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CHOOSING ALTERNATIVE ENERGY SYSTEMS UNDER CONDITIONS OF UNCERTAINTY

Dennis Costello 
Midwest Research Institute 

Kansas City, Missouri

Abstract

A methodology for simulating the decision process of an investor deciding between 
alternative energy systems is presented. The approach assumes the investor bases 
his decision on cost (or rate of return) and risk. Risk is treated directly in the 
model and not reduced to a certainty equivalent. The rate of return-risk character­
istics of many system combinations allows them to be eliminated as viable choices 
to the investor without reference to his personal attitude toward risk.

1. INTRODUCTION

The future supply of energy in the United States has 
recently been receiving a great deal of political, sci­
entific and public attention. Research organizations 
all over the country have been making projections of 
possible energy supply and demand conditions into the 
future as far as the year 2020. Almost all of these 
forecasts and accompanying models are at the macroeco­
nomic level. They deal with the whole nation, large 
regions or, at best, states.

This paper deviates from the usual approach in that it 
deals with a single individual. It presents a micro- 
economic model of the energy investor's decision proc­
ess. An energy investor is an individual in a position 
to decide which alternative type of energy system will 
be installed in a municipality, private utility or 
building to meet future demands for energy. Perhaps the 
best example of this individual is an executive of an 
investor-owned utility who is formulating plans for ca­
pacity expansion. The choices open to the decision 
maker include: coal-fired systems, gas-fired 
units, nuclear plants, possibly hydro plants, or some 
of the more exotic energy systems such as solar, wind 
or geothermal. It is the independent decisions of num­
erous energy investors which will dictate the nation's 
future mix of energy generation and, subsequently, the 
nation's derived demand for energy-related resources. 
Given the importance of these individuals, it is worth­
while to investigate their decision-making processes in 
more detail.

The two major factors entering the energy investor's 
decision are cost and risk. A large amount of research 
has been aimed at estimating the cost of alternative 
systems.* Very little work has been completed that 
deals with the latter subject. This study attempts to 
take an initial step in quantitatively evaluating un­
certainty and its effect on the decision process. A 
methodology for dealing with uncertainty is presented.
It is hoped that this framework will help stimulate ad­
ditional research in this important area.

2. GENERAL APPROACH

The individual decision model utilized throughout the 
discussion is adapted from the Sharpe-Markowitz model 
of portfolio theory.** The original model was intended 
to simulate decisions concerning the optimal mix of 
stocks and bonds in a portfolio. A major advantage of 
the Sharpe-Markowitz approach over previous work is the 
explicit incorporation of uncertainty of return into the 
decision process. The model also eliminates most feasi­
ble alternative portfolio combinations without the ne­
cessity of evaluating interpersonal attitudes toward 
risk and rate of return trade-offs. Under some addi­
tional assumptions, a unique optimal combination of 
risky assets can be determined without the use of any 
subjective comparisons.

The model presented parallels the Sharpe-Markowitz ap­
proach very closely. The following discussion will,

* An article on evaluating the total cost of an energy system by J. Bradley and
D. Costello appears in these proceedings.

** William F. Sharpe, Portfolio Theory and Capital Markets (McGraw Hill Co., 1970).
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theretore, oe iimxcea to tne adaptations or tne moaei 
to the energy investment decision process.

Throughout the discussion, the term "energy system" 
will refer to an organized method of producing energy 
characterized by the type of fuel used as the major in­
put. An "energy mix" is a combination of energy sys­
tems which together meet the entire demand facing the 
investor. For a utility, the "energy mix" represents 
the company's generation mix. When the cost of an 
energy system is mentioned, it refers to the total cost 
of the unit realized by the owner. The cost includes 
all generation, fuel handling, 1 md and required pollu­
tion control equipment and any r ther costs incurred in 
meeting governmental safety, 1: .1th and environmental 
regulations.

The energy investment decisio model can be divided in­
to three distinct phases.* e first step involves 
predicting the future return and risks associated with 
individual energy systems. his phase requires subjec­
tive evaluations of the fut :e developments and trends 
in each of these systems. he interrelationship of 
these various systems must ilso be approximated in this 
phase. The second step is to compute all the possible 
energy mixes that can be c.arived by combining systems. 
The return and risk of each mix is then calculated and 
compared to other mixes. The final step involves se­
lecting a mix based on the investor's preferences toward 
risk and return. These three phases will act as a 
guideline in the discussion that follows (Sections 3-5). 
Following that discussion, the incorporation of a risk­
less asset or system will be examined (Section 6). The 
last section contains a summary of the approach.

3. INDIVIDUAL ENERGY SYSTEMS ANALYSIS

The energy investor is assumed to make his decision 
based on the expected return of the investment and the 
uncertainty associated with that return. All relevant 
factors that affect the investor's decision are assumed 
to be summarized by these two parameters. The expected 
rate of return on conventional energy sources can be 
obtained from historical information. The rate of re­
turn on solar and other "new" forms of energy must be 
gathered by indirect means, including expert opinion 
and preliminary cost estimates.

The variance of the rate of return will be used to ap­
proximate the risk variable. The calculation is some­
what straightforward for conventional energy systems. 
Some modification in the risk variable may have to be 
made to incorporate future developments, such as fossil 
fuel availability, additional pollution control require­
ments, and/or safety regulations. The risk associated 
with nonconventional systems can be approximated by 
again using expert opinion, projected future trends 
in capital costs, consumer acceptance, storage capabil­
ities and available practical experience with the sys­
tems .

m e  u i L e u e i c i L i u u & i i i p  u j l  u i c  i a i e b  u i  t e L u m  i u l  u i i i c l -

ent systems is also required for the analysis. Measures 
of covariance will be used to estimate these interrela­
tionships. The historical covariance between conven­
tional energy systems can be used as a first approxima­
tion for some of the alternatives. Continued work will 
be necessary to approximate such relationships for un­
conventional systems. One possible solution involves 
the use of the expert opinion concerning expectations 
of returns on different systems. The covariance of each 
pair of systems could be calculated from this sample. 
These results would be used as a proxy for the required 
covariance terms.

4. ENERGY MIX ANALYSIS

Once the characteristics of each alternative energy 
system have been defined, the investor must choose one 
or a combination of systems to meet his total demand.
The analysis that follows assumes that the investor 
prefers a larger rate of return to less and prefers 
less risk to more. In other words, return is consid­
ered desirable and risk is undesirable. Based on these 
assumptions, many combinations of assets can immediately 
be disregarded. Figure 1 illustrates this point.
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Figure 1 - Preferred and Undesirable 
Risk-Return Combinations

The combination of energy systems represented by point 
A in Figure 1 is characterized by an expected rate of 
return E^ and a risk (i.e., the standard deviation of 
return) of cr».** Combinations of systems which lie in 
area (l) are all preferred to A . Any combination in 
area (T) will either (a) yield a higher expected return 
than A with the same risk (crA) or (b) yield a lower 
risk than cr̂  with the same return or (c) yield both 
a higher return and a lower risk than A . All combin­
ations of systems which lie in area (2) are less pre­
ferred than A . Any combination in this area will 
either (a) yield a higher degree of risk with no in­
crease in return or (b) yield a lower expected return 
with the same amount of risk or (c) result in a lower 
rate of return and a higher risk than A .

* William F. Sharpe, Portfolio Theory and Capital Markets, p. 31 (McGraw-Hill Co., 
1970).

** Standard deviation of return is merely the square root of the variance. It is 
portrayed in the figures for convenience of presentation.
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4.1 ALGEBRAIC RELATIONSHIPS OF THE MIX ANALYSIS

The expected rate of return of the entire mix of 
energy systems represented by point A is comprised 
of the sum of returns in each component. That is, 
the expected return of the mix is a linear combination 
of the expected returns of each system that is part of 
the mix. Algebraically,

n
Em = X E ^  . . . .  (1)

i=l

where Ê , = the expected rate of return on the entire 
energy mix

E-l = the expected rate of return of energy 
system i

Xi = the percent of the total energy mix that 
is invested in system i (expressed as 
a decimal fraction of the total)

n = the number of systems in the energy mix

n
and ^  Xi = 1 and 0 £ X^ ^ 1 for all i

i=l

The expected return of the entire energy mix will 
usually be greater than the individual system with 
the lowest return and less than the return expected 
from the highest yielding system. If X^ = 1 for 
any one system, the expected return of the mix will 
equal the expected return of the one system that com­
prises the entire mix.

In analyzing the uncertainty associated with an energy 
mix, one must consider the risk associated with each 
component system and the interaction of these systems. 
The variance of expected returns of each system will 
be used to represent individual system risk. The 
covariance or correlation coefficient will be used as 
an approximation of the interaction between any two 
systems in the mix. The variance of system i is 
the squared deviation of each possible outcome from 
its expected value, weighted by its probability. Al­
gebraically ,

i
CTi2 = S  Pk (Rk - Ei)2 . . . .  (2) 

k=l
2where oj_ = the variance of system i

Pk = the probability of outcome k 

Rk = the rate of return of outcome k

E^ = the expected return of system i ,
SL

Ei - S' pkRk
k=l

i = the total number of possible outcomes.

The covariance between the return of system j and 
system k is the product of the deviations of the 
two systems from their respective expected returns, 
weighted by the joint probability of each set of out­
comes. Algebraically,*

Cjk = I  Pr (RjRk) (Rk - Ek) (Rj - Ej). . . (3)
j

where Cjk = the covariance between system j 
and k

Pr(RjRk) = the probability of outcome Rk and 
Rj occurring together

The correlation coefficient between energy systems j 
and k is given by:

Pjk = C T jC T k  . . . .  (4)

where pjk = the correlation coefficient between 
system j and k

crj = the standard deviation of system j

(°j

crk = the standard deviation of system k

(CTk = J~77>

The uncertainty (variance) associated with the entire 
energy mix is related to the uncertainty of each sys­
tem in the mix. However, unlike the expected return, 
this relationship is not linear. The variance of the 
mix is represented by the following general form:

CTm = I  1 XiXj CTiaj Piji=l j=l 

2 n n
= 2 I  xixj Cij •••• O)

i=l j=l
2where a = the variance of the energy mix m . m

4.2 MIX ANALYSIS ASSUMING ONLY TWO CHOICES

To gain some insight into how the interaction of sys­
tems affect the risk of the entire mix, it is helpful 
to consider the special case of only two systems (i.e., 
n=2). In this case the expected return and variance 
of the mix simplify to:

* William F. Sharpe, Portfolio Theory and Capital Markets, p. 41 (McGraw Hill Co.,
1970).
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Em = XlEi + X2E2 (6)

am = xlal + X2CT2 + (2XiX2 ctict2) p12 (7)

where = 'the percentage of the total invested in 
system 1

= the rate of return of system 1

2 = the variance of system 1 

and X]̂ + X2 = 1

The expected return of the mix is a linear combination 
of the expected returns of the two systems. The vari­
ance of the mix depends on the variances of each sys­
tem, the percentage invested in each system and the 
correlation of th^ systems. If X^ equaled 1 (i.e., 
X2 = 0) , then crm  would equal cr̂  . Other combina­
tions of Xi and Xo will give a mix of risk that is n 9a combination of o\c and 0 7 . The uncertainty of
the entire mix will then depend on how the risks of the 
two systems are correlated. To analyze these situa­
tions we will consider the effect of the alternative 
values of the correlation coefficient (PI2 ) • Three 
cases will be examined: p^2 = + 1, p^2 = -1 and 
P12 = ° .

4.2.1 Case 1; Correlation Coefficient Equal to + 1

If P12 equals + 1 the systems are perfectly corre­
lated. In other words, whenever the return on one sys­
tem changes the return on the other moves proportion­
ally in the same direction. The advantage of diversi­
fying your investment between these two systems is 
somewhat reduced because they both always move in the 
same direction. The variance of the energy mix can be 
expressed as: (assuming p^2 = + 1)

2 2 2 2 2 
CTra = X1CT1 + X2a2 + 2xiX2a1o 2

2 N2CTm “ (xl°l + X2ct2)

CTm = X1CT1 + X2CT2 . . .  (8)

In other words, if p^2 = + 1 the standard deviation 
of the energy mix is a linear combination of the stan­
dard deviation of the two components.

This situation can be depicted graphically. The ex­
pected return of the entire energy mix is graphed vert­
ically and the risk of standard deviation of the mix is 
on the horizontal axis in Figure 2. Point A in Figure 2 
represents the mix made up entirely of system 1, while 
B represents a mix comprised entirely of system 2.
The line AB represents the possible combinations of 
Em and am attainable by combining systems 1 and 2 
in different amounts. That is, each point along the 
line AB represents different values of X^ and 
therefore X2 , since X2 = 1 - X^ .

Figure 2 - Possible Combinations of Energy Mix 
and Return--Two Energy Systems, Perfect 
Positive Correlation

4.2.2 Case 2; Correlation Coefficient Equal to - 1

The second case we will consider assumes that the two 
systems are perfectly negatively correlated (i.e.,
P1 2 = - 1) . In this situation if the return on one 
system declines, the return on the other system will 
increase by a proportional amount. This makes diver­
sification extremely appealing because investing in 
both of these systems will insure that the level of 
risk of the entire mix can be reduced below the risk 
of any one system. In fact, in the case of a corre­
lation of - 1, risk can be totally eliminated. The 
following formulation will illustrate this point.

The variance of the mix under p^2 = - 1 is given by:

2 2 2 2 2 °m = Xlcrl + X2°2 " 2xiX2o1(j2
2 , x2

CTm _ (X1CT1 ‘ X2CT2'

CTm = X1CT1 ‘ X2ct2 . . . .  (9)

The value of X^ and therefore X2 can be set so 
that om equals 0 . The relationship between Em 
and om in this case will be represented by the line 
segment ABC in Figure 3.

Figure 3 - Possible Combinations of Risk and Re- 
turn--Two Energy Systems, Perfect Negative 
Correlation
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Point B in Figure 3 represents a combination of systems 
1 and 2 which yield no risk and an expected return 
greater than zero. It should be noted that the inves­
tor would never choose a point along line segment BA . 
Although any point along this segment is feasible, the 
investor can always find another combination of systems 
1 and 2 that will yield a higher expected return for 
the same amount of risk. These combinations lie along 
line segment BC . The line segment BC dominates AB 
and an energy mix along AB would never be chosen.
The line segment BC is therefore termed the "effi­
cient frontier" of the feasible set. This concept is 
explained more fully later in the analysis.

4.2.3 Case 3; Correlation Coefficient Equal to Zero

The third alternative under investigation assumes a 
correlation coefficient equal to 0. In this case, the 
expected return of the mix takes on its characteristic 
form but, unlike cases I and II, the variance does not 
reduce to a perfect squared term. Algebraically, the 
mix is characterized by:

1=1 + X2E2 (10)

2 2 2 2
la l + X2ct2 (U)

The feasible* (i.e., attainable) set of system mixes 
that can be obtained by varying is graphed in
Figure 4. Note that it is possible to reduce the risk 
of the mix below the risk of system 1. However, in 
this case it is not possible to reduce the energy mix 
uncertainty to zero. It should also be noted that the 
line segment AB is dominated by segment BC and can 
therefore be disregarded.

Figure 4 - Possible Combinations of Risk and Re- 
turn--Two Energy Systems, Zero Correlation

In general, the correlation of the rates of return of 
the component energy systems will have an effect on the 
overall risk of the energy mix selected. The risk as­
sociated with the energy mix can usually be reduced

by diversifying into more than one energy system.** In 
other words, real economic benefits can be derived 
from diversification.

4.3 GENERALIZING THE MIX ANALYSIS TO NUMEROUS 
CHOICES

Analyzing the energy mixes comprised of only two 
energy systems is useful for explanatory purposes and 
generalizing to more than two systems is straightfor­
ward. For example, if the energy mix only contained 
three possible systems one could first construct the 
feasible set for two of the three systems. The third 
system is incorporated by combining it with all pos­
sible combinations of the first two systems. Each 
point on the feasible set consisting of only two sys­
tems can be considered a new system. The new system 
is then combined with the third system. Figure 5 
illustrates this approach.

Figure 5 - Possible Combinations of Risk and Re- 
turn--Three Energy Systems

Combinations of systems 1 and 2 in Figure 5 yield the 
feasible set designated by the line segment (1,2). 
Combinations of 1 and 3 yield segment (1,3). Combi­
nations of systems 3 and 2 yield line segment (3,2). 
Point A represents some combination of systems 3 and 
2. If those systems were combined with varying 
amounts of system 1, the feasible set would be given 
by the line (A,l). That is, energy mix A can be 
treated as a single system and combined with other 
systems. When all possible combinations are consid­
ered, the feasible set becomes an area rather than a 
line. This is the shaded area in Figure 5. The same 
approach is used to determine the feasible set for 
more than three systems.
4.4 THE EFFICIENT FRONTIER

Using the assumption that Em is desirable and om 
is not desirable, many of the feasible combinations 
can be eliminated from consideration. A combination 
of systems would be disregarded if another feasible

* The feasible set contains all possible combinations of rates of return and risk 
that can be obtained by combining the available systems in different ways.

** The risk associated with the mix will be less than the risk of the least risky 
system (if that risk is greater than 0) if p^2 < cr^/o^ •
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for all A 2: 0combination existed that had a higher rate of return 
with the same variance or a lower variance and the same 
rate of return. After this test is performed, each 
remaining energy mix will lie along a line that repre­
sents the north-west boundary of the feasible set. In 
other words, in order to get a larger rate of return 
one must take on additional risk. Similarly, in order 
to reduce risk one must accept a lower rate of return. 
This locus of remaining energy mixes is called the 
efficient frontier.* Figure 6 illustrates the rela­
tionship between the efficient frontier and the feas­
ible set. The entire shaded area in the figure repre­
sents the feasible set. The line AECB represents the 
efficient frontier. Any point on the line AECB re­
presents the highest return for each standard deviation 
or the lowest om for each attainable level of ex­
pected return. For example, the mix D lies within 
the feasible set but energy mix C (on the frontier) 
yields a higher expected return and the same variance. 
Similarly, energy mix E yields a lower risk and the 
same return. Any point along the efficient frontier 
between E and C yields a higher return and a lower 
variance than D .

max [A Em - om2]

i=l
M  I  xiEi - 2  I  xixjc ij

i=i j=i
, for all

A £ 0

n
subject to: ^  X^ = 1 , 0 ^ ^ 1 , for all X^

j = l

and; any other constraints on X^ .... (12)

If every system under consideration had a variance 
greater than zero (i.e., some risk) then the efficient 
frontier, would be a set similar to line AB in 
Figure 7. The analysis of the energy mix would be 
complete. in other words, no energy mix along the 
efficient frontier can be eliminated on an objective 
basis. Along the efficient frontier, the only way to 
achieve a higher expected return is to accept more 
risk.

Figure 6 - The Feasible Set and Efficient Fron­
tier

In general, the efficient frontier can be generated 
using a nonlinear programming approach. The problem 
can be stated in terms of a constrained maximization. 
The variables that can be manipulated to obtain this 
maximization are the percentage of the total invested 
in each system (X^) . Mathematically, the general 
problem can be stated as choosing X^ , X2 , . ..Xn
to:**

Figure 7 - The Efficient Frontier of Combinations 
of Hypothetical Energy Mixes

5. SELECTION OF ENERGY MIX BY THE INVESTOR

The final step in the methodology is to allow the in­
vestor to choose a mix that lies along the efficient 
frontier. The mix he chooses will depend on his atti­
tudes toward risk and rate of return. He has to decide 
how much additional risk he is willing to take on to 
increase his expected return. If he is not too con­
cerned with risk he will choose a point near mix B in 
Figure 7. If he is more averse to risk he will choose 
an energy mix near point A in the figure.

* William F. Sharpe, Portfolio Theory and Capital Markets,
1970).

** William F. Sharpe, Portfolio Theory and Capital Markets,
1970).

p. 33 (McGraw Hill Co., 

p. 58 (McGraw Hill Co.,
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6. ADDING A RISKLESS CHOICE TO THE 
ENERGY MIX

Additional energy mixes can be eliminated from consid­
eration if a riskless asset is introduced. This new 
alternative can be interpreted as the choice of not 
investing in energy systems at all but rather in some 
government secured bond or Treasury bill. One could 
also conceive of this as an energy system that the 
government subsidizes in such a way as to insure some 
positive return. For a private individual considering 
energy for his residence, the riskless alternative 
could be construed as obtaining energy from the exist­
ing power grid.

The riskless alternatives available to an investor will 
depend on whether the investor is an individual, a cor­
poration, or a public utility. If an investor has more 
than one riskless alternative before him it is rela­
tively easy to reduce his alternatives to only one. 
Since more return is preferred to less and all these 
alternatives have no risk he will choose the alterna­
tive with the highest return and disregard the others. 
This is represented by point P in Figure 8.

Figure 8 - Feasible Set of Energy Mixes with 
a Riskless Asset

As in the previous analysis, the investor is not re­
stricted to putting all his investible funds in only 
one alternative. The new alternative can be combined 
with any energy mix along the efficient frontier. The 
result will be to increase his feasible set. One can 
consider any mix along the existing frontier just as 
the two systems were combined in the development of 
the two-system feasible set in Section 4.2. For 
example, alternative P can be combined with energy 
mix A in Figure 8 to yield a new set of possible 
combinations represented by the line PA . Similarly, 
alternative P can be combined with energy mix C to 
yield the new combinations along PC . In general, the 
new alternative can be combined with each energy mix 
along the efficient frontier. The total addition to 
the feasible set is represented by the shaded area in 
Figure 8.

The efficient frontier is also altered by the intro­
duction of the riskless alternative. Using the 
assumption that Em is a desired good and om is not 
desired (i.e., a "bad") most of the new possible mixes 
can be eliminated. Even some of the energy mixes that 
were on the original efficient frontier are no longer 
desirable. For example, energy mix A is now domi­
nated by all energy mixes on the ray PD in Figure 9.. 
In fact, all the energy mixes between A and R on 
the old frontier are now dominated by points along 
the ray PDR . The new efficient frontier is made of 
the line PDRB . All points between P and R are 
comprised of varying amounts of energy mix R and 
the riskless asset P . The line segment RB repre­
sents different mixes of energy systems and no funds 
in P .

Figure 9 - Alterations in the Efficient Frontier 
with the Addition of a Riskless Asset

If the investor is allowed to borrow at the riskless 
rate P the risky energy mixes beyond point R can 
also be eliminated. However, energy mix R does re­
main in the efficient frontier. If the investor 
were allowed to borrow at rate P he could invest the 
additional funds in energy mix R and lever his ex­
pected return (and risk) above Er . Since combina­
tions along the ray RE dominate energy mixes along 
RB , the efficient frontier becomes a straight line 
with intercept P tangent to the original efficient 
frontier ARB at point R .

The new efficient frontier contains only one point (R, 
that is made up entirely of a risky mix of energy 
systems. Points between P and R represent com­
binations of mix R and the riskless alternative and 
points between R and E represent combinations-of 
mix R and borrowing at rate P . The energy mix R 
is the optimal mix of energy systems since it is the 
only energy mix remaining on the efficient frontier.*

* This terminology closely parallels Sharpe's concept of the optimal portfolio 
of risky assets (see Sharpe, p. 69).
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The choice left to the investor is now reduced to 
choosing what combinations of the riskless and the 
optimal mix R he wishes to purchase. He does not 
have to choose between different risky energy mixes.
The actual combination of the riskless alternative and 
mix R will be determined'by the investor's subjective 
preference for risk relative to expected return (see 
Section 4).

7. SUMMARY

The energy investor is assumed to choose between com­
peting energy systems based on two factors--expected 
rate of return and risk. The rate of return is equal 
to the difference between the expected revenue and the 
system's cost. This difference is then divided by the 
cost. Risk or uncertainty is represented by the vari­
ance of the return from its average value. The in­
vestor selects a combination of alternative systems, 
one of which may be riskless, to maximize the differ­
ence between the return of the mix and its risk. Using 
the Lagrange multipliers the problem can be stated 
algebraically. The investor chooses X]̂ , X2 , . ..Xn 
to:
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max [A.Em - am] for all \ 2: 0

J.wu) for all

\ ^ 0

subject to the constraints:

n
£  X± = 1 , 0 * Xt £ 1 , for all X±

j = l

and: any other relevant constraints ... (13)

This general framework can be used to simulate the 
decision process of many diverse types of energy in­
vestors. The additional constraints facing each in­
vestor (such as regulation, availability of fuels or 
diversification requirements), should be incorporated 
when the model is exercised.

The methodology presented is only a small step in 
understanding the decision-making process of energy 
investors across the U.S. Additional research aimed 
at estimating the parameters outlined by the approach 
should add significant amounts to our understanding.
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