
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2011

Spiking neural networks and their applications Spiking neural networks and their applications

Cameron Eric Johnson

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Engineering Commons

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering

Recommended Citation Recommended Citation
Johnson, Cameron Eric, "Spiking neural networks and their applications" (2011). Doctoral Dissertations.
78.
https://scholarsmine.mst.edu/doctoral_dissertations/78

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/78?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

SPIKING NEURAL NETWORKS AND THEIR APPLICATIONS

by

CAMERON ERIC JOHNSON

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Pm1ial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

2011

Approved
Ganesh Kumar Venayagamoorthy, Advisor

Dary I Beetner
Keith Corzine
Thomas Vojta

Donald Wunsch

iii

ABSTRACT

Artificial neural networks (ANNs) have been developed as adaptable, robust

function approximators for at least the last quarter-century. They have progressed through

two generations, and the third is now under development. Spiking neural networks

(SNNs) seek to improve on previous generations in two ways: by using a more

biologically-inspired neuron, they are shown to be capable of more complex calculations;

incorporating polychronous properties of highly-recurrent networks with delays of

different lengths on each synapse to achieve large numbers of possible patterns with

relatively few neurons and synapses.

Abstracted spiking neurons have been used as a third-generation activation

function in a traditional feedforward network architecture, and their potency in

application to a real-world problem- identification of power system generator dynamics

-is demonstrated in this dissertation in comparison to a standard sigmoidal multi-layer

perceptron network. However, the goal of SNNs is to be able to utilize biological-like

neural network modeling to capture the computational prowess of living brains. In order

to achieve such a feat, first a bio-inspired SNN must be able to handle continuous-valued

function approximation; until this is done, such networks cannot even be compared to

their second-generation predecessors.

This dissertation demonstrates a technique for using a faithfully modeled SNN on

continuous-valued problems. The encoding and decoding frameworks developed in this

disse11ation for the biologically-inspired SNN enables it, like any other ANN, to be

applied to any time-dependent problem, including ncuroidenti tication of power system

generator dynamics.

lV

ACKNOWLEDGMENTS

Special thanks to Dr. G. K. Venayagamoorthy lor serving as primary advisor on

this Ph.D. research, for encouraging the author to attend multiple conferences and expand

his understanding of the field and how research is done.

Additionally, thanks to each member of the advisory committee: Drs. D. Wunsch,

D. Beetner, K. Corzine, and T. Vojta for their review of this work and the advice given

over the course of this research.

Thanks, as well, to the Real-Time Power and Intelligent Systems Laboratory and

the Intelligent Systems Center at Missouri S&T, GAANN grant #P200A070504, and the

National Science Foundation Emerging Frontiers in Research and Innovation #0836017

for funding and support throughout the author's Ph.D. candidacy career.

To Sinchan Roychowdhury for his assistance in testing the encoding and decoding

methods, and general assistance with coding and developing the experiments and case

studies presented here, and to Bipul Luitel for his assistance in simulating power system

data, thanks are additionally extended.

To Dr. S. Potter and his students R. Ortman and R. Zeller-Townsend at the

Georgia Institute of Technology's Neuroengineering lab, for their help in understanding

how living neural networks function, the author extends his thanks.

Finally, to the author's parents and siblings and again to his advisor, he wishes to

extend thanks lor patience with his discouragement at various points, and for their

encouragement and confidence that he could finish this work.

v

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENTS .. iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES .. xii

NOMENCLATURE .. xiii

SECTION

1. INTRODUCTION .. !

1.1. INTRODUCTION ... !

1.1.1. Generations of Neural Networks ... I

1.1.2. Applications .. 2

1.1.3. Shortcomings and Limitations .. 2

1.2. RESEARCH OBJECTIVES4

1.3. CONTRIBUTIONS ... 5

1.4. SECTION SUMMARIES .. 7

1.4.1. Spiking Neural Networks .. ?

1.4.2. BSNNs and Applications Thereof.. ... 7

1.4.3. Neuroidentification of Power Systems with SNNs 7

1.5. SUMMARY ... 8

2. SPIKING NEURAL NETWORKS .. 9

2.1. INTRODUCTION ... 9

2.2. STATE OF THE ART ... 10

2.2.1. Abstracted Spiking Neural Networks (ASNNs) 13

2.2.2. Biologically-Inspired Spiking Neural Networks (BSNNs) \6

2.3. APPLICATIONS ... \9

2.4. LIMITATIONS OF EXISTING WORK IN SPIKING NEURAL
NETWORKS .. 20

2.5. SUMMARY ... 21

3. BSNNS AND THEIR APPLICATIONS .. 22

VI

3. I. INTRODUCTION ... 22

3.2. BSNN FRAMEWORK .. 22

3.3. ENCODING .. 23

3.3.1. Poisson Rate Encoding Method .. 24

3.3.2. Gaussian Receptor Fields .. 28

3.3 .3. Dual-Neuron n-bit Representation (DNNR) ... 34

3.3.4. Scaling the Jnputs .. 37

3.4. COMPUTATIONAL ENGINE: POLYCHRONOUS SPIKING NETWORK.38

3.5. DECODING .. 48

3.6. CASE STUDIES .. 56

3 .6.1. Time-Series Reproduction .. 56

3.6.2. Function Approximation ... 61

3.7. SUMMARY ... 63

4. NEUROIDENTJFICATION OF GENERATOR DYNAMICS IN A MULTI-
MACHINE POWER SYSTEM .. 65

4.1. IN TROD U CTI ON ... 65

4.2. NEUROIDENT1FICATION OF GENERATOR DYNAMJCS 66

4.3. ASNN NEUROIDENTIFICATION .. 68

4.4. MLP NEURO lD ENTIFICA TJ ON .. 81

4.5. BSNN: POLYCHRONOUS SPIKING NETWORK .. 86

4.6. SUMMARY ... 91

5. SUMMARY .. 92

5 .1. INTRO DO CTI ON ... 92

5.2. CONTRIBUTIONS ... 92

5.3. SECTION SUMMARJES .. 94

5.3 .1. Spiking Neural Networks .. 94

5. 3.2. BSNN s and Applications Thereof.. ... 94

5.3.3. Neuroidentification of Power Systems with SNNs 95

5.4. SUMMARY ... 96

5.5. SUGGESTED FUTURE DIRECT! ONS ... 96

Vll

APPENDIX .. 98

BIBLIOGRAPHY ... I 05

VITA .. 109

viii

LIST OF ILLUSTRATIONS
Page

Figure 2.1 Abstracted spiking neuron serving as an advanced sort of activation
function ... 14

Figure 2.2. Output of an abstracted spiking neuron with r = I and u. = 2, with },t and A2
varying independently from -2 to 2 with a step size ofO.OI. 16

Figure 2.3. Diagram of possible spiking behaviors of the lzhikevich model artificial
spiking neuron, along with the settings required to achieve each variety 18

Figure 2.4. Example of polychrony in action .. 18

Figure 3.1. Block diagram of a SNN used to fully reproduce a time series of
continuous-valued data ... 23

Figure 3.2. PREM reversibility demonstralion .. 28

Figure 3. 3. GRF encoding scheme .. 30

Figure 3.4. Spiking response for input sequence [I, 4.4, 9.7, 2, 6.4, 10, 3, 8, 7, 5] with
a I 0 ms pause between inputs ... 32

Figure 3.5. Spiking response for input sequence [I, 4.4, 9.7, 2, 6.4, 10, 3, 8, 7, 5] with
a 5 ms pause between inputs ... 3 2

Figure 3 .6. GRF reversibility demonstration ... 3 3

Figure 3.7. Encoding method for n bits with two neurons, and odd (o) and an even (e),
each ... 3 5

Figure 3. 8. DNNR reversibility demonstration ... 3 6

Figure 3. 9. STDP weight adjustment curve .. .41

Figure 3.10. Percentage of excitatory synaptic weights in a 100-neuron PSN with 80
excitatory neurons equal to or greater than nine, less than or equal to one, and in
between one and nine, as a function of maturation time ... 42

Figure 3.11. Change over time in excitatory weights of the I 00 neuron PSN shown in
Figure 3 .I 0 during maturation42

Figure 3 .12. Distribution of synaptic weights over 225 simulated seconds of maturation
via STDP ... 43

Figure 3.13. Excitatory weights of a I 000 neuron PSN matured over the course of200
simulated seconds .. .43

IX

Figure 3.14. Connection diagram with delays for a six-neuron network that produces
the 3 7 polychronous groups shown in Figure 3.15 .. .45

Figure 3.15. Thirty-seven polychronous groups produced by the weights shown in
Figure 3.14 .. 47

Figure 3.16. A possible mapping of the polychronous groups identified in the six
neuron PSN shown in Figure 3.14, enabling the PSN to map from-1.12 to 1.12 in
increments of 0.06 .. .49

Figure 3.17. Gaussian temporal filters transforming spike trains in a watch window
into a real-world numeric output .. 50

Figure 3.18. Centers and widths of the Gaussian functions trained for the I 00 neuron
PSN used for the case studies in this Section ... 51

Figure 3.19. Flow chart showing the procedure for using a PSO to determine the
centers C; and widths w; for each neuron ... , 53

Figure 3.20. Fitness of selected Gaussian functions as decoder filters for the watch
windows of their respective neurons .. 54

Figure 3.21. Simple sum output, trained with gradient descent error 55

Figure 3.22. MLP output tuning, trained with backpropagation 55

Figure 3.23. Gradient-descent trained weighted sum of the PSN output 57

Figure 3.24. MLP decoding PSN output with five sigmoidal neurons in the hidden
layer , ... 59

Figure 3.25. MLP output with ten sigmoidal neurons in the hidden layer 60

Figure 3 .26. Comparison of training the decoder on a PSN fed by (16), and of training
the decoder on a PSN fed by random spikes .. 61

Figure 3.27. Weighted sum output attempting to learn to approximate a sine wave
encoded using the GRF method .. 62

Figure 3.28. MLP decoder attempting to learn function approximation of a sine wave
encoded using the GRF method .. 63

Figure 4.1. Schematic of the IEEE I 0 generator 39 bus system with TDNN-based
ncuroidentifiers on generators G7 and G 10 .. 67

Figure 4.2. Diagram of a fecdforward time delay ASNN ... 69

Figure 4.3. Dawson Integral compared to the Error Function ... 70

Figure 4.4. Centers for 20 neurons in the hidden layer of an ASNN determined via k
means clustering on data samples taken from generator 07 (blue diamonds),

X

generator 010 (red triangles), and combined data samples .. ?!

Figure 4.5. Forced perturbation of 07 neuroidentified by an ASNN using centers),'
trained on 07's data alone .. 73

Figure 4.6. Forced perturbation of 07 neuroidentified by an ASNN using centers Ji
trained on the combined 07 and 0 I 0 data .. 74

Figure 4.7. Forced perturbation of010 neuroidentified by an ASNN using centers .ic'
trained using 0 l 0' s data alone .. 7 5

Figure 4.8. Forced perturbation of 0 l 0 neuroidentified by an ASNN using centers t
trained on the combined 07 and 0 I 0 data .. 76

Figure 4.9. Natural fault on 07 neuroidentified by an ASNN using centers i trained
on 07's data alone .. 77

Figure 4.1 0. Natural fault on 07 neuroidentified by an ASNN using centers .ic' trained
on the combined 07 and 010 data .. 78

Figure 4.11. Natural fault on 010 neuroidentified by an ASNN using centers Ji trained
on G l O's data alone .. 79

Figure 4.12. Natural fault on G 10 neuroidentified by an ASNN using centers)/ trained
on the combined G7 and G I 0 data .. 80

Figure 4.13. Diagram of a feed forward time delay ASNN ... 81

Figure 4.14. 07 forced perturbation of a sigmoidal TDNN .. 82

Figure 4.15. 010 forced pmturbation of a sigmoidal TDNN .. 83

Figure 4.16. Natural fault applied to G7, with a single phase fault at Os and a three
phase fault at I Os ... 84

Figure 4.17. Natural fault applied to 010, with a single phase fault at Os and a three
phase fault at 10s ... 85

Figure 4.18. Two-area four-machine power system simulated on the RTDS [21] 87

Figure 4.19. Generator voltages and speed deviations for 250s from the two-area, four-
machine power system shown in Figure 4.18 ... 87

Figure 4.20. Normalized values from the four generators, used as inputs to the PSN 88

Figure 4.21. Illustration of data flow through the PSN framework 88

XI

Figure 4.22. PSO-based training results of a l 000-neuron PSN on generator 1 89

Figure 4.23. MSE of the best performing particle in the PSO training the decoder on
the data used to generate Figure 4.22 ... 90

xii

LIST OF TABLES
Table Page

4.1: Parameters for the SNN neuroidentifier .. 68

Symbol

AD ALINE

GPU

ANN

MLP

RBF

RNN

TDNN

SNN

ASNN

BSNN

PSN

NOMENCLATURE
Description

Adaptive Linear Neuron

Graphics Processing Unit

Artificial Neural Network

Multi-Layer Perceptron

Radial Basis Function network

Recurrent Neural Network

Time-Delay Neural Network

Spiking Neural Network

Abstracted Spiking Neural Network

Biological-model-based Spiking Neural Network

Polychronous Spiking Network

Xlll

1. INTRODUCTION

1.1. INTRODUCTION

Neural networks have been studied since man first appreciated that the brain is,

itself, a computational engine. The very earliest efforts at developing an integrate-and

fire model of a neuron were introduced in 1907 [1]. The McCulloch-Pitts model was

developed in 1943, and a giant squid neuron was dissected to develop the Hodgkins

Huxley model in 1952 [2]. Studying the mechanism of a biological neuron and the

structure of living brains (biological neural networks) led to the development of artificial

neural networks (ANNs).

1.1.1. Generations of Neural Networks. AD ALINE, developed in 1960, was

the first function approximating network of artificial neurons. Using the McCulloch-Pitts

model, it had a binary thresholding function. Capable of any sort of binary-encoded

function approximation, it is robust and adaptable. This marked the first generation of

ANNs [3]. The second generation came about through two breakthroughs in the 70s, with

Werbos's work on backpropagation through time [4], [5] and the development of

sigmoidal threshold functions. AD ALINE and the McCulloch-Pitts neuron use a simple

thresholding function that returns a binary value; the second-generation ANN utilized

neurons with activation functions capable of outputting continuotts values [6].

Advances in neural architectures introduce recurrence and feedback structures,

where the outputs of prior time steps (or even the same time step!) help influence the

current output. These advances introduce a form of memory to the neural network. The

third generation of ANN is currently still being developed: spiking neural networks

(SNNs) [3].

Research into SNNs has boomed in the last decade or so, becoming one of the

hottest topics at neural networks conferences. Development of new mathematical models

for the spiking neuron, investigation and experimentation with various architectures for

SNNs, exploration of new platforms such as graphics processing units (OPUs) and other

high-performance computing (HPC) clusters [7], and even novel applications for the

2

strongest area for state-of-the-art SNNs: pattern recognition and classification [8], [9].

These categorization problems do not require continuous-valued functional mapping, and

include logic gates, [10], [11], [12], video and image processing, [13], [14], [15], [16],

[17] or even auditory [18] or gustatory [19] discernment.

1.1.2. Applications. The three most common applications for neural networks

are function approximation, pattern recognition, and nonlinear control. Time series

prediction and system identification are subsidiary applications to these. As universal

function approximators, ANNs' chief advantage is in their adaptability.

Time series are a special form of time-dependent function, where each state is

dependent upon the prior states. Traditional methods for approximating them involve

searching for trends and fitting known functions to them, or averaging prior results to

attempt to guess the next ones. Determining the coefficients and orders of the variables is

very difficult for these commonly very complex and often dynamically changing

functions. Using an ANN, there is no need to start with an approximation of the time

series function. ANNs are dynamically adaptable to online training, able to track and

learn patterns and functions. Training an ANN as a time-series predictor simply requires

using the time series result from 1 as a target for the result the ANN output at time t-11,

where 11 is the desired prediction time.

System identification is a specialized form of time series prediction that tends to

be highly dynamic and sensitive to a number of environmental conditions that require re

tuning in any traditional functional model of the system when the environment changes.

The dynamic adaptability of an ANN enables it to not merely approximate the time series

function, but to also track the function when it changes due to external conditions.

1.1.3. Shortcomings and Limitations. The first generation of ANN was limited

by its requirement of binary inputs and outputs. While it was capable of universal

Boolean function approximation, it required large numbers of neurons to be able to

perfmm binmy input and output of continuous values. The second generation upgrades

this capability by replacing the thresholding function with an activation function that can

output that varies across a continuum. This increased the calculation capabilities of a

single neuron over the binary, digital output of the first generation considerably. Modern-

day multi-layer perceptrons (MLPs) typically usc second-generation neurons with

sigmoidal activation functions like (I) rather than simple threshold gates.

3

f(x) = () 1 +e-x
(I)

The network architectures which evolved from the second generation include

feedforward networks and recurrent neural networks (RNNs), as well as radial basis

function (RBF) networks. These networks were capable of the same universal Boolean

function approximation as their predecessors, but with fewer neurons required.

Additionally, their ability to output across a continuum made them able to approximate

analog functions as well [6], [20]. Second generation networks' power as learning

algorithms was truly unlocked by their ability to suppmilearning algorithms such as

backpropagation [4), [5].

The problem faced by second generation ANNs is their inability to scale well. Just

as the first-generation binary networks required far more neurons to approximate

functions that second-generation ANNs can handle with relatively few neurons, there

remain problems that second-generation ANNs find to have intractable computation

requirements. As the number of inputs and outputs increases, the number of neurons

required in a second-generation ANN increases even faster. When real-world system

identification problems, such as wide-area monitoring for large-scale power systems [21),

require tens to hundreds of inputs, it becomes simply beyond the capability of second

generation ANNs to perform the calculations in reasonable time with reasonable

resources.

Living brains in living creatures, on the other hand, handle enormous amounts of

information and perform numerous simultaneous highly-complex calculations, value

judgments, and adaptive efforts all at once without a bit of slow-down. It behooves the

neural network community to return to these original inspirations for the ANN to learn

how they accomplish this feat, and use the insights gained to develop a third generation

of neurons and neural networks that is to the second generation what the second

generation was to the first.

The third generation is defined in [3) to be SNNs. It is on these third generation

neuronal networks that this dissertation focuses.

4

1.2. RESEARCH OBJECTIVES

Despite the introduction oflanella and Back's one neuron per possible output

SNN that can perform arbitrary continuous-value input-to-discrete-output in 2001 [22]

and Mass [23] and Duncombe's [24] works in modeling MLPs with spiking neurons

instead of sigmoidal ones, there has been little effort in the area of continuous-valued

SNN inputs and outputs. Using Inter-Spike Intervals (ISis) as the encoded input values,

Iannella and Back's method was capable of encoding any continuous value desired. Their

output mechanism was to control which of the neurons in their feedforward SNN fired.

However, because each neuron is trained to spike to represent one and only one output,

this generates a step-function approximation of whatever arbitrary function the SNN is

trained to approximate. Very discrete inputs or very large numbers of output neurons are

thus needed to generate anything resembling a smooth output curve, which defeats any

scalability benefits one might otherwise obtain from using spiking neurons. Developing a

means of using continuous-valued inputs and producing continuous-valued inputs with

arbitrary functional mapping is the key to truly bringing the SNN into its own as an heir

to the second-generation ANNs.

Late in the last decade, Rowcliffe and Feng [25] produced the first successful

attempt to use third generation ideas to produce an SNN which can operate on

continuous-valued numbers and produce arbitrary responses. They abstract the actual

spiking into a complicated activation function, allowing their neurons to operate in the

same feedforward, feedback, and cellular structures as first- and second-generation

neurons without any need for fancy encoding or decoding. The work of Mass [23] and

Duncombe [24] demonstrated by Sharma and Srinvasan in [26]more resembles this in

practice (albeit lacking the abstraction) than it does the biologically inspired SNNs

(BSNN s) focused on in this dissertation.

By calculating an lSI from equations integrating expected responses to input

firing rates that represent the continuous-valued inputs and never actually generating a

spike train, they deliver an advancement comparable to that in [6]. This abstracted SNN

(ASNN) may provide greater computational power than a second-generation counterpart,

but can it match a more biologically inspired SNN (BSNN)?

5

The specific objectives of this research are to:

o review state-of-the-art encoding methods to pass continuous-valued inputs into an

SNN

o determine whether the encoding methods proposed actually successfully pass

information into the network

o review and utilize a state-of~ the-art architecture that takes full advantage of the

power of the spiking neuron model

o develop and test a decoder that can produce arbitrary functional mappings of the

continuously-valued inputs into equally continuously-valued outputs

o test an abstracted representation of a spiking neuron in a traditional feed forward

ANN structure and compare it on a real-world application to a second-generation

ANN of the same structure that uses sigmoidal neurons

o demonstrate the abstracted and bio-inspired SNNs on a real-world problem of

neuroidentification of generator dynamics in a multi-machine power system

o utilize a BSNN framework to perform neuroidentification of generator dynamics

1.3. CONTRIBUTIONS

Any exploration of the power and capacity ofSNNs must be able to compare

them to their predecessors. In order to accomplish this, it must be possible to test SNNs

on the same smis of problems as the second-generation networks. Despite the lack of

continuous-valued output decoding efforts on BSNNs, there have been several efforts at

creating methods for encoding continuous-value functions [27], [28], [29]. However,

prior to [30], it had been left to assumption that the spikes generated by these methods

truly contained the continuously-valued information passed into the encoding algorithm

that generated the train.

This work seeks to correct this by testing several encoding methods and using

their spike trains to reproduce the original input, thus proving the information exists in

the spikes. It then goes on to encode data into a PSN and develop a decoding mechanism

to translate the spiking outputs of the BSNN neurons into continuous-valued numbers.

6

Additionally, the ASNN of [25] is tested on a highly-complex real-world problem

of power system identiftcation, and compared to a time-delay MLP [31]. These

demonstrations of both abstracted and biologically-modeled third-generation NNs and

their computational power compared to second-generation NNs is the third major

contribution of this dissertation. It is due to the greatest contribution of this work- the

development of a framework for using BSNNs on continuous-valued functions- that

finally enables the fi.tll fledged comparison of BSNNs to second-generation NNs and their

development as a mature and functional computational tool.

The specific contributions of this dissertation are:

• examination, algorithm identification, and analysis of state-of-the-art encoding

methods

• development of a novel new encoding method and associated algorithms

• development of algorithms for reversing the encoding methods examined,

extracting the original data from the spikes to prove that the spike streams do

carry the original continuously-valued data

• explanation, analysis, and execution of the Izhikevich model neuron in a

polychronous spiking network (PSN), and maturation of the same

• development of a decoder capable of translating spikes from the PSN neurons into

continuously-valued outputs which are tuned to isolate the functional

representation desired

• demonstrate polychrony and its ability to vastly increase the capacity of an ANN

• testing of the completed PSN framework (encoder, PSN, decoder) on several

problems, demonstrating the successful implementation of an SNN on

continuous-valued inputs and outputs

• explain, implement, and compare the ASNN of [25] to a traditional MLP on a

multimachine power system identification problem

• prove that a BSNN is capable of performing similar neuroidentilication of

generator dynamics- a continuous-valued real-world problem

7

1.4. SECTION SUMMARIES

1.4.1. Spiking Neural Networks. Section 2 begins the examination of SNNs

in general. The state of the art in SNN modeling is examined along with their evolution

fi·om the first-generation AD ALINE thresholding neurons and the Hodgkin-Huxley

model through modern-day Izhikevich models. Discussion of the attempts in the last half

century to develop spiking neuron models as function approximators and as modeling

mechanisms to study living brain dynamics follows.

The distinction between ASNNs and BSNNs is studied, and the strengths and

weaknesses of both arc examined in light of possible applications to which SNNs as a

whole might be applied. Finally, the limitations that hamper the use ofSNNs under the

state of the art are examined, as these are the hurdles the work presented in this

dissertation attempts to surmount.

1.4.2. BSNNs and Applications Thereof. In Section 3, the primary contribution

of this work is outlined and detailed. A framework for a BSNN which can handle

continuous-valued inputs and outputs is introduced, and encoding methods for

transforming those inputs into spike streams which can stimulate a BSNN's dynamics are

examined and tested to ensure they do not simply produce noise; the spike trains

produced can be decoded to recover the original continuous-valued inputs.

In theory, any BSNN model which mimics brain-like spiking functionality can be

used as the computational engine in this framework. In practice, the lzhikevich model has

come to the fore in recent years as the go-to model for simple and accurate modeling of

biological spiking neuron behavior. Arranged as a Polychronous Spiking Network (PSN),

this is the model chosen for use in the work presented in this dissertation.

While encoding methods had existed prior to this work, and the PSN has been

known for half a decade, this dissertation presents what is, to the author's knowledge, the

first successful means of decoding continuous-valued outputs from a BSNN and training

them to a target function.

1.4.3. Neuroidentification of Power Systems with SNNs. The real-world appli

cation chosen to demonstrate the capabilities of SNNs is power system identification.

Predicting the speed and voltage deviation of generators is a highly complex problem

which has time-dependent dynamics in its functional form. Section 4 demonstrates the

application of SNNs to this difficult problem, and compares their performance to an

MLP. Additionally, a BSNN is demonstrated to be able to Jearn to identify generator

dynamics, proving that BSNNs are capable of continuous-valued outputs on complex

nonlinear functions.

1.5. SUMMARY

This dissertation presents a review ofNNs leading to the development of SNNs

and details the development of means of using them on the same smis of problems as

previous-generation NNs. It goes on to compare the performance of SNNs to their

predecessors on several problems, and apply them to a real-world system identification

problem which faces scaling issues when second-generation NNs are used on them.

8

Having enabled SNNs to be used and tested against prior-generation NNs on any

sort of problem on which NNs are currently used or benchmarked, this dissertation opens

the way for SNNs to truly contend for their claimed position as the third generation of

NN.

9

2. SPIKING NEURAL NETWORKS

2.1. INTRODUCTION

Neural networks have been studied for more than half a century, though they were

popularized after Werbos introduced the world to backpropagation training as a means of

making them self-adapting learning machines [4], [5]. They have evolved from simple

MLPs to increasingly different and complex feedforward [32], feedback [32], and cellular

forms [3 3], and the perceptron neuron has had variants and adaptations. Some are

attempts to capture different neuronal behaviors, while others are efforts to develop better

computational engines [3].

As understanding of the brain- the ultimate inspiration for neural networks

increases, efforts to develop more brain-like neuron structures and network architectures

in order to capture more of the brain's powerful computational capacity and efficiency

are underway [34]. Spiking neurons and networks are the primary focus of this work, and

both abstracted perceptron-style neurons with activation functions focused on spiking

behavior as well as biologically-inspired models of voltage-accumulating-and-firing

neurons (particularly the lzhikevich model) are explored.

The ultimate goal is to develop spiking neural networks (SNNs) to the point that

they can perform comparable functions to their predecessors (such as the MLP), and then

test them on problems which their predecessors found too intractable, such as high-input,

high-output neuroidentification, e.g. of large-scale wide-area power systems.

To achieve that goal, one must first understand the state of the art in SNNs.

Section 2.2 gives an overview of SNN research, including various models and

implementations as well as prior work on abstracted SNNs as an advanced activation

function for function approximation and the lzhikevich model of biologically-inspired

spiking neurons. Section 2.3 goes into applications to which SNNs have been applied,

while Section 2.4 outlines the limitations of current work in the area and thus where work

still needs to be done.

10

2.2. STATE OF THE ART

Spiking neural networks (SNNs) have been a subject of interest since the 1950s

and the Hodgekin-Huxley model [2], developed by biologists studying a giant squid's

neuron. Left by the wayside along with all NNs before [5] introduced a means for the

first generation ofNNs to be used effectively as problem solvers beyond the scope of the

McCulloch-Pitts neuron and AD ALINE, a single-layer neural network.

In the 1990s, the idea of spiking neurons began to draw renewed interest. Called a

third generation of neural network in [3], spiking neural networks seek to advance the

activation function at least as much as the second generation did by replacing

thresholding functions with continuous-valued ones. Though [2] outlines the biological

neuron's functionality in great detail, the earliest mathematical model was the integrate

and-fire proposed by Lapicque, which modeled a neuron as a resister and capacitor in

parallel [1]. Despite having no knowledge of the biological structure of neurons at the

time of its creation at the dawn of the last century, this model captures enough of the

actual function of biological neurons to still be in wide use today.

Spiking neurons are hoped to represent as great a leap forward in computational

power as were continuous activation functions, but they pose a unique set of problems.

Where AD ALINE and other thresholding functions operated strictly on binary inputs and

outputs, continuous activation function neurons can operate directly on continuous

valued inputs and directly produce continuous-valued outputs. Spiking neurons, on the

other hand, can only operate on voltage-level inputs (and almost always are designed, as

their biological inspiration, to do so in the form of spikes) and can only output voltage

spikes. This could be seen as a noisy binary input/output, and, indeed, spiking neurons

and small feed-forward networks of the same have been used to generate XOR gates [I 0],

[11],[12].

However, even should spiking neurons prove to be as much of a step forward in

computational power on Boolean problems as were continuous activation function

neurons compared to thresholding functions, they remain a step backwards if one cannot

utilize them for continuous function approximation. Many different encoding and

decoding schema have been considered for translating continuous-valued numbers into

spikes and back again. Many rely on either spike rate/frequency or ISis.

II

One of the earliest lSI-based encoding methods was presented in [22], wherein

the input is coded as the time between two spikes (the IS!). This provides an arbitrarily

continuous precision on what input values it may handle. The one-layer fcedforward

network of spiking neurons is then trained so that each spiking neuron responds to a

particular range ofiS!s, spiking if its particular lSI is fed to the network. The other

neurons' outputs are suppressed by that same input. Each neuron thus learns one

particular output for a range of continuous inputs, and the network can map an arbitrary

function. Unf01iunately, this sort of encoding and decoding mechanism generates only as

many possible outputs as there are neurons, creating a highly discrete step-function that

does not output continuous values at all.

One idea to allow spiking neurons to operate in continuous number domains is to

abstract them into a kind of continuous-valued activation function, which would permit

them to simply "upgrade" the second generation neural models as they "upgraded" the

first [25]. The work in [23]-[24] uses ISis for the outputs rather than abstracting them and

achieves better results than [22], but like [25] is still a feedforward architecture which

does not capture the inter-neural structure of the SNN, and so exploration of more

biologically-faithful models of both the spiking neuron and the network architectures in

which they serve as the functional units continues.

It is natural that these various models of SNNs should be tested to demonstrate

their capabilities, and so problems on which the spiking nature of the inputs and outputs

have been found. Image and video processing [12], [13], as well as pattern-matching and

classification [10], [II], [12], have been the standard problems to which SNNs have been

applied and on which they have been tested. More ambitious experiments include

attempting to classify inputs according to other sensory stimuli other than sight (auditory

[18], gustatory [19]).

The SpikeCell neural model presented in [14] utilizes a deterministic spiking

neuron to attempt to improve on the standard static neurons of the second generation,

while emulating the outputs of neurons with more traditional activation functions. Using

an internal potential V(t) which evolves in time according to (2) and a dynamic threshold

VthmdtJ which evolves in time according to (3). SpikeProp neuron i can emit positive or

negative spikes as delta functions iii(/+ 1) defined by (4). For the digital discretization, d

12

represents a step size that allows this model to be tuned to a desired level of precision in

emulation.

v,,,,.,". u + l) = ~~""'"· (t) +do, (f)

l
-1

8,(1+1)= ~

if v, (I) < ~~'"''"· (1)

if~~ (I) = ~~'"""· (I)
if~~ (I)> v,,,,.,,,, (I)

(2)

(3)

(4)

The threshold voltage V,,,, of neuron i is thus dependent on the value of the delta

function spike (51 it fired in the most recent time step. The positive and negative spikes

output by these neurons are really thresholded functions similar to first-generation

perceptrons, and SpikeProp has been successfully used on classification experiments

similar to those for which that first generation were demonstrated to be successful.

More computationally-minded models tried lesser or greater complexity to

capture simply the behavior of a spiking neuron or to experiment with more biologically

faithful mechanisms which might lead to that behavior naturally. A neurogenetic model

presented in [35] focuses as much on molecular research as it does on actual SNN

applications. By evaluating the Local Field Potential (LFP) of a test neuron or network

thereof, the neurogenetic model is compared to a target electroencephalogram, or EEG.

The actual method of generating the spiking neurons is similar to a Genetic Algorithm

(GA) which utilizes a number of potential proteins to build each neuron. Careful

modeling of the chemical processes that each protein performs generates the LFP which

can be compared to an EEG. While this is not helpful overall in terms of applications, it

is an interesting model for those who wish to simulate brain behaviors.

The usefulness of SNNs as models of living neuronal networks has not gone

unnoticed in the neurobiology and neuroengineering communities, either. Increasing

amounts of collaboration between the computer engineering and neurobiology fields has

led to work on interfacing living neurons with computer systems and even allowing one

to control the other [36]. The multi-electrode arrays (MEAs) introduced in that paper are

used at the Georgia Institute of Technology to interface rat brain cultures with computers,

so their spiking behaviors can be stimulated and monitored [37]. There is even a robotic

13

arm that can be connected over the internet to the system at Georgia Tech which receives

stimulus from a camera on site and controls the robotic arm to doodle and scribble in

response [3 8].

In part because of the increased ability to monitor biological neurons and their

patterns, more efforts such as [39] emerged as the decade advanced. The digital spiking

neuron (DSN) and quantized spiking neuron (QSN) were used to generate discrete "spike

position maps," which can be used for pattern identification, though no real applications

are attempted.

In the same year, however, [12] came out with the SpikeProp model of spiking

neurons which uses a form of temporal encoding originally proposed in [28]. Section 3

will go into more detail on the Gaussian receptor field (GRF) encoding method presented

in that work, but [12] developed a form of backpropagation-based weight learning.

SpikeProp is a feedforward set of spiking neurons, and successfully learned the XOR gate

function. One of the problems they tackled was the need to have their backpropagation

have a special case for times when the neurons do not fire, because spiking neurons do

not always output a value at each iteration. For decoding, SpikeProp simply assigns an

early firing time to logical value "1" and a late firing time to logical value "0," and

ensures that the converged neural network fires at least once per time-window for any

input.

Perhaps ironically, a model of spiking neurons that uses the same "behavior

focused" rather than "method-focused" sort of design demonstrated in [1] is one of the

most widely-acclaimed SNN models today. Introduced in [40] by a neurobiologist, the

lzhikevich model of spiking neurons (explained in more detail in Section 2.2.2) is known

to very well simulate actual brain behaviors [41], [42].

2.2.1. Abstracted Spiking Neural Networks (ASNNs). One approach to

incorporating SNNs into standard NN applications is to try to maintain the input/output

architectures already well-known and commonly practiced. MLPs, Radial Basis Function

networks (RBFs), Recurrent Neural Networks (RNNs), and most other commonly-used

architectures have a layered structure with neurons which operate on real-world-relevant

values in activation functions and pass them on to the next (usually output) layer.

14

An excellent example of one such effort is performed in [25]. The ASNN

developed in that work utilizes an abstraction of the lSI based on the mean and standard

deviation of hypothetical spikes fired in response to the real-valued input. Figure 2.1

illustrates the abstracted spiking neuron.

Figure 2.1 Abstracted spiking neuron serving as an advanced sort of activation function.

The mean tt and standard deviation (J for each neuron i are based on the temporal

distribution of spikes which would be firing if they were not abstracted away. They are

defined by (5) and (6).

II

J.l; = L A,j - A,; wij 1 - r
j=l

l+r

(5)

l+r (6)

The / 11 input into the neuron is given as }'1 while a. is a tuning constant that must be

greater than 0. The ratio of excitatory to inhibitmy inputs is given by r, and is usually set

to 1 for an equal number of each. This causes p to typically be zero, so the experiments in

[31] derive all the meaningful input from the standard deviation of the spikes. The

superscripted i values represent centers in the calculation space. Each neuron i has a

different center around which it responds, and those centers are found in any of the same

ways that RBF network centers can be found [25].

This, however, merely transforms the real-world input value given by 2 into an

abstracted temporal spiking behavior. The model in [25] and [31] uses the abstracted

firing rate as calculated using the IS! as the final output from the activation function. In

order to achieve this, the lSI first is calculated by means of (7), with Vm1 as the resting

voltage of the spiking neuron, and V11""" as the threshold voltage. The relaxation period

of the neuron, r, is the time it takes for a given spike's influence on a neuron to fade.

2
!'1/irn~T-p!

15

lSI=- j, "' g(x)dx I rot r Jl, T ---
(7)

u,

Integrating over the Dawson's Integral g(-<) given in (8) between the limits

established by these voltage values and the mean and standard deviation of the abstracted

spikes passing through the spiking neuron gives us the lSI.

2 r 2
g(x) =ex 1 e-" du (8)

The final piece of the firing rate that is used as the output of this abstracted

spiking neuron is the refractory period 1~ef, which is the time after a neuron spikes that it

spends below its resting voltage before it finally recovers and resumes its resting voltage.

The firing rate is the multiplicative inverse of the sum of Trerand the lSI (9).

!,(Jc) = T :IS!
n:f

(9)

This highly complex procedure can produce complicated functional surfaces. The

relatively simplistic one produced with r= I and u.=2 is shown in figure 2.2.

This form of abstracted spiking neuron can be used in place of traditional

sigmoidal neurons or RBF neurons in feedforward, feedback, and recurrent architectures.

As Section 4.3.2 will demonstrate, this is a powerful form of neuron despite remaining

more akin to traditional neuron architectures than biological models of spiking neurons.

0.3

0.1

0.05
2

... .. .
!

·2 ·2

,,

16

2

Figure 2.2. Output of an abstracted spiking neuron with r == 1 and a. == 2, with },1 and },2

varying independently from -2 to 2 with a step size of 0.0 1.

2.2.2. Biologically-Inspired Spil<ing Neural Networks (BSNNs). Biological

neurons are very complicated machines with numerous mathematical models to

approximate their behavior. The oldest of these is the Hodgekins-Huxley model [2],

which has many equations modeling very specific behaviors observed empirically in the

dissection of a giant squid neuron. Ion channels, conduction paths, axons, dendrites, and

many other components of the biological neuron were studied and modeled.

The generally-accepted approximations of the biological neuron focus primarily

on the voltage transfer between them. Neurons have three generally-important

components to modeling this behavior: dendrites, which collect voltage spikes through

synapses which connect them to other neurons; the main neuron body (or "soma"), which

is where the charge is stored while it builds; and the axon, which is the output path along

which a voltage spike is released. The "leaky neuron" model sees voltage spikes from

pre-synaptic neurons flow into the dendrites of a neuron, and build up the voltage stored

on the soma. This voltage leaks away naturally over time, but if multiple spikes come in

over a short enough period, the voltage builds faster than it leaks away. When it reaches

17

the threshold voltage V111resh, it emits a spike of its own. The soma's voltage immediately

drops below its resting voltage [7,.,,1, and the spike propagates along the axon to synapses

which connect to other neurons' dendrites.

The Izhikevich model of neuronal activity is a simple two-equation system, (I 0)

and (I I) that represents the voltage over time of a spiking neuron [40].

{
v(k + 1) = 0.04v(k) 2 + 5v(k) + 140 -u(k) +I

v(k+i)=c

{
u(k + 1) = a(bv -u(k))

u(k+i)=u(k)+d

ifv(k) < 30mV

ifv(k) 2 30mV

ifv(k) < 30mV

ifv(k) 2 30mV
(I 0)

(II)

The voltage at discrete time-step k is given by v(k). This is the value of the

voltage assumed to rest in the soma of the simulated neuron. It builds due to the input

from other neurons represented by I, and decays with time (if it does not spike). The

threshold voltage is set at 30m V. After a spike, the voltage resets to c, which (along with

a, b, and d) is one of four variables which can be tuned according to figure 2.3 to cause

the neuron to behave according to one of several ways real biological neurons tend to

spike. The experiments run for this dissertation all use regular spiking excitatory and fast

spiking for inhibitory neurons in any Izhikevich model experiment.

The neural model alone faithfully represents the input and output voltage spike

behavior of biological neurons, but the most potentially ground-breaking advance is in

the polychronous network introduced in [43]. This polychronous spiking network (PSN)

develops "polychronous clusters" of neurons which respond only when specific neurons

are triggered in specific orders, as shown in the example five-neuron network with delays

as displayed in figure 2.4. The delays align such that incoming spikes arrive all at once if

the pre-synaptic neurons are triggered in specific orders, but do not if they are triggered

out of sequence or with the wrong timing. Section 3.4 goes into it in more detail as it

discusses details of the PSN itself.

__L:= v'= 0.04V2+5V+140-U+I
u'= a(bv -u)

c
\'(I)

if V=30 mV,

~ thenv .. c, u .. u+d
U(Q

S<ruitMty b

regular spiking (AS) intrinsically bursting (I B)

halamo-cortical (TC) thalamo-cortical (TC)

l 20mV

40mt

.a1 mV
.----JO ~r-----

RZ

025 0
LTS,TC •

Sl
~ ..
102 0

RS,B,CH FS •
Q,

0 0.02 O.t
pammetorn

chatterhg (CH)

resonator (RZ)

o RS

B
•

0
FS,LTS.RZ

0
ai

fast spiking (FS)

J•
low·hrt>shold spiking (L TS)

II
Figure 2.3. Diagram of possible spiking behaviors of the Izhikevich model artificial
spiking neuron, along with the settings required to achieve each variety. Electronic

version of the figure and reproduction permissions are f reely available at
www. izhi kevich. com

2 3 4 5 6 7 8 9 10 11 12

18

Figure 2.4. Example of polychrony in action. Blue spikes are inputs. Red lines are
synaptic links which coincide from stimulus spikes to cause post-synaptic spikes. The

delays on the c01mections between neurons are shown in the five-neuron diagram.

19

Such clusters can each represent a mapped output, and each additional neuron to

the PSN increases the number of clusters exponentially. Thus, for each new Izhikevich

neuron added to the PSN, increasing numbers of additional possible outputs become

available. This is extremely similar to living brains, which exhibit literally astronomical

calculation capacity without needing more neurons than there are stars in the sky.

2.3. APPLICATIONS

SNNs are just now beginning to leave infancy and toddle around the world of real

applications. They are skilled pattern recognizers, and there have been a number of

successful spiking neuron-based logic gates, such as the XOR gate demonstrated in [10],

[II], and [12]. It is desired that SNNs be useful in as many functions as their ancestors. In

their broadest definition, neural networks are function approximators. This means that

any application where a current state leads to a new state via some function can use a

neural networks solution. The first generation perceptrons were capable only of universal

Boolean approximation, but the second generation's introduction of continuous activation

functions expanded this to any analog or digital function. More realistically, however,

neural networks are most useful when the function transforming one state to another is

highly complicated, poorly understood, changing with time, or some combination of

these circumstances, because in simpler situations a straightforward analytic function

would be easier to generate and utilize.

SNNs, as they stand today, are commonly tested on pattern-matching and image

processing problems. Classification of data sets is also common [7)-[19]. However, the

biggest advances have been in attempting to use them as artificial, fully-monitorable

models of living brains for neurobiological study r 40), [43].

In order for SNNs to earn their position as a "next generation" neural architecture,

they must prove capable of matching their predecessors at this general task of handling

real-world inputs and outputs in continuous regimes. From there, the hoped-for increased

computational power and versatility of the SNN will enable neural networks to be used

on applications too computationally intractable for current-generation architectures.

Because of the similarities between the behavior of the Izhikevich SNN and the ME As in

[36], it is hoped that successful implementation of this third generation of artificial neural

20

network will also enable more powerful and accurate computation with living neurons as

the processors.

The SNN's basis in the way biological brains process information gives hope that

it will invert the scaling problem faced by MLPs, RBFs, RNNs, and the like. Ever

increasing numbers of hidden neurons are required in first- and second-generation NNs to

handle the special cases and intricate dynamics of the function to be approximated as the

number of inputs and outputs increases. This is a geometric to exponential rise, and

makes many applications- such as the wide area monitoring system proposed in [21] if

scaled up to handle the New England or Brazilian power grids, as proposed in [44]

intractable. Living brains monitor and control vastly more complicated machines (such as

mammalian bodies) without facing such problems. The third generation of NNs is

designed to capture this.

2.4. LIMITATIONS OF EXISTING WORK IN SPIKING NEURAL NETWORKS

Achieving the kinds of continuous-value function approximation required by real

world time series and neuroidentitlcation problems requires means of inputting

continuously-valued real-world data into the SNN, and retrieving meaningful

continuously-valued data from the SNN's outputs. The state of the art for SNN

applications tends to focus on video processing, pattern matching, and very limited input

and output mechanics (usually comprising a limited set of patterns or values which can be

read in and out).

There are many different methods for inputting data into SNNs, but no good

means of retrieving continuous-valued outputs from them. Moreover, prior to the

encoding work presented in Section 3.3, the few methods that do exist for converting

arbitrary numeric values into spike streams for input into an SNN are simply assumed to

contain the encoded information. With no means of decoding the SNN's spike patterns,

the information was never checked. This dissertation investigates the spike streams

created by three encoding methods to determine if the information is present in the

spikes, and goes on to develop a possible decoding method to obtain meaningful real

world values from the output of an SNN.

2.5. SUMMARY

21

Spiking neural networks drink more deeply from the font of inspiration out of

which neural networks in general were conceived. By more carefully modeling the actual

behavior of biological neurons, they seek to capture the calculation power and efficiency

of those natural computers to overcome problems -most particularly problems of

database scale- which living brains do not even notice but on which current-generation

neural networks tend to choke. Neuroidentification of large-scale power system dynamics

requires not only massively scalable architectures, but also the ability to operate on

continuous data spaces rather than being restricted to limited sets of patterns or other

specified inputs and outputs.

The next section goes into more detail on the Izhikevich model of a spiking

neuron and how it can be used in a new biologically-inspired dynamic reservoir. For it to

be truly useful in such neuroidentification and function approximation problems,

however, a means of ensuring the real-world data is present in the encoded input spike

streams is essential. Moreover, a decoding mechanism for extracting the calculated spike

coded outputs into continuously valued meaningful numbers is required before it can

even match its predecessors' performance, let alone demonstrate its superiority in large

scale situations.

22

3. BSNNS AND THEIR API>LICATIONS

3.1. INTRODUCTION

The major contribution of this disse1iation is the development of techniques for

applying SNNs to all of the same sorts of problems that second-generation NNs can

handle. It is essential to either prove that SNNs can do anything that second-generation

NNs can, or to determine where second-generation NNs are superior, before SNNs can be

properly developed as a third-generation NN.

Because i\SSNs and the feedforward networks utilizing spiking neurons resemble

second-generation NNs, they are already capable of mimicking second-generation

functionality (as explained in Sections 2.2.1 and 4.3.2). The main problem lies in BSNNs

and their peculiarities that make handling continuous-valued numbers difficult-to

impossible. Presented here is a framework for using a PSN as an engine for a third

generation neural network. This framework is, to the best of the author's knowledge, the

first to make general continuous-number computation with BSNNs possible. The overall

framework is explained in Section 3.2. Section 3.3 explains and demonstrates state-of

the-mi encoding methods for transforming arbitrary continuous values into spike patterns,

then goes on to confirm that all three methods generate spike patterns which actually

contain the encoded information. Section 3.4 describes the PSN itself and how it works;

the engine that actually performs the computational "heavy lifting" for the BSNN.

Decoding, essential to finish the cycle and recover meaningful continuous-valued

numbers from the calculated dynamics of the PSN, is discussed in Section 3.5, and

example problems on which this framework has been tested are given in Section 3.6.

3.2. BSNN FRAMEWORK

The SNN's processing capabilities are useless without a means of inputting data

on which it is to operate, and a means of extracting the processed information in

meaningful forms. This requires a framework like that in Figure 3.1, with an encoder to

translate real-world values into spike trains and a decoder which converts the SNN's

spikes to meaningful real-world values [29].

23

X

input output

Figure 3 .1 . Block diagram of a SNN used to fully reproduce a time series of continuous
valued data.

The various sub-modules ofthe blocks are explained in the following sections.

The SNN itself does the heavy mathematical lifting, and the decoder translates its spike

responses into real-world values and potentially tunes the outputs to meaningful targets.

3.3. ENCODING

For BSNNs to be as useful as their predecessor architectures, they need to be able

to take in real-world values. While SNNs have been successfully applied to a selection of

specific classification problems (of which, really, Boolean logic discrimination and image

processing are subsets) such as those presented in [11] , [28] , one of the two biggest

obstacles to using SNNs for all the functions that second-generation NNs could perform

has been encoding real-world values into forms with which the spiking neurons could do

anything. This is a problem for which solutions have been searched for years, as

24

demonstrated in Section 2.1. Where handling continuous values is fairly trivial for MLPs,

RBFs, and other second-generation NNs, it requires special encoding methods in order to

conveti numbers into spike trains for BSNNs. lannella and Back [22] proposed a one

neuron-per-possible-output algorithm a decade ago. The lSI-based encoding method

presented in their work is tempting, but not terribly robust to noise from the highly

recurrent system that makes up the PSN.

Three means of encoding and decoding spikes for spiking neural networks are

examined here as stand-out methods of encoding real-valued numbers into the third

generation NN. In particular, a Poisson rate encoding method [27] (called PREM by the

authors of [30]) and a method based on GRFs [28] are analyzed, and an in-house dual

neuron n-bit representation (DNNR) [29] is presented. Each of these methods generates

streams of spikes with different temporal or spatial patterns when fed continuous values

over the range they are designed to handle. For a serious study ofBSNNs as a whole,

however, cetiainty is needed that the real-world values actually are encoded. That is, it is

essential to be certain that the values encoded are contained and present as information in

the spike trains generated by the encoding methods tested. The lSI method in [22]-[24]

does obviously meet this requirement, at a minimum: the encoding method is so simple

that it cannot fail to do so, and a simple stopwatch can recover the values by observing

time between the spikes. PREM, GRF, and DNNR, however, need to be tested, to see if

they can meet this minimum requirement before they can be held up in comparison of the

lSI method at all.

This section not only, therefore, outlines the three named encoding methods, but

then presents a reversing algorithm for each encoding method. If the spike streams

generated contain the information encoded by the algorithm, the revering algorithm can

take the spike stream and reproduce said values with no prior information about what the

original values were.

3.3.1. Poisson Rate Encoding Method. Perhaps most closely related to the lSI

method of encoding by its relation of firing rate (how often a neuron fires in a given

period of time) to the real-world value to be encoded, the PREM creates a spike train

whose pattern obeys a homogenous Poisson process for a given input value.

25

Characterized by (12), a Poisson process characterizes the probability that the number of

events counted between times a and b is equal to k [45].

Aa.b (0)k
[() J e "'a.b

P N(b)-N(a) = k = k! k = 0,1,2, ...

The homogeneous process described in (12) assumes that },a,b is constant. For a given

real-world input value, this remains the case in the PREM. However, this encoding

method uses the real-world input value as 2, which means that the Poisson process is

overall inhomogeneous. The modification is simple, redefining 2a.b according to (13).

Aa,b = J: A(t)df

(12)

(13)

While a straight-forward approach could simply generate a stream of spikes

which have a probability of spiking equal to },a,b in each time-step, [27] instead

incorporates it into the biologically-inspired spiking neuron equations by incorporating

Aa,b into the time-dependent voltage equation (14) as part of the mean and standard

deviation of the distribution of the voltage spikes as shown in (15). Either method results

in a string of temporally-random spikes with the information solely contained in the

number of spikes input in a given period of time.

dV = _£'_d1 + j.<dt +.[;;dB,
r

{
f1 = aA(t)(i- r)

u = a2 A(I)(!+ r)

V ~ ~hreslwfd (14)

(15)

The ratio of inhibitory to excitatory neurons is, again, r, andy is the product of},

and V,;,,eohold· The use of fl and CJ to transmit data is similar to that used in Section 2.2. 1

and [25]. The always-positive magnitude of the excitatory postsynaptic potential is a, and

B, is a Brownian motion variable.

The mathematics behind the maximum likelihood estimation (MLE) method of

transforming the spiking rate of the neurons governed by (14) is given in exhaustive

detail in [27]; this disse1tation will simply touch on the high-level theory in

demonstrating that information encoded by the PREM is present in the output spike

stream. Algorithm I provides the broad steps for enacting the PREM. Reference to [27] is

still recommended for specifics.

26

The MLE method of recovering the inputs requires a Monte Carlo simulation of

multiple possible "paths" for the neurons' firing patterns to follow. A "large number" of

such paths is used in [27] in order to get a good simulation. PREM has a lower bound on

possible input values, below which MLE returns "0" as the answer when it attempts to

recover them. This lower bound approaches zero asymptotically as the number of paths

approaches infinity. However, each additional path is, computationally, equivalent to an

extra neuron. Because the other methods of encoding tested in this section operate on the

order of a dozen neurons, the experiment in [30] uses twelve neurons with three paths

each, for a computational cost equivalent to 36 neurons total. Algorithm 2 provides a

step-by-step process for enacting the MLE method.

Algorithm 1 Encoding using PREM [27]

1: Initialize number of neurons m and number of independent paths B
2: Determine the minimum threshold of possible inputs based on B.
3: Add the lower bound to all inputs in preprocessing
4: for each neuron i do
5: for each independent path) do
6: Usc},(/) in (15) as the continuous-valued input
7: Determine dVin (14), and update neuron for next time step
8: end for
9: end fot·

Algorithm 2 Recovering inputs from PREM [27]

1: for each neuron i do
2: for each independent path) do
3: Determine the rate of fire for path) in neuron i
4: end for
5: Use the Monte Carlo averaging technique to estimate the rate of

fire 2 of neuron i
6: end for
7: Estimate the maximum likelihood value using the MLE method in [27];

this is the original continuous-valued input

27

With three paths per neuron, it turns out that only two paths ever fire at all on the

sinusoid given in (16). The lower bound below which the MLE cannot resolve anything

but "0" is roughly 1500 when only three paths are used, so a linear offset of 2000 is used

to push (16) above this threshold. As Figure 3.2 illustrates, MLE can recover data

encoded by PREM with only a -0.5 bias, which is constant and thus can be removed in

post-processing along with the linear offset to compensate for having only three paths per

neuron.

\

20sin(27l'l)

f(t) = 20sin(47l'l)

20 sin(27l'l)

Os s I< ls

Iss I< 2s

2s s I< 3s

(16)

Uniquely amongst the encoding methods presented here, PREM and MLE

actually pass the information into the neurons themselves before spike patterns are ever

generated. If the authors of [27] ever develop a decoding method that does not strictly

reproduce the inputs, this could be a useful tool for applying BSNNs to real-world

problems involving continuous valued inputs and outputs.

Decimal Values

E 200 -

0 0.5 1.5
t (SQC)

(a}
Error

2 2.5 3

2~----~~----~------~-------T-------r------~

-
....
~ 0

~==============================~
-1

-2~----~·~----~------~------~-------L------~
0 0.5

15

1.5
t (sec)

(b)

2 2.5 3

_..-::~:;·-2
- --;..-:

2000 2500 3()00 3500 3

t (ms)
(C)

independent
paths

28

Figure 3.2. PREM reversibility demonstration. (a) Sine waves of 1 Hz and 2Hz, original
input and recovered values from MLE ofPREM-encoding. (b) Error between original

input and recovered values; note that it is a constant -0.5 bias. (c) Neuron spiking patterns
on the 12 neurons with three paths each; one path never fired at all.

3.3.2. Gaussian Receptor Fields. Overlapping GRF are used to encode

continuous real data into spatially and temporally defined spike trains [28]. Figure 3.3

provides a schematic diagram of the means of performing this encoding, which uses a

29

Gaussian activation function for each input (or sensory) neuron, with centers spread

evenly over the possible continuous input range. For a range [n,,," n,a,] of a variable n

with 111 sensory neurons, the centers C, for neuron i are determined by (17) and their

widths w by (18). The activation value/, for each neuron i is determined by (19).

Ill> 2 (17)

n -n
H' = max mm

y(m- 2)
Ill> 2 (18)

(x"f',)2

f,(x) = Ae ~--,;;o i= l,2, ... ,m (19)

A single input value passed into all sensory neurons' activation functions will

generate different activation values; the closer the input value is to the center of a given

sensory neuron, the higher its activation value on that neuron. These activation values are

translated via (20) into firing times inversely proportional to the activation value.

i= l,2, ... ,m (20)

The activation value for neuron i is given by,(; and r is a constant that defines the

maximum time delay possible. For the experiments in [30], r is set to be I 0 ms, and any

neuron whose delay time 7i is greater than nine milliseconds is discarded as too weak to

count for the given input. Thus, any given input value will cause two or three neurons to

fire, depending on where it falls on their activation functions. The closer to the sensory

neuron's center, the sooner it fires. Algorithm 3 explains this encoding process

programmatically.

t=O

10

I-
9

Q) 8 ..0
E 7
::l

6 c
c 5 e 4 ::l
Q) 3 z

2
1

Neurons

....... m

1'
p=[input data point] q=[input data point]

(a)
1\ I TlO

I T9
I Is

I T3
I T6

I Ts
I T4

I 17

012 3 45 6 78 9

t (ms)

(b)

' /

30

Figure 3.3. GRF encoding scheme. (a) 10 sensory neurons distributed evenly across input
space, with data points p and q as inputs. T;(x) are the corresponding time-since-input at

which the neurons will spike [30]. (b) Spike timings for p and q when encoded.

Figure 3.4 illustrates the firing patterns of a sequence of values [1, 4.4, 9.2, 2, 6.4,

10, 3, 8, 7, 5] input one after another with a 10 ms delay between each input. With no

overlap, these are easily distinguishable by any heuristic examiner. However, Algorithm

3 is capable of encoding inputs which are not forced to wait for the prior input's spike

pattern to be fully generated before beginning to generate its own, which results in the

same input stream consisting of overlapping spikes, as shown in Figure 3.5. This

arrangement of overlapping values would be very difficult to reverse the encoding on

31

with no prior knowledge of to which original input a given spike in an overlapping frame

applies.

Algorithm 3 Encoding using overlapping GRFs [30]

1: Initialize number of neurons m and coefficient of multiplication y used in
(18).

2: Initialize the range of inputs, n,,, and nma.n to the encoder.
3: for each neuron i do
4: Compute centers of each Gaussian functions, C, using (17)
5: end fo•·
6: Compute the width of Gaussian functions, w using (18)
7: for each neuron i do
8: for each sample input x do
9: Compute the magnitude of firing,.fi(1), using (19)
10: Calculate the time delay values T, from.f;(.\') using (20)
11: Set neurons with 7>9ms to not fire
12: end for
13: end for

Algorithm 4 is designed to disentangle these with no prior knowledge of the

original inputs other than the delay time between inputs. It accomplishes this by passing

the spike timings L11 within r of a given input's start time 1 through (21) to get a

hypothetical activation value.fi '(\')that the spike would have if it were caused by the

input entered at time I. This is then filtered through (22) to determine what the

hypothetical value x' would have to be to generate ,.t;' .

,,, -,, -

. f.'(x) = 1- L'.t
T

i:;:::: 1,2, ... ,117

-2xw x +C
(

2 log((, '(x)) .)
A ,

(21)

i=l,2, ... ,m (22)

32

20 40 60 80 100

t (ms)

Figure 3.4. Spiking response for input sequence (1 , 4.4, 9.7, 2, 6.4, 10, 3, 8, 7, 5] with a
10 ms pause between inputs. Since no input can have a spike more than 9 ms after it is

entered, there is no overlap [30].

12

biJ =
10 -- - - -

....
....

t:: 8

"' = Q 6
= CJ z 4

10 20 30 40 50

t (ms)

Figure 3.5. Spiking response for input sequence [1, 4.4, 9.7, 2, 6.4, 10, 3, 8, 7, 5] with a 5
ms pause between inputs. Overlap occurs between the last 5 ms of potential response

time of one input and the first 5 ms of potential response time of the next [30].

There will be two to tlu-ee spikes which truly belong to the input given at time f.

These spikes will all have the same x' value. All other spikes, caused by other inputs, will

generate different x ' values which will not match. Taking the statistical mode of all

hypothetical values x' will thus return the true value x which was input at time t. As can

33

be seen clearly in Figure 3 .6, the GRF encoding scheme can successfully encode the sine

wave given in (16) into spikes from which the original sine wave can be reconstructed

according to Algorithm 4. With arbitrary temporal resolution, the recovery is precise and

accurate to arbitrary degrees.

Q>
"0
::J
.t!
c
~
E -10

o input sine wnve
• reversed encodin

0~--------------------------------------~ Q>

-g -1
-~
:;., -2 e

-3

- ·~----~----~------~----~------~--~ 0 500 1000 1500 2000 2500 3000

t(ms)
(b)

- - - -10 -- - - ---.g s - - ---- --~ 6:- -:. - - -- - -e - - --il 4 - - --z -- -- -- -

- --- - -- - --- -- ':. .: -- - -- --- -- -1500 2000
0o~----~50~0 ----~1~00~0----~~--~~----2~50~0----~3000

t(ms)

Figure 3.6. GRF reversibility demonstration. (a) Original sine wave overlaid by the sine
wave recovered from the encoded spikes. (b) The error is shown to be non-existent; GRF
loses no information with arbitrary temporal resolution. (c) Raster plot of the overlapping

inputs encoded as spikes [30].

Algorithm 4 Recovering data fl·om GRF -created spikes [30]

1: Initialize '''""hold as the maximum possible delay of a
spike after its triggering input

2: for each sample time to do
3: for each spike between to and to+ '""""old do
4: Calculate L1t =(time of spike)- (to)
5: Use Lll in (21) to determinef'(x) for every spike
6: Usef'(x) in (22) to calculate x' for both the

positive and negative roots
7: end for
8: Take the statistical mode x of all spikes' x' for

every sample which gives the recovered input
9: end for

34

It is perhaps unsurprising that the coded spike train resembles, cosmetically, the

original uncoded signal, when one considers that the sensory neurons' Gaussian receptors

are positioned along the signal's domain.

3.3.3, Dual-Neuron 11-bit Representation (DNNR). Developed in-house in

[29], this encoding method inputs an entire continuous value into an SNN in a single time

step (usually I ms). A particularly simple two-step process translates the continuous

value on a prescribed range first into an n-bit Grey code and then into a pattern of n

spikes arrayed across 2n sensory neurons. Two neurons represent any one bit in order to

distinguish between binary input values of "0" or "1" and no input at all, as demonstrated

in Figure 3. 7. When no input is present, none of the sensory neurons are firing. Each

neuron pair has one designated as "odd" and the other as "even." When an input is

present, exactly one of the two neurons in each pair fires. "Odd" neurons firing indicate

the bit represented by that particular pair is "1 ,"while "even" neurons firing indicate the

bit represented by that particular pair is "0."

The range and resolution orthis encoding method (as shown in Algorithm 5) is

strictly determined by the number of bits (and thus the number of sensory neurons) used

to encode the values. In the work done in [29] and [30], 12 bits and therefore 24 sensory

neurons were used, giving a maximum of 4096 discrete values possible. For a range of

slightly more than [-20, 20], this gives two decimal places of precision. That's very

nearly continuous resolution from a human observer's standpoint.

I·@J
"·®··-
0 ·@'·-
·@4J~

.l spike

0
~

_ no spike

II·@
(J-•@
IJ -.@
0 ·@

(J·G
0 ·@

35

Figure 3.7. Encoding method for 11 bits with two neurons, and odd (o) and an even (e),
each. A Grey code is used to transform real-world values into a binary representation;

each bit is represented by two neurons [29].

Algorithm 5 Encoding a real-world value via the dual-neuron n-bit representation
spiking encoding method [30]

l: Based on resolution and range of real-world values, initialize the number of
bits n

2: Create m spiking input neurons, where m = 2n
3: while there are inputs to pass to the sensory organ:
4: Conve11 current input ton-bit Grey code
5: Pass the bits of the Grey-coded value to odd- numbered neurons
6: Pass the complement of the same bits to the even-numbered neurons
7: Neurons (even or odd) which receive a "I" output a spike, neurons which

receive a "0" do not output a spike
8: end while

Because there is no time-dependence on the information, this is a strictly spatial

encoding method. All of the information encoded by Algorithm 5 is passed through the

sensory neurons at once. This very straight-forward encoding method also means it is

easy to tell that the only place information is lost is in the resolution: in the experiment

shown in Figure 3.8, any decimal value less than 10-2 is truncated to the second decimal

place. Algorithm 6 outlines the reversing of the encoding based on the spike stream,

which is simply the same sinusoid on which the GRF encoding method was tested.

Algorithm 6 Reversing the DNNR spiking encoding method to recover
the original input [30]

I: Initialize n to half the number of neurons used in the encoding
2: while there are inputs to read from the sensory organ:
3: for each pair of neurons
4: if the odd neuron is spiking and

the even neuron is not
5: Record corresponding bit as a "1"
6: else if the odd neuron is not spiking and

the even neuron is
7: Record the corresponding bit as a "0"
8: else
9: There is no input here, break to next input
10: endif
12: Convert n Grey-coded bits to real-world value
13: Move to the next input
14: end while

decimal valuu

l(ms)
(e)

36

Figure 3.8. DNNR reversibility demonstration. (a) Original and recovered input; (b) error
between the original and recovered input; (c) spikes containing encoded values [30].

37

The regular, well-organized spikes encoding the data are easy to read. With 12

spikes in every input, the energy fed to the SNN by the sensory neurons is very constant,

as well. Reversibility is easily demonstrated because the spikes correspond directly to a

Grey code, which is 1:1 related to the original continuous input value. The error falls

neatly in the range of less than 0.0 l, precisely as predicted for the resolution of this

encoding method.

3.3.4. Scaling the In ruts. Because GRF and DNNR both have finite ranges

over which they can encode continuous values (and varying resolutions for said ranges),

it is important to be certain the encoder is constructed and calibrated to handle both the

range and resolution desired. The experiments demonstrated here used a range of values

from -20 to 20 for the input streams. DNNR utilized 12-bit Grey code with a resolution of

two decimal places. Twelve-bit Grey code can achieve 4096 unique values, which

enabled a two-decimal-place resolution to encompass slightly more than the range of -20

to 20, but it was the minimum number of bits to achieve that range and resolution.

It is possible to increase the range of the DNNR by one of two methods: either

scale the Grey code such that its 4096 unique values correspond to a broader range

(which comes at the expense of resolution falling to less than two decimal places), or add

more bits. Both of these are relatively simple, requiring either a scaling constant before

the Grey encoding or a slight modification to the Grey encoder to account for having

more bits available. The DNNR encoding method uses a linear two neurons per bit, so

scaling in this fashion is likewise linear.

Scaling GRF input is not much more difficult. The number of neurons

corresponds directly to the number of Gaussians available. The more tightly-packed the

Gaussians are and the finer the temporal resolution used, the higher the resolution of the

continuous valued numbers possible. In the experiments presented here, the temporal

resolution is I ms. The centers C; of the Gaussians arc computed for the range of values

desired and the number of available neurons according to (17). Increasing the scale

simply requires re-calculating C; for the new range. Adding more neurons will increase

resolution by providing more spikes per input. Increasing the temporal resolution

improves resolution by simply making for finer distinctions between spike timings.

38

PREM scales more easily, as simply entering the values you desire as the rate),a,b·

It requires that the lower bound of possible inputs be determined based on the number of

potential paths being used, so that an arithmetic adjustment can be made to ensure all

input values will be greater than this lower bound, but it otherwise is as easily scaled as

any second-generation NN's inputs.

3.4. COMPUTATIONAL ENGINE: POLYCHRONOUS SPIKING NETWORK

Having discussed three possible means of encoding continuous values into spikes,

it now behooves us to examine exactly what it is those spikes will be input into. The

lzhikevich model of spiking neurons is discussed in Section 2.2 [40], and it was briefly

mentioned that they are arranged into a polychronous spiking network [43], but what

exactly does that mean?

The PSN is a network of N lzhikevich neurons, 80% of which are excitatory with

parameters set to "regular spiking" according to Figure 2.3, and 20% of which arc

inhibitory and set to "fast spiking" according to the same figure. The network is sparsely

connected (I 0% connectivity) by assigning each neuron Nil 0 output synapses. Each

synapse has a weight, a delay, and a destination neuron. When an excitatory neuron

spikes, it sends that spike to each synapse, and the voltage strength of that spike is

multiplied by the weight. A number of time steps k (set to k=l ms inlzhikevich's model)

after the spike equal to the delay associated with the synapse in question, the destination

neuron sees the transmitted and weighted spike, which modifies its v(k) through the I

variable. Inhibitory neurons work identically, save their contribution to I in their

destination neurons is negative, tending thus to reduce the likelihood of a neuron spiking.

Highly recurrent, sparsely connected reservoirs of neurons- spiking or otherwise

-are not a new addition. ESNs and LSMs have used spiking neurons and second

generation neurons for quite some time. The innovative addition to lzhikevich 's PSN is,

rather, the delays, which lead to polychronous clustering. Without these variable-length

delays, every neuron connected to a firing neuron by a synapse will see the incident spike

39

at the same time. Spatial calculations are the only things possible with this arrangement,

as what neuron is connected to what is all that matters.

Still, the connection weights arc important! They are trained according to a

method known as spike timing-dependent plasticity (STOP). This unsupervised training

mechanism determines which presynaptic neurons arc "interesting" to the postsynaptic

neuron, and weakens the "uninteresting" ones while strengthening the "interesting" ones.

This is accomplished by observing the postsynaptic neuron's responses. Each time the

postsynaptic neuron fires, incident spikes' timings fi'Om each of the presynaptic neurons

are checked in a short time before and after the postsynaptic firing. Presynaptic firings

which are incident upon the postsynaptic neuron prior to the firing of the postsynaptic

neuron are deemed "interesting," because they contributed to the firing of the

postsynaptic neuron. Those which arrive "late"- that is, after the postsynaptic neuron

fires- are deemed "uninteresting," and are weakened. The closer in time to the

postsynaptic firing that the incident spikes arc, the more the associated synaptic weight is

strengthened or weakened. Figure 3.9 illustrates the STOP curve.

Equation (23), as shown in Figure 3.9, gives the time-dependent weight

adjustment equations [46]. When a presynaptic neuron arrives prior to a post-synaptic

spike firing, the synapse is potentiated, or strengthened. When a post-synaptic spike is

fired before the arrival of a pre-synaptic spike, that synapse is depressed, or made

weaker.

'"
/':,s='

A e '· + /',.(=' (po;~ - (p•·e > Q
r\1 (23)

A_e'-

The constants in (23) are the maximum depression A_, the maximum potentiation

A,, and the temporal windows of interest r, and LIn [46], these are set to maximum

weight adjustments of A, 1. ~+!-0.004, pre-spike watch window r ,~ 15 ms, and post-spike

watch window r.~20 ms. These were also used in the unsupervised training of all

lzhikevich BSNNs implemented for the experiments performed in this dissertation.

One unusual property of a BSNN is the need to pre-train it unsupervised on the

kind of data on which it will be expected to operate. This process is known as

40

"maturation," and is performed to let the STOP process optimize the weight strengths so

that relevant spiking patterns emerge as natural responses to various inputs. This process

is fairly straight-forward: the BSNN is exposed to inputs of the type and range on which

it will be operating once mature, and the STOP process is allowed to run.

Typically, the expert assessment that a BSNN of Izhikevich neurons is matured

after 6-12 hours of simulated time is assumed to be true, but scientifically, it would be

nice to have a metric for measming the maturation of a BSNN. Algorithm 7 outlines this

relatively straight-forward procedure. Connection weights have a minimum of zero, but

are arbitrarily assigned a maximum (often "ten," but it can be anything that is not

"effectively infinite"). As STOP runs, the weights of neurons typically saturate at the

minimum and maximum, based on the spike patterns most excited by the input stream.

While they may shift in value, they typically do not stay in the middle of the possible

ranges of weight values for long. The percentage of synapses whose weights fall within a

chosen band of values near the minimum and maximum can be used as a metric to

measure the maturity of a BSNN. Determining the size of the bands and the percentage of

neurons that must be within them to count as "mature" is a matter that remains to be

studied, and six hours is sufficient on BSNNs made of lzhikevich neurons.

For a I 00-neuron PSN, these weights separate and stabilize by as early as 50

simulated seconds in, as shown in Figure 3.1 0. The separation is also visible in Figure

3.11, which shows the progression of each of the synaptic weights associated with the

PSN's excitatory neurons. The training inputs are 225s of power system generator data of

the sort used in Section4.5. Examining a 1000-neuron PSN trained on the same data

required increasing the number of synapses per neuron to 75 to ensure enough activity to

keep the PSN spiking. This dramatically increases the number of synapses, but merely

seems to smooth out the percentage-distribution plot given in Figure 3.12. However, the

sheer number of synapses firing makes any separation far less obvious; Figure 3.13

shows synaptic weights covering the entire range.

41

Lls = weight change

A e'- A

Figure 3.9. STOP weight adjustment curve. The weights is adjusted by ;Js(;Jt). The time
between firings Llt is the time of the postsynaptic neuron's firing minus the time of the

presynaptic neuron's firing [46].

If all we have arc connection strengths- synaptic weights- it becomes crucial to

consider that the spikes fired at one time instant will arrive at all destination neurons

simultaneously. A fully-connected BSNN with this model relies strongly on some

weights being too weak to cause an incoming spike to regularly have an impact on the

spiking of the postsynaptic neuron, lest continuous bursting across all neurons be the sole

result. This can be avoided with sparser connectivity, but still limits the spike pattems to

simultaneous spikes on multiple neurons to create spiking responses in postsynaptic

neurons.

42

100

00 --% ~synaptic weights at or above 9
--% ~synaptic weights between 1 and 9

00 - - % of synaptic weights at or below 1

(I)

.E
Cl

70

~ 60 u ·a
"' c
rtl
0

E
Q)

!::!
Q)

a.

t(s)

Figure 3.1 0. Percentage of excitatory synaptic weights in a 1 00-neuron PSN with 80
excitatory neurons equal to or greater than nine, less than or equal to one, and in between
one and nine, as a function of maturation time. Notably, though the number above nine

has plateaued by 50s, the number at or below one is still slowly rising even by 225s.

10

9

8

7

.§, 6
·~

.~ 5
a.
"' ~ 4
(I)

excitatory weights

20 40 60 80 100 120 140 160 180 200
t (s)

Figure 3. I 1. Change over time in excitatory weights of the 100 neuron PSN shown in
Figure 3.10 during maturation.

43

--% of synaptic weights at or abo\19 9

--% of synaptic weights between 1 and 9
- % of synaptic weights at or below 1

!'l 70 .<:
0>

~ 60
0 ·a
~ 50 >-
(/)

0 40
E .,
~ ., 30-

0..

50 100 150 200 250
t (s)

Figure 3 .1 2. Distribution of synaptic weights over 225 simulated seconds of maturation
via STDP. Smoother than Figure 3.1 0, it still is slowly increasing though nearing a

plateau by 200s.

excitatory weights

20 40 60 80 100 120 140 160 180 200
t (s)

Figure 3.13. Excitatory weights of a 1000 neuron PSN matured over the course of 200
simulated seconds. Spread is easy to see, but the constant j umping from top to bottom

causes this to have less obvious a separation of instantaneous values than in Figure 3 .11 .

Algorithm 7 Maturing a PSN

1: Initialize a PSN of N Izhikevich neurons with 10% connectivity, synaptic
weights s with strengths randomly distributed between 0 and 10, and
delays between 1 and 10 ms.

2: for seconds from 1 to 3600*6 (six simulated hours)
3: for milliseconds from 1 to 1000 (one simulated second)
4: simulate the Izhikevich neurons for one millisecond

according to (l 0) and (11)
5: record each neuron that fires in this millisecond
6: increase weight change ru which connect to a

7:

8:
9:

neuron that fired in previous milliseconds according
to (23)

decrease weight change /';.s which neurons that fired
this millisecond would stimulate if the post-synaptic
neuron fired in prior milliseconds according to (23)

end for
add accumulated weight changes /';.s to weights s

10: end for

44

An alternative is to introduce variable conduction delays. This introduces a

property known as po/ychrony, which refers to the capability of different temporal

patterns of spikes across multiple neurons to trigger specific groups of neurons in

response as the delays line up properly. These polychronous groups or clusters represent

specific responses of a polychronous BSNN, or polychronous spiking network (PSN), to

specific stimuli. The varying delays enable the same sets of neurons firing to trigger

wildly different polychronous clusters depending on the order in which they fire, a

property denied to BSNNs with a single fixed delay for all synapses. A given neuron's

tiring is thus an identifier for specific patterns in space and time through the network as a

whole.

lzhikevich demonstrates a five-neuron polychronous network with delays chosen

to create 14 polychronous groups, two of which were self-propagating cycles, in [43].

There are already more polychronous groups than there are neurons, and there are 20

synapses, so the number of groups is approaching the number of synapses even in this

small network. Finding connection delays using this same method while adding an

additional neuron leads to the connection diagram with delays as shown in Figure 3.14.

This arrangement produces 37 polychronous groups, shown in Figure 3 .15. A

fully-connected six-neuron network only has 30 synapses. Even at six neurons, a

polychronous network can contain more distinct polychronous groups than there are

connections between neurons!

6 2

45

Figure 3.14. Connection diagram with delays for a six-neuron network that produces the
37 polychronous groups shown in Figure 3.15. Thirty-seven polychronous groups

produced by the weights shown in Figure 3.14.

Each group can be identified to a specific pattern, ifthe problem is the sort of

pattern-matching and categorization that has been done over the last decade. But with

each additional neuron exponentially increasing the number of polycluonous groups, the

number of patterns possible swiftly exceeds the threshold necessary for high-resolution

pseudo-continuous calculations ofthe sort modern computers and second-generation

46

neural networks already perform. It's easy to believe that, at such a rate of growth in

numbers of polychronous groups compared to addition of neurons, biological brains with

tens of thousands to hundreds of billions of neurons might have more polychronous

groups than there are particles in the universe. The challenge then becomes translating the

groups' responses into meaningful numeric outputs in a continuous regime.

....
Q)
.0
E
:l
z
c:: e
:l
Q)

z

6

4

2

6

4

2

~ ~ ~ ~
) 4(60 8o

N
v

~

~ ~ ~
20 0 6 80

:w_
0 20 40 60 80

6

40 60 00

6
v v v

4

2 ~ ~
0 21 40 0 80

L
0 20406080

6 6

4

6 & .j 'I

: ""~'''"~""' ·"'"""'
40 60 80 20 0 6 80

~
6

v v
4

~ ~ ~
0 0 4 60 i:J

6

4

6

4

2

6

4

~ .j

p ~ ~
0 20 40 80

L
0 20 40 60 80

: ~ / m l lllD/IID/ 1/SJ /

2 ~ ~
80 02040E 80

:L
0 20 40 60 80

t (ms)

47

6

4

2 ~
0 0 4 60 00

6

i/
4

y

2 ~ ~
0 1o 40 6 00

6

I v v v
1\ I ~ It ~ IJ' w

4

2

0 20 0 6 00

:~
0 20 406080

:L
0 20 40 60 00

80

Figure 3.15 . Thirty-seven polychronous groups produced by the weights shown in Figure

3.14.

48

3.5. DECODING

With a PSN that has literally astronomical calculation capacity and a means of

inputting arbitrary continuous values into it with confidence that the values survive the

encoding process, the final step is finding a way to extract the desired dynamics from the

PSN and translate them into continuous valued numbers with meaning in the real world.

There are a couple choices in how to map the PSN's responses to real-world values.

Izhikevich has a Matlab script that will build a PSN and find polychronous groups; it may

be possible to hand-map various groups to various outputs by determining which respond

most strongly to given inputs, and form a functional mapping that way. This, however,

seems very time consuming and inefficient; a look-up table would probably be a better

choice. In fact, as Figure 3.16 illustrates, such a mapping would effectively be a look-up

table.

The other method is to find a way to translate the spikes coming out of the PSN

neurons into real-world values and tune them to the target with a decoder. The dynamics

of the PSN contain the information about the inputs, and with so rich a response

structure, it is likely that any desired functional relations can be isolated with proper

tuning of the decoder. The PSN does the heavy lifting of creating the dynamical

responses; the tuner simply has to isolate which ones arc desired. Such a method is

described here.

One of the big contributions of this work is the development of such a decoder,

which finds the temporal responses of the PSN neurons and translates them into

continuous values by using Gaussian receptors spread over a moving watch window of

the last 20 outputs from a given neuron. The Gaussian functions are optimized for

maximum response over 1000 simulated seconds in order to determine what delay and

distribution of spikes represents the strongest responses from the neuron.

The timing of the spikes relative to the beginning of the watch window is used as

input to the Gaussian receptor field, and then all responses are summed to generate a

numeric output that represents the strength of response of the neuron, as shown in Figure

3.17. The mechanism for optimizing these Gaussians is a form of unsupervised training

using Particle Swarm Optimization (PSO) [47]. A training signal is given to the PSN in a

series of iterations of the PSO.

....
Q)
.0
E
:J
z
c e
:J
Q)

z

:a
:lrMiW
2~

: ~I I

~~
0 04 6000

6

0 20 00
6

~10 4~ 2

o 20 40 60 00

61(::. 4 -1.06
2

20406000

6~ 4 ~4
2

406000

• 6. 6. 4 4 .

2

0 0 60 00

2

o 40 00

:. li_nn~
2~ 2

0 20 40 60 00

:L a
6 .. 4 '

2

o ~ 00

6~ 4 1 6
2

0 40 60 00

~
020 406000

t(ms)

49

Figure 3 .16. A possible mapping of the polychronous groups identified in the six-neuron
PSN shown in Figure 3 .14, enabling the PSN to map from -1.12 to 1.12 in increments of

0.06.

1

2

3

n

Spike watch
window

~----~A~--------~

Reference

tstart+ watch_ window

50

~RNn

Figure 3.17. Gaussian temporal filters transforming spike trains in a watch window into a
real-world numeric output. The center C11 and width \1111 are shown for the n111 Gaussian
function. A PSO is used to optimized C; and w; for each neuron i. R ,v; are continuous

valued real numbers from each neuron i.

The signal should be a sample of the sort of data on which the trained PSN and its

decoder will be expected to operate. The sine wave in (16) is used to train and test the

decoder in this Section. The signal for the real-world problem of power system

identification would require a sample power system signal. Each iteration sums the

output R for neuron i of the watch-window filtered through the candidate Gaussian

function. The objective function (24) seeks to maximize this sum.

I

I: (24)
j =k-watch_ window

Each neuron i has its own Gaussian function, which needs to be optimized

independently of the other neurons'. Each neuron therefore has its own independent PSO.

Each neuron in the PSN has m (typically 20 or 30) pat1icles of two dimensions each.

These dimensions are the width w; and center C; of the Gaussian assigned to the neuron in

51

question; the Gaussian function is normalized so that the amplitude is inversely

proportional to the width in order to ensure there are two competing goals and "maximum

width" is not the pure optimum.

The center of the Gaussian picks a length of time after a given input

corresponding to the watch window. Spikes close to this time-delay will cause a stronger

response tlll'ough the Gaussian. It takes fewer spikes in this time frame than it does earlier

and later in the watch window to generate a strong response. The width of the Gaussian is

inversely tied to its amplitude by the requirement that the Gaussian be normalized. A

wider Gaussian will respond strongly to spikes that appear far from its center as well as

near; a narrow Gaussian will respond much more strongly to spikes closely clustered

around its center and will nearly ignore spikes well away from it. Figure 3.18 illustrates

some centers and widths found for a 1 00-neuron PSN used in case studies in this Section.

10 ' l

9.5 ' •

9
.__ . •

• • • •• • ••• 8.5 • •
r/1 • ~ • - • • • "0 • •
~ 8 • • • • • ' . c • "' . !!1 • •• r/1 7.5 r r/1
:J
co • •

<.!> • 7

' •
• • • • • 6.5 r

• 6 r I
•

5.5 r r r 1 r r

4 6 8 10 12 14 16 18
Gaussian Centers

Figure 3.18. Centers and widths of the Gaussian functions trained for the 1 00 neuron PSN
used for the case studies in this Section.

52

The timing of spikes from a neuron can contain information in a couple of ways.

Sudden clusters of spikes grouped close together in time convey information in their

bursting presence, indicating an event to which they correspond. The rate at which spikes

fire can, alternatively, convey information in their rate, be it some sort of clock-like

timing or a representation of some numeric significance. Optimizing for the highest

possible sum of responses, the PSO will find the centers and widths such that neurons

prone more to bursts of spikes close together that represent specific event-responses will

have those groups identified clearly, while those whose information is mostly based on

overall rate of fire will tend to have Gaussian functions which are spread out and simply

get their value ft·om the overall rate at which the neuron fires during the watch window.

Because a PSN theoretically needs to mature for at least 6 simulated hours (12 is

better) [43], these Gaussians were trained at the same time in the experiments presented

here. Figure 3.19 provides a flow chart explaining the procedure. The maturing PSN 's

weight adaptation due to STOP, however, means that a lot of the calculation cycles spent

on the PSO pre-maturation were likely wasted as the dynamics of the neurons changed

with each iteration. It is faster to do this in two stages: first, mature the PSN, then run the

PSO for 20-100 iterations to optimize its widths and centers, thus not wasting any of the

cycles. The PSO typically plateaus before I 0 iterations have passed, as shown in Figure

3.20.

The fact that it finds an optimum and does not improve thereafter so quickly

implies that the centers and widths are relatively insensitive, but that there is some

optimality to be found. Because it requires so few PSO iterations to find a reasonable

optimum, performing this in a second step as suggested previously saves a great many

computational cycles compared to running the PSO algorithm concurrently with the PSN

maturation.

By finding the shape and relative center of a Gaussian accumulator for spikes

across a watch window in a given neuron which maximizes that neuron's numeric

response representation, the PSO finds the Gaussian which best captures the interesting

dynamics of that neuron. When spike responses relevant to polychronous clusters

stimulated by the input signal to which the PSO is sensitizing the decoder occur, the

trained Gaussian will respond with high values. When "noise" occurs, the trained

53

Gaussian will tend to have weak responses. This allows an overall strength of the

decoder's numeric response to indicate how strongly the polycluonous clusters of which

this neuron is a pmt are firing. The remainder of the decoder disambiguates these

response strengths by picking which ones are relevant to the desired target output.

Determine which
neurons spike for thi s

PSN time step

no

Figure 3.19. Flow chart showing the procedure for using a PSO to determine the centers
Ci and widths wi for each neuron.

5 10 15 20
iterations

25

54

30 35 40

Figure 3.20. Fitness of selected Gaussian functions as decoder filters for the watch
windows oftheir respective neurons. The PSO plateaus before 10 iterations are passed;

this seems to be typical behavior.

The decoding Gaussians provide N outputs every time step k. The outputs are all

continuous-valued numbers that probably do not have a whole lot of easily-discernable

meaning to the naked eye. However, they represent the information contained in the spike

patterns of each of theN neurons to which they are respectively associated. A first-order

attempt at tuning these outputs to find the important dynamics that contain the

information present in the PSN's responses is to use a simple weighted sum, as shown in

Figure 3 .21.

The weights are trained with gradient descent to find the relative importance of

each PSN neuron's output to the desired dynamics, and the weighted sum is thus tuned to

produce the desired target.

Reference

Final
output

target

er~dlent descent-based
IQarnlne

Figure 3.21. Simple sum output, trained with gradient descent error.

55

This first-order sorting of the neuron outputs enables important neurons to be

emphasized and less important ones (with respect to the desired dynamics) to be de

emphasized, but may not be able to sort fine dynamics from the mix. Figure 3.22 shows a

more elaborate solution: construct an MLP of second-generation sigmoidal neurons with

the outputs from the PSN as the input layer and with one hidden layer before the final

output layer.

Spik~wntch

window

backpropaeatlon aleorlthm

Figure 3.22. MLP output tuning, trained with backpropagation.

56

STOP remains on in the PSN, allowing the PSN to adapt to changes in inputs and

have diverse and relevant dynamics over time. The training of the tuner's weights

whether an MLP or a simple weighted sum- is also online. It remains a matter of some

research whether to use a moving window batch training for this "online" mechanism or

to continue with output-by-output gradient-descent learning. The latter is demonstrated

on two applications (fimction approximation and time series reproduction) in the next

Section.

3.6. CASE STUDIES

3.6.1. Time-Series Reproduction. Completing the experiment begun in

Section 3.3, (16) is passed through a GRF encoder and fed to the PSN with the intent to

train the decoder to reproduce the original signal. This is done on a I 00-neuron PSN with

12 sensory neurons. In the raster plot in Figure 3.23-Figure 3.25 a), neurons 1-80 are

excitatory, 81-100 are inhibitory, and JOJ-112 are sensory. A very close examination of

the raster plot can reveal a hint of the sinusoid generated by (16) in the spiking cascades

of the excitatory neurons.

Figure 3.23-Figure 3.25 all follow the same format: b) is the very first iteration of

exposure to the input signal, c) is the penultimate iteration, and d) is the final one.

Gradient-descent-based training (including backpropagation where appropriate) is

performed online for all but the last iteration; the last iteration is done with the weights of

the decoder fixed to test whether it has learned. Figure 3.23 is generated using the simple

weighted sum decoder in Figure 3.21, while Figure 3.24 and Figure 3.25 use an MLP

decoder. Figure 3.24 has five sigmoidal neurons in the hidden layer, while Figure 3.25

has 10.

It is fairly easy to see the improvement between Figure 3.23 b) and Figure 3.23 c),

as the initial iteration is fairly clearly following a delayed, slavish adjustment likely due

strictly to the weights being forced to match what the target signal called for one or more

time steps too late. In c) and d), however, though the signal is fuzzy and far from perfect,

it's clear that its timing is dead-on with the target signal. The simple output weights have

learned to find the dynamics, if not to suppress all the noise. Figure 3.23 d) is the most

encouraging, though, because there is no weight adjustment. The weights there arc fixed.

57

The responses of the decoder to the PSN are not being dynamically adjusted to follow the

target; they have truly learned the target. This not only demonstrates that the decoder can

find the target (albeit not with the level of precision one might desire), but that the target

information must actually be present in the PSN's own responses.

Gradient Descent Training Only, no MLP, no averaging

1•11

1

: -

0 500 1000 1500 2000 2500 300)

40

20

(h) § 0

-20

PSN I I d
t.(ms)

1
. . .

1
. .

ca cu ate output: Wlih on me trammg, st llerahon

500 1000 1500 2000 2500
t (ms)

PSN calculated output: with online training, 19th iteration

-50
o~--~500~--~,ooo~----,500~--~2000~--~2500~----300:1~

20

(d) §: 0

.2Q

t (ms)
PSN calculated output: with online training, 20th iteration

Figure 3.23. Gradient-descent trained weighted sum of the PSN output. a) Raster plot of
the last iteration. b) First iteration of exposure, online gradient -descent training. c)

Penultimate iteration of exposure, online gradient-descent training still going on. d) Final
iteration, no training of decoder weights.

58

Replacing the simple weighted sum tuner with a five-hidden-neuron MLP results

in Figure 3.24. Interestingly, Figure 3.24 b) is the "prettiest" following of the target

signal, and it's the very first iteration. This is absolutely because the backpropagation is

forcing the weights to slavishly follow the target. The fuzzier response in c) is actually

encouraging because it means the MLP has its own ideas of what the result should be,

and the weights are adjusting less powerfully. That it has learned something of the signal

is clear in d), when, as in Figure 3 .23, the decoder weights are fixed and the target is

never confirmed to the MLP. However, it clearly hasn't quite learned all the dynamics of

even this simple system; the testing run in d) does not follow the target above I 0 or

below -10.

Increasing the number of hidden neurons to ten, however, as in Figure 3.25,

enables the MLP-based decoder to learn the signal quite well. Notice how the MLP-based

decoders lack the noise and uncertainty of the simple weighted sum-based one. They are

still fuzzy, but crisper by far than Figure 3.23 's efforts. And the testing nm in plot d) in

all three of them seems to indicate that the decoder has learned to find the desired target

dynamics! However, it is possible that the PSN is actually not doing anything but

providing noisy stimulus to the decoder, and the decoder's own second-generation neural

components are memorizing a pattern to be repeated no matter the input.

Such a charge would seem impossible, since no recurrent nor time-delay elements

exist within the weighted summation device nor the simple MLP, and thus no memory of

what states it has already output can be present, but it is still worth proving that the PSN

output truly is a relevant input to the decoder, and that the decoder is not making up

target data out of whole cloth. Figure 3.26 shows similar data to Figure 3.23, but only for

20 iterations. Figure 3.26 a) shows the sinusoid from (16) as an input, with the final plot

in each demonstrating a testing run with the decoder's weights fixed. Figure 3.26 b)

shows the same network, trained the same way and with the decoder trained by the same

target, but with a completely random input to the sensory neurons.

It can clearly be seen in Figure 3.26 b) that the online gradient-descent training of

the weights forces the weighted sum output to follow the target, albeit a few time-steps

late. However, where Figure 3.26 a) has a testing run that looks about as good as its final

training iteration, the testing run in Figure 3.26 b) is entirely noise. A close examination

of the values of they-axis even hints that the weights were forced to produce a narrow

band based on any input at all. This narrow band remained constant once the weight

training was turned off, so matches the final output band from the last online training

iteration.

{b) § 0

(<) g

0

(d) §

0

Learning and Momentum gain .05, 5 hidden neurons MLP

500 1000 1500 2500
1 (ms)

PSN calculated output: with online training, 1st iteration

PSN calculated output: ,Jtf,n~~?line training, 19th iteration

PSN calculated output: ,Jtf:no
5
Jiine training, 20th iteration

500 1000 1500
t (ms)

2500

59

Figure 3.24. MLP decoding PSN output with five sigmoidal neurons in the hidden layer.
a) Raster plot of the last iteration. b) First iteration of exposure, online back propagation
training. c) Penultimate iteration of exposure, online backpropagation training still going

on. d) Final iteration, no training of decoder weights.

This is an encouraging result: for the first time, a continuous value set of inputs

have been presented to an SNN, and the SNN' s dynamics have been decoded into

continuous values that are meaningfully related to the original values, reproducing with

notable (if not perfect) fidelity the continuously-valued time series.

1=300 sec

1 (ms)
PSN calculated output: witl1 online training, l st iteration

(h) g 0

PSN calculated output : wilh(~~~ne training, 299th iteration

(c) £ 0 -
.2Q
~----~-L~~--~~------~----~~~~
0 500 1500

PSN calculated output: wiM~r~~ne training, 300th iteration

-(d) $-
·10

·20~----~--~~----%-L---~~----~--~~
0 500 1000 1500

1 (ms)
2500

60

Figure 3.25. MLP output with ten sigmoidal neurons in the hidden layer. a) Raster plot of
the last iteration. b) First iteration of exposure, online backpropagation training. c)

Penultimate iteration of exposure, online backpropagation training still going on. d) Final
iteration, no training of decoder weights.

61

t=20 sec t=20 sec

. . .
. . . . '. ' - .

I "\ , • ' ·• I ..

• • • • ~ • • • • f • . . .
' . ' . ~ '

500 1000 2000 2500 3000 500 1000 1500 2000 2500 3000

t (ms)
PSN calculated output: with online training, 19th Iteration

-

0 500 1500 2000 2500 3000 0 500 1500 2000 2500 3000
t (ms) terns)

testing . 20th iteration PSN calculated output: testing 20th iteration

0 500
§:~~~7~

1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
I (ms) t (ms)

(a) (b)

Figure 3 .26. Comparison of training the decoder on a PSN fed by (16), and of training the
decoder on a PSN fed by random spikes. (a) 19 iterations trained with (16). (b) 19

iterations trained with random noise. This clearly demonstrates, in the final testing run for
both cases, that the decoder is not simply making up target information from whole cloth;

it requires the PSN to contain meaningful dynamics related to the target input.

3.6.2. Function Approximation. Function approximation is actually a bit trickier

than time-series reproduction and identification when using the PSN engine, because the

PSN is a highly recurrent network with strong memory. Therefore, inputting a sequence

of numbers with dependence on the prior input is in line with how the PSN' s evolving

dynamic states work, while inputting numbers with no dependence nor relation to their

predecessor inputs leads to noise rather than constructive reinforcement of the state.

A simple sine wave is tested with GRF input (also temporal as well as spatial) that

overlaps completely, one input per simulated millisecond. Figure 3.27 and Figure 3.28

look good while the online training is on, but the steady noisy state during the testing run

reveals that they were slaved by the weight adjustment, not actually learning any

dynamics which may not even be present.

100

~
"0
.!::
c 50 e
:J
Q)
c

0

~

0

0

~
-5

-10

0

100

100

100

•

200 300 400

1=20 sec

500
I (ms)

600 700 800

PSN calculated output: with online training, 1st iteration

•

200 300

• •

400 500 600 700 800
I (ms)

PSN calculated output: with online training, 19th iteration

••

• ., . • • ' 200 300 400 500 600 700 800
I (ms)

PSN calculated output: testing, 20th iteration

f.M»JI.M'
• '

. .. • • • • • • • •
100 200 300 400 500 600 700 800

I (ms)

62

900 1000

900 1000

••
r

900 1000

900 1000

Figure 3.27. Weighted sum output attempting to learn to approximate a sine wave
encoded using the GRF method. Iterations 1-19 used online gradient descent training on
the output weights; iteration 20 keeps the weights fixed, and reveals a complete lack of

learning.

63

1=20 sec

100 200 300 400 500 600 700 800 900 1000
t (ms)

PSN calculated output: with online training, 1st iteration

. ···-
-10

0 100 200 300 400 500 600 700 800 900 1000
t (ms)

PSN calculated output: with online training, 19th iteration

100 200 300 400 500 600 700 800 900 1000
I (ms)

PSN calculated output: testing, 20th iteration
0

-2

g
-4

-6

0 100 200 300 400 500 600 700 800 900 1000
I (ms)

Figure 3.28. MLP decoder attempting to learn function approximation of a sine wave
encoded using the GRF method. Iterations 1-19 used online backpropagation training on

the MLP weights; iteration 20 keeps the weights fixed, and reveals a complete lack of
learning.

3.7. SUMMARY

In order to develop BSNNs as viable successors to second-generation neural

networks, the research presented here has demonstrated several methods for encoding

arbitrary continuous-valued data into spike trains, input those into a PSN, and read out

the dynamics of the PSN through a decoder tuned to isolate desired functional

transformations to return arbitrary, continuous-valued outputs.

64

Three encoding methods- PREM, GRF, and DNNR- have been shown to

transform numbers into spike trains and proven to contain the information so encoded.

PREM is a purely temporal encoding scheme, but requires the largest number of neurons

to encode data, as well as the most preprocessing. GRF is both temporal and spatial, and

retains resolution down to a smaller number of neurons than either of the other two

methods. For this reason, it is the preferred encoding method used in experiments in this

dissertation. DNNR was developed in-house, and is purely spatial. Its greatest advantage

is its capacity to input its entire value at once, but it tends to be less robust an input

method than GRF.

The PSN is chosen as the computational engine because its rich dynamic response

to the encoded inputs is based on the astronomical potential numbers ofpolychronous

clusters, which hypothetically makes for one of the best-scaling computational

architectures ever designed. The decoder developed uses a carefully-trained response

function which isolates dynamics that indicate what a given PSN nemon finds

"interesting," and relates it to the relevant dynamics. Weighted sum or MLP-based tuning

then isolates the dynamics of interest to the problem at hand.

This section concludes with a case study of this BSNN framework on a time

series reproduction, and the problems of a time-independent function approximation with

GRF encoding. This is somewhat unsurprising given the high temporal-dynamic

dependence of the PSN's states on prior states; approximating functions with no time

dependence from one input state to the next will require reducing the number of

dynamics to be analyzed to find the relevant functional outputs.

Overall, however, the ability to reproduce an arbitrary, continuous-valued time

series is a tremendous step forward in BSNN research, demonstrating that these networks

absolutely can be used on problems that require functional calculation.

4. NEUROIDENTIFICATION OF GENERATOR DYNAMICS IN A MULTI

MACHINE POWER SYSTEM

4.1. INTRODUCTION

65

Today's power systems consist of interconnected machines that must maintain

synchrony in order to avoid brownouts and blackouts. Governors and voltage regulators

are present on generators in power systems in order to increase or decrease output

frequencies in response to changing loads and maintain respective voltages. This enables

them to maintain synchrony as loads change and voltage fluctuates across the power

system.

Online identification of generator speed and terminal voltage characteristics are

essential for fast and accurate control of modern power systems. Purely reactionary

changes to the frequency as it stands at a given time I, however, can lead to

overcompensating and driving the oscillations ever more wild rather than the damping

that is desired. In order to facilitate the regulators' efforts and minimize the oscillations

during adjustment, it is best to have some foreknowledge of what the system will look

like in the near future. This enables the controllers to preemptively adjust generator

outputs so that they are already counter-acting incoming oscillations and fluctuations

when they arrive.

Classical controllers usc linearized models to predict behavior around some

nominal operating point. Such models are extreme simplifications from the real world,

wherein a continuously changing environment causes the generator's dynamics to change

as well, which can render the approximations around the operating point completely

invalid. Intelligent designs for automatic voltage regulators (AVRs) and power system

stabilizers (PSSs) are called for. ANNs arc very effective tools for designing these types

of intelligent controllers. In order to take the correct control action in a dynamically

changing environment, an ANN based controller needs a neuroidentifier, which provides

an estimation of the speed and terminal voltage characteristics of a generator fi·om past

values of speed and terminal voltage. The method ofneuroidentification is also very

effective for wide area monitoring and control [48] and finding dynamic equivalents of

large power systems [49],[50].

66

As different ANN architectures were studied and their performances examined

[48], [49], [51], [52], it became clear that MLPs, RBFs, RNNs, and echo-state networks

(ESNs) do not actually represent the structure and function of biological neurons. To

capture the scaling power of biological NNs, something more is needed.

4.2. NEUROIDENTIFICATION OF GENERATOR DYNAMICS

The two variables of primary interest in generator system neuroidentification are

speed deviation and voltage deviation. In each power generator, there is a baseline speed

at which the generator spins and a baseline voltage it maintains as its output. As the loads

increase and decrease demand on the generator, these values deviate from that baseline

for particular generators.

Classical controllers for generators are generally based on linearized models that

predict system behavior obtained around a nominal operating point. As the system moves

away from that nominal point, these classical models become increasingly inaccmate.

They are thus able to handle small deviations, but become less capable the more

desperately they are needed. Environmental conditions can also absolutely change the

actual operating point from its nominal basis. In these conditions, classical controllers

such as A VRs and PSSs have degrading performance. Neural networks are a possible

alternative, serving as intelligent controllers. Neuroidentifiers provide an estimation of

the current and future states of speed and terminal voltage deviation in the generators

using cmrent and past input and output values.

Because ANNs approximate the fimction, they need not be precisely on-target at

all times. Their learning and adaptability means that a sudden change in the physical

system being modeled will shortly be represented in the ANN as it adjusts to minimize

the errors that suddenly occur due to the discrepancy between reality and the ANN's

model. MLPs, RBFs, CNNs, and ESNs have all been used in neuroidentification

experiments with rather impressive success.

67

However, power systems have tremendous numbers of inputs and call for equally

tremendous numbers of outputs. Second-generation NNs share a scaling problem: the

more inputs and outputs a ANN needs to handle, the increasingly-more hidden neurons

the ANN must have to maintain accuracy. The hidden neurons scale exponentially with

the numbers of inputs and outputs. Four-machine, two-area systems have been simulated

for wide-area monitoring experiments, and it was found that the computational power

required for real-time neuroidentification of the entire system was huge. This makes real

time calculation of ANN mechanics on real-world power systems- such as New

England's 36 bus system- intractable.

Living brains do not face this scaling problem. They are capable of enormous

amounts of parallel calculation on very fast time scales that regulate highly complex

systems both autonomically and deliberately. SNNs are designed with more closely

modeling living brain behavior and functionality in mind, and thus theoretically can be

more accurate on larger amounts of data with the same number of - if not fewer

computational resources. Before this can be tested, SNNs need to be shown to be able to

handle the same kinds of problems at all.

In this section, the IEEE 10 generator, 39 bus power system illustrated in Figure

4.1 is used as a test bed. Generators G7 and G 10 are connected as shown to Time-Delay

ANNs (TDNNs) which perform the neuroidentification.

;\ ft.oll,, •• (.l I)

.\ wo..,.,.(A 2:)

L\ !W" .. <' .l)

,\t-~.,, tl I)
,, _,,(l ~)

~\N.,1 (A .\) ;

Figure 4.1. Schematic ofthe IEEE 10 generator 39 bus system with TDNN-based
neuroidentifiers on generators 07 and G 10.

68

The neuroidentification experiment is run twice, once by an ASNN, and once by

an MLP using sigmoidal neurons. The multimachine power system shown in Figure 4.1

is simulated on the Real Time Digital Simulator (RTDS) in the Real-Time Power and

Intelligent Systems (RTPJS) Laboratory at the Missouri University of Science and

Technology. Both pseudorandom perturbations and simulated line-faults are performed,

and the ASNN and the sigmoidal MLP are compared.

4.3. ASNN NEUROIDENTIFICA TION

The parameters for the ASNN are given in Table 4.1. Most (a, p, r, and r) are set

according to values given in Section 2 and [25], while others are set by the experiment

(20 hidden neurons) or through trial-and-error. They are largely unoptimized beyond

some expert hand-tuning, as optimization of these parameters is beyond the scope of this

dissertation. Figure 4.2 shows the ASNN implemented in a time-delay feed forward

architecture.

Table 4.1: Parameters for the SNN neuroidentifier

SNN Parameter Value

Number of inputs 9

Number of outputs 2

Number of hidden neurons 20

((2

p I

T Rand

r I

Learning gain (11) 0.01

Tref 0.5

Yrcst 0

Ythresh I

69

Figure 4.2. Diagram of a feedforward time delay ASNN. All input neurons from input} to
hidden neuron i are set to 0.5, and are not trained.

The ASNN model discussed in this dissertation takes continuous-valued inputs

and treats them as a firing rate of spikes received from a presynaptic neuron. The actual

spiking of the neuron is never modeled, and is instead abstracted according to (5)-(9).

The neuron's final output is given by (9) as the firing rate based on the calculated

expected lSI given the input firing rates fi·om all presynaptic neurons. At no point does

encoding into spikes nor decoding of spikes occur; the assumed decoding of the lSI is

derived directly from the listed equations.

In effect, this is a more complex and potentially more powerful activation

function. In its role as a third-generation NN, this ASNN activation function is to

sigmoidal activation functions what sigmoidal activation functions were to thresholding

functions. Since it takes the same sort of inputs and outputs as second-generation

neurons, they can be arranged into the same sorts of networks.

In order to do this, however, the activation function needs to be calculable in

reasonable timeframes. The Dawson Integral given in (8) has no analytic solution that

does not involve calculating enormous numbers of functional elements in series.

However, as shown in Figure 4.3 , the Dawson Integral shares its shape and functional

properties with the Error Function, or ERF (25).

0.4

03

0.2

0.1

0

-0.1

-0.2

·0.3
--Dawson Integral
- - · Error Function

-0.4
-3 ·2 ·1 0 2 3

70

Figure 4.3. Dawson Integral compared to the Error Function. Notice that they differ only
by an amplitude; if this amplitude proves a significant difference in functionality, it can

be adjusted arithmetically.

2 r I erf(x) =- .b e- dt
1! (25)

The ERF does not look any easier to integrate than the Dawson Integral. Unlike

the Dawson Integral, however, the ERF has a built-in functional representation in Matlab,

and that built-in function operates much faster than does any hand-written function to

calculate a Dawson Integral.

With this modification, an ASNN has been implemented in Matlab and can

operate in reasonable time compared to an MLP [31]. In order to prepare the ASNN for

71

use in neuroidentification, the centers i around which the hidden neurons were to be

clustered must be established as the neurons respond similarly to an RBF. There are a

number of possible ways to select these centers. In this experiment, k-means clustering is

used to find them based on the data sets over which they will be tested. Centers are found

for G7's data, G 1 O's data, and for both data sets combined. Figure 4.4 illustrates the

differences.

0.3

0.1 0.3 G1 • ~ 0.25 0 • o 0.05 o • A
02

• '* lwl • 0.2 (pu) 0 p.p.1 •• •
.0.05 0 ,I 0.15

.1ro 5 10 .0.1-5 0 5 10
0 .1 6V,(p.•) 6V,(p.•)

(p.n.) A • •
0,05 ~ 0 0

1:!. A

~
0 A

A GIO

·0,05 • 07

1:!. O A 0 both

-(),I
·1 0 2 3 4 5 6 7 8 9

AV1 (p.u .)

Figure 4.4. Centers for 20 neurons in the hidden layer of an ASNN determined via k
means clustering on data samples taken from generator 07 (blue diamonds), generator

G 10 (red triangles), and combined data samples.

Because the ASNN requires pre-training of ion the dataset to be used, tlll'ee

different sets of centers were trained for comparison. Each generator was tested on

centers chosen specifically by its own data set and on centers chosen by the combined

data sets of both generators, and their results were compared to each other and to the

sigmoidal TDNN's results. As mentioned before, these centers are found via k-means

clustering in an offline training step on samples of the data.

72

There are two oscillatory modes into which the generators are driven: "forced"

and "natural." Forced perturbations utilize a pseudo-random binary signal (PRBS) to

drive the generators through all of their dynamics. This models the changes in load which

a real-world power grid would see as customers turn off and turn on devices as they use

them. Forced perturbations are constant but predictable based on prior states. Natural

faults are the result of temporary disconnects in power lines or even weather-induced

literal breaks, and can cause power demands to spike across the surviving routes or shorts

across the broken lines. There is no way to predict a natural fault until it happens, as the

states of the system pre-fault have very small impact on post-fault states compared to the

effect of the fault itself.

The ASNN using centers obtained for Generator 07 is shown on forced

perturbation testing in Figure 4.5. Figure 4.6 is the same data set using centers trained on

both 07 and GIO. Figure 4.7 and Figure 4.8 are G!O with an ASNN whose centers are

trained on G IO's data and on the unified data, respectively.

Though examination of the terminal voltage prediction error does not seem to

indicate any significant drop in fidelity by switching to a more general set of centers

based on the combined generator data sets, the speed deviation error climbs to almost

0.2% when the combined data centers are used, versus only a little over half that for the

07 data alone. This is not terribly surprising, as one would expect more specialized

centers to be a bit more sensitive, but it is relevant in determining that the choice of

centers is significant. Notice, however, the behavior between the two runs with G I 0 in

Figure 4.7 and Figure 4.8.

The %-error for both speed and voltage predictions are notably higher for the

centers selected based solely on G I O's data than for the centers selected based on both

generators together, when predicting G IO's speed and voltage deviations. This is

intriguing, because it implies that the problem is not the difference between the centers

and the data set, but rather simply that G I O's data set generates less useful centers than

G7's. Why this is is unknown, but probably worthy of further examination in works

focused more on optimization than testing the ASNN compared to a sigmoidal TDNN.

73

a*::~~
o 10 XJ l'l 40 r;J r;J

T1ma {s)

Figure 4.5. Forced perturbation ofG7 neuroidentified by an ASNN using centers Jc;
trained on G7's data alone. (a) Terminal voltage (thick line) and ASNN estimation (thin
line) per unit xiO; (b) generator speed (thick line) and ASNN estimation (thin line) per

unit xI 0; (c) %-error between estimated and actual terminal voltages; (d) %-error
between estimated and actual generator speeds.

74

c

Tunc (a)

d

~~ i ~.u~~~.ill~J
o 10 m m ~ • ~

T1me (s)

Figure 4.6. Forced perturbation of 07 neuroidentified by an ASNN using centers ,ti
trained on the combined G7 and G I 0 data. (a) Terminal voltage (thick line) and ASNN

estimation (thin line) per unit x!O; (b) generator speed (thick line) and ASNN estimation
(thin line) per unit x!O; (c) %-error between estimated and actual terminal voltages; (d)

%-error between estimated and actual generator speeds.

75

a

b

c

d

Figure 4. 7. Forced perturbation of G I 0 neuroidentified by an ASNN using centers i
trained using GIO's data alone. (a) Terminal voltage (thick line) and ASNN estimation

(thin line) per unit xiO; (b) generator speed (thick line) and ASNN estimation (thin line)
per unit xI 0; (c) %-error between estimated and actual terminal voltages; (d) %-error

between estimated and actual generator speeds.

76

Figure 4.8. Forced perturbation ofGlO neuroidentified by an ASNN using centers t
trained on the combined 07 and GlO data. (a) Terminal voltage (thick line) and ASNN

estimation (thin line) per unit x 1 0; (b) generator speed (thick line) and ASNN estimation
(thin line) per unit xlO; (c) %-error between estimated and actual terminal voltages; (d)

%-error between estimated and actual generator speeds.

77

For full comparison, however, it is necessary to also test the ASNN on natural

faults. Figure 4.9 tests an ASNN on identifying G7 during a natural fault using its own

centers alone; Figure 4.10 tests the same thing with an ASNN whose centers are based on

both generators' data. Figure 4.11 and Figure 4.12 repeat these for G I 0, using its own

centers and the combined centers, respectively.

TtrM (s)

d

Figure 4.9. Natural fault on G7 neuroidentitied by an ASNN using centers i trained on
GTs data alone. (a) Terminal voltage (thick line) and ASNN estimation (thin line) per
unit x10; (b) generator speed (thick line) and ASNN estimation (thin line) per unit x10;

(c) %-error between estimated and actual terminal voltages; (d) %-error between
estimated and actual generator speeds.

78

a

Tt(M (G)

b 104

I r;:b"'.-._~ __ -_--__ -._--_-__ -.. -.1"- _

0 2 4 6 IJ 1l)
__ L_ __ , - --- _L __ --- ___ l

11 14 1b
!J

1B 01!

c

* :~ : : ' : ''LM:<,~-~k I
0 2 4 G 0 10 12 14 lG 10 20

T1me (s)

d

~l{odV~ .. ,A~~j
0 2 4 6 8 10 12 U lS 18 :..'ll

Time (s)

Figme 4.1 0. Natural fault on 07 neuroidentified by an ASNN using centers 2' trained on
the combined 07 and 0 I 0 data. (a) Terminal voltage (thick line) and ASNN estimation
(thin line) per unit xlO; (b) generator speed (thick line) and ASNN estimation (thin line)

per unit xiO; (c) %-error between estimated and actual terminal voltages; (d) %-error
between estimated and actual generator speeds.

79

c Ttme (s)

6 8 10 12 14 16 18 ?0
Ttm{l' ('>')

d -----r- .,-- ----1 ---r ---r---------

Tim~ ('s)

Figure 4.11. Natural fault on G I 0 neuroidentified by an ASNN using centers Jc' trained on
GIO's data alone. (a) Terminal voltage (thick line) and ASNN estimation (thin line) per
unit x!O; (b) generator speed (thick line) and ASNN estimation (thin line) per unit x!O;

(c) %-error between estimated and actual terminal voltages; (d) %-error between
estimated and actual generator speeds.

a g
fl~

ro .a~ ;r.x
"' " 1- ~~
-'5
~

b " 0

-e~
-a~
<> X
~ ~
~ ~;

" tl'

c

d '§
fl

~-2
Jl.t
~., . "

" €

·:,:E~-~ ~ ... ~~/ l
0 2 4 6 8 10 12 1·1 16 18 20

Time (s)

20
Ttme (s)

0 5

~=~·-··=-··.d"··n~--·~~ r ,) J\
4 G a 10 12 14 tG 1a 20

, . .;- '\
0

0 2
Time (s)

80

Figure 4.12. Natural fault on G I 0 neuroidentified by an ASNN using centers t trained on
the combined G7 and G I 0 data. (a) Terminal voltage (thick line) and ASNN estimation
(thin line) per unit xlO; (b) generator speed (thick line) and ASNN estimation (thin line)

per unit xI 0; (c) %-error between estimated and actual terminal voltages; (d) %-error
between estimated and actual generator speeds.

The ASNN does an impressive job of tracking the natural fault. The error is

understandably higher than on the forced perturbations, which were generally smaller in

magnitude and represented less disturbance to the system. But the complicated activation

function used in the ASNN is more computationally demanding than the sigmoidal

activation function in a second-generation TDNN MLP. Section 4.4 provides a study of

such an MLP on the same data, making it possible to discern whether the extra

computational power per neuron is warranted.

81

4.4. MLP NEUROIDENTIFICATION

To establish a baseline for comparison, the IEEE 10 machine 39 bus power

system shown in Figure 4.1 was also tested on a feed forward TDNN using sigmoidal

neurons in the hidden layer. Figure 4.13 illustrates the TDNN architecture with the

sigmoidal neurons. The same number of neurons are used in the hidden layer of the MLP

as in the ASNN, and both are exposed to the same data sets of forced perturbations and

natural faults.

Figure 4.13. Diagram of a feed forward time delay ASNN. All synaptic weights are
trained via gradient descent based backpropagation.

The input and output weights are trained via gradient descent based

back propagation. Other than this, where appropriate, the parameters are set the same as in

82

the ASNN as shown in Figure 4.1. Figure 4.14 plots the terminal voltage and speed

deviation ofG7 under forced perturbation. The thick line is the actual deviations recorded

after the fact. The thin line is the predicted values generated before the actual values were

received. They are overlaid to show how close the MLP came in identifying them. The

%-error for each is calculated according to (26). Figure 4.15 plots the same data for G I 0.

bli'::~~
o 10 w ~ • ro w

c
Tulle {s)

:{I I~M~~~'~I
o w m ~ • ro w

d

f:~~&~J
o 10 m ~ • ro w

Time (s)

Figure 4.14. G7 forced perturbation of a sigmoidal TDNN. The signals and their
estimations are scaled up by a factor of I 0 to allow the neuroidentifier a palatable scale.

(a) Terminal voltage estimated (light line) and actual (heavy line) per unit x\0, (b)
generator speed estimated (light line) and actual (light line) per unit x\0, (c)% error

between estimated and actual terminal voltage, (d) %-error between estimated and actual
generator speed.

0>/ lactual-estimatedllOOo'/ /oerror = x /o
actual

·*;F=~l

c

d

0 10 ~ ~ w 00 00

"firne (s)
~ 0\r-----~------.-------r-----~-------r------.
0

£!ooo
;f -g

~
ltme (s)

83

(26)

Figure 4.15. G l 0 forced perturbation of a sigmoidal TDNN. The signals and their
estimations are scaled up by a factor of 10 to allow the neuroidentifier a palatable scale.

(a) Tenninal voltage estimated (light line) and actual (heavy line) per unit x l 0, (b)
generator speed estimated (light line) and actual (light line) per unit xlO, (c)% error

between estimated and actual terminal voltage, (d) %-error between estimated and actual
generator speed.

The natural faults are applied to G7 and G \0 in two steps. At Os on the plots in

Figure 4.16 and Figure 4.17, a single-line phase-to-ground fault is applied, after which

the system is allowed to recover for lOs. Thereafter, a three-line phase-to-ground fault is

applied, and the effects observed for another I Os. Notice that the sigmoidal TDNN has

difficulty immediately following a fault, as there was no way it could predict it. For the

84

single-phase fault, the sigmoidal TDNN is relatively able to continue to track and predict

the oscillations, but once the three-phase fault is applied, the sigmoidal TDNN struggles

to remain within the same ballpark, with errors approaching 20% in its predictions.

runu (t1)

95~--~--~--~--~--~--~--~--~--~~~ o 2 J s a 10 t? u 1s 1a ::t:J

f1me {s)

Figure 4.16. Natural fault applied to G7, with a single phase fault at Os and a three phase
fault at I Os. The signals (thick line) and their estimations (thin line) arc scaled by a factor

of I 0 to allow the ncuroidentifier an palatable scale. (a) Estimation of terminal voltage
per unit xI 0; (b) estimation of generator speed per unit xI 0; (c) %-error between

estimated and actual terminal voltages; (d) %-error between estimated and actual speeds.

85

a *:[-=-~-~~~=l
''5 ' ''' '- 1--j

0 2 ' 6 8 10 12 14 16 18 10
Tune (s)

c

d

T1me (s)

Figure 4.17. Natural fault applied toG 10, with a single phase fault at Os and a three phase
fault at 1 Os. The signals (thick line) and their estimations (thin line) are scaled by a factor

of 10 to allow the neuroidentifier an palatable scale. (a) Estimation of terminal voltage
per unit xI 0; (b) estimation of generator speed per unit xI 0; (c) %-error between

estimated and actual terminal voltages; (d) %-error between estimated and actual speeds.

The sigmoidal TDNN is capable of tracking and predicting generator dynamics

under forced conditions and even under limited fault conditions, and is visibly closer than

simply assuming everything 1·emains nominal. However, there is definitely room for

improvement. The natural fault neuroidentification is where the power of the ASNN

compared to the sigmoidal TDNN. Not only is the error less than half that of the

sigmoidal TDNN in the ASNN for speed prediction, but just visually, it's clear that the

ASNN does a significantly better job of recovering and tracking the speed and voltage

data after a massive fault.

86

Initial examination of the sigmoidal TDNN's performance on forced perturbations

compared to even the ASNN which has the worst performance shows marked

improvement. It is all but impossible to see the difference between the predicted and

actual voltages and speeds, and the %-error is consistently lower on the ASNN runs than

on the MLP. The ASNN, simply by using an activation function that abstracts spiking

behavior, is already a major improvement over the second-generation sigmoidal TDNN.

What, then, might be possible with a BSNN?

4.5. BSNN: POLYCHRONOUS SPIKING NETWORK

The PSN described in Section 3 has already been demonstrated to be able to

reproduce a relatively simple variable-frequency sine wave. Now, it is to be tested on a

power system problem like that in the previous section. Because the PSN requires

temporal dependence in its data input stream to operate successfully, a longer stream of

power system data is generated. A slightly simpler two-area, four machine power system

shown in Figure 4.18 is used for this experiment. All four generators' speed deviation dw

and voltage deviation dV were generated by simulation for 255 seconds on the RTDS at

the RTPIS Laboratory. Figure 4.19 shows the two inputs to each of the four generators.

However, the scale of those inputs is so varied that it would be difficult for any ANN to

discern all of their dynamics, so they need to be normalized as shown in Figure 4.20.

The PSN framework used is the same as in Section 3. Figme 4.21 illustrates the

data flow from the original generator one signal (taken from I 0402 centiseconds to 1160 I

centiseconds) which gets normalized and passed through the GRF encoder to form input

spikes on 24 sensory neurons (twelve sensory neurons per input), into the PSN, through

the decoder, and out to produce the final output. The PSN uses 1000 lzhikevich neurons,

and the decoder uses 20 hidden neurons. Normalization of the range of input ensures that

the full dynamical range of the PSN is stimulated by the data presented. The task given to

the PSN here is to learn the speed deviation dynamics of the time frame stated above

(roughly 10.5 to 11.6 s) in generator 1, using that generator's speed and voltage dynamics

as its inputs.

G2 G4

(~) (~)
2 ~ vt~ 4

7 8 9

'-""' ~'1

- 10km 10km
25k m 25km

IIOkn1 IIOkm

5 6 10 11 3

Area 1 1\roa 2

Figure 4.1 8. Two-area four-machine power system simulated on the RTDS [21].

> x:+ ·I: o.~"~"~ v~"~'i ·: · · j
o~--~ro----1oo~--~~ro~--xo~--~2ffi

I (s)

X w·3 Generator 1 Speed Deviation

!X.:~f·lt~ · ~:'- ·~ ~ ~ •:· •
o ro 100 1ffi xo 250

t (s)
x 10·3 Generator 2 Speed Deviation

!x.:llf·~·~ .. ~:•-·: ~ ~ ••..
o ro 100 1ffi xo 2ffi

I (s)

>X.:~I t· : t·: ,r. .~· l !x.:i~ij,,,;·~·~:Tfi;;;:u l
o ro 1 oo 1 ffi xo 2ffi o ffi 1 oo 1 ffi xo 2ffi

t OO tOO

> x.] . + : : : :·-·~ . :·' j
0 ffi 100 1ffi xo 250

l(s)

87

Figure 4.19. Generator voltages and speed deviations for 250s from the two-area, four
machine power system shown in Figure 4.18.

88

!x~ltt:;tF ::;r:;·~ ";:;, l
0 50 100 150 200 250

I (s)

t(s) t(s)

>X + ., o::·:"(":·:r"·~:' l
0 50 100 150 200 250

!~+~;t:;·~ i::
11

i~i~
0

;~~'t" l
0 50 100 150 200 250

I (s) 1 (s)

Figure 4.20. Normalized values from the four generators, used as inputs to the PSN.

Figure 4.21. Illustration of data flow through the PSN framework. Normalization of the
inputs is left out of the diagram for space reasons, and happens before they are entered

into the GRF encoder.

For training purposes, the selected time frame of generator I 's activity is

presented repeatedly to the PSN. Several training methods have been attempted to tune

the decoder, including online backpropagation training, offline batch backpropagation

training, and PSO-based training. The PSO-based training provided the best results,

shown in Figure 4.22.

1st iteration
10 r-------.--------.-------.--------.-------.-------~

-10 L--------~------~------~--------~------~------~
0 200

200

400

400

600
time (cs)

1500th iteration

600
time (cs)

1501st iteration

800 1000 1200

1200

-1 L--------~-----L-L------~--------~------~------~

0 200 400 600
time (cs)

800 1000 1200

89

Figure 4.22. PSO-based training results of a I 000-neuron PSN on generator 1. Inputs
were generator 1 's current voltage and speed deviations (normalized), and the target

(shown in red in the figure) is the current-state speed deviation. This has to overcome a
10 cs computation time to perform current-state neuroidentification. The blue dots are the
output signal. The 1501 st iteration of the PSO-based decoder tuning, shown above, had a

mean squared error of only 0.055.

90

The output follows the target less well than the ASNN outputs in the prior

subsection, and is not even as good as the BSNN results on (16) in Section 3. However, it

is clearly following the presented pattern, which is not possible without the PSN

possessing relevant dynamics. The PSO training is batch by nature, so it is impossible

that the decoder weights could be slaved on a moment-to-moment basis to track the

outputs; they must have isolated weights which can at least extract the dynamics across

the full input stream. Figure 4.23 shows mean squared error of the best performing

weight set for all 1501 iterations of the one-second loop.

l.U
(/)

~

MSE vs iterations
2.5·--------------~~--------------~------------~

21--

1.5 1--

1

0.5

0 [\============~============L~==========~
0 500 1000 1500

iterations

Figure 4.23. MSE of the best perfmming particle in the PSO training the decoder on the
data used to generate Figure 4.22.

91

4.6. SUMMARY

Applying ANNs to identification and prediction of power system dynamics brings,

a powerful computational tool to bear on a highly nonlinear and important control

problem. Compared to classical linearized controllers, the adaptability of ANNs offers

the ability to run reliably even as a system moves away from the nominal operating point.

To adapt to changing environments, neuroidentification of generator dynamics (voltage

and speed deviations in particular) is necessary. This Section outlines two experiments in

SNN-based neuroidentification: one using an ASNN on two generators in the IEEE 39-

bus system and comparing the results to a traditional sigmoidal MLP on the same; and

another attempt with a two-area multimachine power system to implement a BSNN

neuroidentifier on one of the four generators' speed deviations using both voltage and

speed deviation as inputs from all four generators.

The input and target data for all experiments in this section were generated using

the RTDS at the RTPIS Laboratory. The results for the ASNN compared to the MLP

demonstrate that the ASNN is not only able to operate on the problem, but to do so with

more fidelity than the MLP. The results for the BSNN are not as impressive as even the

sigmoidal MLP, let alone the ASNN; however, the BSNN demonstrably possesses and

has a decoder which can extract the dynamics of the generator signals on which it is

trained. Additionally, the advance of the activation function as inspired by spiking

neurons and their demonstrated superiority to sigmoidal neurons of the previous

generation. These are two solid steps forward for the third generation of neural networks

as a serious tool for real-world use.

92

5. SUMMARY

5.1. INTRODUCTION

The advancement of ANN research has reached its third generation. The first was

ADALINE, the McCulloch-Pitts neuron [3], and the Hodgkins-Huxley neural model [2],

with their binary threshold activation functions and their integrate-and-fire models that

were of use primarily to biological neurological study [I]. The second generation took off

with the introduction ofbackpropagation through time in Werbos's work [4], [5] and the

development of more continuous activation functions (such as the popular and by-now

traditional sigmoidal function) [6]. As the second generation progressed, new

architectures developed with increasingly complex recurrence.

Now, as the third generation utilizing spiking neurons as viable ANN components

is developing, it is important to understand its strengths and weaknesses compared to

prior generation models. This disse1iation has discussed areas in which SNNs are already

competent- pattern recognition, logic gate functionality, image and sound processing,

etc.- and has detailed several needed advances towards making them stand along side

second-generation ANNs as universal continuous function approximators and time-series

identifiers.

5.2. CONTRIBUTIONS

To use a BSNN on continuous data, it is essential that the data be encoded in a

manner that ensures the resulting spike stream contains the original information. It also

must be capable of outputting spike streams which can be meaningfully decoded into

continuous values. The spiking neural model and the neural architecture are also

important. Spiking neurons work as well as they do in nature because of how they

interconnect; without that, much of their computational power and reason for being used

is lost.

93

It is with this eye towards functionality that two kinds ofSNN are studied: one

which uses traditional feedforward architecture and an abstracted model of spiking

neurons as a new sort of activation function in place of the sigmoid used in many second

generation models; and one which uses biologically-inspired Izhikevich neurons in a

highly recurrent dynamic reservoir.

The specific contributions and accomplishments made in this dissertation are:

• development of a novel encoding method (DNNR) for converting arbitrary

continuous-valued data into spike streams for input into BSNNs

• detailed algorithms for that method and one other (GRF)

• development of reversing algorithms to recover data from spike streams created

by those two methods without needing prior knowledge of what data was encoded

• analysis of these encoding methods and a third (PREM) to determine that the

encoded data is present in the spike stream by recovering it from the spikes

• demonstrated how polychrony can enable a PSN to have more data patterns than

there are synaptic connections even in a fhlly connected network

• development of a decoder which translates PSN output spikes into meaningful

continuously-valued functional outputs

• demonstration of the PSN's capability to learn a time-series sine wave using this

decoder

• use of the ASNN that treats the abstracted spiking neuron as an activation

function in a traditional TDNN on a power system identification problem and

compare it to an MLP

• demonstrated a BSNN framework capable ofneuroidentification of generator

dynamics to a degree of fidelity sufficient to prove that a BSNN contains the

dynamics and that they can be extracted.

94

5.3. SECTION SUMMARIES

5.3.1. Spiking Neural Networks. The SNN is the third generation of ANNs. This

dissertation started by reviewing the state of the art in SNN modeling along with its

predecessors. A primary focus was given to the lzhikevich model of spiking neurons for

biologically faithfl.!l modeling ofnemon behavior. An abstracted model of spiking

nemons as an activation function in a more traditional fcedforward style network is also

examined for its ability to handle inputs and outputs as easily as second-generation

sigmoidal activation function nemons.

The hurdles facing SNNs as a useful ANN arc outlined, primarily the need for

biological neurons to have an encoder and a decoder which can handle continuous

numbers and to have a highly recurrent architecture. The ASNN is proposed as a first

effort to overcome the encoding issue, as it is capable of taking numeric input and

provide numeric output without any encoding required.

5.3.2. BSNNs ami Applications Thereof. The primary contribution of this work

is the framework for a BSNN which can handle continuous-valued inputs and provide

continuous-valued outputs. Several encoding methods have been examined and

algorithms for two- DNNR and GRF- have been provided [30]. The Appendix contains

a flow chart explaining the third method [27].

One problem the author found with most encoding methods was the simple

assumption that the spike trains generated thereby actually contained the original data.

This dissertation also provides algorithms for reversing the encoding ofDNNR and GRF,

and thus proves that the spikes generated by these methods contain the data desired [30].

For the main "body" of the BSNN framework, the PSN architecture backed by the

lzhikevich neuron was chosen. The property ofpolychrony has been demonstrated to be

able to generate more data patterns than there are synapses in the system, enabling a PSN

to have ever-increasing granularity in its pattern identifications as more neurons and thus

more synapses are added. The explosion of possible unique outputs which respond to

unique inputs results in a continuum of possible outputs resembling that of modern

floating point numbers. Add in the novel Gaussian function-based decoder which

converts spike patterns to continuous-valued numeric outputs and an MLP-based tuner to

isolate desired dynamics, and the framework presents a complete capacity to handle

arbitrary numeric function approximation, just like prior generation ANNs.

The framework's triumph is the demonstration of its ability to reproduce a

variable-frequency sine wave as given by (16), both with online training and with the

decoder's weights frozen. It truly learned a continuous-valued function. It needs time

series information, however, as the PSN is a temporal system and does not learn

individual inputs as easily as it does those whose sequences have meaning.

5.3.3. Ncuroidentification of Power Systems with SNNs. Dynamic power

system identification is a real-world problem to which ANNs have been successfully

applied in the past [52]. These are, however, systems which run up against the limits of

second-generation ANN capabilities. It is hoped that SNNs may be able to overcome

some of these limitations, and the polychrony property of ever-increasing dynamic

patterns is a promising step in the right direction. However, before SNNs can be

compared to their predecessors to see if they can overcome their limitations, they must

first be shown to be able to handle the problem at all.

95

The ASNN is tested on a multimachine power system first, and its results

compared to a second-generation time-delay MLP. The results are actually very

favorable. It requires a bit more set-up, as it resembles an RBF network in its need for

"centers" for the neurons' activities, but it ultimately out-performs an MLP with the same

number of hidden neurons.

The BSNN test on a similar multimachine power system was less obviously

impressive, learning to track the signal with less fidelity than the ASNN or even the

sigmoidal MLP. However, that it was capable of demonstrating any tracking of the

generator dynamics indicates that the BSNN does have the ability to operate on

continuous, arbitrary-valued functions! This great hurdle of capability demonstration

having been conquered, it now remains to develop better ways of developing the

framework which makes translation from continuous-valued regimes into the world of

spiking information and back smoother and more powerful. It is no longer a question of if
a BSNN is capable of modeling continuous-valued functions. Having established that it

can be used on similarly broad problems as its second-generation predecessors, it is now

possible to begin studying whether its computational capabilities are greater.

96

5.4. SUMMARY

The development of a BSNN that is capable of continuous-valued fimction

approximation is very exciting, as it represents the first time (to the author's knowledge)

that this has been done with faithfitlly-modeled spiking neurons in a highly-recurrent

architecture. While this technology is more fully developed, the ASNN has proven to be a

viable contender with its second-generation cousins on real-world neuroidentification

problems. The third generation of ANNs has been under investigation for more than a

decade, and this dissertation presents work that enables SNNs to operate on theoretically

any problem the second-generation ANNs could handle.

5.5. SUGGESTED FUTURE DIRECTIONS

The current limitations of the BSNN framework presented here are an inability to

handle functions which do not have a time-series component, and difficulties training

them on highly complex functions such as the power system identification problem

presented in Section 4. More immediately for the ASNN, the chief limitation of second

generation ANNs which inspires the need to look to third-generation ANNs to tackle

problems such as those presented in Section 4 is one of scalability. Though polychrony

has been demonstrated for the BSNN, it is not a property of the ASNN. Further, it has not

been truly proven to solve this scaling problem even in a BSNN.

It is therefore suggested that future work pursue:

• incorporate a time-series element to static, randomly-ordered inputs, perhaps

presenting them repeatedly or with sufficient time between stimuli to allow the

response from the previous stimulus to die out in an effort to achieve time

independent function approximation. This would actually be similar to the

behavior abstracted in the ASNN.

• test the ASNN on problems where the scaling issue is known to be a problem for

second-generation ANNs to sec if it can handle these complex problems with

fewer neurons and less computational effort than its second-generation

counterparts.

• test the BSNN's performance compared to second-generation ANNs on

benchmark problems

97

• refine the BSNN framework to more swiftly and efficiently perform computation

on continuous-valued data

• test the BSNN on the same large-scale problems as the ASNN to determine

whether it has superior scaling properties to ASNNs and second-generation ANNs

Proving that a BSNN can resolve or even invert the scaling problem would open

up tremendous new vistas of computational possibilities, not the least of which would be

capacity for functional modeling of enormous numbers of dynamic elements with

relatively few processing units. It may not be beyond the realm of possibility for PSNs to

be developed which can numerically model every particle in a physical object in

reasonable time!

gamma=20; %decay constant
V _rest=O; %resting voltage of the LIF neuron
V _th=20; %threshold voltage ofthe LIF neuron (presumably in mV)

h=0.01; % needed on first run of the code for line 41.
NN=100;%NN : 100 neurons.
TN=2000; % "Large number" of independent sampling paths for the three
dimensional Bessel bridge
%x=0:0.01:6;
lamda0=2; %starting point for the input
nu=pi; %nu is a constant in the equation
lamda_mle=O;%initialize the maximum likelihood estimate of lamda

% x=0.15:0.01:2; %xis the time-value for the time-varying input
rate lamda

x=-2:.01:2;

lamda=lamdaO+ 2 * lamdaO*(sin(nu*x).fl. 2+sin(O. 7S*nu*x).l\ 2);
% lamda=2.*x.fl.2+300;
% lamda = 10. *sin(x);

> 'i:l
'i:l

~
0 -><
'i:l

fg
~
"Tj

0
~
(')
;:::;
Po>
::::;

\0
00

ci.
E

e L
J_

99

0 0 ~

ci.
(!.

a
.

E

e
u..

100

101

c.
E

e u..

=
 ro

.c

0.0
::I
0
.c

.... c 0
·.p
ro
.... (])

.. ~

c
·s.o (])
..c 11'1

(])
.... ro
"0

E

.!!!
.... 0 11'1
.... c (])

E

~

(])

102

~(JaqwnN-J!:l}/(lS/'lS}wns. P
+

te
p

w
e

l-lv

4
l-fi.(Ja

q
w

n
N

-J!~/((JaqwnN-J!~: t }M
a

U
-1

/'t }w
n

S
+

e
w

w
e

llft }=(U
'l}:!

N
)

0 .-I

c.
E

0
u..

N
)

0 .-I

To p. 102
From p.102

0

s1(k)=h1(i)*sum(2*1amda1 * (r(l:N(i)-1)-V _th+lamdal *gamma). * (w(l:N(i)-l)+gamma));
s2(k)=h1(i)*sum((r(1:N(i)-1)-V_th+lamda1 *gamma)."2); 0 w

104

105

BIBLIOGRAPHY

[I] L. F. Abbott, "Lapicque's introduction of the integrate-and-fire model neuron

[2] A. Hodgkin and A. Huxley, "A quantitative description of membrane current and its
application to conduction and excitation in nerve," Journal Physiol. Vol 117, pp.
500-544, 1952.

[3] W. Maass, "Networks of spiking neurons: the third generation of neural network
models," Neural Networks, Vol. 10, Issue 9, pp. 1659-1671, December 1997.

[4] P. Werbos, "Beyond regression: new tools for prediction and analysis in the behavior
sciences," Ph.D. thesis, Harvard University, 1974.

[5] P. Werbos, "Backpropagation through time: what it does and how to do it,"
Proceedings of the IEEE, Vol. 78, No. 10, pp. 1550-1560, October 1990.

[6] W. Maass, G. Schnitger, and E. Sontag, "On the computational power of sigmoid
versus Boolean threshold circuits," Proceedings of the 32'"1 Annual IEEE Symposium
on Foundations of computer Science, pp. 767-776, 1991.

[7] D. B. Thomas and W. Luk, "FPGA Accelerated Simulation of biologically Plausible
Spiking Neural Networks," 17°' IEEE Symposium on Field Programmable Custom
Computing Machines, pp. 45-52, 2009.

[8] L.-C. Caron, F. Mailhot, and J. Rouat, "FPGA implementation of a spiking neural
network for pattern matching," IEEE International Symposium on Circuits and
Systems, pp. 649-652, 20 II.

[9] S. Schliebs, A. Mohemmed, and N. Kasabov, "Are probabilistic spiking neural
networks suitable for reservoir computing?" International Joint Conference on
Neural Networks, pp.3156-3163, 20 II.

[10] S. Ghosh-Dastidar and H. Adeli, "Improved spiking neural networks for EEG
classification and epilepsy and seizure detection," Integrated Computer-Aided
Engineering, Vol. 14, Issue 3, August 2007.

[II] S.M. Bohte, J. N. Kok, and H. LaPoutre, "Error-backpropagation in temporally
encoded networks of spiking neurons," Neurocomputing, Vol. 48, Issues 1-4, pp. 17-
37, October 2002.

[12] Q.X. Wu, T.M. McGinnity, L.P. Maguire, B. Glackin, and A. Belatreche, "Learning
under weight constraints in networks of temporal encoding spiking neurons,"
Neurocomputing, Vol. 69, pp. 1912-1922, August 2006.

[13] S. G. Wysoski, L. Benuskova, and Nikola Kasabov, "Fast and adaptive network of
spiking neurons for multi-view visual pattern recognition," Neurocomputing, Vol.
71, Issues 13-15, pp. 2563-2575, August 2008.

[14] C. Godin, M. B. Gordon, and J.D. Muller, "SpikeCell: a deterministic spiking
neuron," Neural Networks, Vol. 15, Issue 7, pp. 873-879, September 2002.

106

[15] M.A. Bhuiyan, R. Jalasutram, and T. M. Taha, "Character recognition with two
spiking neural network models on multicore architectures," IEEE Symposium on
Computational Intelligence for Multimedia Signal and Vision Processing, pp. 29-34,
2009.

[16] S. Ratanasingam and T. M. McGinnity, "A comparison of encoding schemes for
haptic object recognition using a biologically plausible spiking neural network,"
IEEEIRSJ International COI?{erence on Intelligent Robots and S)1stems, pp. 3446-
3453,2011.

[17] S.-Y. Fu, G-.S. Yang, and Z.-G. Hou, "Spiking neural networks based cortex like
mechanism: A case study for facial expression recognition," International Joint
Conference on Neural Networks, pp. 1637-1642, 20 II.

[18] C. Nager, J. Storck, and G. Deco, "Speech recognition with spiking neurons and
dynamic synapses: a model motivated by the human auditory pathway,"
Neurocomputing, Vol. 44-46, Issues 1-2, pp. 93 7-942, June 2002.

[19] S. Soltic, S. G. Wysoski, and N. K. Kasabov, "Evolving spiking neural networks for
taste recognition," IEEE International Joint Conference on Neural Networks, IJCNN
2008,pp.2091-2097,2008.

[20] B. DasGupta and G. Schnitger, "The power of approximating: a comparison of
activation functions," Morgan Kaufman, Advances in neural il?{ormation processing
.1ystems, Vol. 5, pp. 615-622, San Mateo, 1993.

[21] B. Luitel and G. K. Venayagamoorthy, "Wide area monitoring in power systems
using cellular neural networks," IEEE Symposium Series on Computational
Intelligence (SSCI), CIASG, April I I-15, 2011.

[22] N. Iannella and A. D. Back, "A spiking neural network architecture for nonlinear
function approximation," Neural Networks, pp. 933-939,2001.

[23] W. Mass, "Fast sigmoidal networks via spiking neurons", Neural Computation, Vol.
9, pp. 279-304, 1997.

[24] J. U. Duncombe, "In spiking neural network architecture for nonlinear function
approximation", Neural Networks, Vol. 14, Issues 6-7, pp. 933-939, July 200 I.

[25] P. Rowcliffe and J. Feng, "Training spiking neuronal networks with applications in
engineering tasks," IEEE Transactions on Neural Networks, Vol. 19, No.9, pp.
1626-1640, 2008.

[26] V. Sharma and D. Srinivasan, "A spiking neural network based on temporal
encoding for electricity price time series forecasting in deregulated markets," The
2010 International Joint conference on Neural Networks, pp. 1-8, 20 I 0.

[27] X. Zhang, G. You, T. Chen, and J. Feng, "Maximum likelihood decoding of
neuronal inputs from an interspike interval distribution," Neural Computation, Vol.
2l,pp.3079-3105,2009.

[28] S.M. Bohle, H. La Poutre, and J. N. Kok, "Unsupervised clustering with spiking
neurons by sparse temporal coding and multilayer RBF networks," IEEE
Transactions on Neural Networks, Vol. 13, No. 2, pp. 1-10, March 2002.

107

[29] C. Johnson, G. K. Venayagamoorthy, "Encoding values into polychronous spiking
networks," International Joint Conference on Neural Networks, pp. 1800-1806,
2010.

[30] C. Johnson, S. Roychowdhury, and G. K. Vcnayagamoorthy, "A reversibility
analysis of encoding methods for spiking neural networks," Proceedings of IJCNN
2011.

[31] C. Johnson, G. K. Venayagamoorthy, and P. Mitra, "Comparison of a spiking neural
network and an MLP for robust identification of generator dynamics in a
multimachine power system," Neural Networks, Vol. 22, pp. 833-841,2009.

[32] A. P. Engelbrecht, Computational Intelligence: an introduction, Wiley, 2002.

[33] L. 0. Chua and L. Yang, "Cellular neural networks: theory," IEEE Transactions on
Circuits and Systems, Vol. 35, pp. 1257-1272, 1988

[34] J. Dethicr, V. Gilja, and P. Nuyujukian, "Spiking neural network decoder for brain
machine interfaces," 5'11 InternationaiiEEEIEMBS Conference on Neural
Engineering, pp. 396-399, 20 I I.

[35] N. Kasabov, L. Benuskova, and S. G. Wysoski, "A computational neurogcnetic
model of a spiking neuron," 2005IEEE International Joint Conference on Neural
Networks, IJCNN '05, Vol. I, pp. 446-451,2005.

[36] D. A. Wagenaar, J. Pine, S.M. Potter, "Effective parameters for stimulation of
dissociated cultures using multi-electrode arrays," Journal ofNeurscience Methods,
Vol. 138, pp. 27-37, 2004.

[37] http://www.neuro.gatech.edu/groups/potter/ Laboratory for Neuroengineering,
September 20 II.

[38] R. Ortman, G. K. Venayagamoorthy, and S. Potter, "Input separability in living
liquid state machines," JO'h International Conference on Adaptive and Natural
Computing Algorithms, Ljubljana, Slovenia, April20 II.

[39] H. Torikai, T. Saito, "Analysis of various spike-trains from a digital spiking neuron,"
Inernational Congress Series, Vol. 1291, pp. 225-228, June 2006.

[40] E. M. Izhikevich, "Simple model of spiking neurons," IEEE Transactions on Neural
Networks, Vol. 14, pp. 1569-1572,2003.

[41] W. Zhang, Q. Qiao, and X. Zheng, "Associative memory and segmentation in a
network composed of lzhikevich neurons," Fourth International Conference on
Natural Computation, pp. 618-621, 2008.

108

[42] J. M. Nageswaran, N. Dutt, J.L. Krichmar, A. Nicolau, and A. Veidenbaum,
"Efficient simulation of large-scale spiking neural networks using CUDA graphics
processors," International Joint Conference on Neural Networks, pp. 2145-2152,
2009.

[43] E. lzhikevich, "Polychronization: computation with spikes," Neural Computation,
Vol. 18, pp. 245-282, 2006.

[44] M. Molina, J. Liang, R. Harley, and G. K. Venayagamoorthy, "Comparison of
TDNN and RNN performances for neuro-identification of small to medium-sized
power systems," IEEE Symposium Series on Computational intelligence (SSCJ),
Aprilll-15, 20ll.

[45] S.M. Ross, "The Poisson Process," in Stochastic Processes, Chapter 2. Wiley, pp.
59-97, 1995. ISBN 0-13-711564-4.

[46] E. M. lzhikevich, J. A. Gaily, and G. M. Edelman, "Spike-Timing Dynamics of
Neuronal Groups," Cerebral Cortex, Vol. 14, pp. 933-944, 2004.

[47] J. Kennedy and R. Eberhart, "Pmticle Swarm Optimization," Proceedings of the
IEEE International Conference on Neural Networks, pp. 1942-1948, 1995.

[48] G. K. Venayagamoorthy, "Online design of an echo state network based wide area
monitor for a multi-machine power system," Neural Neill'orks, Vol. 20, issue 3, pp.
404-413' 2007.

[49] M. Azmy, I. Erlich, and P. Sowa, "Artificial neural network-based dynamic
equivalents for distribution systems containing active sources," JET Proceedings on
Generation, Transmission Distribution, Vol. 151, Issue 6, pp. 681-688, 2004.

[50] M. Stankovic, A. T. Sarik, and M. Miloscvic, "identification ofnonparametric
dynamic power system equivalents with artificial neural networks," IEEE
7/·ansactions on Power System, Vol. 18, Issue 4, pp. 1478-1486, 2003.

[51] J.-W. Park, G. K. Venayagamoorthy, and R. G. Harley, "MLP/RBF neural networks
based on-line global model identification of synchronous generator," IEEE
Transactions on Industrial Electronics, Vol. 52, Issue 6, pp. 1685-1695, 2005.

[52] S. Singh and G. K. Venayagamoorthy, "Online identification ofturbogenerators in a
multimachine power system using RBF neural networks," Art{flcial neural networks
in engineering conference, pp. 485-490, 2002.

109

VITA

Cameron Eric Johnson has studied at the University of Missouri at Rolla since

Fall of2000, when he was a freshman in the Physics department. He earned his B.S. in

Physics in 2004, went on to receive a M.S. in Physics in 2006 and, after determining that

he wished to develop intelligent systems to control autonomous swarms of devices,

earned an M.S. in Computer Engineering in 2007. He worked towards his Ph.D. as a

GAANN fellow. He received his Ph.D. in Computer Engineering with the completion of

this disse1tation in the Fall of2011.

His dissertation is on spiking neural networks, which represents the focus of his

research and breakthroughs in computational intelligence, which remains his broader area

of interest.

Cameron is interested in developing advanced devices and systems which

automate the mental work of experts in the way that robots in factories automated the

physical labor of unski lied workers, enabling one expert to do the work of dozens. He is

also interested in developing smarter and more intuitive systems to improve the

productivity and capabilities of end users in day-to-day life.

	Spiking neural networks and their applications
	Recommended Citation

	johns2
	johns3

