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ABSTRACT 

Artificial neural networks (ANNs) have been developed as adaptable, robust 

function approximators for at least the last quarter-century. They have progressed through 

two generations, and the third is now under development. Spiking neural networks 

(SNNs) seek to improve on previous generations in two ways: by using a more 

biologically-inspired neuron, they are shown to be capable of more complex calculations; 

incorporating polychronous properties of highly-recurrent networks with delays of 

different lengths on each synapse to achieve large numbers of possible patterns with 

relatively few neurons and synapses. 

Abstracted spiking neurons have been used as a third-generation activation 

function in a traditional feedforward network architecture, and their potency in 

application to a real-world problem- identification of power system generator dynamics 

-is demonstrated in this dissertation in comparison to a standard sigmoidal multi-layer 

perceptron network. However, the goal of SNNs is to be able to utilize biological-like 

neural network modeling to capture the computational prowess of living brains. In order 

to achieve such a feat, first a bio-inspired SNN must be able to handle continuous-valued 

function approximation; until this is done, such networks cannot even be compared to 

their second-generation predecessors. 

This dissertation demonstrates a technique for using a faithfully modeled SNN on 

continuous-valued problems. The encoding and decoding frameworks developed in this 

disse11ation for the biologically-inspired SNN enables it, like any other ANN, to be 

applied to any time-dependent problem, including ncuroidenti tication of power system 

generator dynamics. 
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1. INTRODUCTION 

1.1. INTRODUCTION 

Neural networks have been studied since man first appreciated that the brain is, 

itself, a computational engine. The very earliest efforts at developing an integrate-and

fire model of a neuron were introduced in 1907 [1]. The McCulloch-Pitts model was 

developed in 1943, and a giant squid neuron was dissected to develop the Hodgkins

Huxley model in 1952 [2]. Studying the mechanism of a biological neuron and the 

structure of living brains (biological neural networks) led to the development of artificial 

neural networks (ANNs). 

1.1.1. Generations of Neural Networks. AD ALINE, developed in 1960, was 

the first function approximating network of artificial neurons. Using the McCulloch-Pitts 

model, it had a binary thresholding function. Capable of any sort of binary-encoded 

function approximation, it is robust and adaptable. This marked the first generation of 

ANNs [3]. The second generation came about through two breakthroughs in the 70s, with 

Werbos's work on backpropagation through time [4], [5] and the development of 

sigmoidal threshold functions. AD ALINE and the McCulloch-Pitts neuron use a simple 

thresholding function that returns a binary value; the second-generation ANN utilized 

neurons with activation functions capable of outputting continuotts values [6]. 

Advances in neural architectures introduce recurrence and feedback structures, 

where the outputs of prior time steps (or even the same time step!) help influence the 

current output. These advances introduce a form of memory to the neural network. The 

third generation of ANN is currently still being developed: spiking neural networks 

(SNNs) [3]. 

Research into SNNs has boomed in the last decade or so, becoming one of the 

hottest topics at neural networks conferences. Development of new mathematical models 

for the spiking neuron, investigation and experimentation with various architectures for 

SNNs, exploration of new platforms such as graphics processing units (OPUs) and other 

high-performance computing (HPC) clusters [7], and even novel applications for the 
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strongest area for state-of-the-art SNNs: pattern recognition and classification [8], [9]. 

These categorization problems do not require continuous-valued functional mapping, and 

include logic gates, [10], [11], [12], video and image processing, [13], [14], [15], [16], 

[17] or even auditory [ 18] or gustatory [19] discernment. 

1.1.2. Applications. The three most common applications for neural networks 

are function approximation, pattern recognition, and nonlinear control. Time series 

prediction and system identification are subsidiary applications to these. As universal 

function approximators, ANNs' chief advantage is in their adaptability. 

Time series are a special form of time-dependent function, where each state is 

dependent upon the prior states. Traditional methods for approximating them involve 

searching for trends and fitting known functions to them, or averaging prior results to 

attempt to guess the next ones. Determining the coefficients and orders of the variables is 

very difficult for these commonly very complex and often dynamically changing 

functions. Using an ANN, there is no need to start with an approximation of the time 

series function. ANNs are dynamically adaptable to online training, able to track and 

learn patterns and functions. Training an ANN as a time-series predictor simply requires 

using the time series result from 1 as a target for the result the ANN output at time t-11, 

where 11 is the desired prediction time. 

System identification is a specialized form of time series prediction that tends to 

be highly dynamic and sensitive to a number of environmental conditions that require re

tuning in any traditional functional model of the system when the environment changes. 

The dynamic adaptability of an ANN enables it to not merely approximate the time series 

function, but to also track the function when it changes due to external conditions. 

1.1.3. Shortcomings and Limitations. The first generation of ANN was limited 

by its requirement of binary inputs and outputs. While it was capable of universal 

Boolean function approximation, it required large numbers of neurons to be able to 

perfmm binmy input and output of continuous values. The second generation upgrades 

this capability by replacing the thresholding function with an activation function that can 

output that varies across a continuum. This increased the calculation capabilities of a 

single neuron over the binary, digital output of the first generation considerably. Modern-



day multi-layer perceptrons (MLPs) typically usc second-generation neurons with 

sigmoidal activation functions like (I) rather than simple threshold gates. 

3 

f(x) = ( ) 1 +e-x 
(I) 

The network architectures which evolved from the second generation include 

feedforward networks and recurrent neural networks (RNNs), as well as radial basis 

function (RBF) networks. These networks were capable of the same universal Boolean 

function approximation as their predecessors, but with fewer neurons required. 

Additionally, their ability to output across a continuum made them able to approximate 

analog functions as well [6], [20]. Second generation networks' power as learning 

algorithms was truly unlocked by their ability to suppmilearning algorithms such as 

backpropagation [4), [5]. 

The problem faced by second generation ANNs is their inability to scale well. Just 

as the first-generation binary networks required far more neurons to approximate 

functions that second-generation ANNs can handle with relatively few neurons, there 

remain problems that second-generation ANNs find to have intractable computation 

requirements. As the number of inputs and outputs increases, the number of neurons 

required in a second-generation ANN increases even faster. When real-world system 

identification problems, such as wide-area monitoring for large-scale power systems [21 ), 

require tens to hundreds of inputs, it becomes simply beyond the capability of second

generation ANNs to perform the calculations in reasonable time with reasonable 

resources. 

Living brains in living creatures, on the other hand, handle enormous amounts of 

information and perform numerous simultaneous highly-complex calculations, value 

judgments, and adaptive efforts all at once without a bit of slow-down. It behooves the 

neural network community to return to these original inspirations for the ANN to learn 

how they accomplish this feat, and use the insights gained to develop a third generation 

of neurons and neural networks that is to the second generation what the second 

generation was to the first. 

The third generation is defined in [3) to be SNNs. It is on these third generation 

neuronal networks that this dissertation focuses. 
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1.2. RESEARCH OBJECTIVES 

Despite the introduction oflanella and Back's one neuron per possible output 

SNN that can perform arbitrary continuous-value input-to-discrete-output in 2001 [22] 

and Mass [23] and Duncombe's [24] works in modeling MLPs with spiking neurons 

instead of sigmoidal ones, there has been little effort in the area of continuous-valued 

SNN inputs and outputs. Using Inter-Spike Intervals (ISis) as the encoded input values, 

Iannella and Back's method was capable of encoding any continuous value desired. Their 

output mechanism was to control which of the neurons in their feedforward SNN fired. 

However, because each neuron is trained to spike to represent one and only one output, 

this generates a step-function approximation of whatever arbitrary function the SNN is 

trained to approximate. Very discrete inputs or very large numbers of output neurons are 

thus needed to generate anything resembling a smooth output curve, which defeats any 

scalability benefits one might otherwise obtain from using spiking neurons. Developing a 

means of using continuous-valued inputs and producing continuous-valued inputs with 

arbitrary functional mapping is the key to truly bringing the SNN into its own as an heir 

to the second-generation ANNs. 

Late in the last decade, Rowcliffe and Feng [25] produced the first successful 

attempt to use third generation ideas to produce an SNN which can operate on 

continuous-valued numbers and produce arbitrary responses. They abstract the actual 

spiking into a complicated activation function, allowing their neurons to operate in the 

same feedforward, feedback, and cellular structures as first- and second-generation 

neurons without any need for fancy encoding or decoding. The work of Mass [23] and 

Duncombe [24] demonstrated by Sharma and Srinvasan in [26]more resembles this in 

practice (albeit lacking the abstraction) than it does the biologically inspired SNNs 

(BSNN s) focused on in this dissertation. 

By calculating an lSI from equations integrating expected responses to input 

firing rates that represent the continuous-valued inputs and never actually generating a 

spike train, they deliver an advancement comparable to that in [6]. This abstracted SNN 

(ASNN) may provide greater computational power than a second-generation counterpart, 

but can it match a more biologically inspired SNN (BSNN)? 
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The specific objectives of this research are to: 

o review state-of-the-art encoding methods to pass continuous-valued inputs into an 

SNN 

o determine whether the encoding methods proposed actually successfully pass 

information into the network 

o review and utilize a state-of~ the-art architecture that takes full advantage of the 

power of the spiking neuron model 

o develop and test a decoder that can produce arbitrary functional mappings of the 

continuously-valued inputs into equally continuously-valued outputs 

o test an abstracted representation of a spiking neuron in a traditional feed forward 

ANN structure and compare it on a real-world application to a second-generation 

ANN of the same structure that uses sigmoidal neurons 

o demonstrate the abstracted and bio-inspired SNNs on a real-world problem of 

neuroidentification of generator dynamics in a multi-machine power system 

o utilize a BSNN framework to perform neuroidentification of generator dynamics 

1.3. CONTRIBUTIONS 

Any exploration of the power and capacity ofSNNs must be able to compare 

them to their predecessors. In order to accomplish this, it must be possible to test SNNs 

on the same smis of problems as the second-generation networks. Despite the lack of 

continuous-valued output decoding efforts on BSNNs, there have been several efforts at 

creating methods for encoding continuous-value functions [27], [28], [29]. However, 

prior to [30], it had been left to assumption that the spikes generated by these methods 

truly contained the continuously-valued information passed into the encoding algorithm 

that generated the train. 

This work seeks to correct this by testing several encoding methods and using 

their spike trains to reproduce the original input, thus proving the information exists in 

the spikes. It then goes on to encode data into a PSN and develop a decoding mechanism 

to translate the spiking outputs of the BSNN neurons into continuous-valued numbers. 
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Additionally, the ASNN of [25] is tested on a highly-complex real-world problem 

of power system identiftcation, and compared to a time-delay MLP [31]. These 

demonstrations of both abstracted and biologically-modeled third-generation NNs and 

their computational power compared to second-generation NNs is the third major 

contribution of this dissertation. It is due to the greatest contribution of this work- the 

development of a framework for using BSNNs on continuous-valued functions- that 

finally enables the fi.tll fledged comparison of BSNNs to second-generation NNs and their 

development as a mature and functional computational tool. 

The specific contributions of this dissertation are: 

• examination, algorithm identification, and analysis of state-of-the-art encoding 

methods 

• development of a novel new encoding method and associated algorithms 

• development of algorithms for reversing the encoding methods examined, 

extracting the original data from the spikes to prove that the spike streams do 

carry the original continuously-valued data 

• explanation, analysis, and execution of the Izhikevich model neuron in a 

polychronous spiking network (PSN), and maturation of the same 

• development of a decoder capable of translating spikes from the PSN neurons into 

continuously-valued outputs which are tuned to isolate the functional 

representation desired 

• demonstrate polychrony and its ability to vastly increase the capacity of an ANN 

• testing of the completed PSN framework (encoder, PSN, decoder) on several 

problems, demonstrating the successful implementation of an SNN on 

continuous-valued inputs and outputs 

• explain, implement, and compare the ASNN of [25] to a traditional MLP on a 

multimachine power system identification problem 

• prove that a BSNN is capable of performing similar neuroidentilication of 

generator dynamics- a continuous-valued real-world problem 
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1.4. SECTION SUMMARIES 

1.4.1. Spiking Neural Networks. Section 2 begins the examination of SNNs 

in general. The state of the art in SNN modeling is examined along with their evolution 

fi·om the first-generation AD ALINE thresholding neurons and the Hodgkin-Huxley 

model through modern-day Izhikevich models. Discussion of the attempts in the last half

century to develop spiking neuron models as function approximators and as modeling 

mechanisms to study living brain dynamics follows. 

The distinction between ASNNs and BSNNs is studied, and the strengths and 

weaknesses of both arc examined in light of possible applications to which SNNs as a 

whole might be applied. Finally, the limitations that hamper the use ofSNNs under the 

state of the art are examined, as these are the hurdles the work presented in this 

dissertation attempts to surmount. 

1.4.2. BSNNs and Applications Thereof. In Section 3, the primary contribution 

of this work is outlined and detailed. A framework for a BSNN which can handle 

continuous-valued inputs and outputs is introduced, and encoding methods for 

transforming those inputs into spike streams which can stimulate a BSNN's dynamics are 

examined and tested to ensure they do not simply produce noise; the spike trains 

produced can be decoded to recover the original continuous-valued inputs. 

In theory, any BSNN model which mimics brain-like spiking functionality can be 

used as the computational engine in this framework. In practice, the lzhikevich model has 

come to the fore in recent years as the go-to model for simple and accurate modeling of 

biological spiking neuron behavior. Arranged as a Polychronous Spiking Network (PSN), 

this is the model chosen for use in the work presented in this dissertation. 

While encoding methods had existed prior to this work, and the PSN has been 

known for half a decade, this dissertation presents what is, to the author's knowledge, the 

first successful means of decoding continuous-valued outputs from a BSNN and training 

them to a target function. 

1.4.3. Neuroidentification of Power Systems with SNNs. The real-world appli

cation chosen to demonstrate the capabilities of SNNs is power system identification. 

Predicting the speed and voltage deviation of generators is a highly complex problem 

which has time-dependent dynamics in its functional form. Section 4 demonstrates the 



application of SNNs to this difficult problem, and compares their performance to an 

MLP. Additionally, a BSNN is demonstrated to be able to Jearn to identify generator 

dynamics, proving that BSNNs are capable of continuous-valued outputs on complex 

nonlinear functions. 

1.5. SUMMARY 

This dissertation presents a review ofNNs leading to the development of SNNs 

and details the development of means of using them on the same smis of problems as 

previous-generation NNs. It goes on to compare the performance of SNNs to their 

predecessors on several problems, and apply them to a real-world system identification 

problem which faces scaling issues when second-generation NNs are used on them. 

8 

Having enabled SNNs to be used and tested against prior-generation NNs on any 

sort of problem on which NNs are currently used or benchmarked, this dissertation opens 

the way for SNNs to truly contend for their claimed position as the third generation of 

NN. 
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2. SPIKING NEURAL NETWORKS 

2.1. INTRODUCTION 

Neural networks have been studied for more than half a century, though they were 

popularized after Werbos introduced the world to backpropagation training as a means of 

making them self-adapting learning machines [4], [5]. They have evolved from simple 

MLPs to increasingly different and complex feedforward [32], feedback [32], and cellular 

forms [3 3], and the perceptron neuron has had variants and adaptations. Some are 

attempts to capture different neuronal behaviors, while others are efforts to develop better 

computational engines [3]. 

As understanding of the brain- the ultimate inspiration for neural networks

increases, efforts to develop more brain-like neuron structures and network architectures 

in order to capture more of the brain's powerful computational capacity and efficiency 

are underway [34]. Spiking neurons and networks are the primary focus of this work, and 

both abstracted perceptron-style neurons with activation functions focused on spiking 

behavior as well as biologically-inspired models of voltage-accumulating-and-firing 

neurons (particularly the lzhikevich model) are explored. 

The ultimate goal is to develop spiking neural networks (SNNs) to the point that 

they can perform comparable functions to their predecessors (such as the MLP), and then 

test them on problems which their predecessors found too intractable, such as high-input, 

high-output neuroidentification, e.g. of large-scale wide-area power systems. 

To achieve that goal, one must first understand the state of the art in SNNs. 

Section 2.2 gives an overview of SNN research, including various models and 

implementations as well as prior work on abstracted SNNs as an advanced activation 

function for function approximation and the lzhikevich model of biologically-inspired 

spiking neurons. Section 2.3 goes into applications to which SNNs have been applied, 

while Section 2.4 outlines the limitations of current work in the area and thus where work 

still needs to be done. 
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2.2. STATE OF THE ART 

Spiking neural networks (SNNs) have been a subject of interest since the 1950s 

and the Hodgekin-Huxley model [2], developed by biologists studying a giant squid's 

neuron. Left by the wayside along with all NNs before [5] introduced a means for the 

first generation ofNNs to be used effectively as problem solvers beyond the scope of the 

McCulloch-Pitts neuron and AD ALINE, a single-layer neural network. 

In the 1990s, the idea of spiking neurons began to draw renewed interest. Called a 

third generation of neural network in [3], spiking neural networks seek to advance the 

activation function at least as much as the second generation did by replacing 

thresholding functions with continuous-valued ones. Though [2] outlines the biological 

neuron's functionality in great detail, the earliest mathematical model was the integrate

and-fire proposed by Lapicque, which modeled a neuron as a resister and capacitor in 

parallel [ 1]. Despite having no knowledge of the biological structure of neurons at the 

time of its creation at the dawn of the last century, this model captures enough of the 

actual function of biological neurons to still be in wide use today. 

Spiking neurons are hoped to represent as great a leap forward in computational 

power as were continuous activation functions, but they pose a unique set of problems. 

Where AD ALINE and other thresholding functions operated strictly on binary inputs and 

outputs, continuous activation function neurons can operate directly on continuous

valued inputs and directly produce continuous-valued outputs. Spiking neurons, on the 

other hand, can only operate on voltage-level inputs (and almost always are designed, as 

their biological inspiration, to do so in the form of spikes) and can only output voltage 

spikes. This could be seen as a noisy binary input/output, and, indeed, spiking neurons 

and small feed-forward networks of the same have been used to generate XOR gates [I 0], 

[11],[12]. 

However, even should spiking neurons prove to be as much of a step forward in 

computational power on Boolean problems as were continuous activation function 

neurons compared to thresholding functions, they remain a step backwards if one cannot 

utilize them for continuous function approximation. Many different encoding and 

decoding schema have been considered for translating continuous-valued numbers into 

spikes and back again. Many rely on either spike rate/frequency or ISis. 
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One of the earliest lSI-based encoding methods was presented in [22], wherein 

the input is coded as the time between two spikes (the IS!). This provides an arbitrarily 

continuous precision on what input values it may handle. The one-layer fcedforward 

network of spiking neurons is then trained so that each spiking neuron responds to a 

particular range ofiS!s, spiking if its particular lSI is fed to the network. The other 

neurons' outputs are suppressed by that same input. Each neuron thus learns one 

particular output for a range of continuous inputs, and the network can map an arbitrary 

function. Unf01iunately, this sort of encoding and decoding mechanism generates only as 

many possible outputs as there are neurons, creating a highly discrete step-function that 

does not output continuous values at all. 

One idea to allow spiking neurons to operate in continuous number domains is to 

abstract them into a kind of continuous-valued activation function, which would permit 

them to simply "upgrade" the second generation neural models as they "upgraded" the 

first [25]. The work in [23]-[24] uses ISis for the outputs rather than abstracting them and 

achieves better results than [22], but like [25] is still a feedforward architecture which 

does not capture the inter-neural structure of the SNN, and so exploration of more 

biologically-faithful models of both the spiking neuron and the network architectures in 

which they serve as the functional units continues. 

It is natural that these various models of SNNs should be tested to demonstrate 

their capabilities, and so problems on which the spiking nature of the inputs and outputs 

have been found. Image and video processing [12], [ 13], as well as pattern-matching and 

classification [10], [II], [12], have been the standard problems to which SNNs have been 

applied and on which they have been tested. More ambitious experiments include 

attempting to classify inputs according to other sensory stimuli other than sight (auditory 

[18], gustatory [ 19]). 

The SpikeCell neural model presented in [ 14] utilizes a deterministic spiking 

neuron to attempt to improve on the standard static neurons of the second generation, 

while emulating the outputs of neurons with more traditional activation functions. Using 

an internal potential V(t) which evolves in time according to (2) and a dynamic threshold 

VthmdtJ which evolves in time according to (3 ). SpikeProp neuron i can emit positive or 

negative spikes as delta functions iii(/+ 1) defined by (4). For the digital discretization, d 
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represents a step size that allows this model to be tuned to a desired level of precision in 

emulation. 

v,,,,.,". u + l) = ~~""'"· (t) +do, (f) 

l
-1 

8,(1+1)= ~ 

if v, (I) < ~~'"''"· (1) 

if~~ (I) = ~~'"""· (I) 
if~~ (I)> v,,,,.,,,, (I) 

(2) 

(3) 

(4) 

The threshold voltage V,,,, of neuron i is thus dependent on the value of the delta 

function spike (51 it fired in the most recent time step. The positive and negative spikes 

output by these neurons are really thresholded functions similar to first-generation 

perceptrons, and SpikeProp has been successfully used on classification experiments 

similar to those for which that first generation were demonstrated to be successful. 

More computationally-minded models tried lesser or greater complexity to 

capture simply the behavior of a spiking neuron or to experiment with more biologically 

faithful mechanisms which might lead to that behavior naturally. A neurogenetic model 

presented in [35] focuses as much on molecular research as it does on actual SNN 

applications. By evaluating the Local Field Potential (LFP) of a test neuron or network 

thereof, the neurogenetic model is compared to a target electroencephalogram, or EEG. 

The actual method of generating the spiking neurons is similar to a Genetic Algorithm 

(GA) which utilizes a number of potential proteins to build each neuron. Careful 

modeling of the chemical processes that each protein performs generates the LFP which 

can be compared to an EEG. While this is not helpful overall in terms of applications, it 

is an interesting model for those who wish to simulate brain behaviors. 

The usefulness of SNNs as models of living neuronal networks has not gone 

unnoticed in the neurobiology and neuroengineering communities, either. Increasing 

amounts of collaboration between the computer engineering and neurobiology fields has 

led to work on interfacing living neurons with computer systems and even allowing one 

to control the other [36]. The multi-electrode arrays (MEAs) introduced in that paper are 

used at the Georgia Institute of Technology to interface rat brain cultures with computers, 

so their spiking behaviors can be stimulated and monitored [37]. There is even a robotic 
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arm that can be connected over the internet to the system at Georgia Tech which receives 

stimulus from a camera on site and controls the robotic arm to doodle and scribble in 

response [3 8]. 

In part because of the increased ability to monitor biological neurons and their 

patterns, more efforts such as [39] emerged as the decade advanced. The digital spiking 

neuron (DSN) and quantized spiking neuron (QSN) were used to generate discrete "spike 

position maps," which can be used for pattern identification, though no real applications 

are attempted. 

In the same year, however, [12] came out with the SpikeProp model of spiking 

neurons which uses a form of temporal encoding originally proposed in [28]. Section 3 

will go into more detail on the Gaussian receptor field (GRF) encoding method presented 

in that work, but [12] developed a form of backpropagation-based weight learning. 

SpikeProp is a feedforward set of spiking neurons, and successfully learned the XOR gate 

function. One of the problems they tackled was the need to have their backpropagation 

have a special case for times when the neurons do not fire, because spiking neurons do 

not always output a value at each iteration. For decoding, SpikeProp simply assigns an 

early firing time to logical value "1" and a late firing time to logical value "0," and 

ensures that the converged neural network fires at least once per time-window for any 

input. 

Perhaps ironically, a model of spiking neurons that uses the same "behavior

focused" rather than "method-focused" sort of design demonstrated in [1] is one of the 

most widely-acclaimed SNN models today. Introduced in [40] by a neurobiologist, the 

lzhikevich model of spiking neurons (explained in more detail in Section 2.2.2) is known 

to very well simulate actual brain behaviors [41], [42]. 

2.2.1. Abstracted Spiking Neural Networks (ASNNs). One approach to 

incorporating SNNs into standard NN applications is to try to maintain the input/output 

architectures already well-known and commonly practiced. MLPs, Radial Basis Function 

networks (RBFs), Recurrent Neural Networks (RNNs), and most other commonly-used 

architectures have a layered structure with neurons which operate on real-world-relevant 

values in activation functions and pass them on to the next (usually output) layer. 
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An excellent example of one such effort is performed in [25]. The ASNN 

developed in that work utilizes an abstraction of the lSI based on the mean and standard 

deviation of hypothetical spikes fired in response to the real-valued input. Figure 2.1 

illustrates the abstracted spiking neuron. 

Figure 2.1 Abstracted spiking neuron serving as an advanced sort of activation function. 

The mean tt and standard deviation (J for each neuron i are based on the temporal 

distribution of spikes which would be firing if they were not abstracted away. They are 

defined by (5) and (6). 

II 

J.l; = L A,j - A,; wij 1 - r 
j=l 

l+r 

(5) 

l+r (6) 

The / 11 input into the neuron is given as }'1 while a. is a tuning constant that must be 

greater than 0. The ratio of excitatory to inhibitmy inputs is given by r, and is usually set 

to 1 for an equal number of each. This causes p to typically be zero, so the experiments in 

[31] derive all the meaningful input from the standard deviation of the spikes. The 

superscripted i values represent centers in the calculation space. Each neuron i has a 

different center around which it responds, and those centers are found in any of the same 

ways that RBF network centers can be found [25]. 



This, however, merely transforms the real-world input value given by 2 into an 

abstracted temporal spiking behavior. The model in [25] and [31] uses the abstracted 

firing rate as calculated using the IS! as the final output from the activation function. In 

order to achieve this, the lSI first is calculated by means of (7), with Vm1 as the resting 

voltage of the spiking neuron, and V11""" as the threshold voltage. The relaxation period 

of the neuron, r, is the time it takes for a given spike's influence on a neuron to fade. 

2 
!'1/irn~T-p! 

15 

lSI=- j, "' g(x)dx I rot r Jl, T ---
(7) 

u, 

Integrating over the Dawson's Integral g(-<) given in (8) between the limits 

established by these voltage values and the mean and standard deviation of the abstracted 

spikes passing through the spiking neuron gives us the lSI. 

2 r 2 
g(x) =ex 1 e-" du (8) 

The final piece of the firing rate that is used as the output of this abstracted 

spiking neuron is the refractory period 1~ef, which is the time after a neuron spikes that it 

spends below its resting voltage before it finally recovers and resumes its resting voltage. 

The firing rate is the multiplicative inverse of the sum of Trerand the lSI (9). 

!,(Jc) = T :IS! 
n:f 

(9) 

This highly complex procedure can produce complicated functional surfaces. The 

relatively simplistic one produced with r= I and u.=2 is shown in figure 2.2. 

This form of abstracted spiking neuron can be used in place of traditional 

sigmoidal neurons or RBF neurons in feedforward, feedback, and recurrent architectures. 

As Section 4.3.2 will demonstrate, this is a powerful form of neuron despite remaining 

more akin to traditional neuron architectures than biological models of spiking neurons. 
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Figure 2.2. Output of an abstracted spiking neuron with r == 1 and a. == 2, with },1 and },2 

varying independently from -2 to 2 with a step size of 0.0 1. 

2.2.2. Biologically-Inspired Spil<ing Neural Networks (BSNNs). Biological 

neurons are very complicated machines with numerous mathematical models to 

approximate their behavior. The oldest of these is the Hodgekins-Huxley model [2], 

which has many equations modeling very specific behaviors observed empirically in the 

dissection of a giant squid neuron. Ion channels, conduction paths, axons, dendrites, and 

many other components of the biological neuron were studied and modeled. 

The generally-accepted approximations of the biological neuron focus primarily 

on the voltage transfer between them. Neurons have three generally-important 

components to modeling this behavior: dendrites, which collect voltage spikes through 

synapses which connect them to other neurons; the main neuron body (or "soma"), which 

is where the charge is stored while it builds; and the axon, which is the output path along 

which a voltage spike is released. The "leaky neuron" model sees voltage spikes from 

pre-synaptic neurons flow into the dendrites of a neuron, and build up the voltage stored 

on the soma. This voltage leaks away naturally over time, but if multiple spikes come in 

over a short enough period, the voltage builds faster than it leaks away. When it reaches 
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the threshold voltage V111resh, it emits a spike of its own. The soma's voltage immediately 

drops below its resting voltage [7,.,,1, and the spike propagates along the axon to synapses 

which connect to other neurons' dendrites. 

The Izhikevich model of neuronal activity is a simple two-equation system, (I 0) 

and (I I) that represents the voltage over time of a spiking neuron [40]. 

{
v(k + 1) = 0.04v(k) 2 + 5v(k) + 140 -u(k) +I 

v(k+i)=c 

{
u(k + 1) = a(bv -u(k)) 

u(k+i)=u(k)+d 

ifv(k) < 30mV 

ifv(k) 2 30mV 

ifv(k) < 30mV 

ifv(k) 2 30mV 
(I 0) 

(II) 

The voltage at discrete time-step k is given by v(k). This is the value of the 

voltage assumed to rest in the soma of the simulated neuron. It builds due to the input 

from other neurons represented by I, and decays with time (if it does not spike). The 

threshold voltage is set at 30m V. After a spike, the voltage resets to c, which (along with 

a, b, and d) is one of four variables which can be tuned according to figure 2.3 to cause 

the neuron to behave according to one of several ways real biological neurons tend to 

spike. The experiments run for this dissertation all use regular spiking excitatory and fast 

spiking for inhibitory neurons in any Izhikevich model experiment. 

The neural model alone faithfully represents the input and output voltage spike 

behavior of biological neurons, but the most potentially ground-breaking advance is in 

the polychronous network introduced in [43]. This polychronous spiking network (PSN) 

develops "polychronous clusters" of neurons which respond only when specific neurons 

are triggered in specific orders, as shown in the example five-neuron network with delays 

as displayed in figure 2.4. The delays align such that incoming spikes arrive all at once if 

the pre-synaptic neurons are triggered in specific orders, but do not if they are triggered 

out of sequence or with the wrong timing. Section 3.4 goes into it in more detail as it 

discusses details of the PSN itself. 
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Figure 2.3. Diagram of possible spiking behaviors of the Izhikevich model artificial 
spiking neuron, along with the settings required to achieve each variety. Electronic 

version of the figure and reproduction permissions are f reely available at 
www. izhi kevich. com 
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Figure 2.4. Example of polychrony in action. Blue spikes are inputs. Red lines are 
synaptic links which coincide from stimulus spikes to cause post-synaptic spikes. The 

delays on the c01mections between neurons are shown in the five-neuron diagram. 
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Such clusters can each represent a mapped output, and each additional neuron to 

the PSN increases the number of clusters exponentially. Thus, for each new Izhikevich 

neuron added to the PSN, increasing numbers of additional possible outputs become 

available. This is extremely similar to living brains, which exhibit literally astronomical 

calculation capacity without needing more neurons than there are stars in the sky. 

2.3. APPLICATIONS 

SNNs are just now beginning to leave infancy and toddle around the world of real 

applications. They are skilled pattern recognizers, and there have been a number of 

successful spiking neuron-based logic gates, such as the XOR gate demonstrated in [10], 

[II], and [12]. It is desired that SNNs be useful in as many functions as their ancestors. In 

their broadest definition, neural networks are function approximators. This means that 

any application where a current state leads to a new state via some function can use a 

neural networks solution. The first generation perceptrons were capable only of universal 

Boolean approximation, but the second generation's introduction of continuous activation 

functions expanded this to any analog or digital function. More realistically, however, 

neural networks are most useful when the function transforming one state to another is 

highly complicated, poorly understood, changing with time, or some combination of 

these circumstances, because in simpler situations a straightforward analytic function 

would be easier to generate and utilize. 

SNNs, as they stand today, are commonly tested on pattern-matching and image 

processing problems. Classification of data sets is also common [7)-[ 19]. However, the 

biggest advances have been in attempting to use them as artificial, fully-monitorable 

models of living brains for neurobiological study r 40), [ 43]. 

In order for SNNs to earn their position as a "next generation" neural architecture, 

they must prove capable of matching their predecessors at this general task of handling 

real-world inputs and outputs in continuous regimes. From there, the hoped-for increased 

computational power and versatility of the SNN will enable neural networks to be used 

on applications too computationally intractable for current-generation architectures. 

Because of the similarities between the behavior of the Izhikevich SNN and the ME As in 

[36], it is hoped that successful implementation of this third generation of artificial neural 
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network will also enable more powerful and accurate computation with living neurons as 

the processors. 

The SNN's basis in the way biological brains process information gives hope that 

it will invert the scaling problem faced by MLPs, RBFs, RNNs, and the like. Ever

increasing numbers of hidden neurons are required in first- and second-generation NNs to 

handle the special cases and intricate dynamics of the function to be approximated as the 

number of inputs and outputs increases. This is a geometric to exponential rise, and 

makes many applications- such as the wide area monitoring system proposed in [21] if 

scaled up to handle the New England or Brazilian power grids, as proposed in [44]

intractable. Living brains monitor and control vastly more complicated machines (such as 

mammalian bodies) without facing such problems. The third generation of NNs is 

designed to capture this. 

2.4. LIMITATIONS OF EXISTING WORK IN SPIKING NEURAL NETWORKS 

Achieving the kinds of continuous-value function approximation required by real

world time series and neuroidentitlcation problems requires means of inputting 

continuously-valued real-world data into the SNN, and retrieving meaningful 

continuously-valued data from the SNN's outputs. The state of the art for SNN 

applications tends to focus on video processing, pattern matching, and very limited input 

and output mechanics (usually comprising a limited set of patterns or values which can be 

read in and out). 

There are many different methods for inputting data into SNNs, but no good 

means of retrieving continuous-valued outputs from them. Moreover, prior to the 

encoding work presented in Section 3.3, the few methods that do exist for converting 

arbitrary numeric values into spike streams for input into an SNN are simply assumed to 

contain the encoded information. With no means of decoding the SNN's spike patterns, 

the information was never checked. This dissertation investigates the spike streams 

created by three encoding methods to determine if the information is present in the 



spikes, and goes on to develop a possible decoding method to obtain meaningful real

world values from the output of an SNN. 

2.5. SUMMARY 
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Spiking neural networks drink more deeply from the font of inspiration out of 

which neural networks in general were conceived. By more carefully modeling the actual 

behavior of biological neurons, they seek to capture the calculation power and efficiency 

of those natural computers to overcome problems -most particularly problems of 

database scale- which living brains do not even notice but on which current-generation 

neural networks tend to choke. Neuroidentification of large-scale power system dynamics 

requires not only massively scalable architectures, but also the ability to operate on 

continuous data spaces rather than being restricted to limited sets of patterns or other 

specified inputs and outputs. 

The next section goes into more detail on the Izhikevich model of a spiking 

neuron and how it can be used in a new biologically-inspired dynamic reservoir. For it to 

be truly useful in such neuroidentification and function approximation problems, 

however, a means of ensuring the real-world data is present in the encoded input spike 

streams is essential. Moreover, a decoding mechanism for extracting the calculated spike 

coded outputs into continuously valued meaningful numbers is required before it can 

even match its predecessors' performance, let alone demonstrate its superiority in large

scale situations. 
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3. BSNNS AND THEIR API>LICATIONS 

3.1. INTRODUCTION 

The major contribution of this disse1iation is the development of techniques for 

applying SNNs to all of the same sorts of problems that second-generation NNs can 

handle. It is essential to either prove that SNNs can do anything that second-generation 

NNs can, or to determine where second-generation NNs are superior, before SNNs can be 

properly developed as a third-generation NN. 

Because i\SSNs and the feedforward networks utilizing spiking neurons resemble 

second-generation NNs, they are already capable of mimicking second-generation 

functionality (as explained in Sections 2.2.1 and 4.3.2). The main problem lies in BSNNs 

and their peculiarities that make handling continuous-valued numbers difficult-to

impossible. Presented here is a framework for using a PSN as an engine for a third

generation neural network. This framework is, to the best of the author's knowledge, the 

first to make general continuous-number computation with BSNNs possible. The overall 

framework is explained in Section 3.2. Section 3.3 explains and demonstrates state-of

the-mi encoding methods for transforming arbitrary continuous values into spike patterns, 

then goes on to confirm that all three methods generate spike patterns which actually 

contain the encoded information. Section 3.4 describes the PSN itself and how it works; 

the engine that actually performs the computational "heavy lifting" for the BSNN. 

Decoding, essential to finish the cycle and recover meaningful continuous-valued 

numbers from the calculated dynamics of the PSN, is discussed in Section 3.5, and 

example problems on which this framework has been tested are given in Section 3.6. 

3.2. BSNN FRAMEWORK 

The SNN's processing capabilities are useless without a means of inputting data 

on which it is to operate, and a means of extracting the processed information in 



meaningful forms. This requires a framework like that in Figure 3.1, with an encoder to 

translate real-world values into spike trains and a decoder which converts the SNN's 

spikes to meaningful real-world values [29]. 
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input output 

Figure 3 .1 . Block diagram of a SNN used to fully reproduce a time series of continuous
valued data. 

The various sub-modules ofthe blocks are explained in the following sections. 

The SNN itself does the heavy mathematical lifting, and the decoder translates its spike 

responses into real-world values and potentially tunes the outputs to meaningful targets. 

3.3. ENCODING 

For BSNNs to be as useful as their predecessor architectures, they need to be able 

to take in real-world values. While SNNs have been successfully applied to a selection of 

specific classification problems (of which, really, Boolean logic discrimination and image 

processing are subsets) such as those presented in [11] , [28] , one of the two biggest 

obstacles to using SNNs for all the functions that second-generation NNs could perform 

has been encoding real-world values into forms with which the spiking neurons could do 

anything. This is a problem for which solutions have been searched for years, as 
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demonstrated in Section 2.1. Where handling continuous values is fairly trivial for MLPs, 

RBFs, and other second-generation NNs, it requires special encoding methods in order to 

conveti numbers into spike trains for BSNNs. lannella and Back [22] proposed a one

neuron-per-possible-output algorithm a decade ago. The lSI-based encoding method 

presented in their work is tempting, but not terribly robust to noise from the highly

recurrent system that makes up the PSN. 

Three means of encoding and decoding spikes for spiking neural networks are 

examined here as stand-out methods of encoding real-valued numbers into the third 

generation NN. In particular, a Poisson rate encoding method [27] (called PREM by the 

authors of [30]) and a method based on GRFs [28] are analyzed, and an in-house dual

neuron n-bit representation (DNNR) [29] is presented. Each of these methods generates 

streams of spikes with different temporal or spatial patterns when fed continuous values 

over the range they are designed to handle. For a serious study ofBSNNs as a whole, 

however, cetiainty is needed that the real-world values actually are encoded. That is, it is 

essential to be certain that the values encoded are contained and present as information in 

the spike trains generated by the encoding methods tested. The lSI method in [22]-[24] 

does obviously meet this requirement, at a minimum: the encoding method is so simple 

that it cannot fail to do so, and a simple stopwatch can recover the values by observing 

time between the spikes. PREM, GRF, and DNNR, however, need to be tested, to see if 

they can meet this minimum requirement before they can be held up in comparison of the 

lSI method at all. 

This section not only, therefore, outlines the three named encoding methods, but 

then presents a reversing algorithm for each encoding method. If the spike streams 

generated contain the information encoded by the algorithm, the revering algorithm can 

take the spike stream and reproduce said values with no prior information about what the 

original values were. 

3.3.1. Poisson Rate Encoding Method. Perhaps most closely related to the lSI 

method of encoding by its relation of firing rate (how often a neuron fires in a given 

period of time) to the real-world value to be encoded, the PREM creates a spike train 

whose pattern obeys a homogenous Poisson process for a given input value. 
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Characterized by (12), a Poisson process characterizes the probability that the number of 

events counted between times a and b is equal to k [45]. 

Aa.b ( 0 )k 
[( ) J e "'a.b 

P N(b)-N(a) = k = k! k = 0,1,2, ... 

The homogeneous process described in (12) assumes that },a,b is constant. For a given 

real-world input value, this remains the case in the PREM. However, this encoding 

method uses the real-world input value as 2, which means that the Poisson process is 

overall inhomogeneous. The modification is simple, redefining 2a.b according to (13). 

Aa,b = J: A(t)df 

(12) 

(13) 

While a straight-forward approach could simply generate a stream of spikes 

which have a probability of spiking equal to },a,b in each time-step, [27] instead 

incorporates it into the biologically-inspired spiking neuron equations by incorporating 

Aa,b into the time-dependent voltage equation (14) as part of the mean and standard 

deviation of the distribution of the voltage spikes as shown in (15). Either method results 

in a string of temporally-random spikes with the information solely contained in the 

number of spikes input in a given period of time. 

dV = _£'_d1 + j.<dt +.[;;dB, 
r 

{ 
f1 = aA(t)(i- r) 

u = a2 A( I)(!+ r) 

V ~ ~hreslwfd (14) 

(15) 

The ratio of inhibitory to excitatory neurons is, again, r, andy is the product of}, 

and V,;,,eohold· The use of fl and CJ to transmit data is similar to that used in Section 2.2. 1 

and [25]. The always-positive magnitude of the excitatory postsynaptic potential is a, and 

B, is a Brownian motion variable. 

The mathematics behind the maximum likelihood estimation (MLE) method of 

transforming the spiking rate of the neurons governed by (14) is given in exhaustive 

detail in [27]; this disse1tation will simply touch on the high-level theory in 

demonstrating that information encoded by the PREM is present in the output spike 

stream. Algorithm I provides the broad steps for enacting the PREM. Reference to [27] is 

still recommended for specifics. 
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The MLE method of recovering the inputs requires a Monte Carlo simulation of 

multiple possible "paths" for the neurons' firing patterns to follow. A "large number" of 

such paths is used in [27] in order to get a good simulation. PREM has a lower bound on 

possible input values, below which MLE returns "0" as the answer when it attempts to 

recover them. This lower bound approaches zero asymptotically as the number of paths 

approaches infinity. However, each additional path is, computationally, equivalent to an 

extra neuron. Because the other methods of encoding tested in this section operate on the 

order of a dozen neurons, the experiment in [30] uses twelve neurons with three paths 

each, for a computational cost equivalent to 36 neurons total. Algorithm 2 provides a 

step-by-step process for enacting the MLE method. 

Algorithm 1 Encoding using PREM [27] 

1: Initialize number of neurons m and number of independent paths B 
2: Determine the minimum threshold of possible inputs based on B. 
3: Add the lower bound to all inputs in preprocessing 
4: for each neuron i do 
5: for each independent path) do 
6: Usc},(/) in (15) as the continuous-valued input 
7: Determine dVin (14), and update neuron for next time step 
8: end for 
9: end fot· 

Algorithm 2 Recovering inputs from PREM [27] 

1: for each neuron i do 
2: for each independent path) do 
3: Determine the rate of fire for path) in neuron i 
4: end for 
5: Use the Monte Carlo averaging technique to estimate the rate of 

fire 2 of neuron i 
6: end for 
7: Estimate the maximum likelihood value using the MLE method in [27]; 

this is the original continuous-valued input 
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With three paths per neuron, it turns out that only two paths ever fire at all on the 

sinusoid given in (16). The lower bound below which the MLE cannot resolve anything 

but "0" is roughly 1500 when only three paths are used, so a linear offset of 2000 is used 

to push (16) above this threshold. As Figure 3.2 illustrates, MLE can recover data 

encoded by PREM with only a -0.5 bias, which is constant and thus can be removed in 

post-processing along with the linear offset to compensate for having only three paths per 

neuron. 

\

20sin(27l'l) 

f(t) = 20sin(47l'l) 

20 sin(27l'l) 

Os s I< ls 

Iss I< 2s 

2s s I< 3s 

(16) 

Uniquely amongst the encoding methods presented here, PREM and MLE 

actually pass the information into the neurons themselves before spike patterns are ever 

generated. If the authors of [27] ever develop a decoding method that does not strictly 

reproduce the inputs, this could be a useful tool for applying BSNNs to real-world 

problems involving continuous valued inputs and outputs. 



Decimal Values 

E 200 -

0 0.5 1.5 
t (SQC) 

(a} 
Error 

2 2.5 3 

2~----~~----~------~-------T-------r------~ 

-
.... 
~ 0 

~==============================~ 
-1 

-2~----~·~----~------~------~-------L------~ 
0 0.5 

15 

1.5 
t (sec) 

(b) 

2 2.5 3 

_.. .... .-::~:;·-2 
- --;..-: 

2000 2500 3()00 3500 3 

t (ms) 
(C) 

independent 
paths 

28 

Figure 3.2. PREM reversibility demonstration. (a) Sine waves of 1 Hz and 2Hz, original 
input and recovered values from MLE ofPREM-encoding. (b) Error between original 

input and recovered values; note that it is a constant -0.5 bias. (c) Neuron spiking patterns 
on the 12 neurons with three paths each; one path never fired at all. 

3.3.2. Gaussian Receptor Fields. Overlapping GRF are used to encode 

continuous real data into spatially and temporally defined spike trains [28]. Figure 3.3 

provides a schematic diagram of the means of performing this encoding, which uses a 
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Gaussian activation function for each input (or sensory) neuron, with centers spread 

evenly over the possible continuous input range. For a range [n,,," n,a,] of a variable n 

with 111 sensory neurons, the centers C, for neuron i are determined by ( 17) and their 

widths w by (18). The activation value/, for each neuron i is determined by (19). 

Ill> 2 ( 17) 

n -n 
H' = max mm 

y(m- 2) 
Ill> 2 (18) 

(x"f', )2 

f,(x) = Ae ~--,;;o i= l,2, ... ,m (19) 

A single input value passed into all sensory neurons' activation functions will 

generate different activation values; the closer the input value is to the center of a given 

sensory neuron, the higher its activation value on that neuron. These activation values are 

translated via (20) into firing times inversely proportional to the activation value. 

i= l,2, ... ,m (20) 

The activation value for neuron i is given by,(; and r is a constant that defines the 

maximum time delay possible. For the experiments in [30], r is set to be I 0 ms, and any 

neuron whose delay time 7i is greater than nine milliseconds is discarded as too weak to 

count for the given input. Thus, any given input value will cause two or three neurons to 

fire, depending on where it falls on their activation functions. The closer to the sensory 

neuron's center, the sooner it fires. Algorithm 3 explains this encoding process 

programmatically. 
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Figure 3.3. GRF encoding scheme. (a) 10 sensory neurons distributed evenly across input 
space, with data points p and q as inputs. T;(x) are the corresponding time-since-input at 

which the neurons will spike [30]. (b) Spike timings for p and q when encoded. 

Figure 3.4 illustrates the firing patterns of a sequence of values [1, 4.4, 9.2, 2, 6.4, 

10, 3, 8, 7, 5] input one after another with a 10 ms delay between each input. With no 

overlap, these are easily distinguishable by any heuristic examiner. However, Algorithm 

3 is capable of encoding inputs which are not forced to wait for the prior input's spike 

pattern to be fully generated before beginning to generate its own, which results in the 

same input stream consisting of overlapping spikes, as shown in Figure 3.5. This 

arrangement of overlapping values would be very difficult to reverse the encoding on 
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with no prior knowledge of to which original input a given spike in an overlapping frame 

applies. 

Algorithm 3 Encoding using overlapping GRFs [30] 

1: Initialize number of neurons m and coefficient of multiplication y used in 
(18). 

2: Initialize the range of inputs, n,,, and nma.n to the encoder. 
3: for each neuron i do 
4: Compute centers of each Gaussian functions, C, using (17) 
5: end fo•· 
6: Compute the width of Gaussian functions, w using ( 18) 
7: for each neuron i do 
8: for each sample input x do 
9: Compute the magnitude of firing,.fi(1), using ( 19) 
10: Calculate the time delay values T, from.f;(.\') using (20) 
11: Set neurons with 7>9ms to not fire 
12: end for 
13: end for 

Algorithm 4 is designed to disentangle these with no prior knowledge of the 

original inputs other than the delay time between inputs. It accomplishes this by passing 

the spike timings L11 within r of a given input's start time 1 through (21) to get a 

hypothetical activation value.fi '(\')that the spike would have if it were caused by the 

input entered at time I. This is then filtered through (22) to determine what the 

hypothetical value x' would have to be to generate ,.t;' . 

,,, -,, -

. f.'(x) = 1- L'.t 
T 

i:;:::: 1,2, ... ,117 

-2xw x +C 
( 

2 log((, '(x)) . ) 
A , 

(21) 

i=l,2, ... ,m (22) 
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Figure 3.4. Spiking response for input sequence (1 , 4.4, 9.7, 2, 6.4, 10, 3, 8, 7, 5] with a 
10 ms pause between inputs. Since no input can have a spike more than 9 ms after it is 

entered, there is no overlap [30]. 
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Figure 3.5. Spiking response for input sequence [1, 4.4, 9.7, 2, 6.4, 10, 3, 8, 7, 5] with a 5 
ms pause between inputs. Overlap occurs between the last 5 ms of potential response 

time of one input and the first 5 ms of potential response time of the next [30]. 

There will be two to tlu-ee spikes which truly belong to the input given at time f. 

These spikes will all have the same x' value. All other spikes, caused by other inputs, will 

generate different x ' values which will not match. Taking the statistical mode of all 

hypothetical values x' will thus return the true value x which was input at time t. As can 
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be seen clearly in Figure 3 .6, the GRF encoding scheme can successfully encode the sine 

wave given in (16) into spikes from which the original sine wave can be reconstructed 

according to Algorithm 4. With arbitrary temporal resolution, the recovery is precise and 

accurate to arbitrary degrees. 
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Figure 3.6. GRF reversibility demonstration. (a) Original sine wave overlaid by the sine 
wave recovered from the encoded spikes. (b) The error is shown to be non-existent; GRF 
loses no information with arbitrary temporal resolution. (c) Raster plot of the overlapping 

inputs encoded as spikes [30]. 



Algorithm 4 Recovering data fl·om GRF -created spikes [30] 

1: Initialize '''""hold as the maximum possible delay of a 
spike after its triggering input 

2: for each sample time to do 
3: for each spike between to and to+ '""""old do 
4: Calculate L1t =(time of spike)- (to) 
5: Use Lll in (21) to determinef'(x) for every spike 
6: Usef'(x) in (22) to calculate x' for both the 

positive and negative roots 
7: end for 
8: Take the statistical mode x of all spikes' x' for 

every sample which gives the recovered input 
9: end for 
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It is perhaps unsurprising that the coded spike train resembles, cosmetically, the 

original uncoded signal, when one considers that the sensory neurons' Gaussian receptors 

are positioned along the signal's domain. 

3.3.3, Dual-Neuron 11-bit Representation (DNNR). Developed in-house in 

[29], this encoding method inputs an entire continuous value into an SNN in a single time 

step (usually I ms). A particularly simple two-step process translates the continuous 

value on a prescribed range first into an n-bit Grey code and then into a pattern of n 

spikes arrayed across 2n sensory neurons. Two neurons represent any one bit in order to 

distinguish between binary input values of "0" or "1" and no input at all, as demonstrated 

in Figure 3. 7. When no input is present, none of the sensory neurons are firing. Each 

neuron pair has one designated as "odd" and the other as "even." When an input is 

present, exactly one of the two neurons in each pair fires. "Odd" neurons firing indicate 

the bit represented by that particular pair is "1 ,"while "even" neurons firing indicate the 

bit represented by that particular pair is "0." 

The range and resolution orthis encoding method (as shown in Algorithm 5) is 

strictly determined by the number of bits (and thus the number of sensory neurons) used 

to encode the values. In the work done in [29] and [30], 12 bits and therefore 24 sensory 

neurons were used, giving a maximum of 4096 discrete values possible. For a range of 

slightly more than [-20, 20], this gives two decimal places of precision. That's very 

nearly continuous resolution from a human observer's standpoint. 
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Figure 3.7. Encoding method for 11 bits with two neurons, and odd (o) and an even (e), 
each. A Grey code is used to transform real-world values into a binary representation; 

each bit is represented by two neurons [29]. 

Algorithm 5 Encoding a real-world value via the dual-neuron n-bit representation 
spiking encoding method [30] 

l: Based on resolution and range of real-world values, initialize the number of 
bits n 

2: Create m spiking input neurons, where m = 2n 
3: while there are inputs to pass to the sensory organ: 
4: Conve11 current input ton-bit Grey code 
5: Pass the bits of the Grey-coded value to odd- numbered neurons 
6: Pass the complement of the same bits to the even-numbered neurons 
7: Neurons (even or odd) which receive a "I" output a spike, neurons which 

receive a "0" do not output a spike 
8: end while 

Because there is no time-dependence on the information, this is a strictly spatial 

encoding method. All of the information encoded by Algorithm 5 is passed through the 

sensory neurons at once. This very straight-forward encoding method also means it is 

easy to tell that the only place information is lost is in the resolution: in the experiment 

shown in Figure 3.8, any decimal value less than 10-2 is truncated to the second decimal 

place. Algorithm 6 outlines the reversing of the encoding based on the spike stream, 

which is simply the same sinusoid on which the GRF encoding method was tested. 



Algorithm 6 Reversing the DNNR spiking encoding method to recover 
the original input [30] 

I: Initialize n to half the number of neurons used in the encoding 
2: while there are inputs to read from the sensory organ: 
3: for each pair of neurons 
4: if the odd neuron is spiking and 

the even neuron is not 
5: Record corresponding bit as a "1" 
6: else if the odd neuron is not spiking and 

the even neuron is 
7: Record the corresponding bit as a "0" 
8: else 
9: There is no input here, break to next input 
10: endif 
12: Convert n Grey-coded bits to real-world value 
13: Move to the next input 
14: end while 

decimal valuu 

l(ms) 
(e) 
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Figure 3.8. DNNR reversibility demonstration. (a) Original and recovered input; (b) error 
between the original and recovered input; (c) spikes containing encoded values [30]. 
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The regular, well-organized spikes encoding the data are easy to read. With 12 

spikes in every input, the energy fed to the SNN by the sensory neurons is very constant, 

as well. Reversibility is easily demonstrated because the spikes correspond directly to a 

Grey code, which is 1:1 related to the original continuous input value. The error falls 

neatly in the range of less than 0.0 l, precisely as predicted for the resolution of this 

encoding method. 

3.3.4. Scaling the In ruts. Because GRF and DNNR both have finite ranges 

over which they can encode continuous values (and varying resolutions for said ranges), 

it is important to be certain the encoder is constructed and calibrated to handle both the 

range and resolution desired. The experiments demonstrated here used a range of values 

from -20 to 20 for the input streams. DNNR utilized 12-bit Grey code with a resolution of 

two decimal places. Twelve-bit Grey code can achieve 4096 unique values, which 

enabled a two-decimal-place resolution to encompass slightly more than the range of -20 

to 20, but it was the minimum number of bits to achieve that range and resolution. 

It is possible to increase the range of the DNNR by one of two methods: either 

scale the Grey code such that its 4096 unique values correspond to a broader range 

(which comes at the expense of resolution falling to less than two decimal places), or add 

more bits. Both of these are relatively simple, requiring either a scaling constant before 

the Grey encoding or a slight modification to the Grey encoder to account for having 

more bits available. The DNNR encoding method uses a linear two neurons per bit, so 

scaling in this fashion is likewise linear. 

Scaling GRF input is not much more difficult. The number of neurons 

corresponds directly to the number of Gaussians available. The more tightly-packed the 

Gaussians are and the finer the temporal resolution used, the higher the resolution of the 

continuous valued numbers possible. In the experiments presented here, the temporal 

resolution is I ms. The centers C; of the Gaussians arc computed for the range of values 

desired and the number of available neurons according to (17). Increasing the scale 

simply requires re-calculating C; for the new range. Adding more neurons will increase 

resolution by providing more spikes per input. Increasing the temporal resolution 

improves resolution by simply making for finer distinctions between spike timings. 
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PREM scales more easily, as simply entering the values you desire as the rate ),a,b· 

It requires that the lower bound of possible inputs be determined based on the number of 

potential paths being used, so that an arithmetic adjustment can be made to ensure all 

input values will be greater than this lower bound, but it otherwise is as easily scaled as 

any second-generation NN's inputs. 

3.4. COMPUTATIONAL ENGINE: POLYCHRONOUS SPIKING NETWORK 

Having discussed three possible means of encoding continuous values into spikes, 

it now behooves us to examine exactly what it is those spikes will be input into. The 

lzhikevich model of spiking neurons is discussed in Section 2.2 [ 40], and it was briefly 

mentioned that they are arranged into a polychronous spiking network [ 43], but what 

exactly does that mean? 

The PSN is a network of N lzhikevich neurons, 80% of which are excitatory with 

parameters set to "regular spiking" according to Figure 2.3, and 20% of which arc 

inhibitory and set to "fast spiking" according to the same figure. The network is sparsely 

connected (I 0% connectivity) by assigning each neuron Nil 0 output synapses. Each 

synapse has a weight, a delay, and a destination neuron. When an excitatory neuron 

spikes, it sends that spike to each synapse, and the voltage strength of that spike is 

multiplied by the weight. A number of time steps k (set to k=l ms inlzhikevich's model) 

after the spike equal to the delay associated with the synapse in question, the destination 

neuron sees the transmitted and weighted spike, which modifies its v(k) through the I 

variable. Inhibitory neurons work identically, save their contribution to I in their 

destination neurons is negative, tending thus to reduce the likelihood of a neuron spiking. 

Highly recurrent, sparsely connected reservoirs of neurons- spiking or otherwise 

-are not a new addition. ESNs and LSMs have used spiking neurons and second

generation neurons for quite some time. The innovative addition to lzhikevich 's PSN is, 

rather, the delays, which lead to polychronous clustering. Without these variable-length 

delays, every neuron connected to a firing neuron by a synapse will see the incident spike 
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at the same time. Spatial calculations are the only things possible with this arrangement, 

as what neuron is connected to what is all that matters. 

Still, the connection weights arc important! They are trained according to a 

method known as spike timing-dependent plasticity (STOP). This unsupervised training 

mechanism determines which presynaptic neurons arc "interesting" to the postsynaptic 

neuron, and weakens the "uninteresting" ones while strengthening the "interesting" ones. 

This is accomplished by observing the postsynaptic neuron's responses. Each time the 

postsynaptic neuron fires, incident spikes' timings fi'Om each of the presynaptic neurons 

are checked in a short time before and after the postsynaptic firing. Presynaptic firings 

which are incident upon the postsynaptic neuron prior to the firing of the postsynaptic 

neuron are deemed "interesting," because they contributed to the firing of the 

postsynaptic neuron. Those which arrive "late"- that is, after the postsynaptic neuron 

fires- are deemed "uninteresting," and are weakened. The closer in time to the 

postsynaptic firing that the incident spikes arc, the more the associated synaptic weight is 

strengthened or weakened. Figure 3.9 illustrates the STOP curve. 

Equation (23), as shown in Figure 3.9, gives the time-dependent weight 

adjustment equations [46]. When a presynaptic neuron arrives prior to a post-synaptic 

spike firing, the synapse is potentiated, or strengthened. When a post-synaptic spike is 

fired before the arrival of a pre-synaptic spike, that synapse is depressed, or made 

weaker. 

'" 
/':,s=' 

A e '· + /',.( =' ( po;~ - ( p•·e > Q 
r\1 (23) 

A_e'-

The constants in (23) are the maximum depression A_, the maximum potentiation 

A,, and the temporal windows of interest r, and LIn [46], these are set to maximum 

weight adjustments of A, 1. ~+!-0.004, pre-spike watch window r ,~ 15 ms, and post-spike 

watch window r.~20 ms. These were also used in the unsupervised training of all 

lzhikevich BSNNs implemented for the experiments performed in this dissertation. 

One unusual property of a BSNN is the need to pre-train it unsupervised on the 

kind of data on which it will be expected to operate. This process is known as 
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"maturation," and is performed to let the STOP process optimize the weight strengths so 

that relevant spiking patterns emerge as natural responses to various inputs. This process 

is fairly straight-forward: the BSNN is exposed to inputs of the type and range on which 

it will be operating once mature, and the STOP process is allowed to run. 

Typically, the expert assessment that a BSNN of Izhikevich neurons is matured 

after 6-12 hours of simulated time is assumed to be true, but scientifically, it would be 

nice to have a metric for measming the maturation of a BSNN. Algorithm 7 outlines this 

relatively straight-forward procedure. Connection weights have a minimum of zero, but 

are arbitrarily assigned a maximum (often "ten," but it can be anything that is not 

"effectively infinite"). As STOP runs, the weights of neurons typically saturate at the 

minimum and maximum, based on the spike patterns most excited by the input stream. 

While they may shift in value, they typically do not stay in the middle of the possible 

ranges of weight values for long. The percentage of synapses whose weights fall within a 

chosen band of values near the minimum and maximum can be used as a metric to 

measure the maturity of a BSNN. Determining the size of the bands and the percentage of 

neurons that must be within them to count as "mature" is a matter that remains to be 

studied, and six hours is sufficient on BSNNs made of lzhikevich neurons. 

For a I 00-neuron PSN, these weights separate and stabilize by as early as 50 

simulated seconds in, as shown in Figure 3.1 0. The separation is also visible in Figure 

3.11, which shows the progression of each of the synaptic weights associated with the 

PSN's excitatory neurons. The training inputs are 225s of power system generator data of 

the sort used in Section4.5. Examining a 1000-neuron PSN trained on the same data 

required increasing the number of synapses per neuron to 75 to ensure enough activity to 

keep the PSN spiking. This dramatically increases the number of synapses, but merely 

seems to smooth out the percentage-distribution plot given in Figure 3.12. However, the 

sheer number of synapses firing makes any separation far less obvious; Figure 3.13 

shows synaptic weights covering the entire range. 
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Lls = weight change 

A e'- A 

Figure 3.9. STOP weight adjustment curve. The weights is adjusted by ;Js(;Jt). The time 
between firings Llt is the time of the postsynaptic neuron's firing minus the time of the 

presynaptic neuron's firing [46]. 

If all we have arc connection strengths- synaptic weights- it becomes crucial to 

consider that the spikes fired at one time instant will arrive at all destination neurons 

simultaneously. A fully-connected BSNN with this model relies strongly on some 

weights being too weak to cause an incoming spike to regularly have an impact on the 

spiking of the postsynaptic neuron, lest continuous bursting across all neurons be the sole 

result. This can be avoided with sparser connectivity, but still limits the spike pattems to 

simultaneous spikes on multiple neurons to create spiking responses in postsynaptic 

neurons. 
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Figure 3.1 0. Percentage of excitatory synaptic weights in a 1 00-neuron PSN with 80 
excitatory neurons equal to or greater than nine, less than or equal to one, and in between 
one and nine, as a function of maturation time. Notably, though the number above nine 

has plateaued by 50s, the number at or below one is still slowly rising even by 225s. 
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Figure 3. I 1. Change over time in excitatory weights of the 100 neuron PSN shown in 
Figure 3.10 during maturation. 
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Figure 3 .1 2. Distribution of synaptic weights over 225 simulated seconds of maturation 
via STDP. Smoother than Figure 3.1 0, it still is slowly increasing though nearing a 

plateau by 200s. 
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Figure 3.13. Excitatory weights of a 1000 neuron PSN matured over the course of 200 
simulated seconds. Spread is easy to see, but the constant j umping from top to bottom 

causes this to have less obvious a separation of instantaneous values than in Figure 3 .11 . 



Algorithm 7 Maturing a PSN 

1: Initialize a PSN of N Izhikevich neurons with 10% connectivity, synaptic 
weights s with strengths randomly distributed between 0 and 10, and 
delays between 1 and 10 ms. 

2: for seconds from 1 to 3600*6 (six simulated hours) 
3: for milliseconds from 1 to 1000 (one simulated second) 
4: simulate the Izhikevich neurons for one millisecond 

according to (l 0) and (11) 
5: record each neuron that fires in this millisecond 
6: increase weight change ru which connect to a 

7: 

8: 
9: 

neuron that fired in previous milliseconds according 
to (23) 

decrease weight change /';.s which neurons that fired 
this millisecond would stimulate if the post-synaptic 
neuron fired in prior milliseconds according to (23) 

end for 
add accumulated weight changes /';.s to weights s 

10: end for 
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An alternative is to introduce variable conduction delays. This introduces a 

property known as po/ychrony, which refers to the capability of different temporal 

patterns of spikes across multiple neurons to trigger specific groups of neurons in 

response as the delays line up properly. These polychronous groups or clusters represent 

specific responses of a polychronous BSNN, or polychronous spiking network (PSN), to 

specific stimuli. The varying delays enable the same sets of neurons firing to trigger 

wildly different polychronous clusters depending on the order in which they fire, a 

property denied to BSNNs with a single fixed delay for all synapses. A given neuron's 

tiring is thus an identifier for specific patterns in space and time through the network as a 

whole. 

lzhikevich demonstrates a five-neuron polychronous network with delays chosen 

to create 14 polychronous groups, two of which were self-propagating cycles, in [43]. 

There are already more polychronous groups than there are neurons, and there are 20 

synapses, so the number of groups is approaching the number of synapses even in this 



small network. Finding connection delays using this same method while adding an 

additional neuron leads to the connection diagram with delays as shown in Figure 3.14. 

This arrangement produces 37 polychronous groups, shown in Figure 3 .15. A 

fully-connected six-neuron network only has 30 synapses. Even at six neurons, a 

polychronous network can contain more distinct polychronous groups than there are 

connections between neurons! 

6 2 
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Figure 3.14. Connection diagram with delays for a six-neuron network that produces the 
37 polychronous groups shown in Figure 3.15. Thirty-seven polychronous groups 

produced by the weights shown in Figure 3.14. 

Each group can be identified to a specific pattern, ifthe problem is the sort of 

pattern-matching and categorization that has been done over the last decade. But with 

each additional neuron exponentially increasing the number of polycluonous groups, the 

number of patterns possible swiftly exceeds the threshold necessary for high-resolution 

pseudo-continuous calculations ofthe sort modern computers and second-generation 
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neural networks already perform. It's easy to believe that, at such a rate of growth in 

numbers of polychronous groups compared to addition of neurons, biological brains with 

tens of thousands to hundreds of billions of neurons might have more polychronous 

groups than there are particles in the universe. The challenge then becomes translating the 

groups' responses into meaningful numeric outputs in a continuous regime. 
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Figure 3.15 . Thirty-seven polychronous groups produced by the weights shown in Figure 

3.14. 
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3.5. DECODING 

With a PSN that has literally astronomical calculation capacity and a means of 

inputting arbitrary continuous values into it with confidence that the values survive the 

encoding process, the final step is finding a way to extract the desired dynamics from the 

PSN and translate them into continuous valued numbers with meaning in the real world. 

There are a couple choices in how to map the PSN's responses to real-world values. 

Izhikevich has a Matlab script that will build a PSN and find polychronous groups; it may 

be possible to hand-map various groups to various outputs by determining which respond 

most strongly to given inputs, and form a functional mapping that way. This, however, 

seems very time consuming and inefficient; a look-up table would probably be a better 

choice. In fact, as Figure 3.16 illustrates, such a mapping would effectively be a look-up 

table. 

The other method is to find a way to translate the spikes coming out of the PSN 

neurons into real-world values and tune them to the target with a decoder. The dynamics 

of the PSN contain the information about the inputs, and with so rich a response 

structure, it is likely that any desired functional relations can be isolated with proper 

tuning of the decoder. The PSN does the heavy lifting of creating the dynamical 

responses; the tuner simply has to isolate which ones arc desired. Such a method is 

described here. 

One of the big contributions of this work is the development of such a decoder, 

which finds the temporal responses of the PSN neurons and translates them into 

continuous values by using Gaussian receptors spread over a moving watch window of 

the last 20 outputs from a given neuron. The Gaussian functions are optimized for 

maximum response over 1000 simulated seconds in order to determine what delay and 

distribution of spikes represents the strongest responses from the neuron. 

The timing of the spikes relative to the beginning of the watch window is used as 

input to the Gaussian receptor field, and then all responses are summed to generate a 

numeric output that represents the strength of response of the neuron, as shown in Figure 

3.17. The mechanism for optimizing these Gaussians is a form of unsupervised training 

using Particle Swarm Optimization (PSO) [47]. A training signal is given to the PSN in a 

series of iterations of the PSO. 
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Figure 3 .16. A possible mapping of the polychronous groups identified in the six-neuron 
PSN shown in Figure 3 .14, enabling the PSN to map from -1.12 to 1.12 in increments of 

0.06. 
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Figure 3.17. Gaussian temporal filters transforming spike trains in a watch window into a 
real-world numeric output. The center C11 and width \1111 are shown for the n111 Gaussian 
function. A PSO is used to optimized C; and w; for each neuron i. R ,v; are continuous

valued real numbers from each neuron i. 

The signal should be a sample of the sort of data on which the trained PSN and its 

decoder will be expected to operate. The sine wave in (16) is used to train and test the 

decoder in this Section. The signal for the real-world problem of power system 

identification would require a sample power system signal. Each iteration sums the 

output R for neuron i of the watch-window filtered through the candidate Gaussian 

function. The objective function (24) seeks to maximize this sum. 

I 

I: (24) 
j =k-watch_ window 

Each neuron i has its own Gaussian function, which needs to be optimized 

independently of the other neurons'. Each neuron therefore has its own independent PSO. 

Each neuron in the PSN has m (typically 20 or 30) pat1icles of two dimensions each. 

These dimensions are the width w; and center C; of the Gaussian assigned to the neuron in 
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question; the Gaussian function is normalized so that the amplitude is inversely 

proportional to the width in order to ensure there are two competing goals and "maximum 

width" is not the pure optimum. 

The center of the Gaussian picks a length of time after a given input 

corresponding to the watch window. Spikes close to this time-delay will cause a stronger 

response tlll'ough the Gaussian. It takes fewer spikes in this time frame than it does earlier 

and later in the watch window to generate a strong response. The width of the Gaussian is 

inversely tied to its amplitude by the requirement that the Gaussian be normalized. A 

wider Gaussian will respond strongly to spikes that appear far from its center as well as 

near; a narrow Gaussian will respond much more strongly to spikes closely clustered 

around its center and will nearly ignore spikes well away from it. Figure 3.18 illustrates 

some centers and widths found for a 1 00-neuron PSN used in case studies in this Section. 
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Figure 3.18. Centers and widths of the Gaussian functions trained for the 1 00 neuron PSN 
used for the case studies in this Section. 
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The timing of spikes from a neuron can contain information in a couple of ways. 

Sudden clusters of spikes grouped close together in time convey information in their 

bursting presence, indicating an event to which they correspond. The rate at which spikes 

fire can, alternatively, convey information in their rate, be it some sort of clock-like 

timing or a representation of some numeric significance. Optimizing for the highest 

possible sum of responses, the PSO will find the centers and widths such that neurons 

prone more to bursts of spikes close together that represent specific event-responses will 

have those groups identified clearly, while those whose information is mostly based on 

overall rate of fire will tend to have Gaussian functions which are spread out and simply 

get their value ft·om the overall rate at which the neuron fires during the watch window. 

Because a PSN theoretically needs to mature for at least 6 simulated hours (12 is 

better) [43], these Gaussians were trained at the same time in the experiments presented 

here. Figure 3.19 provides a flow chart explaining the procedure. The maturing PSN 's 

weight adaptation due to STOP, however, means that a lot of the calculation cycles spent 

on the PSO pre-maturation were likely wasted as the dynamics of the neurons changed 

with each iteration. It is faster to do this in two stages: first, mature the PSN, then run the 

PSO for 20-100 iterations to optimize its widths and centers, thus not wasting any of the 

cycles. The PSO typically plateaus before I 0 iterations have passed, as shown in Figure 

3.20. 

The fact that it finds an optimum and does not improve thereafter so quickly 

implies that the centers and widths are relatively insensitive, but that there is some 

optimality to be found. Because it requires so few PSO iterations to find a reasonable 

optimum, performing this in a second step as suggested previously saves a great many 

computational cycles compared to running the PSO algorithm concurrently with the PSN 

maturation. 

By finding the shape and relative center of a Gaussian accumulator for spikes 

across a watch window in a given neuron which maximizes that neuron's numeric 

response representation, the PSO finds the Gaussian which best captures the interesting 

dynamics of that neuron. When spike responses relevant to polychronous clusters 

stimulated by the input signal to which the PSO is sensitizing the decoder occur, the 

trained Gaussian will respond with high values. When "noise" occurs, the trained 
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Gaussian will tend to have weak responses. This allows an overall strength of the 

decoder's numeric response to indicate how strongly the polycluonous clusters of which 

this neuron is a pmt are firing. The remainder of the decoder disambiguates these 

response strengths by picking which ones are relevant to the desired target output. 

Determine which 
neurons spike for thi s 

PSN time step 

no 

Figure 3.19. Flow chart showing the procedure for using a PSO to determine the centers 
Ci and widths wi for each neuron. 
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Figure 3.20. Fitness of selected Gaussian functions as decoder filters for the watch 
windows oftheir respective neurons. The PSO plateaus before 10 iterations are passed; 

this seems to be typical behavior. 

The decoding Gaussians provide N outputs every time step k. The outputs are all 

continuous-valued numbers that probably do not have a whole lot of easily-discernable 

meaning to the naked eye. However, they represent the information contained in the spike 

patterns of each of theN neurons to which they are respectively associated. A first-order 

attempt at tuning these outputs to find the important dynamics that contain the 

information present in the PSN's responses is to use a simple weighted sum, as shown in 

Figure 3 .21. 

The weights are trained with gradient descent to find the relative importance of 

each PSN neuron's output to the desired dynamics, and the weighted sum is thus tuned to 

produce the desired target. 
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Figure 3.21. Simple sum output, trained with gradient descent error. 
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This first-order sorting of the neuron outputs enables important neurons to be 

emphasized and less important ones (with respect to the desired dynamics) to be de

emphasized, but may not be able to sort fine dynamics from the mix. Figure 3.22 shows a 

more elaborate solution: construct an MLP of second-generation sigmoidal neurons with 

the outputs from the PSN as the input layer and with one hidden layer before the final 

output layer. 

Spik~wntch 

window 

backpropaeatlon aleorlthm 

Figure 3.22. MLP output tuning, trained with backpropagation. 
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STOP remains on in the PSN, allowing the PSN to adapt to changes in inputs and 

have diverse and relevant dynamics over time. The training of the tuner's weights

whether an MLP or a simple weighted sum- is also online. It remains a matter of some 

research whether to use a moving window batch training for this "online" mechanism or 

to continue with output-by-output gradient-descent learning. The latter is demonstrated 

on two applications (fimction approximation and time series reproduction) in the next 

Section. 

3.6. CASE STUDIES 

3.6.1. Time-Series Reproduction. Completing the experiment begun in 

Section 3.3, (16) is passed through a GRF encoder and fed to the PSN with the intent to 

train the decoder to reproduce the original signal. This is done on a I 00-neuron PSN with 

12 sensory neurons. In the raster plot in Figure 3.23-Figure 3.25 a), neurons 1-80 are 

excitatory, 81-100 are inhibitory, and JOJ-112 are sensory. A very close examination of 

the raster plot can reveal a hint of the sinusoid generated by (16) in the spiking cascades 

of the excitatory neurons. 

Figure 3.23-Figure 3.25 all follow the same format: b) is the very first iteration of 

exposure to the input signal, c) is the penultimate iteration, and d) is the final one. 

Gradient-descent-based training (including backpropagation where appropriate) is 

performed online for all but the last iteration; the last iteration is done with the weights of 

the decoder fixed to test whether it has learned. Figure 3.23 is generated using the simple 

weighted sum decoder in Figure 3.21, while Figure 3.24 and Figure 3.25 use an MLP 

decoder. Figure 3.24 has five sigmoidal neurons in the hidden layer, while Figure 3.25 

has 10. 

It is fairly easy to see the improvement between Figure 3.23 b) and Figure 3.23 c), 

as the initial iteration is fairly clearly following a delayed, slavish adjustment likely due 

strictly to the weights being forced to match what the target signal called for one or more 

time steps too late. In c) and d), however, though the signal is fuzzy and far from perfect, 

it's clear that its timing is dead-on with the target signal. The simple output weights have 

learned to find the dynamics, if not to suppress all the noise. Figure 3.23 d) is the most 

encouraging, though, because there is no weight adjustment. The weights there arc fixed. 
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The responses of the decoder to the PSN are not being dynamically adjusted to follow the 

target; they have truly learned the target. This not only demonstrates that the decoder can 

find the target (albeit not with the level of precision one might desire), but that the target 

information must actually be present in the PSN's own responses. 

Gradient Descent Training Only, no MLP, no averaging 
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Figure 3.23. Gradient-descent trained weighted sum of the PSN output. a) Raster plot of 
the last iteration. b) First iteration of exposure, online gradient -descent training. c) 

Penultimate iteration of exposure, online gradient-descent training still going on. d) Final 
iteration, no training of decoder weights. 
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Replacing the simple weighted sum tuner with a five-hidden-neuron MLP results 

in Figure 3.24. Interestingly, Figure 3.24 b) is the "prettiest" following of the target 

signal, and it's the very first iteration. This is absolutely because the backpropagation is 

forcing the weights to slavishly follow the target. The fuzzier response in c) is actually 

encouraging because it means the MLP has its own ideas of what the result should be, 

and the weights are adjusting less powerfully. That it has learned something of the signal 

is clear in d), when, as in Figure 3 .23, the decoder weights are fixed and the target is 

never confirmed to the MLP. However, it clearly hasn't quite learned all the dynamics of 

even this simple system; the testing run in d) does not follow the target above I 0 or 

below -10. 

Increasing the number of hidden neurons to ten, however, as in Figure 3.25, 

enables the MLP-based decoder to learn the signal quite well. Notice how the MLP-based 

decoders lack the noise and uncertainty of the simple weighted sum-based one. They are 

still fuzzy, but crisper by far than Figure 3.23 's efforts. And the testing nm in plot d) in 

all three of them seems to indicate that the decoder has learned to find the desired target 

dynamics! However, it is possible that the PSN is actually not doing anything but 

providing noisy stimulus to the decoder, and the decoder's own second-generation neural 

components are memorizing a pattern to be repeated no matter the input. 

Such a charge would seem impossible, since no recurrent nor time-delay elements 

exist within the weighted summation device nor the simple MLP, and thus no memory of 

what states it has already output can be present, but it is still worth proving that the PSN 

output truly is a relevant input to the decoder, and that the decoder is not making up 

target data out of whole cloth. Figure 3.26 shows similar data to Figure 3.23, but only for 

20 iterations. Figure 3.26 a) shows the sinusoid from (16) as an input, with the final plot 

in each demonstrating a testing run with the decoder's weights fixed. Figure 3.26 b) 

shows the same network, trained the same way and with the decoder trained by the same 

target, but with a completely random input to the sensory neurons. 

It can clearly be seen in Figure 3.26 b) that the online gradient-descent training of 

the weights forces the weighted sum output to follow the target, albeit a few time-steps 

late. However, where Figure 3.26 a) has a testing run that looks about as good as its final 

training iteration, the testing run in Figure 3.26 b) is entirely noise. A close examination 



of the values of they-axis even hints that the weights were forced to produce a narrow 

band based on any input at all. This narrow band remained constant once the weight 

training was turned off, so matches the final output band from the last online training 

iteration. 
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Figure 3.24. MLP decoding PSN output with five sigmoidal neurons in the hidden layer. 
a) Raster plot of the last iteration. b) First iteration of exposure, online back propagation 
training. c) Penultimate iteration of exposure, online backpropagation training still going 

on. d) Final iteration, no training of decoder weights. 



This is an encouraging result: for the first time, a continuous value set of inputs 

have been presented to an SNN, and the SNN' s dynamics have been decoded into 

continuous values that are meaningfully related to the original values, reproducing with 

notable (if not perfect) fidelity the continuously-valued time series. 
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Figure 3.25. MLP output with ten sigmoidal neurons in the hidden layer. a) Raster plot of 
the last iteration. b) First iteration of exposure, online backpropagation training. c) 

Penultimate iteration of exposure, online backpropagation training still going on. d) Final 
iteration, no training of decoder weights. 
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Figure 3 .26. Comparison of training the decoder on a PSN fed by (16), and of training the 
decoder on a PSN fed by random spikes. (a) 19 iterations trained with (16). (b) 19 

iterations trained with random noise. This clearly demonstrates, in the final testing run for 
both cases, that the decoder is not simply making up target information from whole cloth; 

it requires the PSN to contain meaningful dynamics related to the target input. 

3.6.2. Function Approximation. Function approximation is actually a bit trickier 

than time-series reproduction and identification when using the PSN engine, because the 

PSN is a highly recurrent network with strong memory. Therefore, inputting a sequence 

of numbers with dependence on the prior input is in line with how the PSN' s evolving 

dynamic states work, while inputting numbers with no dependence nor relation to their 

predecessor inputs leads to noise rather than constructive reinforcement of the state. 

A simple sine wave is tested with GRF input (also temporal as well as spatial) that 

overlaps completely, one input per simulated millisecond. Figure 3.27 and Figure 3.28 

look good while the online training is on, but the steady noisy state during the testing run 

reveals that they were slaved by the weight adjustment, not actually learning any 

dynamics which may not even be present. 



100 

~ 
"0 
.!:: 
c 50 e 
:J 
Q) 
c 

0 

~ 

0 

0 

~ 
-5 

-10 

0 

100 

100 

100 

• 

200 300 400 

1=20 sec 

500 
I (ms) 

600 700 800 

PSN calculated output: with online training, 1st iteration 

• 

200 300 

• • 

400 500 600 700 800 
I (ms) 

PSN calculated output: with online training, 19th iteration 

•• 

• ., . • • ' 200 300 400 500 600 700 800 
I (ms) 

PSN calculated output: testing, 20th iteration 

f.M»JI.M' 
• ' 

. .. • • • • • • • • 
100 200 300 400 500 600 700 800 

I (ms) 

62 

900 1000 

900 1000 

•• 
r 

900 1000 

900 1000 

Figure 3.27. Weighted sum output attempting to learn to approximate a sine wave 
encoded using the GRF method. Iterations 1-19 used online gradient descent training on 
the output weights; iteration 20 keeps the weights fixed, and reveals a complete lack of 

learning. 
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Figure 3.28. MLP decoder attempting to learn function approximation of a sine wave 
encoded using the GRF method. Iterations 1-19 used online backpropagation training on 

the MLP weights; iteration 20 keeps the weights fixed, and reveals a complete lack of 
learning. 

3.7. SUMMARY 

In order to develop BSNNs as viable successors to second-generation neural 

networks, the research presented here has demonstrated several methods for encoding 



arbitrary continuous-valued data into spike trains, input those into a PSN, and read out 

the dynamics of the PSN through a decoder tuned to isolate desired functional 

transformations to return arbitrary, continuous-valued outputs. 
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Three encoding methods- PREM, GRF, and DNNR- have been shown to 

transform numbers into spike trains and proven to contain the information so encoded. 

PREM is a purely temporal encoding scheme, but requires the largest number of neurons 

to encode data, as well as the most preprocessing. GRF is both temporal and spatial, and 

retains resolution down to a smaller number of neurons than either of the other two 

methods. For this reason, it is the preferred encoding method used in experiments in this 

dissertation. DNNR was developed in-house, and is purely spatial. Its greatest advantage 

is its capacity to input its entire value at once, but it tends to be less robust an input 

method than GRF. 

The PSN is chosen as the computational engine because its rich dynamic response 

to the encoded inputs is based on the astronomical potential numbers ofpolychronous 

clusters, which hypothetically makes for one of the best-scaling computational 

architectures ever designed. The decoder developed uses a carefully-trained response 

function which isolates dynamics that indicate what a given PSN nemon finds 

"interesting," and relates it to the relevant dynamics. Weighted sum or MLP-based tuning 

then isolates the dynamics of interest to the problem at hand. 

This section concludes with a case study of this BSNN framework on a time

series reproduction, and the problems of a time-independent function approximation with 

GRF encoding. This is somewhat unsurprising given the high temporal-dynamic 

dependence of the PSN's states on prior states; approximating functions with no time 

dependence from one input state to the next will require reducing the number of 

dynamics to be analyzed to find the relevant functional outputs. 

Overall, however, the ability to reproduce an arbitrary, continuous-valued time 

series is a tremendous step forward in BSNN research, demonstrating that these networks 

absolutely can be used on problems that require functional calculation. 



4. NEUROIDENTIFICATION OF GENERATOR DYNAMICS IN A MULTI

MACHINE POWER SYSTEM 

4.1. INTRODUCTION 
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Today's power systems consist of interconnected machines that must maintain 

synchrony in order to avoid brownouts and blackouts. Governors and voltage regulators 

are present on generators in power systems in order to increase or decrease output 

frequencies in response to changing loads and maintain respective voltages. This enables 

them to maintain synchrony as loads change and voltage fluctuates across the power 

system. 

Online identification of generator speed and terminal voltage characteristics are 

essential for fast and accurate control of modern power systems. Purely reactionary 

changes to the frequency as it stands at a given time I, however, can lead to 

overcompensating and driving the oscillations ever more wild rather than the damping 

that is desired. In order to facilitate the regulators' efforts and minimize the oscillations 

during adjustment, it is best to have some foreknowledge of what the system will look 

like in the near future. This enables the controllers to preemptively adjust generator 

outputs so that they are already counter-acting incoming oscillations and fluctuations 

when they arrive. 

Classical controllers usc linearized models to predict behavior around some 

nominal operating point. Such models are extreme simplifications from the real world, 

wherein a continuously changing environment causes the generator's dynamics to change 

as well, which can render the approximations around the operating point completely 

invalid. Intelligent designs for automatic voltage regulators (AVRs) and power system 

stabilizers (PSSs) are called for. ANNs arc very effective tools for designing these types 

of intelligent controllers. In order to take the correct control action in a dynamically 

changing environment, an ANN based controller needs a neuroidentifier, which provides 

an estimation of the speed and terminal voltage characteristics of a generator fi·om past 

values of speed and terminal voltage. The method ofneuroidentification is also very 



effective for wide area monitoring and control [ 48] and finding dynamic equivalents of 

large power systems [49],[50]. 
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As different ANN architectures were studied and their performances examined 

[48], [49], [51], [52], it became clear that MLPs, RBFs, RNNs, and echo-state networks 

(ESNs) do not actually represent the structure and function of biological neurons. To 

capture the scaling power of biological NNs, something more is needed. 

4.2. NEUROIDENTIFICATION OF GENERATOR DYNAMICS 

The two variables of primary interest in generator system neuroidentification are 

speed deviation and voltage deviation. In each power generator, there is a baseline speed 

at which the generator spins and a baseline voltage it maintains as its output. As the loads 

increase and decrease demand on the generator, these values deviate from that baseline 

for particular generators. 

Classical controllers for generators are generally based on linearized models that 

predict system behavior obtained around a nominal operating point. As the system moves 

away from that nominal point, these classical models become increasingly inaccmate. 

They are thus able to handle small deviations, but become less capable the more 

desperately they are needed. Environmental conditions can also absolutely change the 

actual operating point from its nominal basis. In these conditions, classical controllers 

such as A VRs and PSSs have degrading performance. Neural networks are a possible 

alternative, serving as intelligent controllers. Neuroidentifiers provide an estimation of 

the current and future states of speed and terminal voltage deviation in the generators 

using cmrent and past input and output values. 

Because ANNs approximate the fimction, they need not be precisely on-target at 

all times. Their learning and adaptability means that a sudden change in the physical 

system being modeled will shortly be represented in the ANN as it adjusts to minimize 

the errors that suddenly occur due to the discrepancy between reality and the ANN's 

model. MLPs, RBFs, CNNs, and ESNs have all been used in neuroidentification 

experiments with rather impressive success. 
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However, power systems have tremendous numbers of inputs and call for equally 

tremendous numbers of outputs. Second-generation NNs share a scaling problem: the 

more inputs and outputs a ANN needs to handle, the increasingly-more hidden neurons 

the ANN must have to maintain accuracy. The hidden neurons scale exponentially with 

the numbers of inputs and outputs. Four-machine, two-area systems have been simulated 

for wide-area monitoring experiments, and it was found that the computational power 

required for real-time neuroidentification of the entire system was huge. This makes real

time calculation of ANN mechanics on real-world power systems- such as New 

England's 36 bus system- intractable. 

Living brains do not face this scaling problem. They are capable of enormous 

amounts of parallel calculation on very fast time scales that regulate highly complex 

systems both autonomically and deliberately. SNNs are designed with more closely 

modeling living brain behavior and functionality in mind, and thus theoretically can be 

more accurate on larger amounts of data with the same number of - if not fewer

computational resources. Before this can be tested, SNNs need to be shown to be able to 

handle the same kinds of problems at all. 

In this section, the IEEE 10 generator, 39 bus power system illustrated in Figure 

4.1 is used as a test bed. Generators G7 and G 10 are connected as shown to Time-Delay 

ANNs (TDNNs) which perform the neuroidentification. 
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Figure 4.1. Schematic ofthe IEEE 10 generator 39 bus system with TDNN-based 
neuroidentifiers on generators 07 and G 10. 



68 

The neuroidentification experiment is run twice, once by an ASNN, and once by 

an MLP using sigmoidal neurons. The multimachine power system shown in Figure 4.1 

is simulated on the Real Time Digital Simulator (RTDS) in the Real-Time Power and 

Intelligent Systems (RTPJS) Laboratory at the Missouri University of Science and 

Technology. Both pseudorandom perturbations and simulated line-faults are performed, 

and the ASNN and the sigmoidal MLP are compared. 

4.3. ASNN NEUROIDENTIFICA TION 

The parameters for the ASNN are given in Table 4.1. Most (a, p, r, and r) are set 

according to values given in Section 2 and [25], while others are set by the experiment 

(20 hidden neurons) or through trial-and-error. They are largely unoptimized beyond 

some expert hand-tuning, as optimization of these parameters is beyond the scope of this 

dissertation. Figure 4.2 shows the ASNN implemented in a time-delay feed forward 

architecture. 

Table 4.1: Parameters for the SNN neuroidentifier 

SNN Parameter Value 

Number of inputs 9 

Number of outputs 2 

Number of hidden neurons 20 

(( 2 

p I 

T Rand 

r I 

Learning gain (11) 0.01 

Tref 0.5 

Yrcst 0 

Ythresh I 
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Figure 4.2. Diagram of a feedforward time delay ASNN. All input neurons from input} to 
hidden neuron i are set to 0.5, and are not trained. 

The ASNN model discussed in this dissertation takes continuous-valued inputs 

and treats them as a firing rate of spikes received from a presynaptic neuron. The actual 

spiking of the neuron is never modeled, and is instead abstracted according to (5)-(9). 

The neuron's final output is given by (9) as the firing rate based on the calculated 

expected lSI given the input firing rates fi·om all presynaptic neurons. At no point does 

encoding into spikes nor decoding of spikes occur; the assumed decoding of the lSI is 

derived directly from the listed equations. 

In effect, this is a more complex and potentially more powerful activation 

function. In its role as a third-generation NN, this ASNN activation function is to 

sigmoidal activation functions what sigmoidal activation functions were to thresholding 



functions. Since it takes the same sort of inputs and outputs as second-generation 

neurons, they can be arranged into the same sorts of networks. 

In order to do this, however, the activation function needs to be calculable in 

reasonable timeframes. The Dawson Integral given in (8) has no analytic solution that 

does not involve calculating enormous numbers of functional elements in series. 

However, as shown in Figure 4.3 , the Dawson Integral shares its shape and functional 

properties with the Error Function, or ERF (25). 
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Figure 4.3. Dawson Integral compared to the Error Function. Notice that they differ only 
by an amplitude; if this amplitude proves a significant difference in functionality, it can 

be adjusted arithmetically. 

2 r I erf(x) =- .b e- dt 
1! (25) 

The ERF does not look any easier to integrate than the Dawson Integral. Unlike 

the Dawson Integral, however, the ERF has a built-in functional representation in Matlab, 

and that built-in function operates much faster than does any hand-written function to 

calculate a Dawson Integral. 

With this modification, an ASNN has been implemented in Matlab and can 

operate in reasonable time compared to an MLP [31]. In order to prepare the ASNN for 
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use in neuroidentification, the centers i around which the hidden neurons were to be 

clustered must be established as the neurons respond similarly to an RBF. There are a 

number of possible ways to select these centers. In this experiment, k-means clustering is 

used to find them based on the data sets over which they will be tested. Centers are found 

for G7's data, G 1 O's data, and for both data sets combined. Figure 4.4 illustrates the 

differences. 
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Figure 4.4. Centers for 20 neurons in the hidden layer of an ASNN determined via k
means clustering on data samples taken from generator 07 (blue diamonds), generator 

G 10 (red triangles), and combined data samples. 

Because the ASNN requires pre-training of ion the dataset to be used, tlll'ee 

different sets of centers were trained for comparison. Each generator was tested on 

centers chosen specifically by its own data set and on centers chosen by the combined 

data sets of both generators, and their results were compared to each other and to the 

sigmoidal TDNN's results. As mentioned before, these centers are found via k-means 

clustering in an offline training step on samples of the data. 
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There are two oscillatory modes into which the generators are driven: "forced" 

and "natural." Forced perturbations utilize a pseudo-random binary signal (PRBS) to 

drive the generators through all of their dynamics. This models the changes in load which 

a real-world power grid would see as customers turn off and turn on devices as they use 

them. Forced perturbations are constant but predictable based on prior states. Natural 

faults are the result of temporary disconnects in power lines or even weather-induced 

literal breaks, and can cause power demands to spike across the surviving routes or shorts 

across the broken lines. There is no way to predict a natural fault until it happens, as the 

states of the system pre-fault have very small impact on post-fault states compared to the 

effect of the fault itself. 

The ASNN using centers obtained for Generator 07 is shown on forced 

perturbation testing in Figure 4.5. Figure 4.6 is the same data set using centers trained on 

both 07 and GIO. Figure 4.7 and Figure 4.8 are G!O with an ASNN whose centers are 

trained on G IO's data and on the unified data, respectively. 

Though examination of the terminal voltage prediction error does not seem to 

indicate any significant drop in fidelity by switching to a more general set of centers 

based on the combined generator data sets, the speed deviation error climbs to almost 

0.2% when the combined data centers are used, versus only a little over half that for the 

07 data alone. This is not terribly surprising, as one would expect more specialized 

centers to be a bit more sensitive, but it is relevant in determining that the choice of 

centers is significant. Notice, however, the behavior between the two runs with G I 0 in 

Figure 4.7 and Figure 4.8. 

The %-error for both speed and voltage predictions are notably higher for the 

centers selected based solely on G I O's data than for the centers selected based on both 

generators together, when predicting G IO's speed and voltage deviations. This is 

intriguing, because it implies that the problem is not the difference between the centers 

and the data set, but rather simply that G I O's data set generates less useful centers than 

G7's. Why this is is unknown, but probably worthy of further examination in works 

focused more on optimization than testing the ASNN compared to a sigmoidal TDNN. 
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Figure 4.5. Forced perturbation ofG7 neuroidentified by an ASNN using centers Jc; 
trained on G7's data alone. (a) Terminal voltage (thick line) and ASNN estimation (thin 
line) per unit xiO; (b) generator speed (thick line) and ASNN estimation (thin line) per 

unit xI 0; (c) %-error between estimated and actual terminal voltages; (d) %-error 
between estimated and actual generator speeds. 
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Figure 4.6. Forced perturbation of 07 neuroidentified by an ASNN using centers ,ti 
trained on the combined G7 and G I 0 data. (a) Terminal voltage (thick line) and ASNN 

estimation (thin line) per unit x!O; (b) generator speed (thick line) and ASNN estimation 
(thin line) per unit x!O; (c) %-error between estimated and actual terminal voltages; (d) 

%-error between estimated and actual generator speeds. 
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Figure 4. 7. Forced perturbation of G I 0 neuroidentified by an ASNN using centers i 
trained using GIO's data alone. (a) Terminal voltage (thick line) and ASNN estimation 

(thin line) per unit xiO; (b) generator speed (thick line) and ASNN estimation (thin line) 
per unit xI 0; (c) %-error between estimated and actual terminal voltages; (d) %-error 

between estimated and actual generator speeds. 
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Figure 4.8. Forced perturbation ofGlO neuroidentified by an ASNN using centers t 
trained on the combined 07 and GlO data. (a) Terminal voltage (thick line) and ASNN 

estimation (thin line) per unit x 1 0; (b) generator speed (thick line) and ASNN estimation 
(thin line) per unit xlO; (c) %-error between estimated and actual terminal voltages; (d) 

%-error between estimated and actual generator speeds. 
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For full comparison, however, it is necessary to also test the ASNN on natural 

faults. Figure 4.9 tests an ASNN on identifying G7 during a natural fault using its own 

centers alone; Figure 4.10 tests the same thing with an ASNN whose centers are based on 

both generators' data. Figure 4.11 and Figure 4.12 repeat these for G I 0, using its own 

centers and the combined centers, respectively. 

TtrM (s) 

d 

Figure 4.9. Natural fault on G7 neuroidentitied by an ASNN using centers i trained on 
GTs data alone. (a) Terminal voltage (thick line) and ASNN estimation (thin line) per 
unit x10; (b) generator speed (thick line) and ASNN estimation (thin line) per unit x10; 

(c) %-error between estimated and actual terminal voltages; (d) %-error between 
estimated and actual generator speeds. 
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Figme 4.1 0. Natural fault on 07 neuroidentified by an ASNN using centers 2' trained on 
the combined 07 and 0 I 0 data. (a) Terminal voltage (thick line) and ASNN estimation 
(thin line) per unit xlO; (b) generator speed (thick line) and ASNN estimation (thin line) 

per unit xiO; (c) %-error between estimated and actual terminal voltages; (d) %-error 
between estimated and actual generator speeds. 
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Figure 4.11. Natural fault on G I 0 neuroidentified by an ASNN using centers Jc' trained on 
GIO's data alone. (a) Terminal voltage (thick line) and ASNN estimation (thin line) per 
unit x!O; (b) generator speed (thick line) and ASNN estimation (thin line) per unit x!O; 

(c) %-error between estimated and actual terminal voltages; (d) %-error between 
estimated and actual generator speeds. 
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Figure 4.12. Natural fault on G I 0 neuroidentified by an ASNN using centers t trained on 
the combined G7 and G I 0 data. (a) Terminal voltage (thick line) and ASNN estimation 
(thin line) per unit xlO; (b) generator speed (thick line) and ASNN estimation (thin line) 

per unit xI 0; (c) %-error between estimated and actual terminal voltages; (d) %-error 
between estimated and actual generator speeds. 

The ASNN does an impressive job of tracking the natural fault. The error is 

understandably higher than on the forced perturbations, which were generally smaller in 

magnitude and represented less disturbance to the system. But the complicated activation 

function used in the ASNN is more computationally demanding than the sigmoidal 

activation function in a second-generation TDNN MLP. Section 4.4 provides a study of 

such an MLP on the same data, making it possible to discern whether the extra 

computational power per neuron is warranted. 
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4.4. MLP NEUROIDENTIFICATION 

To establish a baseline for comparison, the IEEE 10 machine 39 bus power 

system shown in Figure 4.1 was also tested on a feed forward TDNN using sigmoidal 

neurons in the hidden layer. Figure 4.13 illustrates the TDNN architecture with the 

sigmoidal neurons. The same number of neurons are used in the hidden layer of the MLP 

as in the ASNN, and both are exposed to the same data sets of forced perturbations and 

natural faults. 

Figure 4.13. Diagram of a feed forward time delay ASNN. All synaptic weights are 
trained via gradient descent based backpropagation. 

The input and output weights are trained via gradient descent based 

back propagation. Other than this, where appropriate, the parameters are set the same as in 
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the ASNN as shown in Figure 4.1. Figure 4.14 plots the terminal voltage and speed 

deviation ofG7 under forced perturbation. The thick line is the actual deviations recorded 

after the fact. The thin line is the predicted values generated before the actual values were 

received. They are overlaid to show how close the MLP came in identifying them. The 

%-error for each is calculated according to (26). Figure 4.15 plots the same data for G I 0. 
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Figure 4.14. G7 forced perturbation of a sigmoidal TDNN. The signals and their 
estimations are scaled up by a factor of I 0 to allow the neuroidentifier a palatable scale. 

(a) Terminal voltage estimated (light line) and actual (heavy line) per unit x\0, (b) 
generator speed estimated (light line) and actual (light line) per unit x\0, (c)% error 

between estimated and actual terminal voltage, (d) %-error between estimated and actual 
generator speed. 
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(26) 

Figure 4.15. G l 0 forced perturbation of a sigmoidal TDNN. The signals and their 
estimations are scaled up by a factor of 10 to allow the neuroidentifier a palatable scale. 

(a) Tenninal voltage estimated (light line) and actual (heavy line) per unit x l 0, (b) 
generator speed estimated (light line) and actual (light line) per unit xlO, (c)% error 

between estimated and actual terminal voltage, (d) %-error between estimated and actual 
generator speed. 

The natural faults are applied to G7 and G \0 in two steps. At Os on the plots in 

Figure 4.16 and Figure 4.17, a single-line phase-to-ground fault is applied, after which 

the system is allowed to recover for lOs. Thereafter, a three-line phase-to-ground fault is 

applied, and the effects observed for another I Os. Notice that the sigmoidal TDNN has 

difficulty immediately following a fault, as there was no way it could predict it. For the 
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single-phase fault, the sigmoidal TDNN is relatively able to continue to track and predict 

the oscillations, but once the three-phase fault is applied, the sigmoidal TDNN struggles 

to remain within the same ballpark, with errors approaching 20% in its predictions. 

runu (t1) 
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Figure 4.16. Natural fault applied to G7, with a single phase fault at Os and a three phase 
fault at I Os. The signals (thick line) and their estimations (thin line) arc scaled by a factor 

of I 0 to allow the ncuroidentifier an palatable scale. (a) Estimation of terminal voltage 
per unit xI 0; (b) estimation of generator speed per unit xI 0; (c) %-error between 

estimated and actual terminal voltages; (d) %-error between estimated and actual speeds. 
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Figure 4.17. Natural fault applied toG 10, with a single phase fault at Os and a three phase 
fault at 1 Os. The signals (thick line) and their estimations (thin line) are scaled by a factor 

of 10 to allow the neuroidentifier an palatable scale. (a) Estimation of terminal voltage 
per unit xI 0; (b) estimation of generator speed per unit xI 0; (c) %-error between 

estimated and actual terminal voltages; (d) %-error between estimated and actual speeds. 

The sigmoidal TDNN is capable of tracking and predicting generator dynamics 

under forced conditions and even under limited fault conditions, and is visibly closer than 

simply assuming everything 1·emains nominal. However, there is definitely room for 

improvement. The natural fault neuroidentification is where the power of the ASNN 

compared to the sigmoidal TDNN. Not only is the error less than half that of the 

sigmoidal TDNN in the ASNN for speed prediction, but just visually, it's clear that the 

ASNN does a significantly better job of recovering and tracking the speed and voltage 

data after a massive fault. 
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Initial examination of the sigmoidal TDNN's performance on forced perturbations 

compared to even the ASNN which has the worst performance shows marked 

improvement. It is all but impossible to see the difference between the predicted and 

actual voltages and speeds, and the %-error is consistently lower on the ASNN runs than 

on the MLP. The ASNN, simply by using an activation function that abstracts spiking 

behavior, is already a major improvement over the second-generation sigmoidal TDNN. 

What, then, might be possible with a BSNN? 

4.5. BSNN: POLYCHRONOUS SPIKING NETWORK 

The PSN described in Section 3 has already been demonstrated to be able to 

reproduce a relatively simple variable-frequency sine wave. Now, it is to be tested on a 

power system problem like that in the previous section. Because the PSN requires 

temporal dependence in its data input stream to operate successfully, a longer stream of 

power system data is generated. A slightly simpler two-area, four machine power system 

shown in Figure 4.18 is used for this experiment. All four generators' speed deviation dw 

and voltage deviation dV were generated by simulation for 255 seconds on the RTDS at 

the RTPIS Laboratory. Figure 4.19 shows the two inputs to each of the four generators. 

However, the scale of those inputs is so varied that it would be difficult for any ANN to 

discern all of their dynamics, so they need to be normalized as shown in Figure 4.20. 

The PSN framework used is the same as in Section 3. Figme 4.21 illustrates the 

data flow from the original generator one signal (taken from I 0402 centiseconds to 1160 I 

centiseconds) which gets normalized and passed through the GRF encoder to form input 

spikes on 24 sensory neurons (twelve sensory neurons per input), into the PSN, through 

the decoder, and out to produce the final output. The PSN uses 1000 lzhikevich neurons, 

and the decoder uses 20 hidden neurons. Normalization of the range of input ensures that 

the full dynamical range of the PSN is stimulated by the data presented. The task given to 

the PSN here is to learn the speed deviation dynamics of the time frame stated above 

(roughly 10.5 to 11.6 s) in generator 1, using that generator's speed and voltage dynamics 

as its inputs. 
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Figure 4.1 8. Two-area four-machine power system simulated on the RTDS [21]. 
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Figure 4.19. Generator voltages and speed deviations for 250s from the two-area, four
machine power system shown in Figure 4.18. 



88 

!x~ltt:;tF ::;r:;·~ ";:;, l 
0 50 100 150 200 250 

I (s) 

t(s) t(s) 

>X + ., o::·:"(":·:r"·~:' l 
0 50 100 150 200 250 

!~+~;t:;·~ i::
11

i~i~ 
0

;~~'t" l 
0 50 100 150 200 250 

I (s) 1 (s) 

Figure 4.20. Normalized values from the four generators, used as inputs to the PSN. 

Figure 4.21. Illustration of data flow through the PSN framework. Normalization of the 
inputs is left out of the diagram for space reasons, and happens before they are entered 

into the GRF encoder. 



For training purposes, the selected time frame of generator I 's activity is 

presented repeatedly to the PSN. Several training methods have been attempted to tune 

the decoder, including online backpropagation training, offline batch backpropagation 

training, and PSO-based training. The PSO-based training provided the best results, 

shown in Figure 4.22. 
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Figure 4.22. PSO-based training results of a I 000-neuron PSN on generator 1. Inputs 
were generator 1 's current voltage and speed deviations (normalized), and the target 

(shown in red in the figure) is the current-state speed deviation. This has to overcome a 
10 cs computation time to perform current-state neuroidentification. The blue dots are the 
output signal. The 1501 st iteration of the PSO-based decoder tuning, shown above, had a 

mean squared error of only 0.055. 
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The output follows the target less well than the ASNN outputs in the prior 

subsection, and is not even as good as the BSNN results on (16) in Section 3. However, it 

is clearly following the presented pattern, which is not possible without the PSN 

possessing relevant dynamics. The PSO training is batch by nature, so it is impossible 

that the decoder weights could be slaved on a moment-to-moment basis to track the 

outputs; they must have isolated weights which can at least extract the dynamics across 

the full input stream. Figure 4.23 shows mean squared error of the best performing 

weight set for all 1501 iterations of the one-second loop. 
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Figure 4.23. MSE of the best perfmming particle in the PSO training the decoder on the 
data used to generate Figure 4.22. 
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4.6. SUMMARY 

Applying ANNs to identification and prediction of power system dynamics brings, 

a powerful computational tool to bear on a highly nonlinear and important control 

problem. Compared to classical linearized controllers, the adaptability of ANNs offers 

the ability to run reliably even as a system moves away from the nominal operating point. 

To adapt to changing environments, neuroidentification of generator dynamics (voltage 

and speed deviations in particular) is necessary. This Section outlines two experiments in 

SNN-based neuroidentification: one using an ASNN on two generators in the IEEE 39-

bus system and comparing the results to a traditional sigmoidal MLP on the same; and 

another attempt with a two-area multimachine power system to implement a BSNN 

neuroidentifier on one of the four generators' speed deviations using both voltage and 

speed deviation as inputs from all four generators. 

The input and target data for all experiments in this section were generated using 

the RTDS at the RTPIS Laboratory. The results for the ASNN compared to the MLP 

demonstrate that the ASNN is not only able to operate on the problem, but to do so with 

more fidelity than the MLP. The results for the BSNN are not as impressive as even the 

sigmoidal MLP, let alone the ASNN; however, the BSNN demonstrably possesses and 

has a decoder which can extract the dynamics of the generator signals on which it is 

trained. Additionally, the advance of the activation function as inspired by spiking 

neurons and their demonstrated superiority to sigmoidal neurons of the previous 

generation. These are two solid steps forward for the third generation of neural networks 

as a serious tool for real-world use. 
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5. SUMMARY 

5.1. INTRODUCTION 

The advancement of ANN research has reached its third generation. The first was 

ADALINE, the McCulloch-Pitts neuron [3], and the Hodgkins-Huxley neural model [2], 

with their binary threshold activation functions and their integrate-and-fire models that 

were of use primarily to biological neurological study [I]. The second generation took off 

with the introduction ofbackpropagation through time in Werbos's work [4], [5] and the 

development of more continuous activation functions (such as the popular and by-now 

traditional sigmoidal function) [6]. As the second generation progressed, new 

architectures developed with increasingly complex recurrence. 

Now, as the third generation utilizing spiking neurons as viable ANN components 

is developing, it is important to understand its strengths and weaknesses compared to 

prior generation models. This disse1iation has discussed areas in which SNNs are already 

competent- pattern recognition, logic gate functionality, image and sound processing, 

etc.- and has detailed several needed advances towards making them stand along side 

second-generation ANNs as universal continuous function approximators and time-series 

identifiers. 

5.2. CONTRIBUTIONS 

To use a BSNN on continuous data, it is essential that the data be encoded in a 

manner that ensures the resulting spike stream contains the original information. It also 

must be capable of outputting spike streams which can be meaningfully decoded into 

continuous values. The spiking neural model and the neural architecture are also 

important. Spiking neurons work as well as they do in nature because of how they 

interconnect; without that, much of their computational power and reason for being used 

is lost. 
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It is with this eye towards functionality that two kinds ofSNN are studied: one 

which uses traditional feedforward architecture and an abstracted model of spiking 

neurons as a new sort of activation function in place of the sigmoid used in many second

generation models; and one which uses biologically-inspired Izhikevich neurons in a 

highly recurrent dynamic reservoir. 

The specific contributions and accomplishments made in this dissertation are: 

• development of a novel encoding method (DNNR) for converting arbitrary 

continuous-valued data into spike streams for input into BSNNs 

• detailed algorithms for that method and one other (GRF) 

• development of reversing algorithms to recover data from spike streams created 

by those two methods without needing prior knowledge of what data was encoded 

• analysis of these encoding methods and a third (PREM) to determine that the 

encoded data is present in the spike stream by recovering it from the spikes 

• demonstrated how polychrony can enable a PSN to have more data patterns than 

there are synaptic connections even in a fhlly connected network 

• development of a decoder which translates PSN output spikes into meaningful 

continuously-valued functional outputs 

• demonstration of the PSN's capability to learn a time-series sine wave using this 

decoder 

• use of the ASNN that treats the abstracted spiking neuron as an activation 

function in a traditional TDNN on a power system identification problem and 

compare it to an MLP 

• demonstrated a BSNN framework capable ofneuroidentification of generator 

dynamics to a degree of fidelity sufficient to prove that a BSNN contains the 

dynamics and that they can be extracted. 
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5.3. SECTION SUMMARIES 

5.3.1. Spiking Neural Networks. The SNN is the third generation of ANNs. This 

dissertation started by reviewing the state of the art in SNN modeling along with its 

predecessors. A primary focus was given to the lzhikevich model of spiking neurons for 

biologically faithfl.!l modeling ofnemon behavior. An abstracted model of spiking 

nemons as an activation function in a more traditional fcedforward style network is also 

examined for its ability to handle inputs and outputs as easily as second-generation 

sigmoidal activation function nemons. 

The hurdles facing SNNs as a useful ANN arc outlined, primarily the need for 

biological neurons to have an encoder and a decoder which can handle continuous 

numbers and to have a highly recurrent architecture. The ASNN is proposed as a first 

effort to overcome the encoding issue, as it is capable of taking numeric input and 

provide numeric output without any encoding required. 

5.3.2. BSNNs ami Applications Thereof. The primary contribution of this work 

is the framework for a BSNN which can handle continuous-valued inputs and provide 

continuous-valued outputs. Several encoding methods have been examined and 

algorithms for two- DNNR and GRF- have been provided [30]. The Appendix contains 

a flow chart explaining the third method [27]. 

One problem the author found with most encoding methods was the simple 

assumption that the spike trains generated thereby actually contained the original data. 

This dissertation also provides algorithms for reversing the encoding ofDNNR and GRF, 

and thus proves that the spikes generated by these methods contain the data desired [30]. 

For the main "body" of the BSNN framework, the PSN architecture backed by the 

lzhikevich neuron was chosen. The property ofpolychrony has been demonstrated to be 

able to generate more data patterns than there are synapses in the system, enabling a PSN 

to have ever-increasing granularity in its pattern identifications as more neurons and thus 

more synapses are added. The explosion of possible unique outputs which respond to 

unique inputs results in a continuum of possible outputs resembling that of modern 

floating point numbers. Add in the novel Gaussian function-based decoder which 

converts spike patterns to continuous-valued numeric outputs and an MLP-based tuner to 



isolate desired dynamics, and the framework presents a complete capacity to handle 

arbitrary numeric function approximation, just like prior generation ANNs. 

The framework's triumph is the demonstration of its ability to reproduce a 

variable-frequency sine wave as given by ( 16), both with online training and with the 

decoder's weights frozen. It truly learned a continuous-valued function. It needs time

series information, however, as the PSN is a temporal system and does not learn 

individual inputs as easily as it does those whose sequences have meaning. 

5.3.3. Ncuroidentification of Power Systems with SNNs. Dynamic power 

system identification is a real-world problem to which ANNs have been successfully 

applied in the past [52]. These are, however, systems which run up against the limits of 

second-generation ANN capabilities. It is hoped that SNNs may be able to overcome 

some of these limitations, and the polychrony property of ever-increasing dynamic 

patterns is a promising step in the right direction. However, before SNNs can be 

compared to their predecessors to see if they can overcome their limitations, they must 

first be shown to be able to handle the problem at all. 
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The ASNN is tested on a multimachine power system first, and its results 

compared to a second-generation time-delay MLP. The results are actually very 

favorable. It requires a bit more set-up, as it resembles an RBF network in its need for 

"centers" for the neurons' activities, but it ultimately out-performs an MLP with the same 

number of hidden neurons. 

The BSNN test on a similar multimachine power system was less obviously 

impressive, learning to track the signal with less fidelity than the ASNN or even the 

sigmoidal MLP. However, that it was capable of demonstrating any tracking of the 

generator dynamics indicates that the BSNN does have the ability to operate on 

continuous, arbitrary-valued functions! This great hurdle of capability demonstration 

having been conquered, it now remains to develop better ways of developing the 

framework which makes translation from continuous-valued regimes into the world of 

spiking information and back smoother and more powerful. It is no longer a question of if 
a BSNN is capable of modeling continuous-valued functions. Having established that it 

can be used on similarly broad problems as its second-generation predecessors, it is now 

possible to begin studying whether its computational capabilities are greater. 
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5.4. SUMMARY 

The development of a BSNN that is capable of continuous-valued fimction 

approximation is very exciting, as it represents the first time (to the author's knowledge) 

that this has been done with faithfitlly-modeled spiking neurons in a highly-recurrent 

architecture. While this technology is more fully developed, the ASNN has proven to be a 

viable contender with its second-generation cousins on real-world neuroidentification 

problems. The third generation of ANNs has been under investigation for more than a 

decade, and this dissertation presents work that enables SNNs to operate on theoretically 

any problem the second-generation ANNs could handle. 

5.5. SUGGESTED FUTURE DIRECTIONS 

The current limitations of the BSNN framework presented here are an inability to 

handle functions which do not have a time-series component, and difficulties training 

them on highly complex functions such as the power system identification problem 

presented in Section 4. More immediately for the ASNN, the chief limitation of second

generation ANNs which inspires the need to look to third-generation ANNs to tackle 

problems such as those presented in Section 4 is one of scalability. Though polychrony 

has been demonstrated for the BSNN, it is not a property of the ASNN. Further, it has not 

been truly proven to solve this scaling problem even in a BSNN. 

It is therefore suggested that future work pursue: 

• incorporate a time-series element to static, randomly-ordered inputs, perhaps 

presenting them repeatedly or with sufficient time between stimuli to allow the 

response from the previous stimulus to die out in an effort to achieve time

independent function approximation. This would actually be similar to the 

behavior abstracted in the ASNN. 

• test the ASNN on problems where the scaling issue is known to be a problem for 

second-generation ANNs to sec if it can handle these complex problems with 

fewer neurons and less computational effort than its second-generation 

counterparts. 



• test the BSNN's performance compared to second-generation ANNs on 

benchmark problems 
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• refine the BSNN framework to more swiftly and efficiently perform computation 

on continuous-valued data 

• test the BSNN on the same large-scale problems as the ASNN to determine 

whether it has superior scaling properties to ASNNs and second-generation ANNs 

Proving that a BSNN can resolve or even invert the scaling problem would open 

up tremendous new vistas of computational possibilities, not the least of which would be 

capacity for functional modeling of enormous numbers of dynamic elements with 

relatively few processing units. It may not be beyond the realm of possibility for PSNs to 

be developed which can numerically model every particle in a physical object in 

reasonable time! 



gamma=20; %decay constant 
V _rest=O; %resting voltage of the LIF neuron 
V _th=20; %threshold voltage ofthe LIF neuron (presumably in mV) 

h=0.01; % needed on first run of the code for line 41. 
NN=100;%NN : 100 neurons. 
TN=2000; % "Large number" of independent sampling paths for the three
dimensional Bessel bridge 
%x=0:0.01:6; 
lamda0=2; %starting point for the input 
nu=pi; %nu is a constant in the equation 
lamda_mle=O;%initialize the maximum likelihood estimate of lamda 

% x=0.15:0.01:2; %xis the time-value for the time-varying input 
rate lamda 

x=-2:.01:2; 

lamda=lamdaO+ 2 * lamdaO*(sin( nu*x).fl. 2+sin(O. 7S*nu*x).l\ 2); 
% lamda=2.*x.fl.2+300; 
% lamda = 10. *sin(x); 
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To p. 102 
From p.102 

0 

s1(k)=h1(i)*sum(2*1amda1 * (r(l:N(i)-1)-V _th+lamdal *gamma). * (w(l:N(i)-l)+gamma)); 
s2(k)=h1(i)*sum((r(1:N(i)-1)-V_th+lamda1 *gamma)."2); 0 w 
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