027.6 E[UPRI ] 1514.3 million yuan

VPRI 776.9 – – million yuan

Outcomes FOS 35.7 FBS 49.4 million yuan

FE 287.8 – – million yuan

GOV ∆Wk 28.4 – – million yuan

∆WC 3.50× 104 – – million yuan

By offering the RO incentive, the GOV anticipates the following benefits: First,

because the RO incentive motivates the PRI to invest in higher quality, the social

welfare is increased by 28.4 million yuan, and the shortfall in maintenance funds is re-

duced by 38.4%, from 49.4 to 35.7 million yuan. Second, the GOV receives a premium

of 258.6 million yuan. This upfront income can be used to finance capacity expansions

if heavy traffic congestion is anticipated. Each additional lane is assumed to have a

capacity of 8.7 million vehicles per year. When two lanes are added, the premium can

provide 91% of the expected expansion-related expenses and effectively add 3.50×104

million yuan of social welfare over the 30-year lifetime of the project(near 40 yuan

per vehicle). Table 3.3 demonstrates that ∆WC is significantly higher than ∆Wk.

Therefore, the social welfare added by the improved construction quality can be seen

as a favorable side effect of the RO incentive. The premium can also effectively fill

the shortfall in maintenance costs if the PRI abandons operation of the expressway







46

Figure 3.6. Impacts of Concession Period on the Effectiveness of RO Incentive

The RO incentive can address this dilemma. The RO valuation reveals that the

options value will increase if the post-concession period becomes longer. Figure 3.6(c)

also shows that VPRI increases as the portion of concession period decreases, which

compensates for the loss in the PRI’s profit due to the shortened concession period.

Therefore, Figure 3.6(d) shows that the PRI’s expected profit with options, E[ŨPRI ],

decreases slowly with the decreased concession period. In addition, when a shorter

concession period is selected for BOT, the PRI generates a larger portion of profit

from the post-concession period with options, which is less risky than that from the

concession period. Therefore, with the options, the PRI will not significantly reduce

its investment in quality improvement although the concession period is short, as

Figure 3.6(b) shows. Although the GOV reduces the concession period, it gives the
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PRI a longer period with options; consequently, the GOV asks a higher premium (see

Figure 3.6(c)) and uses it to produce greater social welfare (see Figure 3.6(h)).

3.3. DESIGN RO INCENTIVE IN PPPS

Public-private partnerships (PPPs) are becoming one of the major delivery

methods of public infrastructure in recent years. PPPs are arrangements for pub-

lic and private sectors to cooperate in developing large-scale projects [109]. With

PPPs the public sector is able to alleviate financial burden [110], share risks and

revenues with the private sector [111], increase the value for money spent on public

projects by improving services efficiency [112], and reduce lifecycle costs [113]. The

private sector has widely participated in financing, construction, and operations in

PPPs [114, 115]. Particularly, private financing in public projects had been rapidly

increasing during the past two decades to meet the emerging demands for public fa-

cilities. By 2010 the private investment commitments in PPP infrastructure projects

in developing countries had reached $100 billion, over 8 times of the amount in 1990,

as Figure 3.7 shows. Private financing in energy infrastructures had especially sub-

stantial growth. The investment commitment increased from $0.11 billion to $62.15

billion, more than 500 times.

Despite that PPPs have broad benefits and increasing usages, obstacles to PPPs

applications are often reported. PPPs projects often have a long service life that asso-

ciates with high uncertainty. Poor risk management and unrealistic projections often

lead to the failure of PPP projects in highly uncertain conditions [116, 117]. Interest

conflicts between the public and private sectors in PPPs projects also raise problems.

The goal of pursuing profit of the private sector may lead to low performance in pub-

lic projects and thus reduce public welfare. Therefore, incentives are often used to

promote better collaborations in PPPs.
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(a) (b)

Figure 3.9. PPP Contracts Implemented in Infrastructure Projects in Developing
Countries by Types, 1990 to 2010 (Data sources: World Bank and PPIAF, PPI
Project Database. http://ppi.worldbank.org)

Although applications of PPPs in public projects are growing, obstacles that

reduce the effectiveness of PPPs are observed. For example, the demand for, and

operating and maintenance (O& M) costs of, public infrastructure can substantially

change during long service lives; therefore, the private sector may hesitate to invest in

these projects due to the uncertainties. Moreover, unlike the public sector primarily

aiming at social welfare, the private sector is profit seekers. Their different objectives

may lead to an outcome deviating from the original expectation of PPPs.

3.3.2. PPP Incentives as ROA. Incentives such as guarantees and subsides

are used in PPPs to alleviate the private sectors concerns with risks, or to motivate

the private sector to improve service performance. Incentive pricing is important

for PPPs projects. ROA is considered an effective tool for valuing flexibility-type

incentives. An option gives its owner a right, but not an obligation, to buy (call

option) or sell (put option) a certain amount of assets at a certain price by a certain

date [2]. ROs extend the financial options to the valuation of investment in real assets

and managerial flexibilities. The value of ROs stems from option owners ability to
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asymmetrically react to opportunities of gaining greater profit and potential of loss

as investment environment changes.

The incentives offered by the public sector are similar to ROs in that they

both provide downside protection or opportunities of gaining greater profit under

uncertainty [119]. For example, when demand drops below a certain level, the MRG

secures a fixed level of income to the private sector. It can be considered a right to sell

the operation revenue at a fixed price; therefore, it can be modeled as a put option.

Some regulatory flexibilities held by the public sector can also be valued as ROs.

For instance, while offering the MRG, the public sector usually set a revenue cap

(RCP) as well, to prevent the private sector from gaining too much profit from public

projects. RCP provides the public sector the right to receive the revenue exceeding

a certain level, similar to buying the actual revenue at a fixed price. Therefore, the

RCP can be modeled as a call option owned by the public sector.

A simple example that models MRG as an RO is provided here for illustration.

Suppose the current revenue is $10 million and the public sector promises a MRG

of $8 million. The revenue of next period, S, is uncertain and can vary between 0

million and $20 million. Because of the MRG, the private sector can receive a revenue,

max(S, 8), instead of S in the next period. Therefore, the payoff of the MRG, G, is

max(8−S, 0), similar to the payoff of a put option with the value of underlying asset

at maturity of S and an exercise price of $8 million, as shown in Figure 3.10.

The value of the MRG can be calculated as a put option value using option

pricing. It should be remarked that this example employs a single period MRG for

straightforward illustration. In practice, projects have multiple periods of revenues

and MRG should be modeled as a series of put options or a multiple exercisable

option.
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Figure 3.10. The Payoff of MRG

3.3.3. Modeling Incentive as ROs for Major Types of PPPs. In this

subsection, a general framework for modeling incentive as ROs for a specific type of

PPP will be introduced.

3.3.3.1. Design of RO incentives for major type of PPPs. The design

of RO incentives primarily considers two factors: objectives of incentives and sources

of uncertainties. Purposes of offering an incentive in PPPs are usually as follows.

The first purpose is to attract the private sector. Due to the high uncertainty of PPP

projects, the private sector may hesitate to invest in some urgent public projects. In-

centives such as guarantees and subsides are offered to the private sector to alleviate

their concern of risks, thus attracting private investment in public projects. Regula-

tion is the second purpose. The private sector may make excessively high profit from

public projects. This situation, if happens, will reduce public welfare. The public sec-

tor, therefore, set regulations such as revenue or tariff cap to PPPs projects. These

regulation methods can be considered incentives for the public sector. Stimulation

is the third purpose. The private sector has interest conflicts with the public sector.

Therefore, the public sector always has concerns with project quality control, effi-

ciency, and public satisfaction of services provided by the private sector. In this case,
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another kind of incentives is needed, which can stimulate the private sector to behave

as the public sector would like it to. The sources of uncertainties in a project deter-

mine the underlying assets of the ROs and kinds of risks that need to be eliminated or

transferred. For example, the risk of losing profits from operations may be pertaining

to the uncertainty in revenue. Therefore, the public sector offers incentives regarding

revenue uncertainty, such as MRG, to share this risk with the private sector, in order

to attract them to participate in project operations. The revenue is the underlying

asset of the options when valuing these incentives.

Incentives should be designed specifically for different forms of PPPs according

to their unique features. For PPP forms with low private involvement, such as man-

agement contracts and DB, the main financial and operational uncertainties remain

with the public sector. The major concern on these PPPs is how to ensure the qual-

ity of services provided by the private sector. Therefore, incentives for stimulation,

such as revenue sharing or quality warranty, instead of that for attraction and regu-

lation, are needed. In the PPPs that the private sector takes the responsibilities of

financing, construction, operation and maintenance, such as DBFO and BOT, the RO

incentives regarding interests, demands, and costs are offered to alleviate the private

sectors concerns with uncertainty in these or to protect public welfares. In addition,

an option to extend concession period can change the private sectors goal from a

short-term profit into long-term profit. The change may motivate the private sector

to improve quality of construction, maintenance, and services. However, the incentive

of concession extension is not effective in the PPPs without concession, such as BOO.

Table 3.5 analyzes major uncertainties, risk sharing, and concerns of representative

PPPs. RO incentives that can be implemented by these PPP forms are suggested

based on the analysis.

3.3.3.2. An example of designing and valuing RO incentives. This

section shows the design and valuation of a concession option as an RO incentive for
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Table 3.5. RO Incentives Suggested for Major PPP Forms

BOT projects. Under a BOT contract, the private sector is responsible for financing

and building a transportation infrastructure. The private sector thereby obtains the

ownership of the infrastructure and can operate it to gain profit during the concession

period as rewards. The private sector may not be interested in quality investment that

will benefit the infrastructure throughout the service life, because the infrastructure

will be transferred back to the public sector after the concession. The maintenance

near the end of the concession may also be kept at a minimum level. The high

uncertainty in revenue is another concern of the public sector. To address these
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problems, the public sector can offer a concession extension option to the private

sector. With the option, the private sector can choose to extend the concession

period if the market condition is favorable. The concession extension option is a right

to buy an asset (the revenue from the extended concession) at a certain price (the O&

M cost during the extended concession) on a certain time (at the concession expires);

therefore, it can be modeled as a European call option. The payoff of the option is

max(Êτ [R]−K, 0), (22)

Where τ is the end of concession, K is the total O& M cost during (τ, T ] and

Êτ [R] is the expected total revenues from the extended concession using risk-neutral

valuation at τ . If the annual revenue, St , follows a geometric Brownian motion

(GBM) process,

dSt = µSt + σdwt, (23)

where µ is the growth rate of annual revenue, σ is the volatility of annual

revenue, and wt is a random walk process, then

Êτ [R] =
T−1∑
i=τ

Ê(Si) =
T−1∑
i=τ

er(i−τ)Sτ

= er[1− er(T−τ−1)]/(1− er)Sτ .

(24)
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Let α = er[1− er(T−τ−1)]/(1− er),

Êτ [R] = αSτ . (25)

The value of the concession extension option is

c = αÊ0

[
max

(
Sτ −

K

α
, 0

)]
. (26)

Equation 26 shows that the value of this option, valued at present, is dependent

of the annual revenue in year τ . Therefore, the option value, c, can be directly

determined by the Black-Scholes formula [2]:

c = αS0N(d1)−Ke−rτN(d2), (27)

In equation 27 N designates the cumulative distribution function of standard

normal distribution, and d1 and d2 are calculated as

d1 = ln[S0/(K/α)]+(r+σ2/2)τ
σ
√
τ

; d2 = d1 − σ
√
τ . (28)

The public sector can ask for a premium between [0, c] for selling this option,

and use this upfront outlay to either cover the potential O&M cost shortage after the

concession, or improve the social welfare by, for example, capacity expansions.

For instance, a BOT project has a concession, τ , of 20 years and the initial

annual revenue, S0, is $10 million. The concession extension option provides the
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private sector a right to extend the concession for 10 years and the total O& M costs

during the extended concession, K, is estimated as $150 million. The option value,

c, will be $62 million if the risk free rate, r, and the volatility of the revenue, σ, are

5% and 10%, respectively. The option premium can be set from 0 to $62 million.

However, in practice, the premium should not be too high so that the private sector

can expect a reasonable return from purchasing the option.

Because the concession may be extended, the private sector has a motivation

to improve the construction quality and the maintenance level during the concession

to reduce the potential maintenance cost during the extended period. For example,

the private sector will be willing to invest $30 million in construction quality and

maintenance improvement if it can reduce the expected total O& M cost in the

extended period from $150 million to $100 million. The interests of the public and

private sectors are, therefore, unitized by the RO incentive, and both parties benefit

from it.

This example demonstrates how to design and evaluate a single RO incentive

in PPP projects. PPP agreements usually include multiple options. These options

can interact and affect the exercise and value of each other. The interaction between

multiple options may enhance or reduce the effectiveness of incentives. The BOT

project in the example, for instance, may also have MRG and RCP besides the con-

cession extension option. The MRG, if it is effective during the extended concession,

can bring more profit to the private sector and increase the value of the concession

extension option. The RCP, to the contrast, makes the concession extension option

less attractive. Therefore, designing RO incentives in PPP projects should consider
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interactions between different options. The interactions may increase the complexity

of valuing RO incentives.

3.4. SUMMARY OF ESSAY ONE

An option-game framework was built in Essay One to model the incentive func-

tion of the RO and show how RO incentives benefit the participants of a cooperative

relationship. A highway BOT project was presented for demonstration. In addition

to the concession, the public sector offers an RO incentive to the private sector at

a premium. The RO incentive gives the private sector a right to continue the op-

eration after the concession period expires (i.e., a continuation option) as well as a

right to terminate the continued operation early (i.e., an abandonment option). With

the options, the private sector has opportunities to gain additional profit during the

post-concession period, with well managed risks. Also, it further increases the total

return from the project by increasing its investment in quality improvement. By of-

fering the RO incentive, the public sector successfully converts the uncertain revenue

from the post-concession period to an immediate income, that is, the premium. The

public sector can use the premium to make up the potential shortfall in maintenance

funds if the private sector terminates the operation early. If traffic volume is signif-

icantly higher than expected, the premium is also an effective financing resource for

capacity expansions. Sensitivity analysis showed that the RO incentive makes both

parties more robust to the great uncertainty in revenue management and ensures that

a short concession period is still attractive to the private sector. That is, both parties

can benefit from the RO incentive. A better PPP therefore is achieved.

A general framework for designing RO incentives for different forms of PPPs

was also proposed. Uncertainties in PPP projects and interest conflicts between

public and private sectors often raise problems that prevent projects from successful

execution. Incentives can be offered to resolve these problems. Commonly used
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incentives that were modeled as ROs were summarized. This dissertation analyzed

the features of each PPP form, identifies major uncertainties facing public and private

sectors and their concerns with the PPP form, and designs effective RO incentives

for it to promote a better PPP.
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4. ESSAY TWO: PRACTICAL ISSUES IN RO APPLICATIONS

4.1. PROBLEM STATEMENT

Capacity expansions under stochastic demand diffusion is a representative ap-

plication of ROs. Dynamic capacity expansions share similarities with ROs due to

the presence of flexibilities in the timing and sizes of expansions. Therefore, the RO

models for dynamic capacity expansions are generally multiple exercisable American

call options. The RO valuation would answer the questions of “when” and “how

much” capacities to add during the decision horizon. In the review of literature, it

is further noticed that some important factors add varieties to the dynamic capacity

expansions in that they may impact the timing and sizing of capacity expansions.

The economies of scale is the first factor. Increasing economy of scale favors one

time, large investment to benefit from the volume discount. The RO literature yet

often suggests sequential investment in capacity in that the investment is often irre-

versible (or at last partially irreversible) and under uncertainty. The expansion mode

may impact expansion strategies as well. Capacity may be added progressively, in

infinitesimal units; for example, knowledge often grows continuously over time. Ca-

pacity may be added in large, discrete units; for example, the expansion of highway

capacity has to be at least one lane. Opportunity cost of waiting is the third factor.

The RO literature usually suggests that capacity expansions should be conservative

(better late than early) because of the value of waiting under high uncertainty. How-

ever, they often fail to consider the opportunity cost of waiting, that is the profit loss

during the waiting time. Opportunity cost of waiting will counteract the benefit of

waiting for more information and may change the optimal capacity policy. Terminal
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value of the expansion phase and the cap of capacity expansion should also impact

the behavior of expansions.

This essay performs a systematic analysis of dynamic capacity expansion prob-

lem under stochastic demand diffusion. The dynamic capacity expansion problem

is modeled as a multiple exercisable option. The optimal strategy of expansion is

presented as thresholds of option exercises. This essay will show how the thresholds

are affected by the economies of scale, expansion mode, capacity cap, opportunity

costs of waiting, and terminal value of expansion, respectively.

4.2. RO VALUATION OF DYNAMIC CAPACITY EXPANSIONS

4.2.1. Demand Processes. Stochastic diffusion of demand usually occurs

when the new product or service is just spreading into the market. It has a finite

time horizon and is often followed by a stationary phase during which the demand

process is random but relatively stable. Figure 4.1 illustrates a sample path of the

demand over the diffusion and stationary phases. The diffusion phase may end with

a very high demand under successful marketing or favorable market environment,

while bad marketing or an unfavorable market condition can take the sales of the

new product to the deep freeze. After the diffusion process is completed, the demand

process becomes stationary. Affected by the varying market conditions, the demand

is still uncertain. However, it will be stabilized within a range that is close to the

demand level at the end of the growing stage.

Consider a firm that faces stochastic diffusion of the demand for a new product

in the next T years. The demand is assumed to follow the geometric Brownian motion
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Figure 4.1. A Sample Path of Demand During the Product Life

(GBM) process [83]. That is, the annual growth rate of the demand has a normal

distribution, yielding the following equation of demand dynamics:

dDt = µDtdt+ σDtdWt, 0 ≤ t ≤ T and D0 >= 0 is known, (29)

where Dt is the demand per year at time t (0 ≤ t ≤ T ), µ denotes the expected

drift rate of the demand, and the term σ is the volatility, which is the standard

deviation of drift rates and measures the scale of demand uncertainty. Wt, a standard

Wiener process, models the stochastic movement of Dt.

During the stationary phase, (T, Ts], the annual demand, Dt, is a random process

defined in [Dsmin, Dsmax]. The expected value of Dt is assumed to be equal to DT

and the standard deviation of it is σs. It can be described by the following equation:
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Dt = Ht +DT , T < t ≤ Ts. (30)

Ht in equation (30) is a white noise process, which has the features of:

E{Ht} = 0 and V ar{HtH
T
t } = σ2

s , ∀t

E{HtHτ} = 0 for ∀t 6= s.

(31)

4.2.2. Valuation Model. The firm has the flexibility to build production

capacity progressively according to the progress customer acquisition. During the

diffusion phase, the firm observes the current demand, reviews the available capacity,

and then decides if capacity expansion at this time is needed and how much the

capacity should be added to maximize the expected remaining profit. This decision

can be made repeatedly until the demand becomes stationary or the capacity reaches

its limit (if any). The flexibilities of dynamically expanding capacity is modeled as

multiple exercisable call options, of which the benefit is the added profits during the

remaining periods and the exercise price is the installation cost of the new capacity.

The profit flow is a function of capacity, Ct, and demand, Dt, denoted as

π(Dt, Ct),

π(Dt, Ct) = P min [Dt, Ct]−mCt. (32)

where P is the market price of the product and m is the marginal production cost.

The firm is assumed to be a price taker, that is, the supply of the firm does not affect

the product price. To simplify the problem, m is assumed to be a constant.
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The initial production capacity of this firm is C0. Denote ξt the expansion

amount at t, then the capacity dynamics is define as

dCt , Ct+dt − Ct = ξt, (33)

where ξt ∈ At is nonnegative (At is the action space given Ct).

The cost of installing additional capacity, g(ξt), is an increasing function of ξt

and starts at zero, that is

g(ξt + ε) ≥ g(ξt), ∀ε ≥ 0, and g(0) = 0. (34)

The firm continuously monitors the realized demand and chooses the optimal

ξt throughout the diffusion phase, [0, T ], to maximize the expected remaining profit.

The objective function is

J = max
dCt(0→T )

E

[
e−rTS(DT , CT ) +

∫ T

0

e−rtπ(Dt, Ct)dt−
∫ T

0

e−rtg(dCt)

]
. (35)

S(DT , CT ) in Equation (35) is the terminal value at T . The optimal path,

{ξ∗t |0 ≤ t < T}, is found by maximizing the expected profit-to-go, defined below, at

any value of Ct and Dt for 0 ≤ t < T . The valuation function at any state (t,Dt, Ct)

is:

V (t,Dt, Ct) = max
dCt∈At

E

[ ∫ t+dt

t

e−rsπ(Ds, Cs)ds− g(dCt)

+ e−rdtV (t+ dt,Dt+dt, Ct+dt)

]
.

(36)

where At is the action space given the state at time t, and the terminal condition is

V (T,DT , CT ) = S(DT , CT ). (37)
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In Equation (36), Dt+dt = Dt + dDt and Ct+dt = Ct + dCt; the dynamics dDt and dCt

are determined by Equations (29) and (33), respectively.

The terminal value, S(DT , CT ), is the expected total profits during the station-

ary phase, which is evaluated at the beginning of the stationary phase (it is also the

end of the diffusion phase). Through the stationary phase, the capacity keeps at the

level at the end of diffusion phase, CT . The annual demand is Dt, as described in

Equation (30). The firm requires a discount rate of rs. Then the expected profit of

the stationary period, that is, the terminal value at T , is

S(DT , CT ) = E

[∫ Ts

T

e−rs(s−T ) [P min(Dt, CT )−mCT ] ds

]
=

1− e−rs(Ts−T )

rs
{(P −m)CT + PE [min(Dt − CT , 0)]}

(38)

Let F (.) represents the cumulative distribution function of Dt during the stationary

phase, f(.) be the probability density function, then

E [min(Dt − CT , 0)] =

∫ DT

Dsmin

[Dt − CT ]f(Dt)dDt =

∫ DT

Dsmin

F (Dt)dDt, (39)

where Dsmin is the lower bound of Dt during the stationary phase.

4.2.3. Numerical Schemes. The dynamic capacity expansion problem

in Equation (35) is often solved numerically using Dynamic Programming (DP).

Through the numerical solution, the threshold of exercise and the optimal amount of

expansion at any state, (t,Dt, Ct), can be found.

A binomial tree, shown in Figure 4.2, can be a discrete approximation of the

GBM process that Dt follows during time [0, T ]. Let M = T/∆t be an integer, where

∆t is the size of the time step. At any discrete time i there are i+ 1 unique levels of
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demand, Dij, where

Dij = D0u
i−jdj, for i = 0, 1, ...,M, j = 0, 1, ..., i,

u = eσ
√

∆t, d = 1/u, p =
eµ̂∆t − d
u− d

,

(40)

where u and d are the up-movement and down-movement factors, respectively; p

is the possibility that an up-movement occurs; µ̂ is the risk neutral growth rate of

demand, which equals µ− λσ, where λ is the market price of risk on demand ([2]).

Let ∆ξ be the step of expansion amount dCt and define K =
[
Cmax−Cmin

∆ξ

]
, then

a capacity level, Ck, is

Ck = Cmin + k∆ξ, for k = 0, 1, ..., K. (41)

Thus, the continuous states, (t, Dt, Ct), can be represented in a 2.5-D discrete

system, as shown in Figure 4.2. Any node, (i, j, k), in the 2.5-D system indicates a

unique combination of t, Dt, and Ct.
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Figure 4.2. 2.5-D Binomial Tree that Discretely Approximates (t, Dt, Ct)
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The 2.5-D state system is storage consuming if it is saved as a 3-D matrix. In

addition, the three states plus the action, dCt, increase the dimensions to 3.5-D. It

is hard for a system that is more than 3-D to be visualized. Fortunately, Dij is a

function of i, thus a 2-D grid, shown in Figure 4.3, can be built to replace the 2.5-D

system.
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Figure 4.3. 2-D Grid that Discretely Approximates (t, Dt, Ct)

The 2-D grid is defined as (l, k). l is the index of discrete demand levels during

the diffusion phase and L = (M + 1)(M + 2)/2− 1 is the largest index value of l. k

is still the index of capacity levels. For l = 0, 1, . . . , L,

Dl = D0u
i−jdj, (42)

where

i =

⌈
−3 +

√
9− 4(1− 2l)

2

⌉
,

j = l − i(i+ 1)

2
.

(43)
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Therefore, the valuation procedures on the 2-D grid are as follows:

When l ≥ M(M+1)
2

, ∀k,

Vlk = S(Dl, Ck); (44)

when l = M(M+1)
2
− 1, M(M+1)

2
− 2, . . . , 0, and ∀k,

Vlk = max
ξlk∈Ak

{
πlk∆t− g(ξlk) + e−r∆t[pVluk′ + (1− p)Vldk′ ]

}
, (45)

where

lu = l + (i+ 1) =
(i+ 1)(i+ 2)

2
+ j,

ld = l + (i+ 1) + 1 =
(i+ 1)(i+ 2)

2
+ j + 1,

k′ = k +
ξlk
∆ξ

,

(46)

with i and j defined in (43). πlk in Equation (45) designates the profit flow, π(Dl, Ck).

The completion of the backward recursion defined in Equations (44-45) gives V00,

which is the equal to the expected net present value (NPV) of production plus the

option value.

4.3. EXPANSION POLICY

Although the numerical method can solve the problem, it is not able to provide

much insights of the optimal expansion policy. Theoretical analysis is, therefore,

performed in this section to develop better understanding of the optimal policy.

4.3.1. Capacity Expanded in Infinitesimal Units. First, let us consider

the scenario that Ct is continuous at any t ∈ [0, T ], which indicates that capacity
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expansions can be in infinitesimal units as the time interval, dt, approaches 0:

lim
dt→0

dCt = lim
dt→0

(Ct+dt − Ct) = 0. (47)

Approximate conditions are commonly observed. For example, factories usually

increase their capacity by adding laborers, working overtime. The service capacity

also can be adjusted flexibly, such as increasing servers, adding a phone line, and so

on. Further assume the derivative defined below exists at any time t,

lim
dt→0

dCt
dt

= lim
dt→0

Ct+dt − Ct
dt

= qt, (48)

where qt (0 ≤ qt ≤ qmax) is the instantaneous annual growth rate of capacity. There-

fore,

ξt = dCt ≈ qtdt, (49)

In the remaining of the paper, ξt and dCt are used exchangeably. The cost of

adding new capacity, g(dCt), becomes a function of qt and dt, g(qt, dt). Define dg/ξt

as g′ and d2g/ξ2
t as g′′, and assume they exist, then applying Taylor’s expansion,

Equation (36) leads to the following differential equation:

V (t,Dt, Ct) = max
dCt∈At

E

{
π(Dt, Ct)dt− g′(dCt)dCt + (1− rdt)V +

∂V

∂t
dt

+
∂V

∂Dt

dDt +
1

2

∂2V

∂D2
t

(dDt)
2 +

∂V

∂Ct
dCt + o(dt)

}
,

(50)
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Given the demand dynamics and capacity dynamics in Equations (29) and (49),

Equation (50) becomes the following when dt→ 0:

0 = max
dCt∈At

{[
∂V

∂Ct
− g′(dCt)

]
qt

+π(Dt, Ct)− rV +
∂V

∂t
+ µ̂Dt

∂V

∂Dt

+
1

2
σ2D2

t

∂2V

∂D2
t

}
.

(51)

Define L1 as follows,

L1 ,
∂V

∂t
+ µDt

∂V

∂Dt

+
1

2
σ2D2

t

∂2V

∂D2
t

, (52)

then Equation (51) becomes

rV − L1 − π = max
qt∈A ′t

{[
∂V

∂Ct
− g′(qtdt)

]
qt

}
. (53)

The economies of scale may play an important role in the features of the optimal

policy. If g is a linear function of dCt, that is, g(dCt) = hqtdt (h is a constant), then

∂V
∂Ct

qt − g
dt

is also a linear function of qt with a slope ∂V
∂Ct
− h. The solution of q∗t is

therefore

q∗t =

 qmax, if ∂V
∂Ct
− h > 0

0, if ∂V
∂Ct
− h ≤ 0.

(54)

When ∂V
∂Ct
− h ≤ 0, the firm will choose not to exercise the expansion option and

keep the current capacity level; when ∂V
∂Ct
− h > 0, the firm will exercise the option

and expand the capacity at the maximum expansion rate. Intuitively, people may

think choosing the most suitable expansion rate between [0, qmax] would be optimal.

However, Equation (54) shows that when the expansion cost is linear, even though

there are a wide range of expansion rates available, the optimal policy is still binary

- either do not expand or expand at the maximum expansion rate. That means, like
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a standard option, the decision maker only needs to decide to exercise the option or

not, but not how much the capacity should be added.

If the expansion cost, g, is a concave function of dCt, displaying an increasing

economy of scale. Then ∂V
∂Ct
− g′ is increasing on the range of ut is a convex function

of dCt. Therefore, q∗t is

q∗t =

 qmax, if ∂V
∂Ct
− g′ ≥ 0 ∀qt

0, otherwise.
(55)

Similar to the linear expansion cost case, the optimal policy, q∗t , is also binary when

the expansion cost has a increasing economy of scale.

If the expansion cost, g, is a convex function of dC, showing a decreasing econ-

omy of scale, ∂V
∂Ct
− g′ is decreasing on the range of qt. Therefore, q∗t has the following

formula:

q∗t =


qmax, if ∂V

∂Ct
− g′ > 0 ∀qt

g′−1( ∂V
∂Ct

)

dt
, if ∃ ∂V

∂Ct
− g′ = 0

0, if ∂V
∂Ct
− g′ < 0 ∀qt

(56)

In this case, the binary feature of the optimal policy does not hold.

Theorem 1. When the expansion cost has a constant or increasing economy of scale,

the optimal capacity expansion policy is binary - either not to expand, or to expand

at the maximum expansion rate - even there are multiple expansion rates available.

When the expansion cost has decreasing economy of scale, the binary feature of the

optimal policy does not hold.

4.3.2. Capacity Expanded in Large, Discrete Units. The previous

analysis assumes that the capacity is continuous over time. The assumption may not

be hold. For example, capacity may only be expanded in large, discrete units. This

situation are more commonly observed. For instance, in the manufacturing, when an
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existing plant is fully loaded, the capacity may only be added in the units of machines

or production lines. In highway expansions, at least one lane should be added. In

these cases, the features of optimal expansion policy would be changed. Under this

condition, dCt may not approach zero as dt→ 0 at any time t.

The Taylor’s expansion of the valuation function when dt→ 0 becomes

rV − L1 − π = max
dCt∈At

{
∆V (t,Dt, Ct, dCt)− g(dCt)

dt
+ L2

}
, (57)

where ∆(t,Dt, Ct, dCt) represents the change in V (t,Dt, Ct) if capacity is in-

creased by dCt (i.e., V (t,Dt, Ct + dCt)-V (t,Dt, Ct)). Since capacity is added in large,

discrete units, limdt→0
dCt
dt

may not exists or go to infinity. Therefore, when dt ap-

proaches 0, ∆(t,Dt, Ct, dCt) may no longer be reasonably approximated by ∂V
∂Ct

dCt

because the higher order items are not negligible. This makes L2 as follows are not

negligible too:

L2 ,
∂∆V

∂t
+ µ̂Dt

∂∆V

∂Dt

+
1

2
σ2D2

t

∂2∆V

∂Dt
2 . (58)

Let y denote ∆V − g + L2dt in Equation (57). The optimal value of dCt, dC
∗
t , is the

one that maximizes y. The solution thus rests with the structure of y. Because the

y is a higher order function of dCt, it may have multiple vertexes within the range

of dCt. dC
∗
t can be any available value of ξt shown in Figure 4.4, depending on the

coefficients in y, i.e., the relationships between V and the current states, t,Dt, Ct,

and the cost structure of expansion.

4.4. NUMERICAL STUDIES

4.4.1. A Numerical Example. In this section, a numerical example is used

to illustrate the methodology and verify the theoretical results. This example is used

as a benchmark in the numerical studies. Then the effects of the economies of scale,
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Figure 4.4. Optimal Solution dC∗t When dCt Is in Large, Discrete Units

capacity cap, expansion mode, waiting cost, and the terminal value will be examined

comparing to the benchmark example.

A new product is spreading in the market. The diffusion phase is expected to

last 5 years and followed by a 5-year stationary phase. The initial annual demand is

estimated to be 20 million units. During the diffusion stage, the demand follows a

GBM process with a drift rate of 4% and volatility of 10%. The price of the product

is 8 dollars per unit and the marginal cost is 3 dollars. The firm has flexibility to

build the production capacity dynamically during the diffusion phase, starting with

0. The capacity of the new production can be expanded continuously by adding

labors, with a maximum annual expansion rate of 50 million units. The decision of

capacity expansion is made semi-monthly. The economies of scale of the capacity

installation is estimated to be constant, that is, the function of the expansion cost is

linear, g(dCt) = 4qtdt. The risk free rate is 5%. The profit gained in the stationary
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phase, that is the terminal value at the end of diffusion phase, is not considered here.

The parameter values are summarized in Table 4.1.

Table 4.1. Parameter Values for the Example

Parameter Value Parameter Value

D0 20 million C0 0 million
T 5 years qmax 50 million/year
µ 4% P 8 dollars
λ 0.05 m 3 dollars
σ 10% h 4 dollars
r 5% S 0 million
∆t 1/24 years

Figure 4.4.1 shows the evolution of the expected value-to-go, V (t,Dt, Ct), at all

values of Dt and Ct, and four selected time spots, t = 4, 3, 2, and 1 year during the

backward recursion. With the optimization progress, the range of negative values is

shrinking and the cumulative positive value is increasing. The expected NPV with

options is obtained at t = 0, which is equal to 258.19 million dollars.

Visualization of the optimal policy is difficult when the number of states is

more than two (there are three states in this example). It is difficult to obtain a direct

impression from a 3-D or 4-D figure. Therefore, some time spots, for instance, t=1,2,3,

and 4, are selected instead of the entire time horizon, to observe the changes of optimal

policy at the current demand and capacity level. Figure 4.6 shows the optimal policy

of expansion at the end of year 1, 2, 3, 4. The X and Y axes represent the current

capacity, Ct, and the demand, Dt, respectively. Colors are used to indicate the value

of optimal expansion rate, q∗t . The numerical results from dynamic programming show

that, when time step is small enough, the optimal policy trends to be binary, even
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(a) year 4 (b) year 3

(c) year 2 (d) year 1

Figure 4.5. Evolution of V (t,Dt, Ct) at t=4, 3, 2, and 1 Year

though the expansion rates are available from [0,50]. This observation is consistent

with the theoretical analysis in Section 4.3.

Because of the binary feature, a free boundary, which is the lowest demand level

that the option should be exercised (at qmax for this example) at any given capacity,

can be used to illustrate the optimal policies for different time spots within a single

figure. In the area that is below the free boundary the capacity will keep at the current

level. Figure 4.7 displays the free boundaries of exercising the expansion option when

t = year 1, 2, 3, and 4. For example, at the end of year 3, if the current capacity is

100 million, the expansion option should be exercised when the demand is equal or

higher than about 80 million, at the maximum expansion rate of 50 million per year.
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(a) year 1 (b) year 2

(c) year 3 (d) year 4

Figure 4.6. Optimal Policy at Selected Time Spots

To illustrate how the optimal policy is applied to a decision scenario, a random

path of demand and the corresponding optimal control of capacity is provided in

Figure 4.8. At the beginning, the initial demand is 20 million units and capacity

is 0 million units. During the early period, the capacity is increasing continuously

at the maximum expansion rate to meet the demand level. By t = 0.38 year, the

capacity has exceeded the demand. However, because of the positive expectation

for the future, the optimal action is still to exercise the expansion option until the

capacity reach a relatively high level compared to the demand. For example, At

t = 0.63 year, Ct is 25.7 million while Dt is only 22.2 million, the optimal decision is

still to expand the capacity. Although the capacity may keep the current level when



78

Figure 4.7. Free Boundaries at Selected Time Spots.

it is high enough (e.g. during t ∈ [0.83, 1.67) and t ∈ [1.83, 2.88)), some times rapid

increase in the demand still encourages capacity expansion. For example, at time

t = 1.67 and t = 2.88 year. The policy tends to be more conservative during the late

period than the early years. Even the demand is higher than the capacity, the firm

choose not to expand. For example, at t = 4.5 year, the capacity keeps at 30 million

while the demand reaches 32 million.

4.4.2. Waiting Cost. Figures 4.7 and 4.8 show that the expansion policy

during late years is more conservative than in early periods. This observation is

different than some previous studies. In the literature on capacity expansion using

RO, investment in capacity is often better late than early. (e.g.,[83, 84]). For the

high uncertainty in future demand, holding the option until more information is
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q0.63 =50  

q1.67 =50  

q2.88 =50  
q4.5 =0  

q1.23 =0  

Figure 4.8. A Random Path of Demand and Corresponding Optimal Capacity Control

revealed is valuable because it can make the adjusted capacity better match the

demand. However, when considering the cost of waiting (or diminishing value from

options), the optimal policy may change. The free boundary in Figure 4.7 shows that

the optimal policy is more aggressive in earlier years than those of the later years.

That is, the thresholds of exercising the option are lower in the earlier years than

those of the later years. For example, Figure 4.7 shows that the threshold demand

for triggering expansion at the end of year 1 is about 38 million when the current

capacity is 50 million. However, the threshold increases to about 60 million at the

end of year 4. Although the uncertainty in demand is better resolved in year 4, the

decision in year 4 is more conservative than year 1. It is because the capacity installed

later will serve for a shorter time and generate less cumulative profit with the same
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installation cost. That is, the rate of return from expansion investment decreases over

time. The decreasing rate of return counteracts the benefit of uncertainty resolving,

making investing aggressively in the early years a better choice than waiting.

4.4.3. Economies of Scale. As analyzed in 4.3.1, the economies of scale of

the expansion cost will affect the optimal policy. To verify the results of theoretical

results, two situations are examined respectively. One is that the expansion cost is

a concave function, g(ξt) = hξ
2/3
t , and the other is the expansion cost is a convex

function, g(ξt) = hξ
3/2
t .

Figure 4.9 shows the free boundaries when the capacity expansion has an in-

creasing economy of scale (i.e., the cost function is an decreasing function of capacity

expansion). The result is similar to that in the situation of constant economy of scale:

the optimal policy is binary. In addition, the rate of return on expansion increases

under the increasing economy of scale. Thus the free boundaries of exercising is lower

than the situation of linear expansion cost. For instance, when the cost function is

constant, the threshold to exercise the option is about 120 million when the current

capacity is 100 million at the end of year 4; the threshold is decreased to about 80

million when the cost function is concave. Furthermore, the differences between the

boundaries at different time spots are reduced. It means the optimal policy becomes

less time sensitive. The reason is that the increasing rate of return from expansion

under an increasing scale of economy reduces the cost of waiting.

The optimal policy when the economy of scale is decreasing is shown in Figure

4.10. Unlike the situation with constant or increasing economies of scale, the optimal

policy is not binary. The optimal expansion rate at a certain capacity grows gradually

with the increasing current demand level. The maximum expansion rate, qmax, may

be never reached. Therefore, free boundaries cannot be used to display the optimal

policies in this case. For example, at the end of year 1, when the capacity is 50

million, the expansion rate would be 1 million when the demand is 16 ∼ 20 million, 2
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Figure 4.9. Free Boundary When the Economies of Scale Is Increasing

million when the demand is 20 ∼ 24 million, ..., 9 million when the demand is no less

than 81 million. The decreasing economy of scale on the expansion cost also make

the optimal policy more time sensitive, in that the decreasing rate of return from

expansion further raises the cost of waiting. Figure 4.10 shows that the maximum

chosen expansion rate decreases over time. It is 9 million/per year at the end of year

1, but only 1 million at the end of year 4. In addition, the threshold of expansion

increases rapidly. For example, at the end of year 1, the threshold of expanding the

capacity at 1 million/year is only about 18 million of demand. This number increases

to about 55 million at the end of year 4.

4.4.4. Expansion Policy When Capacity is Expanded in Large, Dis-

crete Units. Then, the producing capacity of the new product is assumed must
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(a) year 1 (b) year 2

(c) year 3 (d) year 4

Figure 4.10. Optimal Policy When the Economies of Scale Is Decreasing

be expanded in large, discrete lots. Each lot is a production line with throughput 10

million units of product. The maximum expansion amount at one time is five lots

with the total production capacity of 50 million units, as well as the total maximum

capacity. In this case, the expansion amount per time, ξt, is discrete with a step of 10

million and a maximum value of 50 million. Figure 4.11 shows the optimal policies

in selective time spots. The feature of the optimal policies is completely different

from that when the capacity is changed continuously over time. Other than the bi-

nary policy, each expansion amount available can be chosen as the optimal action,

according to the current states, t,Dt, Ct. For example, at the end of year 4, when the

current capacity is 20 million, one production line (10 million) will be added when
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the demand reaches 30 million, two production lines should be added if demand in-

creases to 37 million units, and three production lines should be added if demand is

increased to 50 million. This result verifies the analysis in Section 4.3.2. The policies

are also unlike those with convex cost function and continuously capacity function

(see Figure 4.9), although neither of them is binary. The capacity in Figure 4.11 has

only discrete values. Expansion policies thus appear as lines, corresponding to the

discrete capacity levels, instead of areas in Figure 4.9. It should be remarked that

the policy lines for each capacity level is supposed to be defined on any value of Dt.

The gaps in Figure 4.11 are caused by the discretization of Dt using binomial lattice.

A smaller time step or a more accurate method of discrete approximation, such as

trinomial lattice, can narrow these gaps and will be an extension of current work.

4.4.5. Capacity Cap. The analysis in the benchmark case assumes that

the total amount of capacity expansions can be unlimited. In practice the maximum

capacity is usually constrained by the availability of resources, such as financial bud-

get, labor, machines, or spaces. Given a capacity cap, Cmax, the expansion rate, qt,

may not be able to reach the maximum qmax when the current capacity has already

been at a relatively high level although qmax is optimal, theoretically. The maximum

rate that can actually be applied becomes min[qmax, (Cmax −Ct)/dt], no longer qmax.

Therefore, the binary feature of the optimal policy when g(ξt) is linear or concave

will not hold when Ct is approaching Cmax.

As an numerical example, the capacity cap is set at 50 million. The optimal

policy is either no expansion or expansion at the rate min[qmax, (Cmax − Ct)/dt].

Thus the optimal policy is not binary and decreases gradually from qmax to 0 when

the current capacity is approaching Cmax, as shown in Figure 4.12. For example,

when the current capacity reaches 49 million, the maximum expansion rate can only

be 24 million per year; that is, the expansion amount during a 1/24 year interval is

either 0 or 1 million under this circumstance.
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Figure 4.11. Optimal Policy When Capacity Is Added in Large, Discrete Lots

4.4.6. Terminal Value of the Diffusion Phase. The benchmark example

assumes a 0 terminal value at the end of diffusion phase. Actually, the profit of

stationary phase should be considered into the decision as the terminal value of the

diffusion phase.

In this example, Dt during the stationary phase is assumed to follow the log-

normal distribution with a mean of DT and standard deviation σs. That is, lnDt
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(a) year 1 (b) year 2

(c) year 3 (d) year 4

Figure 4.12. Optimal Policy Given a Capacity Cap

follows a normal distribution. This assumption assures the demand is non-negative.

Therefore, Equation (38) has a closed form solution,

S(DT , CT ) =
e−rsdt − e−rs(Ts−T )

rs

{
(P −m)CT+

PDT

[
Φ

(
µl + σ2

l − 1

σl

)
− Φ

(
µl + σ2

l − lnCT
σl

)]
− CTΦ

(
lnCT − µl

σl

)}
,

(59)

where rs is the risky discount rate during the stationary phase; Φ is the cumulative

distribution function of a standard normal distribution; µl and σl are the mean and
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standard deviation of lnDt, respectively, and have the values of

µl = lnDT −
1

2
ln(1 +

σ2
s

D2
T

),

σl =

√
ln(1 +

σ2
s

D2
T

).

(60)

Assume that the stationary phase lasts for 5 years, that is Ts − T = 5 years.

The standard deviation of Dt during the stationary phase, σs, is 5% of DT . The

firm requires a discount rate of rs = 15% during this phase. Then the value of

the expected NPV becomes 575.35 million, which is 2.2 times of the value in the

benchmark example.

The free boundary of exercise when the terminal value is positive is shown in

Figure 4.13. First, the free boundaries in Figure 4.13(b) is much lower than those

in Figure 4.13(a). This change is because the return of the capacity expansion is

increased by the positive terminal value, thus leading to more aggressive investment

behavior. Second, the optimal policy is less time sensitive than that without ter-

minal value. The positive terminal value augments both the positive and negative

potentials of the project value. It makes the value of waiting for the demand uncer-

tainty resolved increase because the capacity adjustment that is accurately match the

realized demand will gain a larger profit or prevent from loss more. The increased

waiting value makes the decision maker prefer to invest later, thus further reduces

the threshold of option exercise in the later years.

At the end of the numerical study, I remark that data changes in the numerical

case would not change the effects of the factors. The strength of the effects might be

influenced by the data, but the essence of them would not be changed. For example,
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(a) Without terminal value

(b) With terminal value

Figure 4.13. Comparison Between the Free Boundaries When It Is With and Without
Terminal Value
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waiting cost, as long as it exists, would counteract the benefit of waiting. The amount

of waiting cost only changes the degree of the benefit of waiting being counteracted.

4.5. SUMMARY OF ESSAY TWO

Essay Two performed a systematic analysis of dynamic capacity expansion prob-

lem. It addressed several important issues in RO practices, including economies of

scale, capacity expansion mode, opportunity cost of waiting, terminal value of project,

and the cap of capacity. The problem of dynamic capacity expansions under the

stochastic diffusion of demand was modeled as multiple exercisable options. The-

oretical analysis and numerical results showed that when the capacity is added in

infinitesimal units, and the expansion cost has a constant or increasing economy of

scale, the optimal policy of expansion is binary -either not to expand or to expand at

the maximum expansion rate - despite there are multiple expansion rates can be cho-

sen. The binary feature does not hold when the expansion cost presents a decreasing

economy of scale or when the capacity cap exists. In addition, increasing economy

in the expansion cost lowers the threshold of expansion, while decreasing economy

increases the threshold and reduces the size of expansion. When the capacity is added

in large, discrete units, the optimal size of expansion can be any available values, de-

pending on the relationships between the expected profit-to-go and the current state

of the system (including the time left, realized demand, and current capacity). When

the opportunity cost of waiting is not negligible, the benefit of waiting for the uncer-

tainty resolved is counteracted by the opportunity cost, leading to more aggressive

investment behavior: the thresholds of expansion in earlier years is lower than those

in later years. Increasing economy of scale in the expansion cost and a significant

terminal value weaken the effect of opportunity waiting cost by increasing the rate of

return on expansion and the value of waiting, respectively.
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5. CONCLUSION AND FUTURE WORK

5.1. SUMMARY OF THE DISSERTATION RESEARCH

The domain translation from financial options to ROs is challenging. Differ-

ences between financial and non-financial markets and the complex real world envi-

ronments build obstacles for applying the option theory to the valuation of real asset

investments. These include, but are not limited to, assumption violations, difficulty

in parameter estimation, multiple options interaction, behavior interactions between

competitors and cooperators, and the practical issues in RO applications. Researchers

have made efforts to overcome the obstacles and promote the use of option pricing in

valuing the investment in real assets. However, some important issues, for example,

behavior interactions between cooperators and the incentive function of ROs, have

not received sufficient attention. This dissertation made efforts to fill the gaps. This

dissertation reported a study of the incentive function of RO, examined the effects of

behavior interaction in cooperative relationships on ROs, and analyzed the influence

of some practical issues on the timing and sizing of capital investments.

An option-game framework was built in Essay One to model the incentive func-

tion of ROs. It examined how the RO incentives change behaviors of the decision

maker, as well as the effects of behavior interaction in cooperative relationships on

the evaluation and exercise of ROs.

Based on the incentive function of ROs, Essay One introduced a new thinking in

improving cooperative relationships under uncertain environments, which involves the

design of suitable RO incentives to accomplish better cooperation. An option-game

framework was built to model the incentive function of the ROs. Results showed both

parties can benefit from the RO incentive.
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In addition, a general framework for designing RO incentives for different forms

of PPPs was also proposed to apply the incentive function of ROs in practice.

Essay Two built a bridge between RO practices and theoretical development

by performing a systematic analysis of dynamic capacity expansion problem using

ROs. It provided the closed form solutions of optimal policy for different economies

of scale when capacity is expanded continuously and systematically examined the

important factors for RO practices, including economies of scale, capacity expansion

mode, opportunity cost of waiting, terminal value of project, and the capacity cap,

on the exercising strategy of ROs.

The problem of dynamic capacity expansions under the stochastic diffusion of

demand was modeled as a multiple exercisable call option. A 2-D numerical scheme,

instead of the traditional 2.5-D data structure, for solving dynamic capacity expansion

problem was also proposed to save the storage space and make the visualization of

results easier.

Theoretical analysis and numerical results showed that, the optimal policy of ex-

pansion is binary, like the standard option, when the capacity is added in infinitesimal

units and the expansion cost has a constant or increasing economy of scale, despite

there are a range of expansion rate available. In addition, the practical factors affect

the expansion strategies, such as the timing of expansion, the amount of expansion,

and the threshold of exercise, significantly.

5.2. CONTRIBUTIONS

The research reported in this dissertation filled some of the gaps in the RO

literature and smoothed the process of “domain translation.” It provided a scientific

understanding of the incentive function of ROs and the effects of behavior interaction

between the cooperators on ROs. In addition, it identified the impacts of some
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important issues of RO practices on option exercise strategies. More specifically, the

major contributions of this dissertation were summarized as follows:

• Introduced a new thinking in improving cooperative relationships under uncer-

tain conditions, which involves the design of suitable RO incentives to accom-

plish better cooperation relationship.

• Built an option-game framework to model RO incentives and the behavior dy-

namics promoted by it, which provides implications in the usage of RO incen-

tives.

• Provided comprehensive guidelines to the design and valuation of RO incentives

for different forms of PPPs and different objectives.

• Illustrated an approach to bridge RO practices and theoretical development,

and to complement each other.

• Analyzed important factors of RO practices for the problem of dynamic capacity

expansions and examined the impacts of these on the exercise strategy.

5.3. FUTURE WORK

The research reported in this dissertation has built a foundation for advanced

RO problems that subject to future research. Possible extensions of this work are

discussed below, but not limited to these.

• Alternative models for the underlying variables. In this dissertation,

the underlying variables were assumed to follow the GBM process. Alternative

stochastic processes, such as Poisson jump process and mean reverting process,

may be more realistic. Different numerical schemes and research outcomes may

be associated with alternative stochastic processes.
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• Endogenous price and demand. The price and demand were assumed as

exogenous in this dissertation. This assumption is often made in the option

literature and in line with the reality in many cases. However, endogenous

price and demand are more common in practice. The decisions in capacity can

influence the price and demand. Therefore, relaxation of the assumption of

rigid demand and fixed price is a practical extension of this work, which will

broaden the application of the research reported in this dissertation.

• Resource constraints. This work did not consider the resource constraints

such as limited capital budget or nature resources, which commonly exist in

practice. The allocation of limited resource under uncertainty is an emerging

research topic and pose new challenges on current RO models, algorithms, and

numerical schemes. Resource constraints would make dynamic capacity plan-

ning path dependent, thus significantly increasing the computational complexity

of solving the problem.

• Multiple sources of uncertainty. This work assumed a single source of

uncertainty to simplify the analysis and focus on the major research objectives.

In fact, multiple sources of uncertainty are very common to most projects, such

as demand, price, construction cost, and completion time. Considering multiple

sources of uncertainty in the RO valuation would be a practical extension.



APPENDIX A

SOLUTION OF THE OPTIMAL INITIAL CAPACITY IN ESSAY ONE
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The optimal initial capacity, C∗, is obtained by solving the inequality con-

strained maximization problem in (7). The Lagrangian for the problem in (7) is

L(C, ρ) = W (k∗, C) + ρ(E[UPRI(k
∗, C)]− πc). (61)

Let C be a local optimum to the problem in (.61) and (C∗, ρ∗) be the corresponding

Kuhn-Tucker point that satisfies the following conditions:



5CL(C∗, ρ∗) = 5CW (k∗, C∗) + ρ∗5C (E[UPRI(k
∗, C∗)]− πc) = 0,

ρ∗(E[UPRI(k
∗, C∗)]− πc) = 0,

E[UPRI(k
∗, C∗)]− πc ≥ 0,

ρ∗ ≥ 0.

(62)

If ρ∗ = 0, (.62) yields:

5CW (k∗, C∗) =abβt0
T−1∑
t=0

(
e−rrf tQ̂b+1

t

)
C∗−(b+1) − (h+ k∗)

−mk∗−θ
T−1∑
t=0

e(λ−rrf )t,

(63)

and

C∗ =

 abβt0
∑T−1

t=0

(
e−rrf tQ̂b+1

t

)
h+ k∗ +mk∗−θ

∑T−1
t=0 e

(λ−rrf )t


1
b+1

. (64)
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The third condition in (.62) is satisfied when

πc ≤
Tc−1∑
t=0

e−rrf tPQ̂t −

 abβt0
∑T−1

t=0

(
e−rrf tQ̂b+1

t

)
h+ k∗ +mk∗−θ

∑T−1
t=0 e

(λ−rrf )t


1
b+1

[
h+ k∗ +mk∗−θ

Tc−1∑
t=0

e(λ−rrf )t

]
.

(65)

If ρ∗ > 0, the second condition in (.62) yields E[UPRI(k
∗, C∗)]− πc = 0; therefore,

C∗ =

∑Tc−1
t=0 e−rrf tPQ̂t − πc

h+ k∗ +mk∗−θ
∑Tc−1

t=0 e(λ−rrf )t
. (66)

The first condition in (.62) yields

ρ∗ =


abβt0

T−1∑
t=0

(
e−rrf tQ̂b+1

t

)
C∗−(b+1) − (h+ k∗)

−mk∗−θ
T−1∑
t=0

e(λ−rrf )t


h+ k∗ +mk∗−θ

∑Tc−1
t=0 e(λ−rrf )t

. (67)

Substituting (.66) for C∗ in (.67), ρ∗ > 0 is satisfied when

πc >
Tc−1∑
t=0

e−rrf tPQ̂t −

 abβt0
∑T−1

t=0

(
e−rrf tQ̂b+1

t

)
h+ k∗ +mk∗−θ

∑T−1
t=0 e

(λ−rrf )t


1
b+1

[
h+ k∗ +mk∗−θ

Tc−1∑
t=0

e(λ−rrf )t

]
.

(68)

Substituting (4) for k∗ in (.64) and (.66) yields the solution of the inequality con-

strained optimization problem:

C∗ =

 C∗1 , πc ∈ [0, ω]

C∗2 , πc ∈ (ω,∞],
(69)
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where

C∗1 =



abβt0
∑T−1

t=0

(
e−rrf tQ̂b+1

t

)
h+

[
θm

Tc−1∑
t=0

e(λ−rrf )t

] 1
θ+1

+m

[
θm

Tc−1∑
t=0

e(λ−rrf )t

] −θ
θ+1 T−1∑

t=0

e(λ−rrf )t



1
b+1

, (70)

C∗2 =

∑Tc−1
t=0 e−rrf tPQ̂t − πc

h+ (1 + 1
θ
)
[
θm
∑Tc−1

t=0 e(λ−rrf )t
] 1
θ+1

, (71)

and

ω =
Tc−1∑
t=0

e−rrf tPQ̂t −



abβt0
∑T−1

t=0

(
e−rrf tQ̂b+1

t

)
h+

[
θm

Tc−1∑
t=0

e(λ−rrf )t

] 1
θ+1

+m

[
θm

Tc−1∑
t=0

e(λ−rrf )t

] −θ
θ+1 T−1∑

t=0

e(λ−rrf )t



1
b+1

h+ (1 +
1

θ
)

[
θm

Tc−1∑
t=0

e(λ−rrf )t

] 1
θ+1

 ,

(72)

�
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Because k̃∗ solves the problem in (14), the following is true:

∂E[ŨPRI(k̃
∗, C∗)]

∂k
=
∂E[UPRI(k̃

∗, C∗)]

∂k
+
∂VPRI(k̃

∗, C∗)

∂k
= 0. (73)

The options evaluating process in section 3.2.4 demonstrates that VPRI(k, C
∗) is the

expected net present value gained by the PRI from the option of operating the highway

during the post-concession period. That is,

VPRI(k, C
∗) =

T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}R(Qti, “operate”)

−
T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}M(k, C∗, t, “operate”).

(74)

Therefore,

∂VPRI
∂M

≤ 0. (75)

Because ∂M
∂k

= −θmC∗k−θ−1eλt < 0,

∂VPRI
∂k

≥ 0. (76)

Equations (.76) and (.73) yield ∂E[UPRI(k̃∗,C∗)]
∂k

≤ 0. If ∂E[UPRI(k̃∗,C∗)]
∂k

denotes f(k), (3)

yields

∂f(k)

∂k
= −θ(θ + 1)mk−θ−2C∗

Tc−1∑
t=0

e−rrf t ≤ 0; (77)

that is, f(k) is a decreasing function of k. Because k∗ maximizes E[UPRI(k, C
∗)],

f(k∗) = 0. Since f(k̃∗) ≤ f(k∗) = 0, and f(k) is a decreasing function of k,

k̃∗ ≥ k∗. (78)
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Because k̃∗ maximizes E[ŨPRI(k, C
∗)], E[ŨPRI(k̃

∗, C∗)] > E[ŨPRI(k
∗, C∗)]; that

is,

VPRI(k̃
∗, C∗)− I(k̃∗, C∗)−

Tc−1∑
t=0

e−rrf tM(k̃∗, C∗, t)

≥ VPRI(k
∗, C∗)− I(k∗, C∗)−

Tc−1∑
t=0

e−rrf tM(k∗, C∗, t).

(79)

Equation (.74) then yields


I(k̃∗, C∗) +

Tc−1∑
t=0

e−rrf tM(k̃∗, C∗, t)

+
T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}M(k̃∗, C∗, t, “operate”)



≤


I(k∗, C∗) +

Tc−1∑
t=0

e−rrf tM(k∗, C∗, t)

+
T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}M(k∗, C∗, t, “operate”)


.

(80)

In addition,

T−1∑
t=Tc

e−rrf tM(k, C∗, t) =
T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}M(k, C∗, t, “operate”)

+
T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}M(k, C∗, t, “abandon”);

(81)
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therefore,

W (k̃∗, C∗)−W (k∗, C∗) =
I(k∗, C∗) +

∑Tc−1
t=0 e−rrf tM(k∗, C∗, t)

+
∑T−1

t=Tc

∑t
i=0 e

−rrf tP{Qti}M(k∗, C∗, t, “operate”)

+
∑T−1

t=Tc

∑t
i=0 e

−rrf tP{Qti}M(k∗, C∗, t, “abandon”)



−


I(k̃∗, C∗) +

∑Tc−1
t=0 e−rrf tM(k̃∗, C∗, t)

+
∑T−1

t=Tc

∑t
i=0 e

−rrf tP{Qti}M(k̃∗, C∗, t, “operate”)

+
∑T−1

t=Tc

∑t
i=0 e

−rrf tP{Qti}M(k̃∗, C∗, t, “abandon”)

 .
(82)

Because ∂M
∂k

< 0 and k̃∗ ≥ k∗,

T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}M(k̃∗, C∗, t, “abandon”)

≤
T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}M(k∗, C∗, t, “abandon”).

(83)

Equations (.80) and (.83) together give the following relationship:

W (k̃∗, C∗) ≥ W (k∗, C∗). (84)

�
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The potential shortfall in the GOV’s maintenance funds is reduced from FBS(k∗, C∗)

to FOS(k̃∗, C∗) for two reasons: First, the PRI may operate the highway during the

post-concession period if it exercises the options. Under those circumstances, the

GOV has no maintenance commitment; therefore,

FOS(k∗, C∗) = FBS(k∗, C∗)

−
T−1∑
t=Tc

t∑
i=0

e−rrf tP{Qti}max

 M(k∗, C∗, t, “operate”)

−R(Qti, “operate”), 0

 , (85)

which indicates that

FOS(k∗, C∗) ≤ FBS(k∗, C∗). (86)

Second, (2) indicates that ∂M/∂k < 0; that is, higher construction quality re-

duces annual maintenance costs. According to (13), ∂FOS(k, C∗)/∂M > 0. Therefore,

∂FOS(k, C∗)/∂k < 0. Lemma 1 indicates that k̃∗ > k; hence,

FOS(k̃∗, C∗) ≤ FOS(k∗, C∗), (87)

Finally, the following relationship is derived:

FOS(k̃∗, C∗) ≤ FBS(k∗, C∗). (88)

�
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Notation in Section 3.2

Symbol Explanation

At PRI’s action at year t

B(Q̂t) Travelers benefit for traveling on the highway during [t, t+ 1)

C Highway capacity

C∗ Optimal initial highway capacity

Ct Highway capacity at year t

E(UGOV ) Expected utility of the GOV

E(UPRI) Expected utility of the PRI without the RO incentive

E(ŨPRI) Expected utility of the PRI with the RO incentive

FBS Expected maintenance shortages of the GOV without offering the

RO incentive

FE Expected expansion-related costs

FOS Expected maintenance shortages of the GOV if offering the RO

incentive

G Premium of the RO incentive

I(k, C) Construction investment

M(k, C, t) Maintenance costs for year t

P Toll level

P{Qti} Probability of the traffic volume being Qti

Qt Traffic volume during [t, t+ 1)

Qti Traffic volume at node (t, i) on the binomial tree

Q̂t Expected traffic volume during [t, t+ 1)

R(Qt) Toll revenue during [t, t+ 1)

T Highway service life
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Tc Length of concession

T (Qt, C) Total travel time cost to highway users at year t

VPRI Expected value of the RO incentive for the PRI

V ∗(Q0, C
∗) Value of the expansion option

W Expected social welfare produced by the project

∆W Additional social welfare added by the RO incentive

∆Wk Additional social welfare associated with the change in k

∆WC Additional social welfare produced by capacity expansions using

the option premium

a, b Coefficients of volume/capacity ratio in the travel time cost

h Unit construction cost that can meet the minimum quality require-

ment

k Unit cost of quality improvement beyond h

k∗ Optimal investment in quality improvement without the RO incen-

tive

k̃∗ Optimal investment in quality improvement with the RO incentive

m Capacity coefficient

p Risk-neutral probability

r Discount rate

rrf Risk-free rate

t0 Travel time through the highway under free flow condition

β Average time value per traveler per unit time

δ Market price of risk for Qt

θ Quality improvement factor
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λ Aging factor

µ Expected annual growth rate of traffic volume

πc Minimum profit request of the PRI from concession

πo Minimum profit request of the PRI from purchasing the RO incen-

tive

σ Volatility of annual traffic volume
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Notation in Section 3.3

Symbol Explanation

Êτ (R) Expected total revenue from the extended concession at time τ

K Total O& M cost during the extended concession

St Annual revenue at year t

T Highway service life

c option value

wt A random walk process

µ Expected annual growth rate of revenue

σ Volatility of annual revenue

τ End of concession
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Symbol Explanation

At Admissible space of ξt

C0 Initial capacity

Ct Capacity at time t

Cmin The lowest capacity level

Cmax The highest capacity level

D0 Initial demand

Dij Demand at node (i, j) on the binomial tree

Dsmax Upper bound of demand during the stationary phase

Dsmin Lower bound of demand during the stationary phase

Dt Demand at time t

Ht A white noise process

K Maximum index of capacity

L Maximum index of time and demand combination in the 2-D grid

M Maximum index of time

P Unit price of the product

S Terminal value

T The end of diffusion phase

Ts The end of stationary phase

Wt A standard Wiener process

V Expected value-to-go

d down-movement ratio in binomial tree

g(ξt) Expansion cost function

h Constant coefficient of the linear expansion cost function
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m marginal production cost

p Possibility of an up-movement occurs

qt expansion rate per year

qmax Maximum expansion rate

r Risk free rate

rs Risky discount rate during the stationary phase

dt Time interval

∆t Discrete time interval

u up-movement factor in binomial tree

Φ Cumulative distribution function of the standard normal distribution

λ Market price of risk on demand

µ Drift rate of the demand

µ̂ Risk neutral growth rate of Dt

µl Mean of lnDs

ξt Expansion amount at time t

ξmax Maximum expansion amount at time t

π Profit flow of the firm

σ volatility of the demand

σl Standard deviation of lnDt during the stationary phase

σs standard deviation of Dt during the stationary phase

∆V The change of V due to the capacity increase by dCt

∆ξ Unit expansion amount
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