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ABSTRACT

Many current automated theorem provers use a
refutation procedure based on some version of the principle
of resolution. These methods normally Jlead to the
generation of Jlarge numbers of new clauses. Subsumption is
a process that eliminates the superfluous clauses Tfrom the
clause space, thus speeding up the proof. The research
presented in this thesis 1is concerned with the design and

implementation of a subsumption algorithm which exploits

the parallelism provided by a multiprocessor. For
portability, all coding 1is done in the programming Jlanguage
C. Monitors are used as the synchronization mechanism.

Correct performance in both a multiprocessor and
uniprocessor mode is stressed. The parallel tests are run

on a Denelcor HEP Jlocated at Argonne National Laboratory.
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I. INTRODUCTI ON

A. 1JILSLS. ORGANIZATION

This thesis deals with the design and implementation
of a parallel subsumption algorithm. Both the algoritm
itself, and its implementation on a multiprocessor, are
descr ibed

The Ffirst section of this thesis provides the
necessary background and vocabulary to understand the
subsequent discussions of subsumption and multiprocessing.
It also presents a review of Iliterature pertinent to the
topic.

The second section presents a discussion of both the
high- and Jlow-level design of the programming procedures
used. It also provides a description of the methods wused
in testing the completed program.

The third section describes the experimental results
of several test executions of the program.

Finally, the fourth section presents an evaluation of
the obtained results and suggests several ideas for

continued research.

B. BACKGROUND A m VOCABULARY.

1. General. Computers are used today not only to
solve difficult numeric problems, but also to perform
tasks that would be considered 1intelligent if performed by

humans. Examples of such tasks include expert assistance



to professionals (expert systems), and automated theorenm
proving. Artificial intelligence is that portion of
computer science which deals with the performance of such
tasks.

Automated theorem proving is the general area of
interest here. J.A. Robinson EI) suggested that.-

computational logic’” is surely a better

phrase than “theorem proving’, for the branch

of artificial intelligence which deals with

how to make machines do deduction

efficiently".

L. Wos 121 suggested the term “automated reasoning’.
Speaking of automated theorem proving and automated
reasoning, he said:

"The difference between the two fields rests

mainly with the way 1in which the corresponding

software is used and with their scope. In
automated reasoning, the emphasis 1is on an

active collaboration between the user and the

program and on many uses you would not

ordinarily consider to involve “proving

theorems”. Automated theorem proving 1is now a

part of automated reasoning."

The 1idea seems to be that the phrase “theorem proving~’
carries too much of a mathematical <connotation, that a
phrase should be chosen which conveys the notion that
logical reasoning extends beyond mathematics. The term
theorem proving 1is firmly entrenched in the literature
however, and will be used iIn this thesis with the
understanding that problems other than mathematical ones

may be posed in the form of a theorem to be proved.

As an example, if it 1is known that every man is



mo rtal, and that Socrates 1is a man, then the logical
conc lusion that Socrates 1is a mortal may be cast as a
theorem to be proved from the stated facts. Many problems
(in unrelated Tfields) can be similarly formulated as
theorem proving problems. The following partial list 1is
from the excellent text by Chang and Lee [31:
@&D) guestion-answering systems - Tfacts are
represented as Jlogical formulas. To answer a
guestion from the Tfacts, prove that a formula

corresponding to the answer is derivable from
the formulas representing the facts.

(2) state-tranaformst ion problem - describe
the states and transition values by logical
formulas. Then, transform the 1initial state

into the desired state by proving that the
formula of the desired state follows from the
formula representing the state and transition

rules.

3) program-analysis problem - describe
program execution by formula A and condition
for termination by formula B. Then,

verification that the program will terminate

is equivalent to proving that B follows from A.

Within the area of automated theorem proving lies the
topic of subsumption, which is the specific area of focus
in this thesis. Before proceeding with an 1in-depth
discussion of subsumption however, the more general area of
theorem proving should be discussed in order to build the
necessary vocabulary. Note that this discussion introduces
only those terms necessary Tfor an understanding of
subsumption, and ignores many additional terms which are
important to other aspects of automated theorem proving.

For the reader interested 1in a history of the entire

area of automated theorem proving, the two-volume set



Au tomation of Reason ing [4, 5] contains a good history of
the years 1957-1966 and 1967-1970, respectively, including
reprints of the Jlandmark papers published during those
years. The recent American Mathematical Society

pub l'ica tion Automated Theorem Proving: After 25. Years (61
briefly covers those years also, but refers to Siekmann for
a detailed coverage. The AMS publication concentrates on
the years since 1970. Some of the Jlandmark papers are
reprinted there also.

2. First-Order Predicate Calculus. This section
reviews the basic notions of first-order logic, and
establishes the terminology. For a detailed development of
the subject, the reader is referred to any of several good
introductory texts, e.g. C3, 71.

In a first-order logic, one 1is concerned with
entities, relationships between entities, and properties of
sets of entities. For example, it is possible to describe
the entities "Joe* and "Ann®" and to address the fact that
*Joe" is married to "Ann’. Thus, there are Tfunctions
Cwife-of) on the set of entities, as well as predicates
Cis-married-to) describing properties and relations of
entity sets. Functions define new entities in terms of
previously known ones, and predicates indicate whether some
set of entities has a particular property or relationship.
Using the above example, possible statments are:

is-marr ied-toCJoe, Ann) or
is-marr ied-toCJoe, wi fe-o0fCJoe)).



In subsequent examples, the alphabet consi sts of:

- constants: a, b, c
- variables: X, Y, 2
- functions: f, g, h

- predicates: P, O, R

- connectives: - (not), (or), & (and),
A. (for all), £. (there exist s)

- punctuation: (, ), and comma.

Definition: A term 1is defined recursively as:

@&D) variables or constants are terms

(2) if f is any n-place function, and t1, ...,tn are
terms, then Ff(tf,...,tn) is a term.
Definition: A formul a is defined recursively as:
(@D if tl1,...,tn are terms, and P 1is an n
place predicate (n may be zero, Tfor
propositions), then P(tl,...,tn) is an

atomic formul a

(2) if A . and B are formulas, the so are:
(-A) , (A & B) . and (A ! B)

(3) if A is a formula, then so are:

Ax (A) and £ &(A) .
In part 3 of the above definition, the variable is said to
be universally or existentially quantified, and the formula
is said to be in the scope of the quantifier, An
occurrence of a variable in a formula is bound by the
innermost quantifier on that variable. Typical 1y, an
automated theorem prover uses formulas with no quantifiers

present. The justification for this follows.



A first-order logic formula can be transformed into a
prenex normal Tform consisting of two portions - the left
portion containing all quantifiers is called the prefix,
and the right portion containing the rest of the formula is
called the matrix. The existential quantifiers in the
prefix can be eliminated by replacing the variables which
they quantify with Skolem Tfunctions. The matrix can be
transformed into conjunctive normal form. Finally, the
formula can be converted to a clausal form with no
guantifiers present. This form 1is not strictly equivalent
to the original formula, but if the set of clauses is
unsatisfiable , then so is the original formula.

The techniques for conversion to a clausal form can be
found in any of several good texts, e.g. 131. A simple

examp le foilows.

Examp le *: Obtain a clausal form of the formula:

c (Ejs-)pexd (CAX)Qty) 4 -(Ax)R(X)))

Step 1. Rename the second x variable (argument to the
R predicate) since it 1is actually different from the Tfirst
occurrence (argument to the P predicate). Such a step is
necessary to ensure that no variable has both free and

bound occurrences, and so that there 1is at most one

occurence of a quantifier with any particular variable.

(£is-)P(x) = ((Ax)Q<y) 4 -(AT)R(z)))

Step 2. The -(A1Z-)RCz) can be transformed into

(£i)-R(z) by the equivalence -(AJOF = ((Ej()-F for any



formula F and variable x. Then, convert to prenex normal
form where the matrix contains no quantifiers and the

prefix 1is a sequence of quantifiers.

(A*) (FZ.) (PCx) ! (0O (y3 & -R(z)3)

Step 3. Remove the existential quantifiers and
replace the existentially quantified variables by n-place
Skolem functions where n is the number of wuniversal
guant ifiers preced ing the existential one. For examp le,
the x 1is replaced by the constant a (O-place funct ion) .
Since there exists at least one such x, a particular one
can be chosen, cal 1 it a 1in this case. The z 1is replaced
by a new function, Ff(y3, which is a function of the only

universally quantified variable preceding it.

(AX)<P(«) ' (Q(y 3 & -R(f(y3333
Step 4. Convert to conjunctive normal form and, since
all rema ining variables are universally quantifed, remove

the quantifiers.

(PCs) ! Q(y33 & (P(a3 ' -RCf(y333

Step 5. The Jlast form can be viewed as a conjunction
of clauses. Normally, each individual <clause of a clause
set is simply listed separately, and they are understood to
be conjoined. Here, they may be written as:

P(a3 ! 0(y3
P(a3 * -RCFf(y33

leaving off the outermost set of parentheses.

Now the predicate calculus can be extended with notions



pertinent to automated theorem proving.

Definition: A literal is an atomic Tformula (possibly
containing variables), or the negation of an atomic
formula.

Definition: A clause is a (possibly empty) disjunction
(1) of literals. Since the empty clause has no literal

that can be satisfied, it is always false.

Definition: A clause set 1is a conjunction (&) of clauses.

3. Theorem Proof Procedures . Refutation procedures
are generally used by automated theorem provers to reach a
proof. Typically, the set of clauses used in the proof
contains a set of axioms plus the negation of the theorem
to be proved. The theorem prover then attempts to show
that the set of clauses 1is inconsistent (unsatisf iable).

A classic example from group theory [21 states that
"in a group, if the square of every element is the
identity, the group 1is commutative". The axioms for this
proof are:

P(x,y,F(x,y)) closure

P(x,e ,x) right 1identity (e 1is 1identity e lernent)
P(e,x,x) left identity

P(x,g(x).e) right inverse

P(g(x),x,e) left inverse

P(x,x,e) square of every element 1is the identity
-P(x,y,u) -P(y,z,v) ' -P(u,z,w) ! P(x,v,n) assoc .
-P(x,y,u) -P(y,z,v) ! -P(x,v,w) ! P(u,z.,w) assoc
P(a,b,c) denial (negation) of

-P(b,a,c) the theor em

where the 3-place predicate P(x,y,z) may be thought of as



asserting that x*y=z.

Any given clause set, such as this one, may be shown
to be unsatisfiable if and only if it 1is false under all
interpretations over all domains. It is, of course
impossible to examine all possibilities. Herbrand [71
developed a theorem (see the following paragraph) which
permits the examination of a single, special doma in cal led
the Herbrand Un iverse. Simply stated , the Herbrand
Universe is the set of variable-free terms that can be
generated us ing the constant symbols from the clause set.
with some special constant symbol provided if the clause
set contains no constants. As an example, if the clause
set consists of:

PC a)
PC fCx ))

then the Herbrand wuniverse consists of:
Ca, fCa) , fCf(a) ), --- ).
Herbrand’”s Theorem states:
A set S of clauses 1is unsatisfiable iff there is a

finite unsatisfiable set S" of ground 1instances of clauses

of S .

A ground instance is merely one which has no
variables. As an example, <consider S = (PCx) , -PCfCa)))
which 1is unsatisfiab le. Then some S’ exists which 1is an
unsatisfiable set of ground instances of clauses in S. One
such S’ is (PCfCa)), -PCfCa))}.

Several refutation procedures have been developed



based on Herbrand "s Theorem. The problem however is that
the clause space grows exponentially as one substitutes
terms from the Herbrand Universe into the elements of the
clause set (generating ground clauses).

The resolution principle 1is a refutation procedure
that avoids the need to generate these ground clauses. It
checks to see if the empty clause 1is in the current clause
set. If so, then the set is unsatisfiab le. If not, it
checks to see if the empty clause can be derived from the
clauses in the set. Some version of the resolution
principle 1is at the heart of many “successful’” modern-day
theorem provers. For that reason, the following section
will be devoted to a discussion of the resolution principle
and 1its associated vocabulary.

4. The Resolution Principle. Application of the
resolution principle depends upon the ability to locate a
literal in one clause that is the complement of a literal
in another clause. This task 1is not too difficult for
clauses that contain no variables, but it can become quite
difficult for clauses that do contain variables. For
example, consider the two literals P(x) and -P(Ff(x)).

By performing the substitution x -> fta) 1in the first
literal and x -> a in the second literal, the complementary
pair of clauses PCfCa)) and -PCfCa)) is obtained, each of
which 1is a ground instance (contains no variables) of the
original

By performing such a substitution, the two literals



have been wuni fied. Often, it is desirable to perform the
most general wunification possible. Above, this would mean
that the substitution in PCx) would be x -> f(x), making
the two clauses P(fCx)) and -PCF(x)). Now, <consider the
more complex example of a clause containing several
literals. The substitution that unifies a pair of literals
must be “remembered’” when examining subsequent Jliterals in
the clauses. For example, if the first clause above had
been P(x) Q(gCx)), then after the substitution for x was
applied, the “unified’” clause would be P(Ff(x)) ! QCgCFf(x))).
Note the “remembered’ substitution is also performed for x
in the Uliteral Q(g(x)).

Unification plays an integral part in re»o lut ion-based
theorem proving. It comes into play not only in the
production of resolvents, but also in the performance of
subsumption where two clauses must be examined to determine
if the |literals of one can be mapped into the Iliterals of
the other.

Substitution plays a vital role also. When testing
for unification, the substitution discovered at one pair of

literals must be applied to subsequent literals in the

clauses Cat least temporarily). If there 1is a consistent
substitution Tfor a pair of clauses, then a resolvent may be
produced from them. A resolvent is produced from a pair of

clauses by ignoring a complementary pair of literals in

them, and copying the remaining literals into the resolvent



clause. For example, given the pair of literals:

PCx) I QC x)
-0Ca) I RCh)

the resolvent PCa) ! RChb) may be produced under the
substitution {x -> a).
Any new resolvents may be added to the clause space.

If the empty clause 1is one of the resolvents produced, then

the desired refutation has been found. New clauses
produced Ci.e. the resolvents) may be subsumed by old
clauses, or the new clauses may subsume old clauses. In

either case, a subsumed clause may be deleted from the
clause space. This reduces the number of clauses that must
be examined in subsequent "passes’ of the resolution
procedure .

5. Subsumpt ion.
De finition: A clause Cl subsumes a clause C2 if the
variables of Cl1 can be instantiated in such a way that all

the resulting Uliterals of Cl1 appear in C2.

As an example, the clause PCx) subsumes the clause
PCa) because the clause PCx) makes a more general statement
Cx 1is a variable and a is a constant). The clause PCa,hbb)
subsumes PCa,b) ' PCc,b). If the predicate P means “is the
father of”, then the knowledge that a is the father of b is
more useful than the mere knowledge that either a or c¢ is
the father of b.

Note that the above definition of subsumption permits

a longer clause to subsume a shorter one. For example.



under the substitution of fx -> a, y -> b), the clause

PCx,y) ! PCy,x)
subs ume s

PCa,aD.

Sometimes this particular type of subsumption 1is not
desirable because it permits generated factors to be
subsumed by their parent. However, it is a simple matter
to prohibit this form of subsumption merely by counting the
literals in each candidate clause. Only Tfull subsumption
is considered here, with the understanding that the above
restriction may be desired 1in certain applications.

Automated theorem provers wusually consider subsumption
to be of two forms: forward and backward. In both cases,
the test 1is to see if one clause subsumes another based on
the definition. The difference lies in which clause is the
subsumer and which 1is the subsumed. Forward subs urno tion
checks to see if any old clauses subsumes a newly generated
one. Backward subs ump tion checks to see if a new clause
subsumes any old ones.

Subsumed clauses are deleted from the clause space to
reduce the work required in subsequent steps, i.e. the
fewer clauses there are to be examined, the fewer
resolvents that are likely to be generated. This ability
of subsumption to reduce the work required 1is of course the
reason that it has become an integral part of many modern
theorem provers. The Literature Review section discusses

the use of subsumption in some of these theorem provers.



It is easy to give a reasonably straightforward
subsumption algorithm based on the definition presented
above. Although the purpose of this thesis 1is to examine a
mu Iltiprocessed version of subsumption, a sequential version
is examined so that the reader may gain some intuition as
to the basic 1ideas that carry over into the multiprocessor
version. The algorithm below 1is of course in pseudo-code.
It describes the 1logic Tfor performing forward subsumption;
differences relevant to backward subsumption are discussed
in the subsequent paragraph. The code 1is quite similar to
that given by Overbeek and Lusk [81.

PROCEDURE FORWARD SUBSUMPTION CNEW_CLAUSE)
set rc to O;
Point nlptr to the 1st literal in the new clause
while (rc == 0 and nlptr not = NIL)
Form the set of 1literals (S) which are 1like;, to
have this 1litera! of the new clause as an

instance .
Set Jj to 1s
wh ile (rc == o

and there are more tits in the set 9S)
set the substitution to null;
discover if this new ©literal is an
instance of the jth literal in S
(adding to the subst if so0) :
if it is an instance
form the set of all literal s in
the new clause except this one
(pointed to by nlptr);
see if the old clause subsumes the
new clause under the substitution
if it does subsume the new clause
3et rc = 1;
set j to j+1 ;
end while;
point nlptr to the next literal in new clause;

end while;

In the above algorithm, the routine which *“sees if the old



clause subsumes the new clause wunder the substitution’, s
a recursive routine which attempts to map the specified
literals of one clause into the literals of another under a
given substitution. It is general enough to be wused by
both forward and backward subsumption.

The 1logic Tfor backward subsumption is very similar to
that for forward subsumption, with a few minor exceptions:

- the search for Uliterals in old clauses is for
literals that are less general than the new clause®s
literal, i.e. literals that are likely to be an instance of
the new one,

- the test for subsumption of one clause by the other
is reversed, i.e. the recursive routine described must now
test to see if the new clause subsumes the old one,

- the outermost while-loop 1is unnecessary. Leaving
out this Jloop means that only the first literal in the new
clause will be visited when attempting to find candidate
literals within clauses that may subsume the new one. The

reasoning here merits an example:

Examo le Z
In forward subsumption, consider the oversimplified
case where the old clause set consists of only the clause

Q (x)

and the new clause under consideration 1is :

P(x) I Q(x).

Of course, the old clause subsumes the new one, but it

requires visiting all of the new clause’s literals to



discover this fact, which 1is what the forward subsumption
algorithm does.
Now consider backward subsumption, and the same simple

clauses. In this case, it is sufficient to discover that

no old clause contains the predicate P in any of its literals

to determine that the new clause will not subsume it.

Next, consider the procedure that tests to see if one
literal is an instance of another on behalf of the
subsumption vroutine. This routine 1is essentially a 1-
direction unification routine. It is called 1-direction
because wunification is tested only in the direction for
which subsumption is being performed. It examines pairs of
literals, not whole clauses.

For example, <consider the case in which it 1is necessary
to determine whether the literal:

PCal
subsumes the literal

PCx) .

A general unification routine would indicate that the
substitution x -> a would unify the two literals. But,
examination in only one direction 1is required for this
case. Since the substitution of a variable for a constant
is illegal, no unification can be performed, and thus no
subsumption takes place.

If the roles of the literals were reversed however,
the substitution of a for x would be found and the desired

subsumption would occur.



6. Multiprocessing Concepts. In the past, dramatic
increases in computer speeds were realized due to advances
in the technology for producing the electronic components.
Today however, the 1limits of increases available through
that method are being approached. Signal propagation
delays, which could be 1ignored previously, have come to be
significant. Signal propagation delays may typically be
measured in terms of nanoseconds, but fast-logic delays may
be measured in terms of picoseconds. In short, other
avenues for gaining speed increases should be considered.
Multiprocessing 1is one such avenue.

The term multiprocessing of course implies the use of
multiple processors. Sometimes the term 1is used to refer
to any environment consisting of more than one processor,
no matter how Jloosely they may be coupled. Here however,
the term refers to processors that are tightly coupled.
They communicate and share information, through common
memory, about a common problem which they are attempting to
solve. The program described in this thesis coordinates
work between multiple processors to determine if any
subsumption occurs within a clause space.

Coordination of processes running on separate
processors often requires mutual exclusion, i.e. the
individual processes must be prohibited from accessing the
same resource at the same time. That portion of code which
accesses the shared resource 1is called the gfi-LiCtftl

section. Research in this area originally developed out of



the study of operating systems 19]. One method developed
from that research makes use of special sections of code
called monitors MO]. (See the Literature Review section
for additonal references on these topics.)

Monitors are used extensively in the program described
by this thesis. The Tfollowing discussion gives a more
detailed description of them.

A monitor 1is an abstract concept consisting of three
parts:

(@D the shared resource itself, or a data
structure representing the resource,

(2) the code to initialize the shared
structures,

(3) the code which performs the critical
section operations on the resource.

The operations of a monitor may be called by any program at
any time. 1t is necessary, however, that only one progr am
be able to enter the monitor at one time . From a progr am’s
point of view the mon itor is a serial ly reusable resource.
This does not imply that the calling programs are completely
serialized; they are merely serialized through their critica
sections in which they access a shared resource.

Earlier, it was mentioned that the concern in this
thesis 1is for mutual exclusion between closely coupled
processes that are attempting to solve portions of a common
problem. The relevant type of machine architecture is
often referred to as MIMD (Multiple Instruction stream.

Multiple Data stream). In this type of machine, the



separate processors may be executing separate procedures
(multiple instruction streams). This differs from a SIMD
architecture where a single instruction stream is executed
simultaneously by several processors operating on separate
sets of data. The specific hardware described is the
Denelcor HEP, although the algorithm described 1is not
specific to the HEP.

The HEP"s logic functions are pide lined to gain the
desired parallelism. On the HEP, a Process Execution
Module (PEM) <contains the pipeline. Each 100 nanoseconds a
new 1instruction can enter the PEM, and at the same time an
instruction that previously entered the PEM can exit.
There are eight steps through the PEM, and thus the total
time Tfor one instruction through the PEM 1is 800 nanoseconds.
Although a given HEP may have as many as sixteen PEMs
installed, speed-ups of 8 to 12 are attainable on a single-
PEM HEP.

The HEP also includes extensions to 1its resident

languages to support parallelism by user programs. The

CREATE verb allows the programmer to nitiate execution of
a subroutine as a separate process, i.e. the subroutine
executes in parallel with the mainline. Other verbs permit
the user to treat variables as asynchronous if desired.

An asynchronous AWRITE may be done to a variable only
if the variable 1is “empty”, and an AREAD can be done only

if the variable 1is “full*. These asynchronous routines

permit the development of many useful synchronization
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primitives such as a BARRIER that permits each of several
processes to hang at a given location until some specified
number of processes have reached the same point.

The monitors described earlier are built as macros
which utilize these asynchronous routines. Lusk and
Overbeek [101 have developed the monitors in such a way
however, that the machine- level details are hidden. The
user is provided the luxury of thinking in terms of
monitors rather than in terms of Jlow-level details of the
HEP. This form of program development makes programs
highly portable to multiprocessors other than the HEP,
because the macros are all that must be re-written since
the machine-dependent details are hidden within them. The
use of these monitor macros within the program 1is discussed
in the Procedures section of CODING AND IMPLEMENTATION.

The reader interested 1in a more detailed discussion of
subsumption or multiprocessing is directed to the Literature
Review section for references, several of which contain

large bibliographies.



C. LI1ITERAHJRE REV IELW

The preceding sections were 1intended to provide both a
historical perspective of automated theorem proving in
general, and a working vocabulary sufficient to understand
a discussion of mu ltiprocessed subsumption. The treatment
of subsumption and multiprocessing in the literature 1is now
exam ined .

1. Subs ump tion. The <concept of subsumption was first
introduced in J. A. Robinson®s Jlandmark paper "A Machine-
Oriented Logic Based on the Resolution Principle” [11],
where the principle of resolution was also introduced. In
that paper, Robinson calls subsumption a search principle,
to distinguish it from inference principles such as
resolution.

Subsumption 1is not a rule of inference. Rather it is
a process that may be wused in conjunction with rules of
inference to speed up the rate of convergence to a desired
proof. It accomplishes this by deleting clauses that are
less general than other <clauses in the clause space.

Robinson describes subsumption as:

If C and D are two distinct nonempty clauses, we say
that C subsumes D jJust in case there 1is a substitution %
such that C% J. D (where %+ is used for subset notation).

He also gives the subsumption theorem:

If S is any finite set of clauses, and D 1is any clause

in S which 1is subsumed by some clause in S - CD), then S is
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satisfiable if and only if S - (D) 1is satisfiable.

The subsumption principle 1is then stated:

One may delete, from a finite set S of clauses, any
clause D which is subsumed by a clause in S - CD).

And Ffinally, Robinson gives an algorithm for deciding
if one clause subsumes another.

Robinson®s paper is regarded as a landmark because of
its contribution of the resolution principle, thus its
treatment of subsumption is often overlooked. Robinson
"invented* the resolution principle with computing machines
in mind, however. Thus, he did not wish to stop with a
principle that is merely correct theoretically. He knew
that the principle must be applicable in real time on a
computer.

Subsumption assists in making resolution faster by
reducing the work that has to be done. By deleting
subsumed clauses, the number of clauses that must be
examined tand thus the number of resolvents that may be
produced) can be greatly reduced. In other words, the
resolution principle works without subsumption, but can be
speeded up with its application. Further, no loss of power

occurs by the application of subsumption.

This Jlast statement can be argued to some extent. For
example, sometimes a strategy 1is employed which governs the
use of inference rules. The set of support strategy 12] is

one which divides the clause space into two sets, one of

which 1is said to “have support*. The strategy 1is often
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useful because it helps to focus a theorem prover’s
attention on the problem rather than allowing it to wander
aimlessly. There 1is the risk however that a clause with
support which 1is needed in the proof may be subsumed.
However, if the subsuming clause is given support when this
happens, then the desired deduction is permitted.

Before listing any additional papers which discuss
subsumption, it might prove useful to mention several
textbooks that cover the topic in varying degrees of
detail. They may provide additional information if the
reader feels overwhelmed at this point.

First, the text by Chang and Lee [31 1is an excellent
reference on automated theorem proving. In an appendix
they even include a small theorem prover written in Lisp.
It is, of course, limited in its capabilities, but serves
as a good instruction device. The chapter on the
resolution principle includes a discussion of subsumption
as a deletion strategy. The sample theorem prover in the
appendix performs a test for subsumption by unit clauses
(this is fairly common because it 1is moderately easy to
perform).

Second, the text by Loveland [121 contains a chapter
on subsumption. His definition of subsumption is somewhat
stronger than that which we have been using; it requires
that the subsuming clause C and the subsumed clause D have
the relationship that AC -> AO (clause C with all variables

universally quantified implies clause D) 1is valid. He wuses



the term theta-subsumption for the form of subsumption that
Robinson suggested (including the number of Iliterals test
to ensure that shorter clauses are not deleted). He states
that theta-subsumption "is a more useful subsumption
criterion for deletion or replacement than the stronger
subsumption criterion™. Thus, the term subsumption will
continue to be used here as defined by Robinson.

Loveland goes on to suggest that a theorem prover may
reach the point where it 1is not worth the effort to perform
a subsumption test because such a test can be quite time-
consuming. He therefore suggests its use in limited
applications such as only when the subsuming clause 1is a
unit clause. His suggestion however, is made under the
assumption that the subsumption check is performed using
"the resolution apparatus already available”™. (See Chang
and Lee’s text for an algorithm which demonstrates this
type of apparatus.) 1t will be seen in some of the
upcomi ng papers that this is not necessarily the case
refer to the descripti on of the forward subsumpt ion
algor ithm in the previ ous section, and note that it
con tains no me nt ion of any resolution apparatus.

Third, is Nilsson’s text [131. It contains very
limited detail about each of the areas discussed here, but
it i3 fairly easy to read for those not |looking for an in-
depth study.

Finally, the most recent book in this area, is

Automa ted Reason ino by Wos, et. al. 12). Remember that Wo s
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suggested the term automated reasoning Tfor this subject.

In this book, the topic of automated reasoning is treated

with automated theorem proving handled as a sub-area. Each
subject is treated at several levels of detail. For
example, there are chapters that speak on an 1intuitive

level, as well as chapters that treat the topics 1in a
formal manner. Many examples are provided.

The topic of subsumption 1is included throughout the
text as it relates to each of the other topics under
discussion. Chapter four 1is where the best “stand-alone-”
treatement of subsumption appears. The exercises are
extremely helpful. They provide some of the best insights
into subsumption, and answers are provided to assist the
reader.

The Tfollowing papers are covered 1in approximately
chronological order of publication date, but that ordering
is ignored if two or mo re papers should logically be
grouped together. Although the citation for each paper is
for the original publication of the paper, several of the
landmark papers are reprinted in the two-volume set
Au tomation of Reason ino 14, 5], which may be more readily
avalitable.

In 1964, the paper "The Unit Preference Strategy Iin
Theorem Proving" 1141 was published by Wos. This paper
introduces an “enhancement” to the basic resolution
principle devised by Robinson. It suggests that wunit

(single literal] clauses be preferred for forming
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resolvents. Note that this paper actually appeared before
Robinson’s. It references Robinson®"s paper as "to be
published". Thus, subsumption 1is not mentioned by name;

rather the deletion strategies are grouped under the
heading of “subsidiary strategies’. Few details are
provided; the use of deletion strategies is only briefly
mentioned .

Wos, et. al. M51 also published "Efficiency and
Completeness of the Set of Support Strategy in Theorenm
Proving"™ in 1965. The set of support strategy was
mentioned in their previous paper [141, but 1is treated in
detail in this one, 1including a proof of a theorem giving
sufficient conditions for its logical completeness. In the
Examples section of the paper, details of various program
executions (employing the set of support strategy) are
given. Here again, subsumption 1is not treated in any
detail. It is simply mentioned that the given statistics
show a difference in the number of clauses generated and
the number retained, due to the use of deletion strategies.

Kowalski has published several papers which discuss
subsumption. In three of these [16, 17, 18), the
discussion of subsumption centers around the Tfact that
"certain inference-related rules can be defined only in the
context of search strategies. Deletion of subsumed clauses
is an important example." Kowalski’”s Ph.D. thesis [171
gives an example (repeated in Loveland’s text [12] pp-207-

208) wusing the jet-of-suppor t strategy where no refutation
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is obtainable using backward subsumption, but 1is possible
with no backward subsumption. He states that the Tfaulty
situation is entirely a problem of the search plan and
theta-subsumption combination, and that one way to maintain
completeness with such strategies is to remove only certain
subsumed clauses.

Kowalski"s paper "Linear Resolution with Selection
Function™ C191, discusses subsumption 1in the context of yet
another version of the resolution principle, SL-resolut ion,
i.e. linear resolution with selection Tfunction.

Sibert 120], in his paper "A Machine-Oriented Logic
Incorporating the Equality Relation", develops the
theoretical basis for the design of theorem-proving
programs with the equality relation built-in. He states
that this 1is not enough "for an efficient procedure”,
however. Thus, he goes on to treat subsumption at some
length as a technique for increasing the efficiency of
refutation procedures.

Green [211, in his paper "Theorem-Proving by
Resolution as a Basis for Question-Answering Systems",
shows how "a question-answering system can be constructed
using first-order logic as its Jlanguage and a resoution-
type theorem-prover as 1its deductive mechanism". The paper
contains a description of the program (QA3) which includes
a subsumption component.

Loveland 122], in his paper "A Linear Format for

Resolution", shows that resolution remains complete when
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the refutations permitted are restricted by three special
conditions on any two clauses and their resolvent.

Allen and Luck ham [23] describe "An Interactive
Theorem-Proving Program" in their paper. The program has a
subsumption component which is described.

Plotkin [24], in his paper "A Note on Inductive

Generalization”™, does not discuss the topic of subsumption
directly. Instead, he 1is 1interested 1in a discussion of the
generalization of Iliterals. He wuses subsumption as a
method for defining a "more general literal”, i.e. Jliteral

Lt is more general than literal L2 if L1 subsumes L2.

J.A. Robinson’s paper [25] "Automatic Deduction with
Hyper-Resolution”™ does not address the topic of
subsumption. It is worthy of note here however, because
several of the following papers are concerned with hyper-
resolution, and this paper is the best starting point for
the 1interested reader.

"An Implementation of Hyper-Resolut ion" by Ross
Overbeek 126] 1is an excellent reference for a description
of data structures and some of the algorithms employed in
one of the most successful theorem-proving programs to
date. The subsumption program described in later sections
of this thesis was developed using many of the ideas
presented in [26], e.g. FPA 1lists, only one copy of a
literal in the data structures, etc.

Winker [27], in his paper "An Evaluation of Qualified

Hyper-Resolution" describes extensions to the hyper-
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resolution program to support “qualifiers’, which provide

certain advantages in problems "involving Tfunctions which
are not defined for some values of their arguments'". His
paper references Overbeek’s. He states that the use of

gualifiers is compatible with deletion of subsumed clauses.

McCharen , Overbeek, and Wos 1281, in their paper
"Problems and Experiments for and with Automated Theorem-
Proving Programs"™ describe the performance of their progranm
on several problems from the trivial to the very difficult
(on which the program TFfailed). They 1include statistics
about the number of unifications attempted and successful,
and the number of clauses generated and retained (not
subs ume d).

Wos E29) in his paper "Automated Reasoning: Real Uses
and Potential Uses"™, mentions some of the capabilities of
their program (including subsumption), while describing
some its successes in answering open questions and
speculating on future applications.

In their three articles "Data Structures and Control
Architecture for Implementation of Theorem-Proving
Programs"™ 18), "Logic Machine Architecture: Kernel
Functions"™ (30), and "Logic Machine Architecture: Inference
Mechanisms™ 131). Lusk and Overbeek discuss in great detail
their implementation of a new theorem proving system
designed to aid researchers in the Tfield. In the Tfirst
article, they even include a brief discussion of some

multiprocessing concepts which they hope the new systenm
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will eventually be able to exploit.

Many of the 1ideas for data structures and control
structures which they describe have been incorporated into
the subsumption routines described in this thesis. And, of
course, the major thrust of this thesis 1is to develop a
version of subsumption which exploits some of the
multiprocessing power available today (through Overbeek,
et.al. at Argonne National Labs).

Indeed, Lusk and Overbeek have written a paper (321
entitled "Research Topics: Multiprocessing Algorithms for
Computational Logic"™ in which they suggest research topics
for anyone interested in the area. Two of the suggested
topics are multiprocessor versions of subsumption and
demodul ation .

It should be noted here that the theorem proving
system developed by Lusk and Overbeek has been placed in
the public domain. Therefore, in addition to their
articles describing its implementation, they have also
published manuals describing 1its use. "Logic Machine
Architecture Inference Mechanisms - Layer 2 User Reference
Manual™ [33) describes the interface to the layer two of
their system. It contains the necessary 1information to
write LMA-based systems which reside at Jlayer 3; such
systems might 1include "theorem provers, vreasoning
components for expert systems, or customized deduction
components". "The Automated Reasoning System [ITP" [341

describes the use of a powerful automated theorem prover



which has been developed from the LMA tools and which is
provided as part of the package. One of the tools in the
package, of course, is the subsumption component developed
using the data and control structures described in the
papers above.

2. Multiprocessing Concepts. Probably the best place

to start in the Jliterature 1is with the March 1973 issue of

the ACM Computina Surveys. In that 1issue, J.L. Baer
published the article, "A Survey of Some Theoretical
Aspects of Multiprocessing™ [351. Baer’s article contains

an excellent bibliography of the relevant multiprocessing
literature at that time. In the article, Baer examines
language features which help exploit parallelism (including
additional instructions for multiprocessing architectures),
problems such as mutual exclusion, and more theoretical
aspects such as models for parallel computation Ce.g-
parallel Tflowcharts). An appendix attempts to classify the
contemporary multiprocessors.

The article "Concurrent Programming Concepts™ t36) by
Per Brinch Hansen appeared in the December 1973 issue of
the ACM Computing Surveys. The paper discusses programming
language features such as critical regions and monitors.

In March 1977, an entire special issue of the ACM
Comnutina Surveys 137) was devoted to P&Iflllei Processors
and Process ino . The articles in that issue are
"Associative Processor Architecture - A Survey"™ t38], "A

Survey of Parallel Machine Organization and Programming"
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[39], "Pipeline Architecture™ [40], and "Multiprocessor
Organization - A Survey" [41] . The latter two articles
relate most closely to this thesis because they discuss
hardware topics relevant to the HEP. Each article in the
issue contains a good bibliography for further reading.

In the 1978 Proceedings of the International
Conference on Parallel Processing [42], the paper "A
Pipelined, Shared Resource Computer"™ [43] describes a
version of the HEP computer that has four PEMs. Of course
the other papers in that proceedings cover topics of
interest in parallel processing, but none of them are as
closely related to this thesis.

A 1981 Tutorial on Parallel Processing was published
by the I1EEE Computer Society [441. This publication
contains reprints of some of the papers mentioned
previously, e.g. Enslow’s multiprocessor organization
survey [41]. Smith’s paper on the HEP [43] 1is reprinted
under the section on dataflow architectures, but the reader
is informed that the HEP is not a dataflow machine; that it
is related to dataflow because of 1its synchronization
me chan ism.

Another paper of interest in the tutorial is "Some
Computer Organizations and Their Effectiveness"™ [45]. This
paper is a reprint of a classic paper that introduced the
taxonomy of computers 1into SISO, MIMD, etc. It, of course,
describes the shared resource multiprocessor model on which

the HEP is based
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Other tutorial reprints relevant to this thesis are
"Communicating Sequential Processes”"™ [46] which discusses
the fact that "component processors must be able to
communicate and to synchronize with each other"™, and "The
Programming Language Concurrent Pascal™ [47] which
describes the use of monitors 1in a systems programming
language.

The text introduction 1is. Computer Arch i_tecture [48]
contains a good survey and description of the various types
of multiprocessors available in the early 1980s.

The HEP Hardware Reference Manual [493 is an

introduction to the HEP computer and is intended for
audiences with a general or moderately technical interest".
It includes an overview of the HEP system and architecture,
the CPU, the data switch, and the data memory.

Finally, the two papers Use of Monitors in Fortran: A
Tutorial on the Barrier, Sel f-schedu ling DO-Loop, and
Askfor Monitors"™ [10] and "Implementation of Monitors with
Macros: A Programming Aid for the HEP and Other Parallel
Processors"™ [50] provide an excellent discussion of the
monitors used by the subsumption program described later in
this thesis. Even though one of the titles mentions

Fortran explicitly, the same monitors have been provided

for use by C programs as well.
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I1. METHODS AND PROCEDURES

A. ELAM G£ A-l.IACFt

1- General . This section should provide a high-level
overview of the program which has been developed. The
section CODING AND IMPLEMENTATION provides the low-level
implementation details for those interested.

For portability, the program is written in the
programming Jlanguage C. The forward and backward
subsumption routines have borrowed heavily from the work of
Overbeek 1261. The idea, of course, is to take advantage
of the best efforts in current uniprocessor versions of
subsumption and to expand those efforts to exploit
parallei ism.

Two major levels of parallelism are integrated 1into
the program. They will be referred to as '"coarse-grained"
and "medium-grained" parallelism.

The ™"grain" of the parallelism refers to the size of
the problems being performed in parallel. For example, the
addition of two 1integers is a very small problem and would
probably be too small to justify the overhead necessary to
spawn a new task. On the other hand, the problems of
backward and forward subsumption are much larger
(especially for large clause spaces). This 1is the coarse-
grained level.

Within forward subsumption, a newly generated clause
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may have to be compared against every old clause to see if
any of them subsumes it. It may have to be compared
against every old clause, but this 1is not very likely.
Overbeek (26) has developed methods for selecting candidate
clauses that are most likely to subsume the new one. This

program takes advantage of those methods of selecting

candidates Assuming that there is a 1ist of several
candidate subsuming clauses, it may be the case that
the last candidate clause subsumes the new one . ln a

sequent ial progr am this fact is di scovered only after
checking all previous candidates in the [list. In the
parallel program, candidates are examined simultaneously.
This 1is the medium-grained level.

2. Process Creation. It is important to note here
that creation of a process may be quite an “‘expensive’
operation. Creation 1is not prohibitively expensive on the
HEP, but it may be on other multiprocessors. Thus, in the
interest of generality, the program described here attempts
to reduce that overhead by spawning parallel processes only
once, allowing them to stay quiescent until released by
some other process. The net effect is additional memory
usage instead of additional CPU time.

Early in the mainline code, the program creates
forward subsumption as a parallel process. Forward
subsumption is suspended until it 1is released later by the
mainline (with a problem to solve). Also, early in the

mainline, several smaller forward sub-processes are
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started. These are the routines that aid forward
subsumption in examining candidate, subsuming clauses in
parallel. These processes are also suspended until they
are released with a problem to work on. They are released
by forward subsumption when it has determined the set of
candidates.

This situation poses an 1interesting question: What if
there are more candidate clauses than there are processes?
This does not become a problem because the program is
designed such that it will always run 1in uniprocessor mode.
When the processes are told that there 1is a problem to work
on, they each ask for a subproblem, i.e. a candidate clause
to examine. If a process completes examination of one
candidate Cwith no subsumption occurring) then that process
asks for a new candidate to examine. If no subsumption
occurs, the processes will each eventually be told that the
problem is over by exhaustion. If subsumption does occur
within a process, the process can signal an early end to
the problem so that the others do not continue to execute
needlessly. The pseudo-code description of the algorithm
in the next section will make these points much clearer.

3- The Aloorithm. Pseudo-code of selected portions
of the algorithm are given in Figures 1. 2, and 3. Figure
4 illustrates the various parallel paths which may be
followed through the code. Finally, a verbal description
is provided which connects the 1ideas presented in the

pseudo-code and in Figure 4. In each case, the



mainline procedure:

read num_mac_processes; /* run fwd & bwd in parallel ? */
read num_fwd_processes; /* how many med- level fwds */
read num_bwd_processes; /* how many med- level bwds */
if (num_mac_processes == 2)

CREATE (forwsrdsubsum);
i = 1;

while Ci < num_fwd_p rocesses)
CREATE (fwd (slave));
i = i+ 1;

end while;

i = 1;

while (i < num_bwd_p rocesses)
CREATE (bwd (slave));
i = i +1;

end while;

get 1st new clause;

whi le (more_new_cl auses)

fwd_occur red = "no";

bwd_occurred = ’no”;

if (num_mac_processes == 1)
call forwardsubsum;

if (fwd_occur red == ’no” or num_mac_processes == 2)
hang (synch point 1) ; /* activate forward */
call bacKwardsubsum;
hang (synch point 2) /* tell forward prob over*/

if (bwd_occur red == ’yes” or fwdoc curred == ’no’)
cal 1 integrateclause;
else
num_fwd_subsumed = num_fwd_subsumed
get next new clause;
end while;
Pgm_done = ’yes’;
hang; /*al low forward to terminate */
notify the fwd (slaves) of program termination;
notify the bwd (slaves) of program termination;
stop;

end program;

Figure 1. Mainline Pseudo-code



forwardsubsum procedure:

forever
hang (synch point 1); /* wait for a prob to work
if (pgm_done == ’yes’)
break out of the forever loop
rc = 0;
new_lit = 1st 1literal in the new clause;
wh i o == o and new_ lit not= NIL)

form the set S of literals from the data
structures that clash with new._lit;
clashlit = 1st literal in S;
while (rc == 0 and clashlit not= NIL)
see if new_Ilit will unify with (is an
instance of) clashlit,
forming a substituti on Iif so «

if (the two Ilits unify)
start fwd (slaves) on the new problem
rc = fwd (master);
clashlit = next lit in S;
end while;
new_ |lit = next literal in new clause *

end while;
hang (synch point 2); /* wait for bwd to end */
if (num_mac_processes =
break out of the for ever loop;
end forever;
return (rc)

end progr am;

Figure 2. Forwardsubsum Pseudo-code



fwd procedure:

rc = 0;
forever;
ASKFOR a new problem (pt clashcls to the candidate)
if Cprogram terminating OR
(this problem 1is solved and 1 am the master))
break out of the forever loop;
if (this problem 1is solved)
continue; /* back to top of forever Iloop */
form L the set of remaining lits iin the new clause;
call subsum (L, current substi tut ion);
if (subsump occurs)
signal this problem over;

LOCK
fwd_occur red = ’yes";
UNLOCK
end forever;
if (fwd_occur red == yes")
rc = 1; /* master indicates that subsump occurred */

return (rc);

end program;

Figure 3. Fwd Pseudo-code
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parallelism is stressed, ignoring Jlow-level details of
clause construction and manipulation.

For the sake of simplicity, the pseudo-code does not
include the backward subsumption routines. They have been
omitted because they are so similar to the forward
subsumption procedures (Figures 2 and 3).

a- Ma inl ine Descr iption. The mainline procedure
(Figure 1) is fairly straightforward. It first reads in
two values that indicate how many separate processes will
be spawned to run in parallel. The TFfirst variable,
num_mac_processes takes on a value of either 1 or 2,
indicating whether forward and backward subsumption should
be run sequentially or should be run as two parallel
processes. The next variables, num_fwd_processes and
num_bwd_processes, can take on any integer values (up to
the maximum number of processes supported by the hardware).
They 1indicate the number of "medium-grained"* processes that
should be employed by forward and backward subsumption
respectively, to check candidate clauses for subsumption.

The Ffirst while loop creates all but one of the
medium-grained processes (named fwd) for forward
subsumption. The pseudo-code Tfor these processes (Figure
3) shows that they are suspended 1in an ASKFOR monitor, to
be activated later by forward subsumption. The fwds are
activated and the last of them 1is invoked by the forward
subsumption routine itself when a set of candidate clauses

have selected for examination. The bwd routines play a



similar role in backward subsumption.

The next 1line of code in the mainline gets the first
new clause. In a real theorem prover, this new clause
would be generated as part of the refutation! here,
however, new clauses are simply read in from a file.

In the Tfollowing descriptions it 1is convenient to

think in terms of "fork®™ and "join’” operations. For
example, if forward and backward subsumption are to be run
in parallel, it is natural to think of forward subsumption

as being Tforked as a separate process while the mainline
invokes backward subsumption. When the two processes
finish checking for subsumption, it is natural to think of
them as jJoining together again in the ma ini ine.

Inside the mainline’s large while 1loop a new clause is

examined Tfor subsumption, then another clause 1is retrieved.
Before the processing of each new clause, indicators are
set stating that no subsumption has occurred. These

indicators are changed in fwd and bwd respectively, if they
discover that subsumption does indeed occur. Next, if
forward and backward subsumption are to be executed
sequentially, then forward subsumption is 1invoked. If they
are to be performed in parallel, the assumption 1is that
forward subsumption was previously spawned as a parallel
process and is suspended waiting for a problem to work on.

Figure 4 demonstrates the alternative of executing
forward and backward subsumption sequentially or in

parallel. In Figure 4, the *F” represents the Tforward
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terminate itself. Finally, the medium-grained processes
(fwds and bwds) are notified to terminate.

b. Forwardsubsum Description. If forward subsumption
(Figure 2) is running as a separate process, it stays in a
loop until the program 1is terminated. Otherwise, it
returns to the mainline after each call. Assuming that the
forward subsumption vroutine 1is running as a parallel
process, it is suspended at the top of the 1loop waiting to
be activated by the mainline immediately prior to starting
the backward subsumption routine.

When the forward subsumption process 1is activated, it

begins by examining a literal of the new clause. It is

important at this point to recognize the fact that a given

literal may appear in several old clauses. If so, there is
only one copy of the Jliteral in the data structures. That
copy points to each containing clause. Maintaining a

single copy saves space and helps to speed the search
process.

A sei of literals which may contain the current
literal of the new clause as an instance 1is formed from the
data structures. The Ffirst literal from that set is
checked against the current literal of the new clause. If
the new one 1is an instance, then the clauses containing the
old literal become a set of candidate clauses that may
subsume the new one. If all literals are used from the set

with no subsumption occurring, then the next Jliteral fronm

the new clause 1is chosen and the process starts over again.
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The forward subsumption process invokes one of the
medium-grained processes Cfwds 1in Figure 3} to check
candidate clauses to see if any subsumes the new one. When
this 1invocation occurs, if there are several fwds waiting
for a problem, they all start executing. Each one asks for
a problem to work on. The problems are, of course,
candidate clauses to check against the new clause.

Figure 4 shows the available parallelism within the
forward subsumption routine. When the Tforward subsumption
routine wishes to check the candidate clauses for
subsumption, it invokes a master copy of fwd (designated by
f* in the Figure 4) to perform the tests. If there are
parallel copies of fwd (designated by f in Figure 4D
suspended, waiting for a problem to work on, they are all
activated and run concurrently with the master copy.

c. Fwd Description. Each copy of fwd (Figure 3D is
capable of examining all candidate clauses by itself. Each
fwd consists of a loop in which it enters the ASKFOR
monitor and requests the next candidate to be examined. It
then tests to see if the candidate subsumes the new clause,
signaling an end to the problem 1if so, looping to get the
next candidate if not.

Each fwd contains code to determine if the mainline 1is
ending, so that it may end also. There 1is special code
executed by the master fwd (f* in the above description)
that permits it to return to the forwardsubsum routine

rather than to continue looping. The master fwd must be



able to return in order to report the results, i.e. whether
or not any subsumption occurred.

The ability of each fwd to examine all candidate
clauses in the set 1is what provides the capability to test
the program on a sequential machine. On a sequential

machine, only one copy of fwd 1is used.

B. CODINGAm IMPLEMEN.IAIJ.QM

1. Detailed Program Degcript-iQ.il.

a. General . This section provides a detailed
description of the data items and logic used in the
subsumption program. It includes a description of the
driver program which reads in clauses and constructs their
internal representation for the subsumption program to
process. Line number references are to the program listing
in Appendix A.

The clauses are represented internally 1in structures
declared to be of types: “clauses’” and “items’. The
declaration of these structure types appear in lines 20 -
33. The clause headers are stored 1in structures of type

clauses and the Iliterals are stored in structures of type

items. Figure 5 gives a conceptual view of an internal
representation of a clause. In the figure, items are below
the clause header. Items below a predicate may be either
on the same level, e.g. an argument to the predicate, or

subordinate to other items, e.g. at is subordinate to (is

an argument of) fl-



pl(x1 ,fl1(al),yl) I glCx1l,y1l)

CLAUSE-HDR --——--————-

x1 _ y1l

x 1 fi_ y1

Figure 5. Clause

Internal

ptr to next HDR

Representation
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The structure type definitions contain references to
pointers. Any time the word pointer 1is used here, it
actually refers to an array subscript. This method was
used partially because subscripts tend to simplify the
debugging chore. Also, in C, there is a strong
relationship between pointers and arrays, strong enough
that they are usually treated simultaneously in texts.

Clauses which have been integrated as part of the
clause space are stored in the structures otdclause and
oldi tem. Clauses which are “new’” (newly generated by a

theorem prover) are stored 1in newclause and newitem.

b. Como ile- time VarjLfIJLLEA -

NIL - assigned the value -9. Any negative number
would work. This variable was defined because some
implementations of C assign the value 0 to NULL, and a
negative value is definitely required since an array
subscript of 0 1is valid in C.

STDERR - assigned the value 2. This is the unit to

which error messages are written from the procedure

“error”.

MAXOLDITEMS - the dimension of olditem.

MAXNEWIT EMS - the dimension of newitem.

TOKENSIZE - the 1length of a variable, constant, or
predicate. For the present , all are forced to a single
letter and a digit. therefore this value 1is 2.

SUBSIZE - the dimension of the substitution array.

L1TS1ZE - the dimension of several “temporary" arrays

48
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into which Jliterals are sometimes copied. For example,
subsum copies a domain-set literal into a temporary
location before passing it to unify because unify may alter
the Jliteral when it performs a substitution. Note that in
such a case, the LITSIZE must be 1large enough to hold the
original literal plus any added as part of a substitution.

MAXLITPERCLS - in a clause header, the number of
pointers to literals contained in that clause.

MAXCLAUSES - the dimension of oldclause, 1i.e. the
maximum number of clauses that may appear in the data
structures.

MAXLITS - the dimension of the 1litlist, i.e. the
maximum number of Uliterals that may appear in the data
structures.

MAXLITTOCLS - the number of pointers in each litlist
entry to a clause containing that literal. Note that these
pointers are in the 1litlist and not the items containing
the predicates.

MAXFPATOLIT - in an fpa entry (terminology employed by
Overbeek in [26]), this is the number of pointers to
litlist entries for literals containing such an fpa.

FPASPERHASHV - the number of fpa entries defined for
each possible “hash-to” location in the fpa list. For
example, if the FPAMODVAL (next variable) has a value of 5,
then there are 5 possible places to hash to in the fpa
list. Since collisions may occur, we need several slots at

each "hash-to” location, say 10. If there are 5 hash-to
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locations and 10 slots at each then the fpa |list has 50
entries. Note that the dimension on the fpa list is

FPASPERHASHVY * FPAMODVAL.

FPAMODVAL - the number of “hash-to* locations in the
fpa list Csee prev ious variable).

c . Structure Type Definitions.

items - each entry contains a type (p-predicate, V-
variable, etc.), a predicate sign. an id (the predicat e,
variable, etc.), a pointer to this predicate’s entry in the
literal l1list Cfor predicates), and a left and a right
pointer. The left pointer points to items owned’ by this
item, for examp le in f1Cx1,x2) the function f1 owns the
variables x1 and x2 . The right pointer i3 used to point to
the next item at its same level . In this examp le, x1 would

point to x2.

clauses - Each entry contains a set of pointers to
predicates of the clause in items. Each also contains a
pointer to the next clause header in the array of clause
structures. Finally, each entry contains a delete
indicator to tell whether that clause has been deleted by a
program or not. It is initially set to but is changed
to “d’” when the clause is deleted. At Tfirst, this approach
does not seem nearly as clean as simply adjusting the
pointer in the previous clause header to point to the

subsequent one. The chosen approach seems to work better

here however, because there may be pointers to the deleted



clause at other locations in the data structures. To seek
these out and delete or adjust them also would be a fairly
large task. The major drawback to the present approach is
that routines examining the clause headers must be prepared

to skip “deleted”’” ones.

litlists - this list contains one entry for each
literal in the integrated data structures. The predptr
po ints to the associated predicate. The clsptrs point to

each clause wh ich contain this litera 1.

fpalists - contains fpa entries. An fpa entry
cons ists of a predicate and 1its sign, an argument to that
predicate, the number of that argument wi thin the

predicate, and a set of poin ters to 1literals that contain

the fpa. This list is used to quickly fijnd literals wh ich
are good candidates to unify with a given literal
subs titution - a subs titution entry consists of a

variable (to be substituted for) and a pointer to the term

in items to substitute for that variable.

d. Fx ternal Variables. Lines 53 - 76 of the program
listing define the external variables several of which are
of types defined above. Note that there are several macro
invocations, e.g. ADECCfsD, which define external variables
to be used by the monitor macros. Documentation for these

macro definitions can be found 1in Lusk and Overbeek’s [10].

e. Macro Definitions. Recall from the high-level

description of the program that the ASKFOR monitor defines
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how subproblems are to be determined for solution by the

fwds and bwds. The ASKFOR is actually very general-
purpose. The FWDGETPROB (and BWDGETPROB) defined here
actually form part of ASKFOR monitors. For example, the

FWDGETPROB indicates that another subproblem 1is available
if the fsub variable 1is greater than -1. In that case, the
next problem to solve 1is indicated by the next subscript
value of Tfsub. Note that the limitation 1is 1imposed that
clsptrffsub] not be NIL. This is because the next problem
to be solved is the next clause pointed to by the litlist
entry of the clashable literal. The litlist points to all
clauses containing that [literal. The end of the [list is
marked with the NIL value.

The FWDRESET and FWDPROBST macros are used to reset

the fsub to -1 and to indicate that a new problem is

available for solving, respectively.

. Ths. Pr<?cedu.r.es—

main - The mainline routine contains the
initialization code. It then consists of two large loops,
one to read in the oldclauses (existing before a
subsumption check), and one to read in newclauses. The
loop that reads the newclauses may read in a new clause
each time, or it may jJust use the same new clause an
indicated number of times. The option of wusing the same
new clause over and over permits timings to be taken for
several <clauses by typing 1in only one. The rest of the

logic of the mainline is as described in the high-level
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integratec lause - This routine copies the new

clause 1into the integrated data structures Coldclause and

olditemD one literal at a time. Each time, before it
copies a literal, it verifies that the literal does not
already exist. If it does already exist, then the current

clause is merely added to the 1litlist entry for that

literal, and the new copy of the 1literal is removed.
After all 1literals for the clause are copied, entries

are added to the fpalist for each literal in the clause.

new ‘end’ is then marked in the oldclause structure.

buildliteral - This routine constructs an entire
literal. It does so by calling itself recursively an itenm
at a time. It calls getoken to return the next token
Cpredi cate, variable, sign, etc.) from the 1input stream.
*?” marks end of 1input for oldclauses and for newclauses.
*;e and ’De are skipped on input; they are merely
remembered as the previous token for purposes of parsing
the literals. For each predicate, function, variable, and
constant this procedure calls builditem to construct an
item to place in the data structures; then it makes the
recursive call to build the next 1item in the literal.

marks the end of a literal.

builditem - This short routine constructs the next

item. It will construct it in any items type-of-ob ject at
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location.
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litexistchk - This routine checks in the specified
items to see if some newly added Uliteral already exists
there. The assumption 1is that the calling routine will
remove the new copy 1if it 1is already there.

litcompare - Thi3 procedure examines two literals in
the specified 1items to see if they are identical. rc = 1
indicates that they are.

addtolitlist - This procedure adds a new entry to the
literal list if that literal does not already have an entry
there. If there 1is one in the Jliteral list already, then
it merely augments the Jliteral |list entry with a pointer to
the new clause containing that literal.

buildfpalist -
entry from the
pointed to by
into

each new entry

arises 1if a

This
specified
start_item.

the

literal has

procedure constructs each fpalist
items beginning at the item
It calls addtofpalist to enter
list. Note that a special case
no arguments (proposi tion, e.g.

p1c)] . 1n this case a single fpa entry Cfor argument
number zero] 1is constructed with blank argument. This 1is
necessary because the subsumption routines gain access to
the old literals through the fpalist entries.

addtofpalist - This procedure adds an fpa entry
constructed by buildfpalist to the fpalist. It calls
hashfpa to determine the point in the fpalist to which this
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particular entry hashes. If that entry 1is already in the
list, it merely adds a litlistptr value to it pointing to
the litlist entry for the new literal <containing this fpa.
If that entry is not already in the list, the routine adds
the entry and gives it an initial litlistptr to the
literal. The new entry 1is added at a location in the list
pointed to by new_fpat hashval 1, and then new_fpa[hashva I)
is incremented by 1. There is one entry in new_Tfpa for
each possible location in the fpalist to which the hash may
occur. This new_fpa entry contains a pointer into the
fpalist to the next open position for entries hashing to
that location. If an entry hashes to a Tfull location, then

a sequential search 1is performed 1looking for an open slot

hashfpa - This routine hashes the predicate and
argument to a slot in the fpalist based solely on the
predicate and argument number with in that 1literal The
argument itself 1is not used in the hash because 811
arguments at that posit ion in a given predicate should hash
to the same location so that when sear ching for 1lterals
that may unify, both variables and constants (or funct ions)
will be found at the same spot A varmable at 8 , iven
argument position might possibly unify with a constant or

function depending on the direction of subsumption; e g

pi Cxi ) will subsume pl(al)

prtclses - This routine prints the specified clauses

from the indicated 1items beginning at the particular clause



indicated by cc (curren t clause). It skips “deleted t
clauses. 1t will print either the number of clauses
indicated by howmany or print until it reaches the end of
the clauses, whichever comes first. It calls prtlit to
print the individual li terals. Note that the two routines
together rebuild the cl auses for pr inting, i.e. they must
put back in the *1°, *(C’, ”)’, and *;” symbols that were
stripped out when the 1literals were stored in their

internal format.

prtlit - This rout ine is called (by prtcilses) to
an individual literal from an entire clause. The two

rout ines work in concert as described above .

getoken - This routine acquires the next token from
the the input stream of clauses. A token may be a
predicate, constant, variable, or function. Also 1included
are *(”, and ") 7. *?7” is a special token used
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to delimit each of the sets of clauses, i.e. oldclauses and

newclauses. Note that predicate signs C+ or -) are also
retrieved from the input but are only used to set a flag,
they are not returned as tokens.

This routine calls getnextchar to retrieve the next
character from the input 1in its attempt to construct a
token. Note that following the construction of an item
such as pi it gets one additional character from the input

to determine if that next character 1is ”(” which would

indicate that the token currently in hand 1is a predicate or
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function. Additional context is used to determine which.
The additional <character retrieved 1is placed back in the

input stream by ungetc to be retrieved Ilater as part of the

next token.

getnextchar - This short procedure retrieves the next
character from the 1input stream of clauses, skipping the

following characters:

blank, \n (linefeed),
\r (carriage return),
\t (tab), and

» L4

9

for subsum - Note the external data definition
immediately prior to this procedure. This procedure
performs the forward subsumption check, i.e. it checks to

see if the current “new’” clause 1is subsumed by an old
clause.
The outermost loop is a “forever” loop that is exited
if the variable pgmdone 1is assigned the value “y” or if the
routine 1is called in uniprocessor mode (fwd_bwd_parallel =“n").
The nested while 1loop executes until either all
literals in the new clause have been examined or until
subsumption of the new clause is discovered (rc = 1).
Wi thin this 1loop is a cal 1 to getclashliits. This call
retrieves a list of all 1literals in the data structures
that may clash with the current literal of the new clause
A nested for loop examines each literal in the list to see

Jjf Jj* unifies with the current literal of the new clause.
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If any Jliteral unifies with the current new one, a
FWDPROBST 1is executed and a call to fwd 1is performed. It
no literal unifies with the new one, the next Iliteral in
the new clause 1is examined.

Note that BARRIERS are at the top and bottom of the
forsubsum routine to keep it in synchronization with the

mainline which may execute backsubsum in parallel.

fwd - This routine examines the clauses that may
subsume the new clause. Each clause 1is pointed to by a
literal in litlist that has been determined to be unifiable
with a literal in the new clause. The clauses that the
litlist entry point to constitute the subproblems, and thus
pointers to them are retrieved via calls to the ASKFOR
monitor. Note that one Jliteral of the old clause is
already known to unify with a literal in the new clause, so
that literal is skipped and not rechecked.

Recall that there may be multiple copies of this
routine running in parallel, therefore it executes as a
‘“forever” 1loop. A copy may exit only if it is the ‘master’

copy, or if the entire program 1is terminating.

backsubsum and bwd - These procedures looks Tfor old
clauses which are subsumed by the current new clause. They
differ from forsubsum and fwd in the following ways:

(€D only the first literal in the new clause

is clashed with old clauses in the data

structures.

(2) the clauses selected for clash are of
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course selected as possible instances of
new clause.

(3) when subsumption occurs rc = 1 is set

but control is not returned until all o1d

clauses are examined to see if they are

subsumed; also, any old clauses subsumed are

"deleted” by setting their delete 1indicators

to ’d’” Csee clause description above).

subsum - This routine checks to see 1if a clause in the
domain set subsumes a clause in the range set COverbeek
terminology). Most of the logic in this routine Iis
outlined well in Lusk and Overbeek®™s [81. They refer to
the equivalent routine as "subtest*.

It accomplishes its purpose by examining each literal
in the range set and seeing if it will unify with some
literal in the domain set under the current substitution.
This current substitution may have been supplied by a

calling routine such as forsubsum, or it may be passed down

by subsum itself in recursive calls.

As an example, if we wish to see if plCx1l) ! glCx1l)

subsumes ql(al) ! pil(al) we must TFfirst try to unify plCxl)

with ql(al). This obviously Tfails at comparison of the
predicates. Next, we try plCxl) against pl(al). This
succeeds with the substitution xl1l/al. Next, when we

attempt to unify ql1Cx1) with qgl(al), we must perform the
substitution xl1/al before attempting the unification.
Note that in the procedure, variables in the
“subsuming” literals are renamed (see renamevars) before
attempting the unification. This 1is done of course,

because the same variable name may appear in both clauses.
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but it 1is actually a different variable when in separate

clauses .

unify - This procedure performs the unify function,
although it 1is only a 1-direction unification in the sense
that it does not attempt to produce a most general wunifier
for the two literals. For example, full wunification would
produce the general wunifier x/a, y/b for the two clauses
p(x,b) and p(a,y). Here, however it 1is necessary to
discover if one clause 1is an instance of another for
purposes of subsumption - above, neither is. For pCx.b)
and p(a,b) the substitution x/a will permit ptx.b) to
subsume p(a,b), therefore the unification is one direction,
i.e. the direction 1in which subsumption 1is to be performed.

This routine calls itself recursively attempting to
unify the individual items. Note that the substitution in

force at any given point 1is passed down to the next level.

skiplit - This short routine copies a clause header to
a temporary location skipping the literal specified by

lit_to_skip.

getclashl its - Note that this routine has an external
structure definition above it that 1is used for definition
of temporary data items.

This procedure examines the arguments of a literal and
uses the fpalist to find Iliterals that may unify with it in

the specified direction, i.e. forward or backward. It



builds an fpa for each argument and calls fpamatchk to look
for matching entries in the fpalist. Note that an fpa for
a proposition, e.g. pl(), is a special case in that the
argument number is O. Each Jliteral discovered by fpamatchk
is added to a temporary clash list (see addtotempcl ash

be lTow) .

After all matching fpas have been discovered and
pointers to their associated literals (actually their
litlist entries) have been placed in the temporary clash
list, the entries 1in tempcl ash are examined. Each entry
has associated with it a reference count. If the reference
count matches the number of arguments that were in the
literal, i.e. this Jliteral unifies with the new literal in
every possible argument, then the literal is added to the
litstoclash list of literals to clash with the current new
literal. Note that the argument number of 0 for
propositions is treated special here because the argument

number will not match the reference count of 1.

fpamatchk - This vroutine Jlooks for fpalist entries
that match a given argument of some specified predicate.
Pirst, it hashes the predicate and argument number using
the same routine (hashfpa) that is used when when Tfpalist
entries are created. Once reaching the hash-to position,
it searches forward 1looking for matching fpa entries.

Note that fpa entries do not have to match exactly.
For example, when performing forward subsumption, the fpa

entry for pl(x1, will match with pl(al, from the new
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clause because the Jliteral containing the x1 may subsume

the one containing the al.

isavariable - This procedure examines the Tfirst
character of any specified item to determine if it 1is a
variable. Variables begin with one of the letters s-z.
Predicates, constants, and functions begin with one of the

letters a-r or A-Z, as in |ITP 134],

addtotempcl ash - This procedure adds a litlist pointer
to the temporary clash 1list for getc lash lits. If the “new*
entry 1is already there, it merely increments the reference
count Csee getclashlits), otherwise it adds the entry and

initializes the reference count to 1.

copyterm - This routine will copy any items type-of-
object beginning at from(fl) to a location beginning at
toltl). It considers each 1item to have a right and left
side as depicted in Figure 5, where for example, the
function fl1 has the Ileft side al and the right side yl.
The left side is subordinate to the 1item, and the right
side is on 1its same level.

If copy _type = 1" (left) copyterm will copy only the

first item and its left side ; *r’” it copies onl, the itenm

and its right; ’b* the item and both of its sides ; any
other value - it copies only the one item. Litlistentrys

are copied for predicates even though the 1litli3t entries

do not point to the copies, only to the originals
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The procedure 1is recursive for the Ileft and right
parts if they are to be copied. Note that if an outside
rout ine calls this one to print an item and 1its left, the
item is Ffirst cop ied, then a recursive call is made to copy

the left 1item and pfcth of its sides.

renamevars - This procedure renames the variables 1in a
literal. It is typically called before the unification
process is performed. The variables need to be renamed in

a “subsuming’ clause because the same variable names may
appear in two clauses, but of course represent different
variables.

The variables are given names that cannot be supplied

as names by the user. Recall that variables must begin
with one of the letters “s” - *z”_. These are merely
changed to *1” - *8”, respectively in the internal
representation. Note that the variable names are actually

altered, so a calling would normally copy the literal to

some temporary location, before calling this routine.

substitute - This procedure performs the substitution

for variables in a literal which 1is being unified with

another. Only variables which have renamed values (see
renamevars) will be replaced. Consider the case where 61
(representing xl) is to be replaced by gKbl.xl). The

substitutuion entry would contain:

(€D the variable name - 61 here

C2D a po Inter to the substitution the Tfirst
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item in the function glCbl,x1).
When the substitution is performed the first item and

its entire left side 1is substituted for the 1indicated

variable. Here, the 61 would be replaced by gl(bl.xl).
error - This routine 1is a general routine that can be
called by any procedure that detects an array overflow. It

accepts arguments containing the name of the procedure
detecting the error, the name of the variable that exceeded
the array size, and the name of the variable containing the
maximum array size.

The procedure prints out a message giving this
information, and then halts program execution by 1issuing an

exit (1) instruction.

2. Testing. The testing of the subsumption program
was essentially done in three stages.

In stage 1, a version of the program was tested which
contained no parallelisnm, in order to verify that the
program would correctly perform the subsumption process.
Most testing at this stage was done on an |IBM personal
computer. Eventually, the program was uploaded and tested
on a VAX 11/780 at UMR.

At this point, it should be mentioned that a version
of the monitor macros was available for use on a VAX. This
version of the macros, for the most part, generates no
code; it just allows compilation of the program with no

changes to the source. Therefore, it was possible to



65

execute the “multiprocessor’ version of the program on the
VAX merely supplying the necessary parameters to tell the
program that it should spawn no parallel processes.

In stage 2, the program was augmented with the monitor
macros. Recall that this version of the program is coded
in such a manner that it runs successfully in uniprocessor
mode . Thus, it was possible to perform 1initial testing of
the multiprocessor version on the VAX at UMR.

Stage 3 of the testing involved executing the progranm
on the HEP multiprocessor at Argonne National Labs. At
first, this testing was done 1in uniprocessor mode just to
verify that the program would still work. Then, testing
was done with various numbers of parallel processes.

At this point, some problems were encountered which
would occasionally Jlead to ABEND situations. Debugging was
usually done by placing print statements at selected points
in the routines in question. Of course, locks had to be set
when such printing was done because the routines were running
in parallel and potentially could interfere with each other.

When each problem was found, a correction was applied
and the testing retried. Usually, for 1large changes, the
program was retested on the VAX at UMR Tfirst to verify that
the logic remained sound 1in uniprocessor mode.

Typically, an ABEND would arise in the form of a
memory protection error. Referencing beyond the end of an
array could cause one of these errors, but those errors

encountered in this testing were all caused by two (or
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more) parallel routines attempting to change the same
external variable at the same time.

It is, of course, best to minimize the number of
external variables in a program, but in this environment,
it is almost 1impossible to do away with them completely
since the processes communicate through common memory
locations and often must examine the same location. Care
must be exercised when an external item may change however,
and Jlocks set if necessary.

Innumerable problems arose during stage 3 of the
testing phase. Several of them were due to communication
over phone lines between UMR and Argonne.

Most problems however, were due to the fact that the
HEP had a new version of its UNIX operating systenm
installed, which tended to be quite unstable. It was not
unusual to get numerous intermittent memory protection
errors for no apparent reason. The task of determining
which errors actually resulted from program errors was
usually accomplished by simply rerunning the program
several times. Program-induced memory protect errors would
usually recur. This version of the operating system also
tended to lose files frequently, which caused considerable
additional logon time jJust to restore files. Also, some of
the C routines that perform asynchronous operations were
not initially available.

This discussion 1is not intended to downgrade the HEP.

Instead, it should be stated that the HEP does present a



very powerful environment for research.

happened to begin things were in a state

Argonne. situation progressively improved,

hopefully, continue to do so.
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RESULTS,

Al GENERAL

This section presents the results of the stage 3
testing Csee TESTING section) done on the HEP computer.
These results are intended to demonstrate that when certain
forms of parallelism are available in a given problem, that
the program can 1indeed exploit that parallelism; in fact,
that it can speed up certain portions of the program by as
much as one order of magnitude on a single-PEM HEP. The
results also demonstrate the fact that when these forms of
parallelism are not available, performance may be
downgraded somewhat.

Because these two conflicting cases may arise,
subsequent sections CCONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH) discuss program options that permit the
choice of which, if any Torms of parallel! sm to use, and
when to use them They also discuss other forms of
parallelism that may be desirable to build into the
program. In this section however, the experimental results
obtained thus far are simply presented, with minimal
comments or suggestions.

Associated with each of the following sets of test
results, 1is a figure that shows the approximate run-time of
each test in milliseconds. These Tfigures are not intended
to provide exact values, but rather to demonstrate the

relative times of one run to another. Each of these figures
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has an axis called "Type and Number of Processes". The
labeling on these axes should be described before
continuing.

On each axis, if the label "fbp" is printed, it means
that forward and backward subsumption are run 1in parallel.
If this label is not present, then it 1is assumed that they
are run sequentially, i.e. TfTorward, then backward. All
other Jlabelings contain two numeric values, e.g. "4,8",
which means that 4 copies of fwd are running in parallel
with 8 copies of bwd. Note that both forms of Ilabel may be
present for a single execution. If a given run shows "1,1"
and does not show fbp, then it is essentially a uniprocessor

execution.

B. TEST J.

Test 1"s data has been set up such that several of the
old clauses are candidates to subsume the new clause, but
only the last one actually does subsume it. Therefore, in
sequential mode, several old clauses must be examined to
discover that the last one subsumes. In a parallel mode
however, several old clauses may be examined at one time.

For this test, the timings were taken 1immediately
before the FWDPROBST instruction (line 814) and immediately
after the rc = fwd (master) instruction (line 815). The
timings were taken at these locations because, in this
test, the concern 1is not with the overall run-time of the

subsumption algorithm, but rather only with speeding up



that portion of the algorithm which 1is responsible for
examining candidate clauses.

Note from Figure 6 that five executions are
represented with 1increasing numbers of fwds devoted to the
problem. They range from a uniprocessor execution to an
execution with 16 fwds. The approximate timings vrecorded
are: 140, 71, 39, 20, 17, and 13 ms.

Note that the range on the timings 1is Tfrom
approximately 140 ms to 13 ms, or about one order of
magnitude speed-up. This 1is the most dramatic speed-up
obtained with the program thus far, although the same is

obtainable with multiple bwds on a similar problem.

C. 1.L.S.X 2.

Test 2’s data has been set up such that no subsumption
actually occurs in either direction, but several old
clauses are candidates to subsume the new clause in forward
subsumption and several old clauses are candidates to be
subsumed by the new clause in backward subsumption. Since
no subsumption occurs, both forward and backward
subsumption must be run to determine this fact.

For this test, the timings were taken immediately
before the if (fwd_bwd_para llel == ’n) 1instruction (line
296) and immediately after the backsubsum () instruction
(line 301). The timings were taken at these locations
in order to calculate only the time spent in forward and

backward subsumption, without 1including any unnecessary
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overhead of time 1looping in the mainline, etc.

Note from Figure 7, that five executions are
represented: a uniprocessor run, a run with Tforward and
backward 1in parallel, and then three other runs with
forward and backward in parallel and various numbers of
fwds and bwds devoted to examination of candidate clauses.
The approximate timings recorded are: 298, 250, 175, 139,
and 120 ms .

Note that more overhead 1is present in these timings
than in Test 1, because we are examining the entire time
through the forward and backward subsumption routines, not
just the time to examine a set of candidate literals. It
should be apparent however, that a reasonable speed-up
(about 2.5 times, here) is attainable for the overall

subsumption algorithm for this type of problem.

D. TEJSX 2.

Test 3 "s data has been set up such that several of the
old clauses forward subsume the new clause, but also such
that the new clause backward subsumes several old clauses.
This test 1is designed to demonstrate the aspect of the
program that gives backward subsumption precedence when
both forward and backward are run 1in parallel. Recall that
if they are running in parallel and both forward and
backward occur, then the backward is used because with
forward only the new clause can be subsumed, but with

backward, several old clauses may be subsumed.
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For this test, the timings were taken at the same
locations as in Test 2, 1i.e. immediately before the
invocation of forsubsum and immediately after the
invocation of backsubsum (lines 296 and 301). As in Test
2, the concern is only with the time spent in both forward
and backward subsumption, without including any additional
overhead .

Note from Figure 8 that four executions are
represented: a uniprocessor run, a run with forward and
backward in parallel, and then two other runs with forward
and backward in parallel and various numbers of fwds and
bwds devoted to examination of candidate clauses. The
third run gives 8 copies each of fwd and bwd. The fourth
run tries 14 bwds, because we know that 1in this run there
are more clauses backward subsumed. It does not show much
speed-up over the "8,8” run however, due to the Tfact that
even though not much forward subsumption occurs, there are

several old clauses that are candidates to forward subsume.

The approximate timings are: 50, 178, 70, and 61 ms.
Figure 8 indicates therefore, that the uniprocessor run of
this test takes less time than any of the other runs. The
important statistic for this test however, 1is not merely
the run-time. Rather, it 1is the number of clauses
subsumed. Note that Figure 9 indicates that the
uniprocessor version of the program only found one clause
to be subsumed (forward). In the other runs, 28 clauses

were subsumed (backward). Also, when fwds and bwds were
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added to assist the process, the run-time came back down

close to the time Tfor the uniprocessor execution.

E . TESTS * flJut 5.
Tests 4 and 5 are not 1linvented®" data. Rather, they
problems that have been published elsewhere, e.g in
[28, 23. For these tests, the problems were first run

through the automated theorem proving system |ITP [34],
saving generated clauses in a fTile. Recall that the
program described in this thesis has a mainline routine
which reads 1in new clauses and then invokes the subsumption
routines. The mainline 1is playing the role of an automated
theorem prover which generates the new clauses and then
invokes the subsumption routines.

Test 4 is the group theory problem G5 described in
"Problems and Experiments for and with Automated Theorem-
Proving Programs"™ [283 by McCharen, Overbeek, and Wos. All
axioms and the denial of the theorem are stated in 1283
along with statistics from an execution of their theorem
prover documenting the number of clauses generated, number
kept, etc.

For this test, the timings were taken immediately
before and after the 1large loop in the mainline which reads
in new clauses and invokes the subsumption routines (lines
256 and 3113- This time 1is the entire time to solve the
problem for all generated clauses.

In all executions of this test, 30 clauses were
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subsumed. In the cases where forward and backward were run
sequentially, 30 clauses were forward subsumed. However,

in those cases where forward and backward were vrun in
parallel, 10 clauses were forward subsumed, and 20 were
backward subsumed.

Note from Figure 10 that five executions are
represented: a uniprocessor run, a run with forward and
backward in parallel, and runs with various numbers of fwds
and bwd s .

It is interesting to note that for this problem, the
parallelism actually slowed the runs down. This fact is
partially due to the additional overhead encountered in
telling parallel routines that there 1is no work for them to
do. For example, in Test 1 it was demonstrated that if
there are several candidate clauses to subsume a new
clause, then multiple fwds speed the process up. Here
however, it can be seen that in cases where there 1is only a
small number of candidate clauses, multiple parallel
processes may actually slow the subsumption down because
time must be spent informing the parallel processes that
there 1is no work for them to do.

In the cases where forward and backward were run in
parallel, synchron izt ion overhead was encountered, and yet
there were no additional <clauses subsumed to compensate as
there were in Test 3.

Test 4 could be used to support an argument against

the use of any parallelism at all in a subsumption program.
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Test 5 would not support such an argument however, as may
be seen in the subsequent paragraphs.

Test 5 is the "Missionaries and Cannibals® problenm
presented in Automated Reason ina Introduction aDd
Adol ications [2] by Wos, Overbeek, Lusk, and Boyle. All
axioms are stated in 121 including four clauses created
just Tfor subsumption purposes; they enable an automated
theorem prover to subsume generated clauses which represent
trips that result in distress to the missionaries.

For this test, the timings are the same as for Test 4.
In all executions of this test. 8 clauses are forward
subsumed. No backward subsumption occurs.

Note from Figure 11 that seven executions are
represented: a uniprocessor run, a run with forward and
backward in parallel, and several runs with various numbers
of fwds and bwds.

The run with forward and backward in parallel and no
fwds or bwds did the best in terms of run-time. This is
because there were several new clauses generated but for
which no subsumption at all occurred. For those clauses,
the sequential execution had to run forward followed by
backward just to discover that no subsumption occurred. In
the case where forward and backward were done in parallel
however, the fact that no backward subsumption occurred was
discovered at approximately the same time as the fact that

no forward subsumption occurred-
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1v. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Tests 1, 2, and 5 support the Ffact that substantial
speed-ups are realizable through the use of parallelism in
a subsumption program. Tests 3 and 4 demonstrate that more
research 1is needed to learn when the use of that parallelisnm
is warranted for a given problem.

For problems where very little, if any, subsumption is
expected to occur it would seem natural to have forward and
backward subsumption running 1in parallel because those
cases would require both routines to be invoked during
examination of most of the new clauses.

For problems where the new clauses tend to clash with
several old ones, it would be best to use several fwds and
bwds. Sometimes this case would be relatively easy to spot
by simply 1looking at the original set of clauses. If they

have widely varying predicates in the individual clauses,

then such parallelism would probably not be warranted. On
the other hand, if several <clauses have the same predicates
and arguments in some of their Jliterals, then such

parallelism might prove useful.

It would seem that the future research to determine
when to use a particular form of parallelism should Tfollow
three steps.

First, several runs should be made of different
problems from widely varying classes. This should help to
build some intuition as to when each form of parallelism

would prove most useful. Second, an attempt should be made
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to move from the intuitive level to a point where the
gained understanding can be described to others. Finally,
the descriptive Ilevel should be 1incorporated into the
program, 1i.e. the program should be able to decide when to
employ a particular form of parallelism.

Note that these suggestions of how to approach the use
of parallelism in subsumption do not differ very much from
the way in which other theorem proving parameters are
approached. Powerful theorem provers such as |ITP have a
wide range of variables which may be altered by the user.
For example, they often include options of whether
subsumption is to be used at all or not, whether short
clauses can subsume long ones, how to weight clauses to
determine which to choose next from the set of support, etc.
The wrong choice on some of these options can often
drastically affect the time to a proof, and 1in some cases
can even prohibit a proof from being found.

In addition to the further research described above,
more research 1is also needed to determine additional areas
within subsumption where parallelism may be exploited.
Several areas seem quite promising.

The TFfirst promising area to exploit new parallelism is
in the selection of candidate clauses. At present, the
program can check multiple candidates for subsumption after
the candidates have been chosen, but the process of
choosing the candidates 1is still sequential. Recall that

Overbeek’”s 1261 method of selecting candidates (only
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clauses that contain a literal which clashes with a literal
in the new clause) 1is used in the program. The addition of
parallelism would either have to be tailored to work with
that method, or an alternative method could be developed.

Two 1ideas come to mind to develop parallelism in the
selection of candidates.

First, multiple Iliterals in the new clause could be
examined to determine if there are any literals in the data
structures which clash with them. This would involve
changes to procedures forsubsum and backsubsum.

Second, for each literal in a new clause, multiple old
literals could be examined 1in parallel to see 1if they clash
with the new one. This would involve changes to procedure
getclashl its . The new parallelism would probably prove
useful in clause spaces where several clauses have literals
with the same predicates.

Another promising area to exploit new parallelism is
in the subsum procedure which is invoked by both forward
and backward subsumption. This routine examines a pair of
clauses to see if the first subsumes the second. For each
literal in the “"subsuming” clause, it might prove useful to
check it against every literal in the "subsumed” clause
simultaneously. Of course, this would only be useful for
large clauses, i.e. clauses with several literals.

Beyond the new parallelism ideas mentioned above, it
might prove interesting to experiment with making larger

changes to the algorithm. For example, forward and
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backward subsumption might be combined 1into a single

routine called subsumption. Then, when the procedure
getclashlits is invoked, it would return not just a list

of literals that are unifiable 1in a single direction, but a
list of all literals unifiable in either direction. Then,
as suggested above, multiple clauses containing the
clashable literals could be tried at once. The subsum
procedure would need to be changed to determine not only if
clause X subsumes clause Y, but also to determine if clause
Y subsumes clause X (running forward and backward in
parallel could then be performed at this level). Also,
subsum could be coded so that it would only try one of the
two directions if backward subsumption had previously
occurred, very similar to the way things are done in the
current algorithm.

Another research 1idea 1is to make all problems that can
be done in parallel part of a pool, and to make the spawned
processes intelligent enough to accept any type of problenm
to work on. This is perhaps the most elegant approach for
a final version of the algorithm, but when still in the
experimental stage it tends to add unnecessary complexity
in controlling the number of processes that are devoted to
a particular problem type.

Of course, areas of automated theorem proving other
than subsumption are wide open for research when combined
with multiprocessing. Overbeek and Lusk [32) suggest

demodulation as one possibility.
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tinclude <stdio.h>
tinclude <ctype.h>

¢ def ine

¢def ine
¢ def ine
¢ def ine
edefine
¢def ine
edefine
¢def ine
edefine
¢ def ine
¢ def ine
¢ def ine
edef ine
edefine
edefine

struct

struct

struct

DEBUG y

NIL -9

STDERR 2
MAXOLDITEMS 750
MAXNEWITEMS 100
TOKENSIZE 2
SUBSIZE 100
LITSIZE 300
MAXLITPERCLS 20
MAXCLAUSES 50
MAXLITS 100
MAXLITTOCLS 50
MAXFPATOLIT 50
FPASPERHASHV 50
FPAMODVAL 15

items {

char type;
char pred_sign;
char id[TOKENSI ZE ] ;

int litlistentry;

int left;
int right;

J;

clauses t

char delind;

/* for

a pred,

int 1itptrCMAXLITPERCLS]:

int nex tcls;

1;

litlists f

int predptr;

/*

ptr

into

pts to
/* ptr into
items */

litl istentry*/

i tems

*/
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37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

int clsp tr[MAXLITTOCLSZ;
)

struct fpalists |
char predlITOKENSIZE+21;
char ar g[TOKENS IZE+115
int argnum;
int litlistptrtMAXFPATOLITI; /*ptr into litlist*/
}s

struct substitution (
char var[TOKENS IZE 1;
int termptr; /*ptr to subst term in items*/
)N

int new_lit, 0ld_prev_pred_in, new_prev_pred_in, debug, nl, ol,
nxt_newitem[11l, nxt_o lditemtll, new_fpa[FPAMODVAL+11,
nummacprocs, fwd_bwd_parallel, numfwdsub, numbwdsub,
numfwdprocs, numbwdprocs, fsub, bsub, clkl, clk2, tot time;

char fwd_occurred, bwd_occurred, pgmdone;

char tokentTOKENS IZE J,
10ken_type,
prev_clause ,
curr_clause,
prev_token,
pred signi

struct items newitem [MAXNEWITEMS];

struct items olditem [MAXOLDITEMS]»

struct clauses oldclause [MAXCLAUSESI;

struct clauses newclause [11;

struct litlists Ilitlist [MAXLITS!;

struct fpalists fpalist [FPASPERHASHV * FPAMODVAL1s

/XxXx***  monitor declarations KR A KKK K KAk K [ ﬁ
ADECC fs)



73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

ADECCbs)

BARDECC f 1)
BARDECC f2)
LOCKDEC(3)

IXXXXXXX macro definitions XXXXXXXXX/
def ine(FWDGETPROB,
“if (fsub > -1)
|
if (litlist[fclashlill.clsptrifsub)

{
*1 = fSUb;
fsub++;
$2 = 0;
def ine(FWDRESET,
efsub = -1;°

)

def ine( FWDPROBST,
'MENTERC fs ,0)
fsub = 0;
CONT INUE Cfs , 0,0)
MEXIT(fs,0)"

def ine(BWDGET PROS,
“if Cbsub > -1)
t
if Cfitfisttbcfashl itl.cfsptrCbsub)
f

NIL)

NIL)



109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

$1 = bsub ;
bsub++;
$2 = 0;
def ine(8WDRESET ,
‘bsub = -1s'

)

def ine(BWDPROBST,
‘MENTERfbs,0)

bsub = 0;
CONTINUE(bs ,0,0)
MEXITCbs.O) ”’
)
main()
(

[****** declare parallel processes ******x*x/
NEWPROC( fwdslv)

NEWPROCC bwdslw)

NEWPROC( forwardproc)

int nxtlit, prtind, rc, i, lit_start, master,
newclsctr, numnewcises, reuse_newcls_ind;

[rrxEAE initialize monitors and associated variables ***x*xx/

AINITCfa)

AINITCbs)

BARINIT Cf 1)

BARINIT (f2)

LOCK INIT(3)

fsub = -1; g



145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

bsub = -1;

master = O0;

pgmdone = ’n°*;
numfwdsub = 0;
numbwdsub = 0;
nxt_olditem[03 = -lIs

new_1 it = O0;
for Ci=0; i < FPAMODVAL +1; i++) 1

new_fpati] = i * FPASPERHASHVs

)

token_type = 7;°";

o ldc lauselO1.litptr[O01 = NIL; /*1st els currently has 0 lits*/
0 Idc lausetOl1l.nextcls = NIL;

oldclause[0].de lind = *-7;

prev_cl ause = -1;

curr_clause = 0;

old_prev_pred_in = -1;

1 = 0;

printf("\n\nSubs ump tion beginning\n\n");

scant ("Sd"™, 1inumnewcl sea);

scanf ("%d", &numfwdprocs);

scant ("Sd", &numbwdprocs);

printfC"numnewe Ises = Sd numfwdprocs = Sd numbwdprocs = Sd
numnewclses,numfwdp rocs,numbwdprocs);

debug = getchar Q; /* skip linefeed in the input stream */
debug = getchar Q;

prtind = getchar ();

reuse_newe Is_ind = getchar (;

fwd_bwd_para llel = getchar Q;

printf("debug = %c prtind = Sc \n", debug, prtind);
printf("reuse_newe Is_ind = Sc fwd_bwd_para I'lel = Sc \n",

reuse_newe Is_ind, fwd_bwd_parallel);

\n "

00T



181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

for (;:) |1
lit start = nxt_olditeml0]; /*save place new lit starts*/
nxtlit = buildliteral (oldclause, olditem, nxt_olditem) ;
if Cnxt old iteml0] > MAXOLDITEMS)
error ("main"™, "nxt_olditemtO]", "MAXOLDITEMS");
if (nxt lit == *?%)
break;
oldclause(curr_clause).litptr(i) = nxtlit;
i++ ;

if Ci > MAXLITPERCLS)
error ("main", "i", "MAXLITPERCLS™);
if (nxtlit == NIL) /* end of a clause */
|
i = 0;
if (prev_cl ause = -1)
oldclause(prev_clausel.nextcls = curr_clause;
prev_clause = curr_clause;
curr_clause++;
if (curr_clause > MAXCLAUSES)
error ("main", "curr_clause", "MAXCLAUSES");

oldclause(curr_clause].litptr[0) = NIL;
oldclauselcurr_clause].nextcls = NIL;
oldclause(curr_clause].delind = ’-7;
)
else
|
rc = litexistchk (olditem, nxtlit); /*1it already in olditem? */
if (rc == NIL) /* lit did not previously exist */
|
if (old_prev_pred_in = -1)
olditemlold_prev_pred_in).right = nxtlit;
old_prev_pred_in = nxtlit;
rc = addtolitlist (nxtlit, curr_clause, ’n’ /*new*/);
oldi temInxtl it! _litl istentry = rc; /*build pred to litlist ptr*/
1

else /* lit was already in the data structures */

TOT



217 1

218 nxt_otditemlI03 = 1i t_start; /* remove this new copy from item
219 oldclause[curr_clause].litptr[i-11 = rci /*pt els to oldl it*/
220 rc = addtolitlist (rc, curr_clause, "0’ /*old*/)*
221

222

223

224

225 if (prtind == *y*)

226 (

227 printf("\n\nthe old clauses are \n");

228 prtclses(oldclause,olditem,0.MAXCLAUSES); /* print old clauses */
229 )

230

231

232 buildfpalist (olditem, 0)i

233

234

235 /«**«*** create the slave processes

236 if (fwd_bwd_para llel == ’y7)

237 t

238 nummacprocs = 2:

239 pr intfC"creat ing forwardproc\n") s

240 CREATE(forwardproc)

241 )

242 else

243 nummacprocs = 1;

244

245 for (i=1; i1 < numfwdprocsi i*+) (

246 CREATE(fwdslv)

247 )

248

249 for Ci=1; i1 < numbwdprocs: 1i+0 1

250 CREATE(bwdslv)

251 1

252

0T



253

254 /* process the new clauses */

255

256 CLOCK(clk 1);

257 for (newclsctr = 0; newclsctr < numnewclses; newclsctr++) {
258

259 if (reuse_newe Is_ind == *"n°* i! newclsctr == 0)

260 f

261 nxt_newiteml0] = -1;

262 token_type = 7;7;

263 newclauselOl_litptrl0] = NIL;

264 newclausel0].nextcls = NIL;

265 newclauseC0l.delind = ~

266 new_prev_pred_in = -1;

267 i = 0;

268 for C;;) 1

269 nxtlit = buildliteral Cnewclause, newitem, nxt_newitern);
270 if Cnxt_newitemlOl > MAXNEWITEMS)

271 error ("main", "nxt_newitemlO]", "MAXNEWITEMS™");
272 if (nxt lit == ?%)

273 break; /* out of inner for loop */

274 newe lauselO] . litptr (i1l = nxtlit;

275 if (nxtlit == NIL && token_type == 7;%)

276 break;

277 ite;

278 newe lauselOl. litptr I'i] = NIL;

279 if (nxtlit !'= NIL &A new_prev_pred_in = -1)
280 newitemlnew_prev_pred_inl.right = nxtlit;

281 new_prev_pred_in = nxtlit;

282 } /7 end for */

283 if (nxtlit == 7?7)

284 break; /* from outer for loop */

285 if (prtind == ’y~’)

286 (

287 printf("\n\nNext new clause is.- \n");

288 pr tclses(newclause,newi tem,0,1); /* print new clause */

€0T



2t0
at)
ata
ata
at<
att
att
at?
att
att
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325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

PROGEND(bs)

rttufn (0)i

1 /* end main */
/* Pforw«rdproC */

forwardproc ()
I

forsubsum ()t
nturn (0)i

I /* end for«irdproc

/« Pfwdslv */

fwdslv ()
f
en» slave : ti

fwd (sieve)i
return (0)i

1 /* end fwdslv «/

/= Pbwdsiv */

bwdsiv M
|
>nt sieve = 1:

«/

S0T



361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

bwd

(slave);

return CO);

3 /*

/*

end bwdslv */

Pintegrateclause */

integrateclause ()

1

cls_

for

i, nlit, olit, rc, lit_start, cls_start;
0;
start = nxt_olditeml0l + 1;
(nlit = 0; nlit != NIL; nlit = newitemlnl it l.right) 1
li t_start = nxt_olditeml03 + 1; /*save place where new lit will start */
olit = copyterm (newitem, nlit, olditem, Ilit_start, ’'I', MAXOLDITEMS);
nxt_olditeml03 = olit;
oldclauselcurr_clausel. litptr i3 = lit_start;
iee;
if Ci > MAXLITPERCLS)
error ("integrateclause", "i", "MAXLITPERCLS");
oldclauselcurr_clause]. litptrt i3 = NIL;
rc = litexistchk (olditem, lit start); /[* 1it already in olditem? */
if (rc == NIL) /[* lit did not previously exist */
I
if (old_prev_pred_in = - 1)
olditemtold_prev_pred_in3.right = lit_start;
old_prev_pred_in = lit_start;
rc = addtolitlist (lit_atart. curr_clause, 'n* /[*new?*/);
oldi temtl it start) .litl istentry = rc; [*build pred to litlist ptr*/
3
else /[* 1lit was already in the data structures *

90T



397 I

396 nxt_oldi teml0l - 1It_star t: /[* remove this

new copy from itemn */
399 oldclause(curr_cl ause) Mtptr(i-1 = rci [*pt els to oldli t*/

400 rc s addtolitlist (rc, curr_cl*use. 'o’ [/*old*/);
401 )

402 1

403 buildfpalist (olditem. cls_start):

404 if (prev_ctause 1- -1)

405 oldcl ause(prev_cl ausel nextcls = curr_clause;
406 prev_clause - curr_clau»ei

407 curr_clause**i

406 oldclause(curr_clausellitptr(01 = NIL:

409 oldc I'lusit curr_cl lust | nextcls = NIL:

410 oldcliusitecurr_cliusil deltnd =
411

412 return (0O1:

413 ) I* end integrateclause */
414

415

416

417 /« Pbulidliterai «/

416 buiidliterai(clause. item nxtitem)
419 sthuct claus*$ clause():

420 stmuc« items item!1ls

42 1 rnit nXtiteml | =

422

423 |

424 inf rc, rurrifem:

425

426 rc I ge«t0xanC):

427 if (rc m 1-1

426 Freturn (

429 if (foken tvpe -* loken_type CT)
430 (

43 1 rr @ getoKen(

432 1

L0T



433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

switch (token_type) 1
case "i’

case ’)*
rc = NIL; /* null */
break;
case "p*"
case “f~*
builditem(itern, nxtitem); /* build a predicate or function */
curr_item = nxtitemtOl;
itemlcurr_iteml_left = bui Idlitera ICclause, item, nxtitem);
if (itemlcurr_iteml_type == ’p~’)
itemlcurr_iteml_right = NIL;
else
itemlcurr_item).right = buildlitera I(clause, item, nxtitem);
rc = curr_item;
break;
case ’c’
case "v-*
builditemCitem, nxtitem); /* build a constant or variable */
curr_item = nxtitemlOl;
itemlcurr_iteml.right = bui Idlitera l(clause, item, nxtitem);
rc = curr_i tem;
break;
default
printf(”\n invalid token_type returned *1* ");
rc = EOF;
break ;

1 7% end switch */
return (rc);
1 /* end buildliteral */

/* Pbuilditem */

builditemlitem, nxtitem) /* build tree with root = next term in input */
struct items itemll;

int nxti teml 1;

80T



469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

|
nxt iteml01++ ;

itemlnxtitemt0]1l.type = token_type;
itemInxtiteml0]].pred_sign = pred_sign;
itemInxtitemlO1).id 10] = tokentOl;
itemInxtitemlO0]].id 11] = token!1l;
itemtnxtitemtO0]].1 itlistentry = NIL; /*null
itemInxtiteml0]].left = NIL; /*null  */
itemInxtitemlO0]].right = NIL; /*null */
) /* end builditem */
/*Plitexistchk */
litexistchk (item, newlit)
struct items itemll;
int newlit;
|
int oldlit, rc;
if (newlit == 0) /*very Tfirst lit created
return (NIL);
oldlit = O;
while (oldlit I=  NIL) t
rc = litcompare (item, newlit, oldlit);
if (rc = 1) /*they are equal */
break ;
oldlit = itemloldl it).right:

)

return (oldlit);

)y /* end litexistchk */

/* Pl itcompa re */
litcompare (item, newlit, oldlit)

*/

*/
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505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

struct items itemt]s
int newlit, oldlit;

f
int rc, nright, oright, nleft, oleft;

rc = 1;

nright = iternlnewlit].right;
oright = item[oldlit].right;
nleft = itemtnewl it].left;
oleft = item[oldlit)._left;

if (item(new lit).id(0] !'= item[oldlit].i d[03 N
item[newlit].id[1] '= itemtoldlit],idtl) n
itemtnew lill.pred_sign != itemtoldlit].pred_sign)

return (0); /* not equal */

if (nleft I= NIL && oleft I= NIL)

rc = litcompare (item, nleft, oleft);
if (rc == 1 && nright 1= NIL && oright 1= NIL &&
rc = litcompare (item, nright, oright);

return (rc) ;

) /*end litcompare */

/* Paddtol illi st */

addtolitlist (litnum, clsnum, old_new)
int litnum, clsnum;

char old_new;

int i, j;
if (old_new == ’n”) /* new literal */
[
litli st(new_Ili tl_predptr = litnum;

litlist[new_lit).clsptrf0) = clsnum;

item[newlitl. type

pT)



541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

litl i5t[new_lit].clsptr[1] = NIL;
new_1 it++;
if (new_1 it > MAXLITS)
error C"add to lit list", "new_lit"
return (new_lit - 1);
)
/*old literal appears in new clause */
for (i=0; litlislli) .predptr I!= litnum; i++) )
for Cj=0; litl istti).clsptrtj 1 !'= NIL; j++) G)
if (j >= MAXLITTOCLS)
error C"addtolitM st", "j"
litlist[i].clsptr[j] = clsnum;
litlisttil_clsptrlj+11 = NIL;
return(i);

, "MAXL ITTOCLS ™) ;

) /*end addtolitlist */

/* Pbuildfpalist */
buildfpalist (item, start_item)
int start_i tem;

struct items itemf J:

(
int i, argptr, argent;
struct fpalists tempfpaM);

for (i=start_item; i !'= NIL; i = itemliJd.right)
tempfpalOl.pred(0l = itemti).pred_sign;
tempfpa(0l.predl1] itemt i).id10);
tempfpa(0).pred(2) itemtil_id[11;
tempfpatO0J.predt3J ’\0 7 ;
temp fpatOl.argt0] = ~
temp fpatOl.argtll = * 7 ;

,  "MAXLITS™);



577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
6 10
611
612

tempfpaC0].argC21 = "\0"';
tempfpatOl.argnum = O0;

argptr = itemt i3. left; /* pt to 1st arg for this 1lit */

do t

if (argptr I= NIL) /* if there is another arg to handle

(
tempfpalO].ar gnum++;
tempfpatO0].arg[0l = itemtargptrl. id[0];
tempfpa(0l.arg[ll = itemCargptr].idC13;
argptr = itemlargptrl.right;
)
addtofpalist Citemli).litlistentry , tempfpa);

) while (argptr = NIL);
)

return (0);

) /*end buildfpalist */

/* Paddtofpalist */
addtofpalist (newlitptr, tempfpa)

int newlitptr;
struct fpalists tempfpaN;

nt i, J, hashval;

hashval = hashfpa (tempfpaC0).pred, tempfpalO0].argnum);
for (i=hashval; i < new_fpaf[hashval]; i++) (
if ((stremp(fpa listti ).pred, tempfpalO0).pred) == 0) &&
(stremp(fpalistli).arg, tempfpalO).arg) == 0) &&
fpa list[i l.argnurn == temp fpa [0] .argnurn)
(
for Cj=0; fpalisttil_litlistptrtj] != NIL; j++)

G) /*nul

*/

stmt*/



613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
64 1
642
643
644
645
646
647
648

if (j >= MAXFPATOLIT)

error (eeaddtofpalist”, "j", "MAXFPATOLIT»);
fpaiisl1l i].lit li8tptr [JJ = newlitptr;
fpalistlil.litlistptr[j +1] = NIL;
return (0);

)

)
i=new_f palhas hwal 1;
strcpytfpalistCil.pred, tempfpaiOl.pred);
strcpytfpal isllil.arg, tempfpatOl.arg);
fpalislliJ.argnum = tempfpa(0].argnum;
fpalisllil.litlistptr[0] = newlitptr;
fpal isttil. litl istptr(1) = NIL;
new_f pathashvall ;
if (new_fpathashwal) >= new_fpathashvalell)

error ("addtofpalist”

return CO);

1 /* end addtofpalist */

/* Phashfpa */
hashfpa (pred,
int argnumi
char pred();

argnom)

(
return CCpredtOl

1 /* end hashfpa */

/* Pprtclses */

prtclses (clses. item, cc, howmany)

"new_fpa lhashval)",

"new__Tfpalhashvalel]™);

* predtll ¢+ pred(21 + argnum) % FPAMODVAL):
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649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

int cc, /* current clause */
bowmany;

struct clauses clsestl;

struct iterns itemtl;

f
int cl? /* current it */

printf("\n")?

/* the following for-stmt skips leading ’deleted” clause headers

for ( ? cisestccl.delind == ’d”? cc = clses(cc).nextcls)
@) /*nu It stmt*/
while (cc I= NIL && howmany > 0) |

cl =07
while (clseslccl.litptricl) 1= NIL) f

if (cl 1= 0)

printf (7! ");

prtlit (item, clsestccd.litptrtcll);

cl++;
)
if (cl 1= 0)

printf ("? \n")?
cc = clses[ccl.nextcls;
/* the TfTollowing for-stmt skips ’deleted’ clause headers */
for C ; clses[ccl.delind == ’d”? cc = clses[cc].nextc Is)

@) /*nul | stmt*/
howmany--?

) /* end prtclses */

/* Ppr tlit */
prtlitUuit, cr) /* print selected literals */
int cr; /* current root */

*/
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685
686
687
688
688
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

struct items lit!];

t
int cr_left,

cr_r igh ti
cher cr_type»

cr_type = litlcrl_typej
cr_eft = litter],leftt
cr_right = litlcr).right»

if (lillcr].pred_sign == "-%*)

pu tche r(’-*)»
prtntf("%le%le” . litter).1dtO).litter).id(1])i

if (cr_type == ’p' == Cr_type - *f*)
printf("( )i
else

putchert* ’)t
if fcr_left 1= NIL) /* not null */

prtlit (lit, cr_left)* /* visit left subtree */
if (cr_type == 7’p~’ n cr_type == *f%)

printf(H) ")t
if (cr_right 1I= NIL it cr_type = "p")

prtlitClit, cr_right)i /* visit right subtree
return (0)»

I /* end prtlit */

/* PgetoKen */
ge token ()
(

int c:

pred_sign = ’e*;
prev_token = tok«n_typ»i

*/



721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
738
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

c = getnextchar(Q ;

if tc == "?7)
return (’?7);
if (c == ’-7 && Cprev_token == " prev_token ==
[
pred_s ign = e-*;
c = getnextchar();
)
token_type = c;
token 101 = c;
token! 1] = * *s
pred_sign = 7+7%*;
return (0) ;
}

if (M isalpha(c)) /* not alpha*/
return C1l) ;
token t0] = c;
c = ge tnex tchar(Q;
if Clisdigit(c)) /* not digit*/
return(2]s
token(1l] = c;
c = getnextchar() ; /* peek at the next char */

ungetc (c.stdin); /* and then put it back */
if Cc == (")
C
if (prev_token == * ' prew_token == ’s7)
token_type = "p-
else
token_type = *f*
J
else
C

if CtokenCOl »>= "s” && token CO1 <= "z%)
token_type = "v-

91



757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
177
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

else
token_type = "c’5

return(0) s

) /* end getoken */

/* Pgetnextchar */
getnextchar ()

1

int c5

while (Cc = getc (stdin)) ==
c \n
c \r
c \t
c

i /* nul | stmt */

return (c)»
1 /* end getnextchar */

/tummt;;imt EXTERNAL DEFNS XXXXXXXXXXXXXXXXXXXXXXS

int fclashliti /* externs for fwd routines */
struct substitution Ffsubst(SUBS IZE];

/X XXX XXX XXXXXXXXXXX XX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX S

/* Pforsubsum */ /*does an old els subsume a new one ? */
forsubsum C)

int i, J, rc, urc, master;

LTT



793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

int nlptr, nxtopndlit, litstoclashCMAXLITS 3s
struct items dli t[LITSIZE1ls

fort;;) t
BARR IERtf1l,nummacprocs) /* let bwd and fwd start together */

if Cpgmdone == ’y’)
break;
i = 0;
rc = 0;
master = O0;
nlptr = newclause[nl].litptr[i); /* pt to 1st lit in newitem */
while (rc = 0 && nlptr I= NIL) I
getclashlits C"f”_newitem,nlptr,litstoclash);
for (j=0; rc == 0 && tfclashlit = litstoclashtj)) != NIL; j++)

fsubs1l 01.termptr = NIL;
nxtopndlit = copyterm (olditem,litlisllfcl ashlit].predptr ,
dl it,0, *1«_LITSIZE) ;
renamevars (dl it,0);
urc = unify(dlit,0,newitem,nlptr,fsubst,nxtopnd lit) ;
if (urc == 1) /* the 2 lits unify */
{
FWDPROBST
rc = fwd (master);
) /*end if*/
) /*end for */
i++
nlptr = newclause(nl) .litptr (i) ;
1 /* end while */
BARR IERtf2,nummacprocs) /* forward returns here 1in uniproc mode */
if (fwd_bwd_para llel = ’n”)
break ;
} /* end forever */

return (rc);

} /7 end forsubsum */

8TT



829

830

831 /* Pfwd */

832 fwd (who)

833

834 int who;

835 {

836

837 int clashcis, arc, rc, Kk;

838 struct clauses tempclsM);

839

840 rc = 0;

84 1 for (;;) ¢t

842 ASKFOR(fs,arc,numfwdprocs, FWDGETPROB(k ,arc), FWDRESET)
843 if (arc = -1 | (arc !'= 0 && who == 0))

844 break;

845 if (arc I!s 0)

846 continue;

847 clashcis = lillist(fclash1lill_clsptrtk);

848 if (oldclausetclashclsl.delind == %d”)

849 continue;

850 skiplit (oldclause, clashcis, [lillist[fcl ashl ill_predptr . tempcls);
851 if (tempcls(0].-litptr(0J == NIL)

852 rc = 1;

853 else

854 rc = subsum(tempcls,O,olditem,0,newclause,nl,newitem,fsubst);
855 if (rc == 1) /* old subsumes new */

856 (

857 PROBEND(fs,2) /* tell fwds that this problem is solved */
858 LOCK (D)

859 fwd__occur red = ’y7;

860 UNLOCK (1)

861 )

862 } /* end forever */

863

864 if (fwd_occurred == "y")
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865
866
667
868
869
670
871
672
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
693
894
895
896
89 7
898
899
900

return (rc)»
) I* end fwd */

/littttm EXTERNAL DEFNS mtmm¢tittttm txtittttttm /

int bclashlit; /* externs for bwd routines */
struct substitution bsubsl11SUBS IZE 1i

/intiimtmmiitttxitm mtnttm ttitittxxm xm m xtm /

/* PbecKsubsum */ /|*does a new els subsume an old one ? */
backsubsum ()

(
int j. k. rc. urc. masters

mnt nlptr, clashcis. nxtopndlit, litstocl ashIMAXLITSI1:
struct iterns dI»ttLITSIZE J:

rc = 0!
master = O0s
nlptr = newcl ausetnl) litptrt0Oli [* pt to 1st lit in newitem */
getclashl its ('b* .newitern.nlptr.lttstoclash) s
for (|-0s (bclashiit - [Ittstoc lash(])) != NIL: (e%) I
bsubsttOltermptr = NIL:
nxtopndlit - copyterm (nawitem.nlptr,dl it .0."1",LITSIZE)Ss

renamevars (dlit.0)s
urc - unify(dlit.0.olditem,litl istfbclashlitl.predptr ,
bsubst,nxtopndlit):
if (urc == 1) [* the 2 lits wunify */
(

0cT



901 BWDPROBST

902 rc = bwd (master);

903 } /*end if*/

904 ) /*end for */

905

906 return (rc);

907

906 } /* end backsubsum */

909

910

911 /* Pbwd */

912 bwd (who)

913

914 int who;

915 |

916

917 int clashcis, arc, rc, k;

918

919 rc = 0;

920 for (;;) (

921 ASKFOR(bs.arc.numbwdprocs ,BWDGETPROB(k,arc) .BWDRESET)
922 if (arc == -1 1! (arc = 0 ¢&& who == 0))
923 break;

924 if (arc = 0)

925 continue;

926 clashcis = lillist[be lash lill.clsptr [k1;

927 if (oldclause(clashcls].delind == =d")

926 continue;

929 if (newclause(nlJ._litptr(1l] == NIL)

930 rc = 1;

93 1 else

932 rc = subsurn(newclause.nl,newitem,l,0ldclause,clashcis,olditem,b$ubst);
933 if (rc == 1) /*new els subsumes an old one */
934 {

935 PROBEND(fs,2) /*tell fwd subsump chks to stop*/

936 LOCK(1)

z



937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972

numbwdsub++;

bwd _occurred = ’y~”;
oldclause[clashc Is] .de lind = °d”;
UNLOCK C1)

J /*end if*/
1 /*end forever */

if (bwd_occurred == ’y7)
rc = 1;

return (rc)$

1 /* end bwd */

/* Psubsum */
subsum (ds, dsc, dsitem, dl, rs, rsc, rsitem, rcvd_subs t)

int dsc, rsc, d1l;

struct clauses dsll, rsll;

struct items dsitemt], rsitemtl;
struct substitution rcvd_substl]i

i
int i, rc, dsptr, d2, rl, rsptr, nxtopndliti
struct items dl itCLITS IZEJ ;

struct substitution subsl11SUBS IZE1s

/* Initially, rcvd_subst is empty from main, dsc points to
the ’subsuming®™ clause, and rsc points to the ’subsumed”
clause. We want to see if ds subsumes rs

*/

ect



973
974
975
976
977
978
979
980
961
982
983
984
965
686
987
988
969
990
991
992
993
994
995
996
997
998
999
1000
100 1
1002
1003
1004
1005
1006
1007
1008

dsptr = ds(dscl.litptr(dllt

r*ptr = rslrscl. litptrirlli
rc = 0i /* not subsumed */
while (rc == 0 66 rsptr != NIL /*nul 1*/3
t
i = 0i
do (

subst(i) ver{01 rcvd_subst(i).vert0]t

subst(il ver 11) rcvd_subst(i).vsrtl)»

substttl._termptr = rcvd_*ubst(il.termptri
1 while (subst tieel_lermptr = NIL)» /*nul >/

nxtopndlit = copyterm (dsitem, dsptr, dlit, 0, “I*, LITSIZEJt
if (nxtopndlit == NIL)

return (0)i
renemevers (dl it, 0)t

rc : unify (dlit.O.rlltem.rsptr.subst.nxtopnd lit)i

/*chgs dlit end subst «/

if (rc :: 1 /= they unify «/
|
d2 = d1 ¢ 1»
if (ds(dsc) litptr(d21 " NIL) /*null*/
rc - It
e 1lst
|
rc : subsum (ds.dsc.dsit*m,d2,rs.rsc.rsit*m,subst):

|
rlee:

rjplf ~ fjlrjcl litptr(rl}i
|

return (rc)i

/*

/* nnd subsum */

Punify */
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1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
103 1
f032
1033
1034
1035
1036
1037
1038
1039
1040
104 1
1042
1043
1044

unify (ulit, ul, rlit, rl1, subst, nxtopnulit)

int ul, rl, nxtopnulit;

struct
struct

t
int 1,

items ul 1111, rlill1l;
substitution subst!l!;

rc, uleft, rleft, uright, rright;

char copy_type;

nxtopnulit = substitute (ulit, ul, nxtopnulit, rlit, subst);
uleft = ulittull.left;
uright = ulillull.right;
rleft = rlit!rll.left;
rright = rlittrll._right;
if Cul ittull._pred_sign == rli tlrll_pred_sign &&
ul itluU .id!101 == rlittrll. id!0] 44
ul ittul 1.idl 11 == rlittrll_ idt 11)
|
if (uleft == NIL 46 uright == NIL) /* both null */
(
if (rleft == NIL 44 (rright == NIL tt rlittrll_type ==
return (1); /* they unify */
[
if (uleft I- NIL 44 rleft 1!= NIL) /*null*/
(
rc = unify (Qulit. uleft. rlit, rleft, subst, nxtopnulit);
if (rc == 0)
return (0);
1
else
if ((uleft == NIL 44 rleft = NIL) sl /* one null and
(uleft <= NIL 44 rleft == NIL)) /* not the other

(

return (0 1;

D))

144"



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

else

if (ulit[ull.type = °’v~ 1n
return(0);

for (i = 0? substCil.termptr = NIL;

subsl1lil.varCO0] = ul it[ul3.idC01;

subs1li 1.var 111 = ulillull.idtll;

substlil.termptr = rl; /* ptr

if Ci > SUBSIZE)

error (Munify", "i", "SUBS IZE");
if (nxtopnulit == NIL)

return(0);
rc = 1;

if (uright 1= NIL &&
(

rright 1= NIL)

rc = unify (ulit, uright, rlit, rright,
1
return (rc);
I /* end unify */
/* Pskiplit =/
skiplit (ocls, ocl, 1lit to_skip, tempcls)
struct clauses oclsN, tempelsU;
int ocl, lit_to_skip;
{
int i, j, ofitptr;
J =0;
for Ci=0; (olitptr = ocls(ocl).litptrli)) I=

into rlit (in
substteeil._termptr = NIL; /* null */

Tisdigit(ulillu 1}. id101)) /*nonsubst var*/

i++) {)) /* null stmt */

items) */

subst, nxtopnulit);

NIL; i++) {

Gc1



1081 if Colitptr != lit_to_skip)

1082 tempclslOl . litptrtj++1 = olitptr;

1083 )

1084

1085 tempclstO].litptrCj] = NIL?

1086 return CO0)?

1087 ) /* end skiplit */

1088

1089

1090

1091 I XXXXXXXXXXXXXXXXXXX EXTERNAL STRUCT DEFINITION XXXXXXXXXXXXXXXZ/
1092 struct tclash t

1093 int Ilptr?

1094 int refcnt?

1095 1i

1096 I XXXXXXX XX XX XXX XX XXX XXX XX XXX XXX XX XXX XXX XX XXX XXX XX XXX XXX XX XXX XXX,
1097

1098

1099 /* Pge tcl ash lits */

1100 getclashlits (fwd_bwd, nitem, nlptr, litstoclash)
1101

1102 char fwd_bwds

1103 int nlptr, MtstoclashN?

1104 struct items nitemtJ ?

1105

1106 (

1107 int i, j, k, argptr, next_tempcl ashl 1],

1108 fpamatchl(FPAMODVAL+¢3)*FPASPERHASHV]?
1109 struct tclash tempclashtMAXLITS)s

1110 struct fpalists tempfpaMl;

1111

1112 next_tempcl asht0l = 0?

1113 tempfpatO03.predt03 = nitemtnlptr].pred_sign?
1114 tempfpaf03.predC 11 = nitemtnlptrl.idt0];

1115 tempfpat03.predt23 = ni temtnlptrl._idt 11 ;

1116 tempfpa 103 .predt33 = ’\07;

9¢1



1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

tempfpaC0].-argt0J 7
temp fpa[Ol.argil]

pt to 1st arg for this lit */

nitemlargptr].idl03;
nitemCargptrl.id(11;

temp fpa 101 .argl21 = °\0";
tempfpa I01.argnurn = O0;
argptr = nitemlnlptrl.left} /*
do (
if (argptr 1= NIL)
(
tempfpalOl.argn um++ ;
tempfpa[Ol.arg[0l =
tempfpa[Ol.arg[ll =
argptr = nitem(argptr).right;
1

fpamatchk (fwd_bwd, fpamatch, tempfpa);
for Ci=0; fpamatchli) = NIL; i++) (

for (Jj=0; (k=fpa lisll fpamatch[ill . 111l istptrtjl) != NIL; we+)

addtotempcl ash (k,
3
1

) while (argptr = NIL);

i=0;
for (Jj=0; jJ < next_tempclasht0J
if ((tempcl ashljl._refcnt ==
(tempcl ash[jl.refcnt ==
(
litstocl ash(il = tempcl
i++ ;
if (i > MAXLITS)
error ("getclashlits

litstoclashtil = NIL;
return (0);

next_tempcl ash, tempclash);

; §+0 (
tempfpa[Ol.argnum) n
1 && tempfpa 101 .argnum

ashCjJ .llptr ;

Y, M. "MAXLITS™);

(

0)) /*propos ition*/

XA



1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

) /*end getclashlits *1

/* P fpama tchk */

fpamatchk (fwd_bwd, fpamatch, tempfpa)
char fwd_bwd;
int fpama tch t1;
struct fpalists tempfpall;
t
int i, j, hashval;
fpama tch(0J = NIL;
j=0;
hashval = hashfpa (tempfpatO].pred, tempfpat0O).argnurn);
for (i=hashval: i1 < new_fpathashval 1; i++) F
if (tempfpa l0).argnurn == fpa listCil.argnum &&
strempCtempfpatO0].pred .fpa list[i) .pred) == 0)
if (stremp(tempfpa l0l1.arg,fpa l'islli 1.arg) == 0)

|
fpama tch{j)
Jt++

fpama tch[j]

else

if (Cfwd_bwd

NIL;

= " && isavariable(fpalist[i).argt0)))
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1184 Cfwd_bwd == b’ && isavariable(tempfpaEOJ.argl03)))
1185 |

1186 fpama tch tjl
1187 )++?

1188 fpama tchtjl
1189

1190

1191

1192

1193

1194 return (01;

1195

1196 ) /* end fpama tchk */

1197

1198 /* Pisavariab le */

1199 isavariab le (c)

1200

1201 char c;

1202

1203 (

1204 if Cc >= s’ && ¢ <= 7z71

1205 return C1l) ;

1206 return (0);

1207

1208 ) /* end isavar iable */

1209

12 10

1211 /[* Paddtotempcl ash */

1212 addtolempcl ash (litlistptr, next_tempclash, tempclash)
12 13

1214 int litlistptr, next_tempcl ash(l;

12 15 struct tclash tempclashEJ;

1216

12 17 {
12 18 int i;
1219

NIL;
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1220
1221

1222
1223

1224

1225

1226
1227

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
124 1
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252

1253

1254

1255

for (i=0; 1 < next_tempclash[0] && tempclash[i) . IIlptr != Tlitlistptr; i++)
i) /* null stmt */
if (i == next_tempcl ash[0)) /*! itl istptr was not there */
{
tempcl ashtnext_tempcl ash[01].lIptr = litlistptr!
tempcl ash[next_tempcl ashl1011.refcnt = 1?
next_tempclash[01++!
if (next_tempcl asht0] > MAXLITS)
error ("addtotempcl ash", "next_tempcl ash", "MAXLITS");
)
else
(
tempcl ash IN .refcn t++ ;
)
return (0);
} /* end addtotempcl ash */

/*
cop

/*

*/

int
char
stru

Pcopyterm */

yterm (from, fr1, to, tl, copy_type, last_avai |I_item)
This routine will copy any item type-of-object beginning at fromlfrll
to a location beginning at tottl). If copy_type = 1" (left) it will
copy only the item and its left side; r - only the item and its right
b - the item and both sides, any other value - copies only the item.
*** Note that 1litlij tentrys are copied for predicates even though the
litlist entries do not point to these copies, only to the originals.
frl, tl, last_avail_i tern,-

copy_type;
ct items from[], to(];

(0159



1256 |

1257 int 12;

1258

1259 if C1l1 >s last avail_itemD

1260 error (“"copyterm"™, "11", "last_avai!_itern");
1261 toltll.type = fromlfrll.type;

1262 tottll.pred_sign = fromCfrll.pred_s ign ;

1263 tot t11.id(01 = fromlfrll.idtOlj

1264 tom 1.idill = fromlfrll_idill;

1265 totlll ._lit listentry = fromtfrll.litlistentry;
1266 t2 = tl1 + 1;

1267 if (fromtfril_left != NIL /*null*/ &&

1268 (copy_type == *1* ! copy_type == ’b 7))
1269 t

1270 tot t1ll.left = t2;

1271 t2 = copyterm (from,fromlfrll.left,to,t2,"b”,last_avail_itern);
1272 if (12 == NIL)

1273 return (NIL);

1274 J

1275 else

1276 tol1l111 .lett = NIL; /*nul 1*/

1277 if (fromllrl).right 1!= NIL /*nul I*/ &&

1278 (copy_type == ’r* n copy_type == "b"))
1279 C

1280 tot tl1l .right = t2;

1281 t2 = copyterm (from,fromtfrl).right,to,12,"b”,last_avail_item);
1282 if (2 == NIL)

1283 return (NIL);

1284 J

1285 else

1286 tottll.right = NIL; /*nul 1I*/

1287 return (t2);

1288

1289 } /7 end copyterm */

1290

1291

TET



1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
131
1312
1313
1314
1315
1316
1317
13 18
13 19
1320
1321
1322
1323
1324
1325
1326
1327

/* Prenamevars */
renamevars (dlit, dl)

struct 1items dl i1111;
int d1i;

|
int dieft, dright;

diett = dlittdll.left 5
dright = dlittdll. right;
if (d1itldll _type == ’v?)
dl i11d 13 .idt0) -= 665 /* change ’s’-"z° to ’1"-78" */

if Cdleft != NIL) /*nul I*/
renamevars (dlit, dieft);
if (dright = NIL) /*nul 1*/
renamevars (dlit. dright);
return (0);

) /*end renamevar s */

/* Psubs titute */
substitute (to, tl1, nxtopntolit, from, subst)

int tl, nxtopntolit:
struct items toll, froml]1
struct substitution substCl;

/* Substitute for variables in a literal which are to be replaced in
a literal which is being unified with another. Only literals which
still have their renamed values (by renamevars) will be substituted
*/

for.

43"



1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
136 1
1362
1363

for (i = 0; substtil.termptr I= NIL; i++)
if (substtil.varlOl == tottll.idtOl && substEiJ .varCll == tottll _idM 1)
break;
)
if (substlil_termptr 1= NIL)
(

frl = subsil i].-termptrj
tottll.type = fromlfrll.type;
tottll.idtOl fromtfr1l.idt0l;
tot t11.idt11 fromt fri11.idt11;
if (fromt frl1l.left != NIL)
t
tottll . left nxtopntolit;
nxtopntolit = copyterm (from, Tfromtfril.left, to,
LITSIZE)s

1
1
return (nxtopntolit);

1 /* end substitute */

/* Perror */
error (procname, indexname, maxvalname)
char procnametl, indexnametl, maxval nametl;

t

write (STDERR, "\n\n**** early exit - table overflow in procedure \n

write (STOERR, procname, strlen(procname));

nxtopntolit,

Th* s

50) ;
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1364
1365
1366
1367
1368
1369
1370

write (STDERR,
write (STDERR,
write CSTDERR,
write CSTOERR,

exit (11;

) /* end error

"\n", 1);
indexname,
"\n*, 1);
maxvalname,

*/

strlen(indexname));

strlen(maxvalname ))

V€1
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