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INTRODUCTION Transfer Learning:

Problem Statement:

« Over 600k highway bridges in the National Bridge Inventory

* Bridges are facing the prospect of rapid deterioration (39%
exceed design life of 50 years, 9% require significant repair)

* Bridges need to be inspected every two years

* The current practice of bridge inspection has many issues
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Objective:

A cyber-physical system for analyze the data for an effective

asset management

« Digitally profile bridge conditions as a cyber system for
managing physical system (the bridge)

* Provide the decision support for preservation
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APPROACH

Engage inspectors in the development of the video data analysis

Al tool.
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Bridge Inspection Video Data Analysis for Data-driven Asset

Management

« Mask R-CNN pre-trained on MS COCO dataset
 Initial adaptation with 40 training images
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Temporal Coherence Analysis:

« Compare detection results with
neighboring frames
* Recover false negative results

@

— |
| D Bounding |
| — .

Network Head

Classes

Box

Iterative Semi-Supervised Self-Training (IS°T):

« Select training samples from recovered hard data
« Manual annotation + automatic annotation
* Boost up the performance over iterations
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RESULTS
The test dataset has 212 images, with 1872 objects in 10 classes
loarning S°T
Index of iteration, [ 0 1 2 3
Precision (%) 80.3 81.7 90.7 91.8
loU = 0.5 Recall (%) 74.4 90.3 90.1 93.6
f1-Score (%) 77.2 85.8 90.4 92.7

Efficiency of Transfer Learning:
* Huge time saving and performance gain

Method Training (min) | precision (%) recall (%) 1 (%)
Training from scratch 792+ 32.3 18.3 23.4
Transfer learning 20 80.3 4.4 7.2

Cost-Effectiveness Achieved by Engaging Inspectors:

B annotation training pr (%), rc (%), f1 (%)
Our (66) I BN 289 mins 91.8, 93.6, 92.7
; £ 47 %
Mask rcnn (440) EE— 89.7, 92.3, 91.0
1496 mins
Mask rcnn (220) NN 748 mins 85.8, 91.8, 88.7

Mask rcnn (44)J 163 mins 82.0, 79.0, 80.5

Mask rcnn (22) 106 mins 68.0, 68.4, 682

0 200 400 600 800 1000 1200 1400 1600
Time (min)

Helpfulness of the Al Tool for Inspection Image Data Analytics:

Work time (min)  Accuracy (%)

w/o the Al tool 65 100
w/ the Al tool 0.27 03.7
change 199.5% 16.3%
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CONCLUSIONS

Developed a semi-supervised deep learning NN for detecting and
segmenting multiclass bridge elements from inspection video data

« Saves time, reduces bias, allows to focus on knowledge-intensive
tasks

« Transfer learning and ISST help adapt the model to new tasks

« Keep human-in-the-loop to leverage human intelligence for Al model
development
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