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ABSTRACT 

Functional analysis techniques are used to prove a 

theorem, analogous to the Harris-Sibuya-Weinberg theorem for 

ordinary differential equations, which yields as corollaries 

a number of existence theorems for holomorphic solutions of 

linear functional differential systems of the form 

zDy'(z) = A(z)y(z) + B(z)y(az) + C(z)y'(az) 

in the neighborhood of the singularity at z = 0. 



The existence of holomorphic solutions of ordinary 

differential systems near a singular point has been exten-

sively studied. An elegant treatment of this question has 

been given by W.A. Harris, Jr., Y. Sibuya, and L. Weinberg 

[5] who used functional analysis techniques to establish a 

theorem which includes a number of classical results as 

corollaries. 

Several authors [1,2,3,6] have studied functional 

differential equations with contracting arguments in the 

neighborhood of a singularity at the origin. In this note 

we extend the results of Harris, Sibuya , and Weinberg to a 

class of neutral differential systems. The principal result 

is the following theorem. 

Theorem. Let A(z), B(z), and C(z) ben x n matrices 

holomorphic at z = 0, let D = diag(d 1 , ... ,dn) with nonneg­

ative integers d., and let a, Ia! < l, be a complex constant. 
l 

Then for every positive integer N sufficiently large, and 

every polynomial ¢(z) with zD¢(z) of degree N, there exists 

a polynomial f(z) (depending on A,B,C,a,¢, and N) of degree 

N-1 such that the linear neutral-differential system 

(l) zDy'(z) = A(z)y(z) + B(z)y(az) + C(z)y'(az) + f(z) 

has a solution y(z) holomorphic at z = 0. 

are linear and homogeneous in ¢ and 

zD(y -¢) = O(zN+l) as z ~ 0. 

Further, f and y 

Proof. The proof is an application of the Banach fix-

ed point theorem as in [5]. Let o > 0 and let X be the set 

of all n-vector valued functions f = f(z) whose components 

3 
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have absolutely convergent power series expansions in lz 1~8. 

For f s X, f(z) = I fkzk, fk = (f~, ... ,f~)T, define I If II 
k=O 

n . 
I If~ I. 

j=l 
With this norm, X is a 

Banach space. 

For a sufficiently large positive integer N, define the 

mapping LN: X~ X as follows: LNy = g, where 

1 n T 1 n )T y(z) = (y (z), ... ,y (z)) , g(z) = (g (z), ... ,g (z) , 

with yj(z) = 
00 . k 
I y~z ' 

k=O 

( 2) 

00 yj 
g j(z) = \ k k+l-d. 

L k+l-d. z J . 
k=N J 

1-d. 
N+l-d.J IIY II· 

J 

Hence 

A 

Define y(z) 
1 n T _ Al An T 

= (y (az), ... ,y (az)) = (y (z), ... ,y (z)) with 

• 00 • 

?J ( z) = I YJ 
k=O k 

with y *j ( z) 

k k a z . Also define y*(z) 

00 k . k I ( k+ 1) a y~+ 1 z . 
k=O 

Note that y and y* have absolutely convergent power 

series expansions for lzl < 8, and also that 

A 

(3) IIYII < IIYII· 

oo n . k 
Furthermore, setting x(z) I ( I jy~j )z , jzj < 8, we have 

k=O j =1 

x'Cialz) I k( I IY~I)Ialk-lzk-l, lzl < 0· 
k=l j =1 

By the Cauchy integral formula, 

lx'Cialz)l 

max I x ( r;) I 
< lr;l=8 

o2(l-lal )2 
= II Y II 1 1 

2 2 ' z 
8 (1-lal) 

< 0 • 



Hence 

( 4 ) IIY*II = lx'Cialo)l ~ IIYII 
o2(l-lal)2 . 

If M is ann x n matrix, M = (mij), with elements hav-

ing absolutely convergent power series expansions for lzl~o, 
00 •• 

mij = \ mlJ k th ~ ~ I I I I L z , en ~or ~ E X we have Mf E X and Mf ~ 
k=O k 

n oo 

I I M I I · I I f I I ' where I I M I I = L ( L I m~j I ok) . 
i,j=l k=O 

X 

( 5 ) 

Let¢= (¢ 1
, ... ,¢n)T be a vector polynomial with 

N-d. 
I J 

k=O 
¢~ zk, and consider the functional equation in 

y 

"' 
where TN[y] = LN( Ay +By+ Cy*). The estimates (2)-(4) 

imply that for N sufficiently large, I I TN II < l, and thus 

there exists a unique solution y E X, 

-1 y ( . ; ¢) = (I-TN) ¢ . 

From the definition of the mapping TN it follows that 

the holomorphic solution of the functional equation (5) sat -

isfies the linear differential system of the form (1), where 

5 

( 6) 
D £.1 N- 1 . . k N-1 ,... k 

- z d ' - L [Ay( ,¢)] kz - I [By(· ;¢)] kz 
z k=O k =O 

N-1 
- L [Cy*(";¢)]kzk. 

k=O 

Since the coefficients of y(·;¢) (and thus also y andy*) 

are linear in the coefficients of ¢ , this is also true for 

the fk. The proof is complete. 



The corollaries below follow from the theorem similarly 

to the proofs of corresponding results in [5]. 

Corollary 1. Let d = trace D and n-d >0. Then the 

system 

(7) zDy'(z) = A(z)y(z) + B(z)y(az) + C(z)y'(az) 

has at least n-d linearly independent solutions holomorphic 

at z = 0. 
00 

Corollary 2. Let A(z) = I Akzk, B(z) 
k=O 

00 

C(z) = k I Ckz be convergent for lzl <a (a> 0), and let 
k=l 

y(z) = 
00 k 
I ykz be a formal solution of 

k=O 

(8) zy'(z) = A(z)y(z) + B(z)y(az) + C(z)y'(az). 

Then y(z) is convergent for lzl < a. 

Corollary 3. Let A, B, and C be as in Corollary 2, let 

m be a fixed integer, let a ~ 0, and let nm+k be the number 

of linearly independent eigenvectors corresponding to the 

eigenvalue m+k of the matrix 

The number N m (> 0) of linearly independent solutions of the 
00 

differential system (8) of the form y = \ m+k satisfies L ykz 
k=O 

Nm < nm + nm+l + 

If, in addition, B0 = c1 = 0, then 

Nm > max(nm, nm+l, ... ) 

Remark 1. The results extend without change to systems 

with several deviating arguments of the same form. 

6 



Remark 2. If A0 = B0 = c0 = o, then z =0 is an ordin­

ary point for the system (8). Hence by Corollary l, there 

exist at least n linearly independent solutions for this 

system. If in addition c1 = 0, then the coefficients of 

each formal solution are determined recursively and there 

exist exactly n linearly independent solutions for the 

system. 

Remark 3· Analogous results for nonlinear systems of 

the form 

zDy'(z) = h(z,y(z),y(az),y'(az)) + f(z) 

can be obtained by considerations similar to those in the 

paper of Harris [4]. 

7 
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ABSTRACT 

By use of techniques developed by Harris, Sibuya, and 

Weinberg, various existence theorems are obtained for holo­

morphic solutions of functional differential systems near 

singular points, including generalizations of the theorems 

of Bass, Lettenmeyer, and Perron. Further results on Briot­

Bouquet singularities are also given. 



1. Introduction. In a classical paper, F. Lettenmeyer 

[8] showed that a linear ordinary differential system with 

an irregular singular point at z = z 0 may have several lin­

early independent solutions holomorphic at z 0 , and estimated 

the number of such solutions. The Lettenmeyer theorem was 

extended to nonlinear systems by R.W. Bass [1], who effected 

a change of variable in order to apply Wintner's fixed-point 

theorem for analytic mappings in a separable Hilbert space. 

Recent work of W.A. Harris, Jr., Y. Sibuya, and L. Wein-

berg [4], [6] has graetly simplified the proofs of the theo -

rems of Lettenmeyer and Bass and has, in addition, yielded 

several theorems on systems of Briot-Bouquet type as coro-

llaries. 

In a recent note [2], we developed analogues of some of 

these results for neutral functional differential systems 

(NFDS) of the form 

( 1. 1) D 9:X. = 
z dz f(z,y(z),y(g(z)),y'(g(z))) 

near z = 0, in the case where f is linear and homogeneous 

and g ( z ) = a z , a constant , I a I < 1 . In this paper we obtain 

extensions to the nonlinear case and additional results for 

linear systems which yield an existence theorem for holomor-

phic solutions near z = oo of systems of the form 

( 1. 2) y' ( z) A(z)y(z) + B(z)y(Sz) 

where A and B are n x n matrices holomorphic at oo, and S is 

a complex constant, lsi > l. This equation has been studied 

11 
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in the scalar constant-coefficient case by T. Kato and J.B. 

McLeod [7]. Some results for constant-coefficient systems 

have been given in another paper of McLeod [9] in the case 

IBI < 1. However, we obtain here only an existence theorem, 

while Kato and McLeod obtain asymptotic estimates. We also 

obtain simplified proofs and extensions of several results 

in the Russian literature, especially those of E.I. Grudo [3]. 

2 . Two lemmata. In what follows, we shall make much 

use of power series representations for holomorphic func-

tions. The following lemma, which can be proved by indue-

tion, gives such a representation for composite functions. 

Lemma 2.1. Let p > 0, and let f(z) 

00 

h(z) k L hkz be holomorphic in < p with I h c z) I < p for 
k=l 

< p. 

Define y 00 

Set P ( z) = 
n 

n k I fkz and Q (z) 
k=l n 

P (Q (z)) 
n n 

1 and Yok o, k > 1. Then 

00 k 
f(h(z)) I c I 

k=O m=O 

n 
L h zk, and write 

k=l k 

where f(m) (0) , and the Ymk are functions of the 

coefficients of h(z) alone. 

We shall also need to solve simultaneous systems of 

determining equations. For a linear differential system, 

the determining system is linear and the well-known theory 
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of linear algebraic equations applies. In the nonlinear 

case, the determining system will be nonlinear, and the fol-

lowing lemma will be used: 

Lemma 2.2. Consider the system of simultaneous equa-

tions 

G (z 1 , ... ,z ) = 0, m n 

where Gk' k = 1, ... ,mare holomorphic functions all vanish-

ing at the origin, but none vanishing identically. If m<n, 

then this system has at least an (n-m)-parameter algebroid 

family of solutions. 

This is a special case of a theorem of Weierstrass; for 

a proof, see Osgood [10], pp. 132-133-

3 . The nonlinear case. Let X denote the set of all 

n-vector valued functions f = f(z) whose components have ab-

solutely convergent power series expansions in lzl < 8. For 

00 

f s X, :f(z) = 

II f I I = I C I I fj I ) ok 
k=O j=l k 

It is easy to see that (X, II· II) is a Banach space. A cen-

tral result is the following: 

Theorem 3.1. Let f(z,y,u,v) be an n-vector function of 

1 n)T l n T z , y = ( y , ... , y , u = ( u , ... , u ) , and v = ( l n T v , ... ,v) 

holomorphic in a neighborhood of the origin 1n (3n+l)-dimen-

sional complex Euclidean space. Let D be an n x n matrix, 



D = diag(d1 , ... ,dn) with nonnegative integers di. Let h(z) 

00 

k 
~ hkz be a scalar function holomorphic at z = 0 with 

k=l 

lh1 1 < a, for some a, 0 < a < l. Then for each positive 

integer N sufficiently large and each sufficiently small 

polynomial ¢(z) with zD¢(z) of degree N, there exists a poly-

nomial p(z;¢) in z of degree N-1 with coefficients that de-

pend on f, h, N, and ¢, such that the nonlinear NFDS 

( 3. l) zDy'(z) = f(z,y(z),y(h(z)),y'(h(z))) + p(z;¢) 

has a solution y(z) holomorphic at z = 0. Further, y is 

homogeneous in¢ and zD(y-¢) = O(zN+l). 

Proof. For N sufficiently large, define LN: X ~ X by 

Hence 

( 3. 2) 

l n T y = (y (z), ... ,y (z)) , 

l n T g = ( g ( z ) , ... , g ( z) ) , with 

00 • k 
~ y~z ' 

k=O 

00 

~ 
k=N 

I 
1-d I 

N+ 1-d. ) I I y I I . 
J 

Y
j k+l-d. 
k z J 

k+l-d. 
J 

Define y(z) = y(h(z)). Then by Lemma 2.1, yj(z) 

00 k . k 
~ ( ~ ymky~)z . From this it follows that 

k=O m=O 

( 3. 3) II Y II 2- II Y II · 
A Al An T A• 

Also define y(z) = (y (z), ... ,y (z)) , with YJ (z) 

14 



00 

I (k+l)y~+l(h(z))k. BY Lemma 2.1, 
k==O 

15 

00 

Let 8 > 0 be chosen sufficiently small that I I hk I 8k < a8. 
k=l 

00 

Set x(z) = 
n oo • k 
I c I I Y~ I z ) and n c z) 

j=l k=O 
== I I hk I zk for 1 z 1 .::. 0. 

k==l 
A 

Then I I Y I I < I X' ( ll ( 8)) I and by the Cauchy integral formula 

lx'(n(z))l 

( 3. 4) 

< I I Y I I 
2 

for I z 1 < 8, hence 
8(1-a) -

A 1 
IIYII.::. ~IIYII· 

8(1-~) 

Let ¢ = (¢ 1
, ... ,¢n)T be the vector polynomial with 

N-d. 
I J ¢j zk and consider the functional equation in X 

k=O k 

( 3. 5) 

The estimates (3.2)-(3.4) imPlY that, for N sufficient­

ly large, ~Nf satisfies a LiPschitz condition in y with Lip­

schitz constant less than 1. Hence for sufficiently small ¢ 

there exists a unique solution of the functional equation 

(3.5), y = y(z;¢) EX. 

It follows from the definition of LN that the holomor­

phic solution y of the runctional equation (3.5) satisfies 

the NFDS zDy'(z) 
'I.J /' 

f(z,Y,y,y) + p(z;¢), where 

N-1 
p(z;¢) == zD¢'(z) - I [r(z 3 y(z;¢),y(h(z);¢),y'(h(z);¢)]k 

k==O 

The proof is complete. 

k z . 

Remark 3.2. In c~~e r(z,u,v,w) in Theorem 3.1 is linear 



and homogeneous in u~v~w~ the solution y(z) will be linear 

and homogeneous in ¢~ see [2]. Further~ in this case~ the 

equation (3.5) has the form 

( 3. 6) "' Y = ¢ + TN[yJ~ where TN[y] = LN[Ay +By+ Cy]~ 

and [I-TN]-l will exist for N sufficiently large. 

16 

Theorem 3.3. Let f(z~y~u~v) and h(z) be as in Theorem 

3.1~ let f(z~O~O~O) = 0~ and let d = trace D and n-d > 0. 

Then the system 

( 3. 7) zDy'(z) = f(z~y(z)~y(h(z))~y'(h(z))) 

has at least an (n-d)-parameter algebroid family of solutions 

holomorphic at z = 0. 

Proof. Consider the system of nN equations (determin-

ing equations) in the nN + n-d unknowns ¢~~ represented by 

( 3. 8) p(z;¢) = 0. 

Since f(z~O~O~O) = 0~ p(z;O) = 0~ and hence by Lemma 

2.2 there exists at least an (n-d)-parameter algebroid fam-

ily of solutions of (3.8). For each¢ thus obtained~ 

Theorem 3.1 ensures the existence of a corresponding solu-

tion of (3.7). 

Theorem 3.7. Let f and h be as in Theorem 3.1. Let 

(X) 

y(z) = I ykzk be a formal solution of the Briot-Bouquet 
k=O 

equation 
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(3.9) zy'(z) = f(z~y(z)~y(h(z))~zy'(h(z))) 

in the sense of equality of formal power series. Then y(z) 

is convergent in a neighborhood of z = 0. 

Proof. 
N-1 k 

Since d. = l, i = 1, ... ,n, ¢(z) = I ¢kz and 
l k=O 

y* = ¢ + O(zN), where y* is the holomorphic solution whose 

existence is guaranteed by Theorem 3.1. The determining 

equations can be represented as 

(3.10) 
~ A 

[f(z,y*(·;¢),y*(· ;¢)~zy*(·;¢))]k- k ¢ = 0 
k ' 

k = 0,1, ... ,N-1. However, the equations for the existence 

of a formal solution are 

(3.11) [f(z,y(z),y(h(z)),zy'(h(z)))]k- kyk = 0, 

k = 0,1, ... , and hence the first N equations of (3.11) are 

the same as (3.10). The condition that h(O) = 0 implies 

that yk is uniquely determined by the preceding coeffici ents, 

and thus y* = y(z), and the formal solution converges in a 

neighborhood of z = 0. 

Corollary. Let A(z) 

00 

C(z) = L Ckzk be n x n matrices holomorphic at z 
k=l 

00 

0 . Let 

g(z) = L gkzk be an n-vector function holomorphic at z 0, 
k=O 

and let h(z) be as in Theorem 3.4. Suppose that no eigen-

value of A0 + B0 is a nonnegative integer. Then the Briot-



Bouquet system 

(3.12) zy' ( z) A(z)y(z) + B ( z )y(h(z)) + C(z)y '( h(z)) 

+ g (z) 

has a solution holomorphic at z = 0. 

Proof. The system (3.12) is of the form (3 .9 ) ; the 

equations for the existence of a formal solution of the 

form y(z) 

uoYo = go 

UlyO + (UO-I)yl = gl 

where the n x n matrices Uk depend on the coefficients of 

A(z), B(z), C(z) and h(z), and in p articular, u0 = A0 + B0 . 

The hypotheses of the corollary guarantee the existence of 

a formal solution which converges by Theorem 3 . 4 . 

4. The case trace D > n . The determining equation 

18 

will now be used to prove existence of holomorphic solutions 

of systems with trace D > n . In particular , consider the 

system 

( 4. 1) 
2 z y'(z) = A(z)y(z) 

00 

where A(z) = L Akzk is an n x n matrix holomorphic at z = 0. 
k=O 

N- 2 
The polynomial ¢(z) in Theorem 3.1 is of the form L ¢kzk 

k =O 



since di = 2, i = 1, ... ,n, and the determining equation is 

equivalent to the system 

(4.2) 

Ao¢o 

Al¢0 + Ao¢1 

A2¢0 + Al¢1 + A0¢2 

AN-2¢0 + AN-3¢1 + 

AN-1¢0 + AN-2¢1 + 

= 0 

= 0 

= ¢1 

+ A1¢N-3 + AO¢N-2 (N- 3 )¢N-3 

+ A1¢N-2 + AOyN-1 = (N- 2 )¢N-2. 

19 

From Remark 3.2, yN_1 in the last equation in (4.2) can 

be found using y(·;¢) = (I-LNA)-1 ¢. Since for large enough 

N, I ILNAI I < 1, the mapping (1-LNA)-l is given by the con­

vergent series (see Taylor [11], p. 164) I + LNA + (LNA) 2 

+ . . . . 

00 

Define the matrices RN,l' RN, 2 , ... ,RN, N-l by 

00 

= AN-k + A0 [ L (LNA)pzk-l]N-l' k = 1 , ... ,( N- 2) ; 
p=O 

where [ L (LNA)pzk-l] N- l is the coefficient of ¢k_ 1 zN-l in 
p=O 

N-2 l 
the expansion y(z) = (I-LNA)- 1 ( L ¢lz ). Then the system 

l=O 

(4.2) can be written as 
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Ao 0 0 <Po 

Al Ao 0 0 ¢1 

A2 A -I Ao ¢2 = 0' 
( 4 . 3 ) 1 

AN-2 AN-3 A1 -(N-3)I A a <PN-2 
RN 1 

' 
RN 2 

' 
RN,N-2 RN N-1 

' 

which represents nN linear equations in the n(N-1) unknowns 

¢~. The matrix in (4.3) will be called the determining 

matrix. 

Theorem 4.1. There exists at least one nontrivial 

solution y(z) holomorphic at z = 0 of the system 

if 

rank 

z 2 y' ( z) = A ( z) y ( z) 

0 

A -(k-l)I 
l 

for at least one k, k = 1,2, ... 

< kn 

Proof. The determining equation (4.3) has nontrivial 

solutions, which guarantee nontrivial solutions of (4.1), 

if the rank of the determining matrix is less than n(N-1). 

The hypothesis of the theorem ensures this. 



Example. Consider the system 

(4.4) z 2 ~~ = A(z)y(z), 

where y T 
= ( Y 1 'Y 2 'Y 3) ' and 

sin z z 

cos z 

0 

~ben the 6 x 6 block in the upper left-hand corner of the 

determining matrix is 

0 0 0 0 0 0 

0 l 0 0 0 0 

0 0 0 0 0 0 

0 l 0 0 0 0 

0 0 0 0 l 0 

0 0 0 0 0 0 

which has rank 2. Hence there exists a nontrivial solution 

of (4.4) holomorphic at z = 0 by Theorem 4.1. 

Note that the equation (4.4) has an irregular singular 

point at z = 0, since matrix A0 -- [0~ 

:see [5]. 

0 
l 
0 

g) is not nilpotent, 

The last n rows of the determining matrix, represented 

by the RN,k'k = l~·· -~CN-1)~ are observed to have a simpler 

form under additional hypotheses: 

Theorem 4.2. If in the coefficients of the system 

21 



22 

(4.1), the matrix A0 is nilpotent of index t > 2 and if 

= A0Ak-l = 0, then the matrices R are N, k 
given by 

k= l, 2 , ... , ( N- 2) ; and 

We omit the proof. 

Theorem 4.1 can be generalized to the NFDS 

( 4 . 4 ) 2 
Z Y T ( Z) A(z)y(z) + B(z)y(az) + C(z)y'(az) 

00 

where A(z) = 

n x n matrices holomorphic at z = 0 and a is a complex 

constant, lal < l. The determining equation is then 

) N-2 
+ (N-1 a c 0yN-l = (N-3)¢N_ 3 
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(N-2)¢N--2 

The coefficients YN-l and yN can be found using y(·;¢) 

-1 (I-TN) ¢from (3.6). The last 2n rows of the determining 

matrix are very complicated; we shall not write the matrix 

explicitly. 

The following result is analogous to Theorem 4.1 and is 

proved the same way: 

Theorem 4.3. The NFDS (4.4) has a nontrivial solution 

holomorphic at z = 0 if 

rank 

for at least one k_, k = l_,2_, ... _,(N-3). 

Now consider the equation (4.4) in the case where 

C(z) = 0. By making the change of variable 

equation (4.4) becomes 

or 

( 4 . 5 ) ~~ = A(c;;)y(s) + ~Cc;;)yC~s) 

z = ! the (; .) 

< kn 

Here land~ are holomorphic for lsi sufficiently large. 



Since I a I < l, 1
1

1 > land so (4.5) is an equation of 
a 

24 

advanced type with a singularity at oo. Hence the follo wing 

theorem is an immediate corollary of Theorem 4.3. 

Theorem 4.4. Let A(z) and B(z) be n x n matrices such 

that the series A ( z) = converge . 

Let B be a complex constant with IBI > 1. Then the equation 

( 4 . 5 ) ~~ = A(z)y(z) + B(z)y(Sz) 

has a nontrivial solution holomorphic at z = oo if 

0 

rank 

for at least one k 

l k-1 
A1+(B) B1+(k-l)I 

1,2, ... ,( N- 2) . 

l k 
Ao+Cs) Bo 

< kn 
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