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ABSTRACT

We develop a saddlepoint-based method and several generalized Bartholomew

methods for generating confidence intervals about the rate parameter of an exponential

distribution in the presence of heavy random right-censoring. Butler’s conditional mo-

ment generating function formula is used to derive the relevant moment generating func-

tion for the rate parameter score function which provides access to a saddlepoint-based

bootstrap method. Moment generating functions also play a key role in the general-

ized Bartholomew methods we develop. Since heavy censoring is assumed, the possible

non-existence of the rate parameter maximum likelihood estimate (MLE) is nonignor-

able. The overwhelming majority of existing methods condition upon the event that

the number of observed failures is non-zero (rate parameter MLE exists). With heavy

censoring, these methods may not be able to produce confidence interval an appreciable

percentage of times. Our proposed methods are unconditional in the sense that they can

produce confidence intervals even when the rate parameter MLE does not exist. The

unconditional saddlepoint method in particular defaults in a natural way to a proposed

generalized Bartholomew method when the rate parameter MLE fails to exist. We find

that the proposed saddlepoint method outperforms competing Bartholomew methods

in the presence of heavy censoring and small sample sizes.



v

ACKNOWLEDGMENTS

I am very grateful to my advisor, Dr. Robert L. Paige. He guided me through

both the theory and computation of saddlepoint approximations within the context of

survival analysis. He also offered advice and support in times of distress and discour-

agement. He was very patient.

I also would like to extend my thanks to my committee members, Dr. V.A.

Samaranayake, Dr. Xuerong Wen, Dr. Gayla Olbricht, and Dr. Xiaoping Du, for their

invaluable suggestions and helpful support.

My thanks also go to all of the faculty members and staff in the Department of

Mathematics and Statistics as well as to my friends, classmates, officemates, and mem-

bers of Presbyterian church in Rolla. Special thanks to Nicholas J. Wintz, Rotchana

Chiechon, and Maduka N. Rupasinghe for the template and also to my American par-

ents, Patricia and D.C. Look.

I give my thanks to the personnel within the Fulbright Fellowship program who

trusted me and gave me the opportunity to study in the United States of America.

Although my family is in Madagascar, they never ceased to support me in many

ways. I am thankful to my mother, O.S. Razaiarivelo, my brother, sisters, niece, and

nephews. Special thanks to my father, Rowlands Randrianampy, who pushed me this

far in my studies. I miss you dad.

I am very thankful to God the Father, Jesus Christ, and the Holy Spirit, as

without you, I would not have been able to finish this study.



vi

TABLE OF CONTENTS

Page

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SECTION

1. INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. ABE-IWASAKI CONFIDENCE INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. ACCOUNTING FOR A NON-EXISTENT MLE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. DERIVATION OF MU(λ) (S|
∑

∆I > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. CHOICE OF ESTIMATING EQUATION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6. UNCONDITIONAL SPBB CONFIDENCE INTERVALS . . . . . . . . . . . . . . . . . . . . . . 14

7. THE
∑

∆I = N CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8. GENERALIZED BARTHOLOMEW METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9. CENSORING TIME MGF.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10. TAIL-COMPLETED KAPLAN-MEIER MGF ESTIMATORS . . . . . . . . . . . . . . . 23

11. LARGE SAMPLE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

11.1. CENSORING TIME SADDLEPOINT APPROXIMATION .. . . . . . . . . . . . 25

11.2. CONVERGENCE OF THE BARTHOLOMEW METHODS . . . . . . . . . . . . 33

12. EXAMPLE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13. MONTE CARLO STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13.1. TYPE 1 CENSORING .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

13.2. RANDOM CENSORING TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

13.2.1. Exponential Censoring Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

13.2.2. Gamma Censoring Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13.2.3. Weibull Censoring Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

BIBLIOGRAPHY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

APPENDICES

A. EXPONENTIAL CENSORING TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B. BIAS OF THE SCORE FUNCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



vii

LIST OF ILLUSTRATIONS

Figure Page

12.1 Negative Logarithm of Survival Function for Melanoma Data . . . . . . . . . . . . . . . . 35



viii

LIST OF TABLES

Table Page

12.1 Survival Times and Indicator Function Values for 20 Subjects with Stage
3 or Stage 4 Melanoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

12.2 Coverage Probabilities of Lower Bounds for Melanoma Data . . . . . . . . . . . . . . . . . 35

12.3 Coverage Probabilities of Upper Bounds for Melanoma Data. . . . . . . . . . . . . . . . . 36

12.4 Coverage Probabilities of Lower and Upper Bounds for Melanoma Data . . . . 37

13.1 Coverage Probabilities for the Type 1 Censoring.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

13.2 Coverage Probabilities for the Exponential Censoring Distribution and the
Exponential Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

13.3 Coverage Probabilities for the Exponential Censoring Distribution and the
Gamma Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

13.4 Coverage Probabilities for the Exponential Censoring Distribution and the
Weibull Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13.5 Coverage Probabilities for the Exponential Censoring Distribution and the
Kaplan-Meier Exponential Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13.6 Coverage Probabilities for the Exponential Censoring Distribution and the
Kaplan-Meier Efron Censoring Model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

13.7 Coverage Probabilities for the Exponential Censoring Distribution and the
Kaplan-Meier Weibull Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13.8 Coverage Probabilities for the Exponential Censoring Distribution and the
Kaplan-Meier with Expected Order Statistics Censoring Model. . . . . . . . . . . . . . 52

13.9 Coverage Probabilities for the Gamma Censoring Distribution and the Ex-
ponential Censoring Model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13.10 Coverage Probabilities for the Gamma Censoring Distribution and the
Gamma Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

13.11 Coverage Probabilities for the Gamma Censoring Distribution and the
Weibull Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

13.12 Coverage Probabilities for the Gamma Censoring Distribution and the
Kaplan-Meier Exponential Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

13.13 Coverage Probabilities for the Gamma Censoring Distribution and the
Kaplan-Meier Efron Censoring Model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



ix

13.14 Coverage Probabilities for the Gamma Censoring Distribution and the
Kaplan-Meier Weibull Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

13.15 Coverage Probabilities for the Gamma Censoring Distribution and the
Kaplan-Meier with Expected Order Statistics Censoring Model. . . . . . . . . . . . . . 60

13.16 Coverage Probabilities for the Weibull Censoring Distribution and the Ex-
ponential Censoring Model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

13.17 Coverage Probabilities for the Weibull Censoring Distribution and the Gamma
Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

13.18 Coverage Probabilities for the Weibull Censoring Distribution and the Weibull
Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

13.19 Coverage Probabilities for the Weibull Censoring Distribution and the Kaplan-
Meier Exponential Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

13.20 Coverage Probabilities for the Weibull Censoring Distribution and the Kaplan-
Meier Efron Censoring Model.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

13.21 Coverage Probabilities for the Weibull Censoring Distribution and the Kaplan-
Meier Weibull Censoring Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

13.22 Coverage Probabilities for the Weibull Censoring Distribution and the Kaplan-
Meier with Expected Order Statistics Censoring Model. . . . . . . . . . . . . . . . . . . . . . . 68



1. INTRODUCTION

This dissertation has been prepared in the style utilized by Missouri University of

Science and Technology. Pages 1-79 will be submitted to the Scandinavian Journal of

Statistics.

We develop methods for making small sample inference about the rate parameter

of an exponential distribution in the presence of heavy and random right-censoring. We

let T1, T2, . . . , Tn denote the independent and identically distributed (IID) exponential

survival times, with hazard rate λ, for n subjects or items. These survival times are cen-

sored at the right by IID random variables C1, C2, . . . , Cn which are independent of the

survival times. It is assumed that the censoring time distribution admits a moment gen-

erating function (MGF) and is indexed by parameter θ which may be of infinite dimen-

sion, e.g. if the censoring time distribution does not have an assumed parametric form.

The right-censored data are denoted by (Z1,∆1) , (Z2,∆2) , . . . , (Zn,∆n) where the time

on study is Zi = min {Ti, Ci} and the survival indicator function is ∆i = 1 {Ti ≤ Ci}.

The observed right-censored data are denoted as (z1, δ1), (z2, δ2) , . . . , (zn, δn).

The joint likelihood function for λ and θ is

L (λ, θ) =
n∏
i=1

{
f (zi;λ)δi Sf (zi;λ)1−δi

} n∏
i=1

{
g (zi; θ)

1−δi Sg (zi; θ)
δi
}

(1.1)

= L (λ)L (θ)

where f (·;λ) and Sf (·;λ) are the density and survival functions of the exponential

survival times and, g (·; θ) and Sg (·; θ) are the density and survival functions of the

censoring times (Kalbfleish & Prentice, 2002; Lawless, 2003). The joint likelihood for λ

and θ is said to be separable since it factorizes into a product of a likelihood for λ and

a likelihood for θ. Furthermore, one could say that parameters λ and θ are orthogonal

(Severini, 2000, sec. 3.6.4) since their MLEs are asymptotically uncorrelated.
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One consequence of likelihood separability is that, from a purely likelihood point

of view, inference about λ can be based upon L (λ) while ignoring L (θ). In particular,

the maximum likelihood estimate (MLE) for λ0, the true value of λ, is given as the

unique root of the score estimating equation from L (λ);

U (λ) =
∑
{δi/λ− zi} (1.2)

so that λ̂ = {
∑
zi}−1∑δi when

∑
δi > 0. Another consequence of likelihood separa-

bility is that θ̂ (λ), the constrained or conditional MLE for true parameter value θ0,

coincides with θ̂, the ordinary MLE.

Note however that, even though MLEs λ̂ and θ̂ may be determined separately

from one another, the distribution of λ̂ is quite complicated and will in general depend

upon θ0. Furthermore, λ̂ is no longer sufficient for making inference about λ and

therefore large-sample likelihood methods are often considered (Kalbfleish and Prentice

2002, sec. 3.3) since MLEs are generally asymptotically sufficient (Cox and Hinkley

1974, sec. 9.2). However, in the presence of small samples or heavy censoring there

is a need to consider exact distribution theory (or nearly exact results gotten from

saddlepoint approximations; Butler, 2007) since asymptotic methods may provide poor

distributional approximations (Crowder, Kimber, Smith and Sweeting 1991, sec. 3.5).

Furthermore, factorization of the likelihood suggests that asymptotically infor-

mation about the censoring time distribution is not useful in making inference about

λ. This does not, however, imply that this information is not useful in small samples.

Lawless (2003, sec. 2.2.1.2) notes that while it may be desirable to make inferences con-

ditional upon the observed censoring times it may actually be of interest to average over

the censoring time distribution as, for instance, one would do when planning a study.

We consider a form of censoring time averaging in the confidence interval methods we

develop.

Lawless (2003, sec. 4.1) provides an overview of existing confidence interval meth-

ods for λ. The methods discussed therein are said to be conditional since their con-

struction is conditional upon event
∑
δi > 0. In the presence of heavy censoring this
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condition becomes restrictive and this is the motivation for unconditional methods

which can be applied even when
∑
δi = 0.

Abe and Iwasaki (2005) provide an unconditional confidence interval method for

exponential survival times in the presence of Type 1 censoring. Their method is based

on the unconditional cumulative distribution function (CDF) for λ̂ and is a generaliza-

tion of the conditional CDF for λ̂ given in Bartholomew (1963). In this same work,

Bartholomew (1963) proposes an unconditional confidence interval method based on the

discrete distribution of
∑

∆i. He notes that this method, while exact, may be inefficient

in the presence of light or moderate censoring.

The scope of this dissertation is to develop small-sample methods of uncondi-

tional confidence interval construction. These methods make use information about

the censoring time distribution since such information is useful in small samples. Our

methods are developed for fixed and random censoring times and are generalizations of

two methods for Type 1 censoring; (i) Abe and Iwasaki’s unconditional CDF method

and (ii) Bartholomew’s exact method.

The proposed saddlepoint-based method, which generalizes Abe and Iwasaki’s

method, is based in part upon the automatic percentile method bootstrap confidence

interval method of DiCiccio & Romano (1995). Suppose that one desires a (1−α)100%

conditional confidence interval for λ0, say (λL, λU). This interval may be determined as

the solution of the following set of equations:

P
(
λ̂ ≤ λ̂obs|λL, θ̂ (λL) ≡ θ̂,

∑
∆i > 0

)
= 1− α/2

P
(
λ̂ ≤ λ̂obs|λU , θ̂ (λU) ≡ θ̂,

∑
∆i > 0

)
= α/2

(1.3)

where λ̂obs denotes the observed value of λ̂. DiCiccio & Romano (1995) show that

this method provides second-order accuracy, in the sense of Hall (1988), without a bias

correction or an acceleration constant. Furthermore, one needs only to compute one

conditional MLE value for θ0, since θ̂ (λ) ≡ θ̂ for all λ, due to the separability of the

likelihood function in (1.1).
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One drawback to the automatic percentile method bootstrap method is that one

rarely has a closed-form expression for Fλ̂ (·|λ, θ). Furthermore, Monte Carlo estimation

of this function can be computationally expensive. Note however that since the random

score function

U (λ) =
∑
{∆i/λ− Zi}

is monotonically decreasing in λ for all realizations of (
∑

∆i,
∑
Zi), when

∑
∆i > 0,

then

P
(
λ̂ ≤ λ̂obs|λ, θ,

∑
∆i > 0

)
= P

(
U
(
λ̂obs

)
≤ 0|λ, θ,

∑
∆i > 0

)
.

This observation is useful since the MGF function of U (λ) is derived in closed-form

and used to determine a highly accurate saddlepoint approximation to

P
(
λ̂ ≤ λ̂obs|λ, θ,

∑
∆i > 0

)
.

The conditional procedure in (1.3), which makes use of the saddlepoint CDF ap-

proximation is an example of a saddlepoint-based bootstrap (SPBB) confidence interval

method. Paige, Trindade and Fernando (2009) developed the SPBB methodology for

estimating equations, in the presence of no censoring, which are quadratic forms in nor-

mal random variables and coined the term saddlepoint-based bootstrap. Furthermore, it

was shown in this work that replacing the CDF of an estimating equation root by its

saddlepoint approximation preserves the inherent second-order accuracy of the auto-

matic percentile method. Finally, Paige and Trindade (2010) and Paige and Trindade

(preprint) make further use of the SPBB methodology for quadratic forms.

More generally, saddlepoint approximations have replaced Monte Carlo estimation

in a number of other bootstrapping applications including those described in Davison

and Hinkley (1988, 1997, sec. 9.5), Daniels and Young (1991), Butler and Bronson

(2002), and Butler (2007, chap. 14).

The important contributions of this dissertation are as follows: (i) we consider

censoring whereas SBPP methods thus far have not; (ii) our method may be applied
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in truly semiparametric settings where the censoring time distribution is unspecified

and is estimated via the Kaplan-Meier survival curve; (iii) we derive a number of novel

closed-form expressions for various moment generating functions which can be used

to study probabilistic properties of exponential survival times with right-censoring in

even greater detail and (iv) we develop a number of unconditional confidence interval

methods which are applicable even when MLE λ̂ does not. This last contribution is

particularly important in the presence of heavy censoring.

Few procedures for handling non-existent MLEs have been considered in the statis-

tics literature and notable examples include the aforementioned unconditional CDF

method of Abe and Iwasaki (2005) for Type 1 censoring which accounts for the non-

existence of MLE λ̂ in a natural way. On the other hand, the saddlepoint method

considered in Paige, Chapman and Butler (2011) defaulted to a likelihood ratio method

when the MLEs for the underlying logistic regression model did not exist. In this work,

the saddlepoint method did not converge in any sense to the likelihood ratio method

as the MLE approached infinite values and it was not possible to easily characterize

when MLEs failed to exist or even to compute the probability of this happening without

simulation.

Heavy censoring is known to create special problems for the analysis of survival

data, besides a substantial loss of information and the resulting poor performance of

asymptotic methods. Examples in the literature include; (i) Prentice and Marek (1979)

who find very different results for the Mantel-Cox and Breslow test statistics in the

presence of heavy censoring; (ii) Lee, Häkkinen and Rosenqvist (2007) who note that in

the presence of heavy censoring it is difficult to determine the best treatment, among

several competing treatments, because sample location measures, such as the mean and

median, may not be identifiable, and (iii) the unreliability, in the presence of heavy

censoring, of the Kaplan-Meier in the tails of a distribution which often necessitates

that one considers some form of weighted Kaplan-Meier estimate (Susan, 2001).

Note that in our work we consider Kaplan-Meier estimates of the censoring time

distribution and as a result heavy censoring is actually beneficial.
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Furthermore, our methodology should be robust against Weibull departures from

exponentiality, for certain levels of heavy censoring. The results of Emerson (1981)

and Harder (1990) suggest that for a percentage of censored observations in the neigh-

borhood of 50% or at least 90%, the classical exponential confidence intervals for the

median survival time, ln (2)λ0, will have coverage probabilities that are very close to

the expected coverage probabilities (assuming exponential of the survival times), when

the survival times are in fact Weibull. Note that when this is the case, the quantity

being estimated is the median survival time of the underlying Weibull model.

The remainder of this dissertation is organized as follows. In sections 2 and 3, we

discuss the Abe and Iwasaki (2005) unconditional method for Type 1 censoring in detail

and describe how it handles non-existent MLEs. In section 4, we derive the conditional

(
∑

∆i > 0) and unconditional (
∑

∆i ≥ 0) MGFs of estimating equation U (λ). In

section 5 , we explain our choice of estimating equation. In section 6, an unconditional

SPBB method, which accounts for the possible non-existence of MLE λ̂ in a natural

way, is developed. Section 7 considers the case of completely observed data and how

we handle that case. In section 8, we develop a class of generalized Bartholomew

confidence intervals for λ0. In section 9, we discuss approximate MGFs for censoring

time distributions. In section 10, tail-completed Kaplan-Meier MGF estimates are

discussed. In section 11, we prove large sample properties of our proposed methods. In

section 12, we present an application and in section 13, a Monte Carlo study. Finally,

in section 14 we present concluding remarks.
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2. ABE-IWASAKI CONFIDENCE INTERVALS

The Abe-Iwasaki confidence intervals are obtained, in part, from (1.3) but where

θ̂ (λ) = θ0, the fixed and known Type 1 censoring time. Abe and Iwasaki (2005)

provide a formula for the unconditional survival function of λ̂−1, or equivalently the

unconditional CDF of λ̂, under Type 1 censoring at θ0.

Using the well-known relationship between the survival function of a gamma ran-

dom variable with integral shape parameter value and the CDF of the appropriate

Poisson random variable, Abe and Iwasaki’s CDF formula may be expressed as follows:

P
(
λ̂ ≤ c|λ0, θ0

)
=
∑n

i=0

∑i
j=0

∑i−1
k=0

(
n
i

)(
i
j

)
(−1)j exp {−λ0θ0 (n− i+ j)}

×a (i, j)k exp {−a (i, j)}/k!
(2.1)

where the summand in k is taken to be 1 when i = 0, λ0 denotes the (assumed) true

value of λ,

a (i, j) = λ0

〈
ic−1 − θ0 (n− i+ j)

〉
,

and 〈•〉 denotes max (0, •).

To derive formula (2.1), Abe and Iwasaki (2005) wrote the unconditional CDF of

λ̂ as

P
(
λ̂ ≤ c|λ0, θ0

)
= P

(
λ̂ ≤ c|λ0, , θ0,

∑
∆i = 0

)
P (
∑

∆i = 0|λ0, θ0)

+ P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
P (
∑

∆i > 0|λ0, θ0)

and simplified this to their final form

P
(
λ̂ ≤ c|λ0, θ0

)
= exp {−nθλ0}+P

(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
[1− exp {−nθ0λ0}] (2.2)
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where

P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
= 1

1−exp(−nθ0λ0)

∑n
i=1

∑i
j=0

∑i−1
k=0

(
n
i

)(
i
j

)
(−1)j

× exp {−λ0θ0 (n− i+ j)} a (i, j)k exp {−a (i, j)} /k!
(2.3)

is Bartholomew’s (1963) conditional CDF for λ̂.

Bartholomew derives this CDF by first deriving the conditional MGF of λ̂ (con-

ditional upon
∑

∆i > 0) and then inverting this MGF in closed-form to obtain the

conditional distribution of λ̂. We take a somewhat similar approach to approximate the

conditional CDF of λ̂ under random censoring; in section 4 we derive the conditional

MGF of U (λ), the estimating equation for λ̂, and then approximately invert this with

a saddlepoint approximation in section 6.
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3. ACCOUNTING FOR A NON-EXISTENT MLE

In the derivation of the final form of their CDF (2.2), Abe and Iwasaki (2005) prove

three results, which handle the possibility of an indefinite MLE, that we will make use

of, in section 6, where we develop our unconditional SPBB confidence interval. First,

they showed that

P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i = 0

)
= 1

for any value of c > 0. The idea here is that when
∑
δi = 0 then MLE λ̂ may be charac-

terized as the smallest real number greater than zero. Note that this MLE technically

does not exist since it is the maximum of a monotone increasing function on an open

interval. Second, they showed that

P
(
λ̂ ≤ λ̂obs|λ0, θ0,

∑
∆i > 0

)
= 0

when
∑
δi = 0. This result makes sense given the aforementioned characterization of

MLE λ̂ when
∑
δi = 0. Also, from Bartholomew’s conditional CDF formula in (2.3), it

is easily verified that

P
(
λ̂ ≤ λ̂obs|λ0, θ0,

∑
∆i > 0

)
→ 0

as λ̂obs → 0. Lastly, Abe and Iwasaki (2005) show that when
∑
δi = 0 the unconditional

CDF defaults to

P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
= exp (−nθ0λ0)

which easily follows from the first two results they prove.
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4. DERIVATION OF MU(λ) (S|
∑

∆I > 0)

Exact distributional results for λ̂ are hard to obtain for many reasons including

requisite condition
∑

∆i > 0 and the fact that in general
∑
Zi and

∑
∆i are not inde-

pendent except in a proportional hazards setting; Allen (1963). It is however possible

to determine a closed-form expression for the joint MGF of (
∑

∆i,
∑
Zi) conditional

upon
∑

∆i > 0. We first derive the joint MGF for (∆, Z) , the censored data for a

single subject or item, as

M(s, t) = E
[
e∆s+Zt

]
(4.1)

=
1∑
δ=0

∫ ∞
0

esδ+tz [f (z;λ0)Sg (z;λ0)]δ [g (z; θ0)Sf (z; θ0)]1−δ dz

=

∫ ∞
0

e(t−λ0)zg(z; θ0)dz + es
∫ ∞

0

λ0e
(t−λ0)zSg(z; θ0)dz

= MC(t− λ0) +
λ0e

s

λ0 − t
{1−MC(t− λ0)}

where MC(·) is the MGF of the censoring time distribution and, for notational conve-

nience, we suppress the dependence of this function on θ0. Note that this joint MGF

exists for unrestricted values of s and for any value of t where MC(t) exists.

It now easily follows that the joint MGF of (
∑

∆i,
∑
Zi) is [M(s, t)]n. Butler’s

conditional MGF formula (Butler 2007, sec. 4.4.4) provides the means for deriving the

joint MGF of (
∑

∆i,
∑
Zi) conditional upon

∑
∆i > 0. From this formula, we first

obtain the conditional MGF of
∑
Zi given that

∑
∆i = k as

M (t|
∑

∆i = k) =

[Mp(s, t)]
n−k
[

λ0
λ0−t {1−MC(t− λ0)}

]k}
s=0

[Mp(s, t)]
n−k
[

λ0
λ0−t {1−MC(t− λ0)}

]k}
s=0,t=0

(4.2)

=
[MC(t− λ0)]n−k

[
λ0
λ0−t {1−MC(t− λ0)}

]k
[MC(−λ0)]n−k [1−MC(−λ0)]k
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where Mp(s, t) := M(ln s, t) is the probability-moment generating function of ∆ and Z.

From conditional MFG M (t|
∑

∆i = k), we may obtain the joint MGF of (
∑

∆i,
∑
Zi)

conditional upon
∑

∆i > 0 as

M (s, t|
∑

∆i > 0) =
n∑
k=1

eskM (t|
∑

∆i = k)P (
∑

∆i = k|
∑

∆i > 0) (4.3)

=
1

1− [MC(−λ0)]n

n∑
k=1

(
n

k

)
[MC(t− λ0)]n−k

×
[
λ0e

s

λ0 − t
{1−MC(t− λ0)}

]k
=

[M(s, t)]n − [MC(t− λ0)]n

1− [MC(−λ0)]n

=
[M(s, t)]n −M (t|

∑
∆i = 0)P (

∑
∆i = 0)

P (
∑

∆i > 0)
.

Note that as P (
∑

∆i = 0) → 0, conditional MGF M (s, t|
∑

∆i > 0) → [M(s, t)]n, as

one would expect. Note also that to obtain the final form of this MGF in (4.3) we

made use of the fact that P (Ti < Ci) = P (∆i = 1) = 1−MC (−λ0). This follows since

the probability of censoring P (∆i = 0) may be written in terms of a Riemann–Stieltjes

integral with respect to the censoring time CDF Fg (·; θ);

P (∆i = 0) = P (Ti > Ci|λ0, θ0) (4.4)

=

∫ ∞
0

P (Ti > ci|λ0, θ0) dFg (ci; θ0)

=

∫ ∞
0

e−λ0cidFg (ci; θ0) = MC (−λ0) .

It now follows that the MGF of random score function

U (λ) =
∑
{∆i/λ− Zi}

conditional upon
∑

∆i > 0 is

MU(λ) (s|
∑

∆i > 0) = M (s/λ,−s|
∑

∆i > 0) . (4.5)
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5. CHOICE OF ESTIMATING EQUATION

Estimating equation U (λ) is unbiased when one does not assume
∑

∆i > 0 but

is biased otherwise. From conditional MGF MU(λ) (s|
∑

∆i > 0) it can be shown, see

Appendix B, that the expected value of estimating equation U (λ) at λ = λ0, conditional

upon
∑

∆i > 0, is non-zero;

E [U (λ0) |
∑

∆i > 0] =
n [MC(−λ0)]n−1M ′

C(−λ0)

1− [MC(−λ0)]n
.

It is easily shown that this bias term is positive for any value of λ0 meaning that U (λ)

is expected to consistently yield estimates for λ0 which are too large.

Given this fact, we initially considered a bias adjusted estimating equation, Ũ (λ)

which is defined as

Ũ (λ) := U (λ)− n [MC(−λ)]n−1M ′
C(−λ)

1− [MC(−λ)]n
,

in place of classical estimating equation U (λ). Nonetheless, we opted to use U (λ), as

the basis for our saddlepoint method in section 6, for reasons which we describe next.

First, in preliminary computations we found that estimating equation Ũ (λ) can

yield negative estimates for λ0 when Σδi is small but positive. Secondly, estimating

equation Ũ (λ) corresponds to the following pseudo log-likelihood:

ln L̃ (λ) =
∑
{∆i ln (λ)− λZi} − ln {1− [MC(−λ)]n}

and likelihood function

L̃ (λ) = L (λ) {1− [MC(−λ)]n}−1
(5.1)

which involves a weighting term which is the probability that
∑

∆i > 0 as a function

of λ but which also depends upon unknown parameter θ0.
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For example, consider IID exponential censoring times so that

M (t|
∑

∆i = k) =
[Mp(s, t)]

n−k [ λ
λ−t {1−MC(t− λ)}

]k}
s=0

[Mp(s, t)]
n−k [ λ

λ−t {1−MC(t− λ)}
]k}

s=0,t=0

=
[MC(t− λ)]n−k

[
λ
λ−t {1−MC(t− λ)}

]k
[MC(−λ)]n−k [1−MC(−λ)]k

=

(
θ + λ

θ + λ− t

)n
= [MZ (t)]n

as one would expect based upon the results of Allen (1963). As a result

M (s, t|
∑

∆i > 0) = [MZ (t)]n
{

[{1−MC(−λ)} es +MC(−λ)]n − [MC(−λ)]n

1− [MC(−λ)]n

}

so that
∑
Zi has an exponential distribution with rate θ+λ,

∑
∆i has a zero-truncated

binomial distribution and summary statistics
∑
Zi and

∑
∆i remain independent of one

another. The likelihood for (λ, θ) based upon (
∑

∆i,
∑
Zi) |

∑
∆i > 0 is given as

L̆ (λ, θ) = L (λ)L (θ) {1− [θ/ (θ + λ)]n}−1

which is equivalent to the penalized likelihood L̃ (λ) in (5.1). In general, one could use

the joint saddlepoint approximation for the joint density of (
∑

∆i,
∑
Zi) |

∑
∆i > 0 to

provide an approximate likelihood for (λ, θ) from (4.3), see for instance Butler (2007,

chap. 15) for an application of this idea in Bayesian computations. However, given the

poor performance of the resulting unbiased likelihood-based estimating equation, Ũ (λ),

for λ we did not consider this methodology and simply worked with the unconditional

likelihood function in (1.1).
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6. UNCONDITIONAL SPBB CONFIDENCE INTERVALS

We extend the Abe-Iwasaki confidence interval to random censoring settings. The

unconditional CDF for this method, in (2.2), may be written as follows:

P
(
λ̂ ≤ c|λ0, θ0

)
= [MC (−λ0)]n+P

(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
{1− [MC (−λ0)]n} . (6.1)

Here we make use of the fact that the MGF for Type 1 censoring is MC (s) = esθ0 . Were

it not for the possibility of a non-existent MLE, λ̂ would have a continuous distribution

and

P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
∼ Unif (0, 1)

since this is simply the probability integral transform for a continuous random variable.

Furthermore, if the true value of θ0 were known then a (1−α)100% confidence interval

for λ0 would be determined as

P
(
λ̂ ≤ λ̂obs|λL, θ0

)
= 1− α/2 and P

(
λ̂ ≤ λ̂obs|λU , θ0

)
= α/2.

The distribution of λ̂, in reality, is mixed with a point mass essentially at 0 of size

[MC (−λ0)]n, and is continuous otherwise. This follows from the fact that

[MC (−λ0)]n = lim
λ̂obs→0

P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
≤ P

(
λ̂ ≤ λ̂obs|λ0, θ0

)
.

Therefore, P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
= [MC (−λ0)]n with probability [MC (−λ0)]n and

P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
∼ [MC (−λ0)]n + Unif (0, 1) {1− [MC (−λ0)]n} (6.2)

= Unif ([MC (−λ0)]n , 1)

with probability 1− [MC (−λ0)]n.
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The unconditional CDF for λ̂ is simply a weighted average of CDFs for the con-

tinuous and discrete portions of the mixed distribution for λ̂. This observation and

the fact that Abe and Iwasaki’s three results (which account for the possibility of an

indefinite MLE), from section 3, hold for arbitrary censoring time distributions, shows

that the unconditional CDF expression in (6.1) holds more generally for any censoring

time distribution admitting a MGF.

An important component of CDF P
(
λ̂ ≤ c|λ0, θ0

)
is the conditional CDF for

λ̂. This CDF is available in closed-form for Type 1 censoring times (Bartholomew’s

conditional CDF in equation (2.3)) and for exponential censoring times, see Appendix

A, but appears to be intractable otherwise. Note, however, that in the exponential

censoring case

P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
→ P

(∑
Zi ≥ c−1|λ0, θ0

)
6= 1,

where
∑
Zi has a gamma distribution with rate parameter θ0, as λ0 → 0, as shown in

Appendix A. As a result, a conditional approach to confidence interval construction,

where one uses the conditional (instead of the unconditional) CDF for λ̂, is not guaran-

teed to yield a solution to equations (1.3). In contrast, the unconditional CDF in (6.1)

approaches 1 as λ0 approaches zero.

For general censoring time distributions, it is advantageous to express this CDF

in terms of the CDF for random score function

U (λ) =
∑
{∆i/λ− Zi} .

This estimating equation is monotonically decreasing in λ for all realizations of (
∑

∆i,
∑
Zi)

when
∑

∆i > 0, and as such

P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
= P (U (c) ≤ 0|λ0, θ0,

∑
∆i > 0)

for 0 < c <∞.
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The idea of relating the CDF of an estimator to the CDF of its monotonic esti-

mating equation is often referred to as the Device of Daniels (see for instance Paige,

Trindade and Fernando 2009) and was introduced in Daniels (1987).

There do not seem to be any censoring time distributions, besides the Type 1

and exponential cases, for which the CDF of estimating equation U (λ) can be derived

in closed-form. The closed-form expression for conditional MGF MU(λ) (s|
∑

∆i > 0),

which was derived in section 4, does however provide easy access to the Lugannani and

Rice (1980) saddlepoint CDF approximation to

P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
≡ P (U (c) ≤ 0|λ0, θ0,

∑
∆i > 0)

which is given as

P̂ (U (c) ≤ 0|λ0, θ0,
∑

∆i > 0) =

 Φ(ŵ) + φ(ŵ) [ŵ−1 − û−1] , if E [U (c)] 6= 0,

1
2

+K
(3)
U(λ)(0)

[
72πK

(2)
U(λ)(0)3

]−1/2

, if E [U (c)] = 0,
.

where Φ (·) and φ (·) are the standard normal CDF and probability density (PDF)

functions respectively, KU(λ) (s) := MU(λ) (s|
∑

∆i > 0) is the conditional cumulant gen-

erating function (CGF) of random score function U (λ), K
(i)
U(λ) (s) is the ith derivative of

this CGF (with respect to s) for i = 1, 2, 3, ŵ = sgn (ŝ)
√
−2KU(λ) (s), û = ŝ

√
K

(2)
U(λ)(ŝ)

and ŝ is the solution to saddlepoint equation K
(1)
U(λ) (ŝ) = 0.

Except for Type 1 censoring, nuisance parameter θ0 will be unknown. When the

censoring time distribution has an assumed parametric form, this means we compute the

MLE for θ0, call it θ̂, and use it in place of θ0 in our confidence interval computations.

Note however that since every term in the unconditional CDF for λ̂ may be determined

from MGFMC (s) we can shift our focus from estimating θ0 to estimating this transform.

In the parametric case, the MLE for MC (s), call it M̂C (s), is obtained by replacing

θ0 with MLE θ̂ in this function. In the nonparametric case, the MGF estimate, which

we also denote as, M̂C (s) is one of the tail-completed KM estimators we consider in

section 10.
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Without loss of generality, our approximation to the unconditional CDF of λ̂ is

given as

P̂
(
λ̂ ≤ c|λ0

)
=
[
M̂C (−λ0)

]n
+ P̂

(
λ̂ ≤ c|λ0,

∑
∆i > 0

){
1−

[
M̂C (−λ0)

]n}
(6.3)

which becomes

P̂
(
λ̂ ≤ c|λ0

)
=
[
M̂C (−λ0)

]n
when

∑
δi = 0. As a result, in the presence of total censoring, the unconditional SPBB

confidence interval defaults to a generalized Bartholomew (Clopper-Pearson) confidence

interval which is described in section 8.
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7. THE
∑

∆I = N CASE

When
∑
δ = n, the unconditional SPBB method equates to an exact confidence

interval for λ0 which is exact in terms of its coverage probability as well as the distri-

bution theory used in its derivation.

Note that when
∑
δi = n special care must be taken with the conditional CDF of

λ̂ since θ̂ does not exist. We circumvent this difficulty by noting that the MLE for the

distribution of ∆ satisfies ∆̂ = 1 with probability 1. In such case, ∆ is independent of

Z and the MLE of the joint MGF of these random variables (equation 4.1) reduces to

M̂ (s, t) = M̂∆ (s) M̂Zi
(t) = es

λ̂

λ̂− t

and as a result the MLE of the joint MGF of (
∑

∆i,
∑
Zi) is simply

M (s, t) =

(
λ̂es

λ̂− t

)n

and the conditional SPBB method is easily shown to yield the exact confidence interval

for λ0 which is based upon the gamma distribution and which is described in section

3.3 of Kalbfleish and Prentice (2002).
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8. GENERALIZED BARTHOLOMEW METHODS

Bartholomew (1963) develops an exact unconditional confidence interval for λ0

under Type 1 censoring at θ0. Here, he makes use of the fact
∑

∆i has a binomial

distribution with probability of success

p = P (Ti < Ci) = 1− exp {−θ0λ0} ,

which is estimated by n−1
∑
δi. This MLE is then used to generate the exact Clopper-

Pearson confidence interval for parameter p, call it (p̂L, p̂U). This interval is inverted to

obtain the following exact confidence interval for λ0:

(
λ̂L, λ̂L

)
= [− ln (1− p̂L) /θ0,− ln (1− p̂U) /θ0] . (8.1)

It is noted in Sundberg (2001) that this interval may perform well under heavy censoring

but will be inefficient when censoring is of light to moderate in frequency.

Generalizations of Bartholomew’s confidence interval under Type 1 censoring can

be obtained by considering other confidence interval methods for proportions whose end-

points are then inverted using equation (8.1) to generate a confidence interval for λ0.

Popular methods for proportions, besides the Clopper-Pearson interval, include the Wil-

son confidence interval (Wilson, 1927), the Agresti–Coull confidence interval (Agresti

and Coull, 1998), and the Jeffreys (Bayesian) confidence interval (Berger, 1985). Brown,

Cai and DasGupta (2001) compare these three confidence intervals with the Clopper-

Pearson confidence interval and the classical Wald confidence interval and generally

recommend the Wilson or Jeffreys confidence intervals for small sample sizes.

Bartholomew’s method can also be extended to generate confidence intervals for

λ0 in the presence of random censoring where, by equation (4.4),

p = P (Ti < Ci) = 1−MC (−λ0) .
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We can then invert estimate 1−M̂C (−λ0), obtained either by maximum likelihood (ML)

or Kaplan-Meier methods, to obtain an approximate Bartholomew confidence interval

for λ0 from any of the four confidence intervals for a proportion, that we consider. In

section 13 we compare the performance of the unconditional SPBB method with our four

proposed generalized Bartholomew methods (Clopper-Pearson, Wilson, Agresti–Coull

and Jeffreys).
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9. CENSORING TIME MGF

The formula for conditional MGF MU(λ) (·|
∑

∆i > 0) and Bartholomew confidence

intervals described in the previous section depend upon the MGF of the censoring time

distributionMC(·). We assume that censoring times C1, . . . , Cn are independent random

variables with either a specified or unspecified distribution. The parametric censoring

time distributions we consider are the degenerate (Type 1 censoring), the exponential,

gamma and the Weibull. For the last three distributions we use ML estimation of MGF

MC(·). When the form of the distribution for the censoring times is not assumed to

be known, tail-completed Kaplan-Meier estimators (Moeschberger and Klein, 1985) are

used as the basis for Kaplan-Meier integrals which approximate MC(·).

For Type 1 censoring, we assume that C1, . . . , Cn are degenerate with unit point

masses at c1, . . . , cn, (which are fixed before the sample is collected) and c1 = · · · =

cn = θ so that MC(s) = eθs. We could also consider progressive Type 1 censoring

where the unit point masses at c1, . . . , cn satisfy c1 6= · · · 6= cn, after straightforward

changes to the MGF formulas in section 4, but do not do so here. For exponential

censoring times, we assume rate parameter of θ and MGF MC(s) = (1− s/θ)−1 and

more generally gamma censoring times with rate parameter θ1, shape parameter θ2,

and MGF MC(s) = (1− s/θ1)−θ2 . Finally, we consider censoring times which follow a

two-parameter Weibull distribution with PDF

g (c) = θ1θ2 (θ1c)
θ2−1 exp

{
− (θ1c)

θ2
}

for c > 0

where the MGF is not given in a simple form but is given as a power series;

MC(s) =
∞∑
k=0

sk

θk1k!
Γ

(
1 +

k

θ2

)

when θ2 ≥ 1.

The MLE for θ in the exponential PDF is given in closed-form as

θ̂ = {
∑
zi}−1 (n−

∑
δi). For the Gamma PDF, the MLEs for θ1 and θ2 are deter-
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mined numerically in Fortran 77 using results from Wilk et al. (1962). Finally, the

MLEs for θ1 and θ2 in the Weibull are also determined numerically in Fortran 77 from

the profile likelihood function for θ2.

We considered approximating the Weibull’s MGF with finite sums with conver-

gence acceleration techniques (Small 2010, sec. 8.6). For negative values of s, van

Wijngaarden’s technique (Press et al. 1992, sec. 5.1) for alternating series was used.

We also used the percentage relative error bound from Butler and Paige (2011, equation

23) where our stopping criterion was that this bound is less than ε = 10−12. For positive

values of s, Aitken’s δ2 process (Aitken 1926) was used with the approximate relative

error (Butler and Paige, 2011, sec. 4.1) and a stopping criterion requiring that this error

be less than the ε = 10−12. These convergence acceleration procedures worked well in

practice. Unfortunately for the simulation studies we considered, where the true value

of θ2 was set at 3, MLE θ̂2 was less than unity often enough that we opted to always

use IMSL numerical integration routine DQDAGI, instead of convergence acceleration

techniques, to approximate the MLE of the Weibull MGF.
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10. TAIL-COMPLETED KAPLAN-MEIER MGF ESTIMATORS

When the form of the censoring time distribution is unspecified the Kaplan-Meier

(KM) estimator of censoring time survival function Sg (t) is used to determine a discrete

or mixed approximation to it. As a result, observed survival times play the role of

censored censoring times in these computations. One issue here is that the KM estimator

of the failure time survival distribution is not defined for t > tmax, where tmax denotes

the largest time recorded, if tmax is a censoring time. Note that since we use the KM

estimator to estimate the censoring time distribution then the KM estimator in our

setting is undefined when tmax is a failure time (a censored censoring time). The (right-

continuous) KM estimator is defined as

Ŝg(t) =
∏
ti≤t

ni − di
ni

where t1 < t2 < · · · < tk are the distinct times at which censoring occurs, di is the

number of censoring events at time ti and ni is the number of people at risk for censoring

at time ti.

For c ≤ tmax, the KM estimator defines a probability mass function approximation

to the censoring time distribution as follows:

ĝ (c) =



d1
n1

c = t1{
j−1∏
i=1

(
1− di

ni

)}
dj
nj

c = tj for j = 2, 3, . . . , k

0 elsewhere for c ≤ tmax.

(10.1)

For c larger than tmax, when tmax is in fact a failure time, we consider a number of “tail

completion” methods.

We considered the tail completion method introduced in Efron (1967), which we

refer to as “KM Efron”. Here the KM estimator is set equal to zero for c > tmax. This

results in a discrete approximation to g (·).
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We also considered tail completion methods described in Moeschberger and Klein

(1985). These consist of the “Estimated Order Statistic” method (KM EOS) and the

“Restricted Weibull Maximum Likelihood” method (KM Weibull) which they devel-

oped and the Brown-Hollander-Korwar method (KM Exponential) described in Brown,

Hollander & Korwar (1974). In our setting, the KM EOS method generates estimates

for the censoring times for the observed failure times that exceed the largest censoring

time. The KM Weibull method on the other hand fits a Weibull distribution which

dovetails with Ŝg(tmax) and is a more general case of the KM Exponential method

which fits an exponential distribution which agrees with Ŝg(t) at t = tmax. The KM

Weibull and KM Exponential methods yield mixed approximations to g (·). For any

of the aforementioned tail-completion methods, an approximate censoring time MGF

M̂C(·) is determined as the Riemann–Stieltjes integral with respect to the approximate

censoring time CDF F̂g (·);

M̂C(s) =

∫ ∞
0

escdF̂g (c) . (10.2)

When this integral could not be evaluated in closed-form, IMSL numerical integration

routine DQDAGI was used to approximate it.

As a final note, Satten and Somnath (2001) show that the KM estimator at time t

is an inverse-probability-of-censoring weighted average. Since we know that our survival

(censored censoring) times are exponential it stands to reason that it may be possible to

improve upon the KM estimator. Suzukawa (2004, sec. 4) develops improved KM esti-

mators which are unbiased in small samples and which are appropriate when censoring

times are known to be exponential. We found however that MGF estimators based on

these methods yielded confidence intervals that performed much worse that confidence

interval based on the classical KM estimator, in the small sample settings we consider.

The reason for this is probably the increase in variance that comes with the decreased

bias of Suzukawa’s estimators.
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11. LARGE SAMPLE RESULTS

In this section, we present a number of large sample results including the gen-

eralization of the uniform consistency and weak convergence results for the empirical

saddlepoint approximation, as derived in Feuerverger (1989).

11.1. CENSORING TIME SADDLEPOINT APPROXIMATION

Here we consider convergence results for the saddlepoint approximation based

upon M̂C(s) in (10.2). These results are a generalization of the large sample results

from Feuerverger (1989) since in the presence of no censoring the KM distribution in

(10.1) coincides with the empirical distribution. The approximate integral in (10.2), for

fixed value of s, is an example of a Kaplan-Meier (KM) integral. Furthermore, the j-th

derivative of this approximation is itself a Kaplan-Meier integral which approximates

the j-th derivative of MC(s), which we denote as M
(j)
C (s). Large sample properties of

KM integrals, with Efron tail-completion, which is also known as Efron’s self-consistent

estimator (Efron, 1967), have been considered in a number of papers including Breslow

and Crowley (1974), Gill (1983), Schick, Susarla and Koul (1988), Yang (1994) and

Stute (1995). The self-consistent KM estimator introduces no bias when the largest

time on study is censored; denote this event as
{

∆(n) = 0
}

where ∆(n) is taken to be

the survival indicator function for largest time on study Z(n). Maller and Zhou (1993)

show that

lim
n→∞

P
(
∆(n) = 0

)
= lim

t→τH

hg (t; θ0) /hf (t;λ0)

hg (t; θ0) /hf (t;λ0) + 1

where hg (·; θ0) is the hazard rate function for the censoring time distribution,

hf (·;λ0) is the hazard rate for the survival times, τG = min {z : Sg(z) = 0},

τF = min {z : Sf (z) = 0} =∞ and τH = min (τG, τF ).
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In our setting, this reduces to

lim
n→∞

P
(
∆(n) = 0

)
= lim

t→τG

hg (t; θ0)

hg (t; θ0) + λ0

.

As a result, we see that for τG =∞ and censoring distributions with increasing failure

rates (IFR)

lim
n→∞

P
(
∆(n) = 0

)
= 1

and for censoring distributions with decreasing failure rates (DFR) that this probability

approaches 0.

It appears that Yang (1994) provides the most efficient way to prove the asymp-

totic normality of the j-th derivative of M̂C(s), denote this by M̂
(j)
C (s), where j is any

non-negative integer, i.e. j ∈ Z∗ := {0}∪Z+. From Corollary 1 of Theorem 2 we obtain

that if Fg (·) is continuous (which is what we shall assume throughout this section) and

∫ τ

0

(
cjesc

)2
eλ0cdFg (c) = M

(2j)
C (2s+ λ0) <∞

then, for any fixed value of s, pointwise weak convergence follows;

√
n
(
M̂

(j)
C (s)−M (j)

C (s)
)

D→ N
(
0, σ2

j,s

)
(11.1)

for j = 0, 1, . . . where

σ2
j,s = M

(2j)
C (2s+ λ0)−

[
M

(j)
C (s)

]2

− EF
[(
M

(j)
C (s; z)

)2

exp(2λ0z)Sg(z)

]
,

M
(j)
C (s; z) is the j-th derivative of the MGF for the truncated censoring time distribu-

tion on the interval (z,∞) and where EF (·) denotes expectation with respect to the

exponential survival time distribution with rate λ0.
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In the particular case of exponential censoring times, one obtains

σ2
j,s =

(2j)!θ0

(θ0 − 2s− λ0)2j+1 −
θ2

0

(θ0 − s)2j+2

× EF
{

(j!)2 + [Γ(j + 1, (θ0 − s)z)]2 exp (− (θ0 − 2λ0) z)
}

where Γ (·, ·) denotes the incomplete Gamma function (Abramowitz and Stegun, 1972,

sec. 6.5).

Note however that in the proposed confidence interval methods one requires an

approximation for M
(j)
C (−λ) where λ > 0 and j = 0, 1, 2. As a result, for any j, Yang’s

condition is satisfied for λ0 − 2λ in the common convergence strip of the M
(j)
C (·)’s

which we denote as (−∞, ζ) for ζ > 0. Therefore, convergence in distribution for MGF

derivatives of all orders is guaranteed for {λ : max [(λ0 − ζ) /2, 0] ≤ λ}.

The pointwise convergence in distribution in (11.1) may be extended to uniform

consistency and distributional convergence over closed intervals contained in the con-

vergence strip of censoring time MGF MC (·). Good references for the empirical process

techniques we use include van der Vaart (1998, Chapt. 19) and Kosorok (2008).

Consider the following classes of Borel measurable and integrable functions

F (j)
r =

{
f (j)
s (c) = cj exp(sc) : s ∈ [a/r, b/r]

}
for j ∈ Z∗ and 1 ≤ r <∞. The Lr(Fg) ε-bracketing number for F (j)

r , for a fixed value j,

which we denote as N[ ](ε,F (j)
r , Lr(Fg)), is the smallest number of ε-brackets needed to

ensure that every f
(j)
s ∈ F (j)

r lies in at least one ε-bracket. A bracket in F (j)
r is defined

in the context of two Lr (Fg) functions b1,j an b2,j which, by definition, satisfy

{∫
[bi,j (c)]r dFg (c)

}1/r

<∞

for i = 1, 2.
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The associated bracket [b1,j, b2,j] consists of all f
(j)
s functions in F (j)

r satisfying

PFg

[
b1,j ≤ f (j)

s ≤ b2,j

]
:=

∫
I
[
b1,j (c) ≤ f (j)

s (c) ≤ b2,j (c)
]
dFg (c) = 1

where I [A] denotes the indicator function for event A. Furthermore, a bracket [b1,j, b2,j]

is an ε-bracket if

{∫
[b1,j (c)− b2,j (c)]r dFg (c)

}1/r

≤ ε.

To show that class F (j)
1 is Fg-Glivenko-Cantelli for any j ∈ Z∗, i.e. establish

uniform consistency for said class;

sup
s∈[a,b]

∣∣∣M̂ (j)
C (s)−M (j)

C (s)
∣∣∣→ 0,

we need to prove that the L1(Fg) ε-bracketing number, N[ ](ε,F (j)
1 , L1(Fg)), is finite for

every ε > 0.

Theorem 11.1. L1(Fg) ε-bracketing number N[ ](ε,F (j)
r , Lr(Fg)) is finite for every ε >

0 and for every j ∈ Z∗.

Proof: Let j ∈ Z∗. From the Mean Value Theorem, for 1 ≤ r < ∞, we obtain with

s1, s2 ∈ [a/r, b/r], after taking absolute values, the following inequality

∣∣f (j)
s2

(c)− f (j)
s1

(c)
∣∣ ≤ cj+1 exp(s0c) |s2 − s1| ≤ cj+1 exp(bc/r) |s2 − s1| , (11.2)

where s0 is between s1 and s2.

Then

∫ [
cj+1 exp(bc/r)

]r
dFg (c) =

∫
cr(j+1) exp(bc)dFg (c) <∞ (11.3)
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since by definition

∫
f

(0)
b (c)dFg (c) =

∫
exp(bc)dFg (c) <∞

and the exponential in the former integrand, exp(bc), dominates power term cr(j+1).

The fact that

F (j)
r =

{
f (j)
s (c) = cj exp(sc) : s ∈ [a/r, b/r]

}
satisfies properties (11.2) and (11.3) establishes that the F (j)

r are parametric classes in

the sense of van der Vaart (1989, Chapt. 19). From this it follows that there exists a

constant k1,r,j with

N[ ](ε,F (j)
r , Lr(Fg)) ≤

k1,r,j |b− a|
εrk2,r,j

for every 0 < ε < (b− a) /r where

k2,r =

{∫
cr(j+1) exp(bc)dFg (c)

}1/r

.

Note that by definition if ε1 < ε2 then

N[ ](ε2,F (j)
r , Lr(Fg)) ≤ N[ ](ε1,F (j)

r , Lr(Fg))

so that, for every ε > 0,

N[ ](ε,F (j)
r , Lr(Fg)) <∞.

Letting r = 1 establishes that class F (j)
1 is Fg-Glivenko-Cantelli.

�

To show that F (j)
2 is Fg-Donsker, meaning that

√
n
(
M̂

(j)
C (s)−M (j)

C (s)
)
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converges weakly to a mean zero Gaussian process for s ∈ [a/2, b/2], we need to show

that the unit bracketing integral for class F (j)
2 ;

J[ ](F (j)
2 , L2(Fg)) =

∫ 1

0

√
lnN[ ](ε,F (j)

2 , L2(Fg))dε

is finite.

Theorem 11.2. The unit bracketing integral for class F (j)
2 is finite for every j ∈ Z∗.

Proof: From the proof of Theorem 11.1

J[ ](F (j)
2 , L2(Fg)) ≤

∫ 1

0

√
ln

(
k1,2,j |b− a|

2εk2,2,j

)
dε

=

√
ln

(
k1,2,j |b− a|

2k2,2,j

)∫ 1

0

√
ln

(
1

ε

)
dε

=
1

2

√
π ln

(
k1,2,j |b− a|

2k2,2,j

)

where the last integral in ε is evaluated in closed-form after a basic substitution which

yields Γ
(

3
2

)
.

�

Next we consider the covariance function of the limiting Gaussian process of
√
n
(
M̂

(j)
C (s)−M (j)

C (s)
)

for s ∈ [a/2, b/2] where j ∈ Z∗. To do so we first need to

consider functions used in the von Mises expansion of the KM integral, which is given

in Bae and Kim (2003). Good references for von Mises expansions include van der Vaart

(1998, Chapt. 20) and Fernholz (1983).

Theorem 11.3. The covariance function of the limiting Gaussian process for
√
n
(
M̂

(j)
C (s)−M (j)

C (s)
)

with s1, s2 ∈ [a/2, b/2], is given as

Cov (Ψ (s1) ,Ψ (s2))
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where

Ψ (s) = f (j)
s (Z)κ (Z) (1−∆) + f̃ (j)

s (Z)∆− f̆ (j)
s (Z),

κ (z) = eλ0z,

f̃ (j)
s (z) = eλ0zM

(j)
C (s; z)

and

f̆ (j)
s (z) =

∫ z

0

λ0e
λ0t1M

(j)
C (s; t1) dt1.

Proof: From (4.1) we have the following subdistribution functions for time on study

random variable Z:

F0 (z;λ0, θ0) = P (Z ≤ z,∆ = 0) =

∫ z

0

e−λ0tg(t; θ0)dt,

F1 (z;λ0, θ0) = P (Z ≤ z,∆ = 1) =

∫ z

0

λ0e
−λ0tSg(t; θ0)dt.

Now define

κ (z) = exp

[∫ z

0

dF1 (t;λ0, θ0)

Sg (t; θ) e−λ0t

]
= exp

[∫ z

0

λ0e
−λ0tSg(t; θ0)

Sg (t; θ0) e−λ0t
dt

]
= eλ0z

and

f̃ (j)
s (z) =

1

Sg (z; θ0) e−λ0z

∫ ∞
0

I [z < t] f (j)
s (t)κ (t) dF0 (t;λ0, θ0)

= eλ0z
∫ ∞
z

tjetsg(t; θ0)

Sg (z; θ0)
dt

= eλ0zM
(j)
C (s; z) .
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In addition, define

f̆ (j)
s (z) =

∫ ∞
0

∫ ∞
0

I [t1 < z, t1 < t0] f
(j)
s (t0)κ (t0)

S2
g (t1; θ0) e−2λ0t1

dF0 (t0;λ0, θ0) dF1 (t1;λ0, θ0)

=

∫ z

0

∫ ∞
t1

tj0e
t0seλ0t0

S2
g (t1; θ0) e−2λ0t1

e−λ0t0g(t0; θ0)λ0e
−λ0t1Sg(t1; θ0)dt0dt1

=

∫ z

0

∫ ∞
t1

tj0e
t0s

Sg (t1; θ0)
λ0e

λ0t1g(t0; θ0)dt0dt1

=

∫ z

0

λ0e
λ0t1

∫ ∞
t1

tj0e
t0sg(t0; θ0)

Sg (t1; θ0)
dt0dt1

=

∫ z

0

λ0e
λ0t1M

(j)
C (s; t1) dt1.

From Bae and Kim (2003, Thm. 2.1) the result now follows.

�

Pointwise convergence of the CGF process

√
n
(
K̂C(s)−KC (s)

)
easily follows from the continuity of the logarithm function. More generally, since

we have established uniform consistency and distributional convergence for the MGF

process these properties automatically hold for the CGF process by the Continuous

Mapping Theorem. Furthermore, since the j-th derivative of the CGF, K̂
(j)
C (s) is the

ratio of a polynomial function in the M̂
(k)
C (s), for k = 0, 1, . . . , j, and

[
M̂C(s)

]2j

it

follows from the Multivariate Delta Method that uniform consistency holds for K̂
(j)
C (s);

sup
s∈[a,b]

∣∣∣K̂(j)
C (s)−K(j)

C (s)
∣∣∣→ 0

where j ∈ Z∗. The K̂
(j)
C (s) can be shown to be Fg-Donsker by first using multivariate

versions of the Central Limit Theorem and Delta Method, which establish weak conver-

gence over a finite grid of s-values, and then by using the method of proof for Theorem

2.4 in Feuerverger (1989). From this it follows that the saddlepoint approximation for
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survival time density f (z;λ0), based upon M̂C(s), converges weakly to the saddlepoint

approximation for this density based upon true MGF MC(s), for s ∈ [a/2, b/2].

11.2. CONVERGENCE OF THE BARTHOLOMEW METHODS

With regards to the solution of equations

1− M̂C

(
−λ̆L

)
= p̂L

1− M̂C

(
−λ̆U

)
= p̂U

for determining the approximate generalized Bartholomew confidence intervals, The-

orem 1.1 of Stute and Wang (1993) guarantees that λ̆L and λ̆U converge to the true

confidence bounds, λ̂L and λ̂U , which solve the following set of equations:

1−MC

(
−λ̂L

)
= p̂L

1−MC

(
−λ̂U

)
= p̂U .



34

12. EXAMPLE

In this section, we discuss the application of our proposed methods to a real data

set. The data appears in Der and Everitt (2006, sec. 14.2.1) and concerns the survival

times in weeks for 20 patients with late stage (stage 3 or 4) melanoma. Here zi represents

the time on study for the ith subject and δi is the associated survival indicator function.

The data is shown in Table 12.1.

Table 12.1. Survival Times and Indicator Function Values for 20 Subjects with Stage 3
or Stage 4 Melanoma

Time zi Survival Indicator Time zi Survival Indicator

(weeks) δi (weeks) δi

12.8 1 77.2 1

15.6 1 82.4 1

24 0 87.2 0

26.4 1 94.4 0

29.2 1 97.2 0

30.8 0 106 0

39.2 1 114.8 0

42 1 117.2 0

58.4 0 140 0

72 0 168 0

PROC LIFETEST in SAS was used to generate a plot of the negative natural

logarithm of the KM estimator for the survival time distribution. Since this plot,

(c.f. Figure 12.1), displayed no serious departures from linearity, we assume that the

survival times are exponentially distributed. Furthermore, the censoring fraction for

this data set is 0.60 since 12 of the original 20 subjects were still alive at the end of the

study.
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Figure 12.1. Negative Logarithm of Survival Function for Melanoma Data

Table 12.2 provides the lower 95% confidence bounds for the survival rate of pa-

tients with late stage melanoma, for each of the censoring models we consider. Column

heading “SPA” represents the SPBB lower bounds for the parameter λ.

Table 12.2. Coverage Probabilities of Lower Bounds for Melanoma Data

Methods

Distribution SPA Clopper Jeffreys Agresti Wilson

Exponential 0.0056707 0.0023188 0.0026070 0.0026704 0.0026758

Gamma 0.0056706 0.0025598 0.0028469 0.0029092 0.0029145

Weibull 0.0056741 0.1403105 0.1559195 0.1593057 0.1595921

KM Efron 0.0056705 0.0025514 0.0028349 0.0028965 0.0029016
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Note that for this data set, since the largest time on study is censored then the KM

estimator for the censoring distribution has a finite tail. As a result, the KM Efron, KM

Weibull, KM EOS and KM Exponential censoring models are all the same. From Table

12.2, we see that the SPBB method is robust to choice of censoring model and there

is little difference between the lower 95% confidence bounds gotten from the different

censoring models. This is interesting since the negative natural logarithm of the KM

estimator for the censoring times is strongly non-linear which suggests that the Expo-

nential censoring model is not appropriate. In contrast, the Bartholomew methods; the

Clopper-Pearson interval (Clopper), Jeffreys confidence interval (Jeffreys), the Agresti-

Coull confidence interval (Agresti), and the Wilson confidence interval (Wilson), appear

to be less stable than the saddlepoint method and in particular the Bartholomew lower

bounds for the Weibull censoring model differ significantly from the lower bounds for

the other censoring models.This is due to Weibull MLEs which are close to the support

boundary.

Table 12.3 presents one-sided 95% upper confidence bounds for the survival rate

of patients with late stage melanoma.

Table 12.3. Coverage Probabilities of Upper Bounds for Melanoma Data

Methods

Distribution SPA Clopper Jeffreys Agresti Wilson

Exponential 0.0056823 0.0239717 0.0116663 0.0116360 0.0116184

Gamma 0.0056823 0.0160748 0.0098170 0.0097983 0.0097874

Weibull 0.0056763 0.8573972 0.5288966 0.5279053 0.5273294

KM Efron 0.0056827 0.0156697 0.0096247 0.0096067 0.0095960

Table 12.3 provides results which are similar to those in Table 12.2. The saddle-

point approximation is stable while the other methods are not and the Weibull censoring

model again yields large upper bounds due to unusually small MLE values.
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Table 12.4 provides 95% confidence intervals for the survival rate of patients with

stage 3 or 4 melanoma.

Table 12.4. Coverage Probabilities of Lower and Upper Bounds for Melanoma Data

Methods

Distribution Bound SPA Clopper Jeffreys Agresti Wilson

Exponential Lower 0.0056704 0.0019770 0.0022317 0.0023350 0.0023426

Upper 0.0056827 0.0279085 0.0134210 0.0133019 0.0132711

Gamma Lower 0.0056703 0.0022115 0.0024718 0.0025761 0.0025837

Upper 0.0056827 0.0176785 0.0108663 0.0107972 0.0107792

Weibull Lower 0.0056749 0.1213402 0.1355226 0.1411982 0.1416106

Upper 0.0056763 0.9410986 0.5842754 0.5806337 0.5796860

KM Efron Lower 0.0056703 0.0022063 0.0024643 0.0025674 0.0025750

Upper 0.0056827 0.0172287 0.0106374 0.0105709 0.0105537

Here again we see that the SPBB method is quite robust with respect to assumed

censoring distribution and the Bartholomew methods with a Weibull censoring model,

that again has usually small MLEs, yields results which differ substantially from those

for the other censoring models. Furthermore, the SPBB method yields the shortest

intervals of all the unconditional methods.
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13. MONTE CARLO STUDIES

In this section, we perform simulation studies to compare the performance of

the unconditional SPBB confidence intervals with confidence intervals from the four

generalized Bartholomew methods we propose. When designing our simulation studies,

we took into account how the coverage of the unconditional SPBB method depends

upon [MC (−λ0)]n, the probability that λ̂ is indefinite.

Recall from equation (6.2) that P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
= [MC (−λ0)]n with probabil-

ity [MC (−λ0)]n and with probability 1− [MC (−λ0)]n:

P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
∼ Unif ([MC (−λ0)]n , 1) .

The (1 − α)100% unconditional confidence interval computed from P
(
λ̂ ≤ λ̂obs|λ, θ0

)
will contain the true survival rate λ0 if and only if

α/2 ≤ P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
≤ 1− α/2.

If [MC (−λ0)]n > α/2 then P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
can never lie below α/2 and λ̂U , the

upper confidence bound of the interval, will never lie below λ0. As a result, the coverage

probability for an interval with nominal (1− α)100% coverage will be 1− α/2.

Note, however, that

P
{
P
(
λ̂ ≤ λ̂obs|λ0, θ0

)
≤ 1− α/2

}
= [MC (−λ0)]n + (1− [MC (−λ0)]n)

×
(

1− α/2− [MC (−λ0)]n

1− [MC (−λ0)]n

)
= 1− α/2

so that (α/2) 100% percent of the time λ̂L, the lower confidence bound of the interval,

will lie above λ0. Therefore, one can always construct a valid lower confidence bound

for λ0, regardless of the [MC (−λ0)]n value.
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In practice, [MC (−λ0)]n will exceed α/2 for small samples and heavy censoring

only. These are, however, the types of situations we consider in our simulation study.

Thus, for ease of both presentation and comparison we only present results for the 95%

lower confidence bound for λ0 (which incidentally equates to a 95% upper confidence

bound for the mean survival time).

Another issue we encountered was numerical instability of the conditional MGF

in (4.5) when computing the Luganani and Rice CDF approximation. The numerator

of this transform involves the difference of two MGFs. In a small number of simulation

runs, when the value of |ŝ| was large, the values of these two MGFs were so close to

each other that their difference was evaluated as zero in double precision Fortran 77. In

the numerical analysis literature, this phenomenon is known as catastrophic cancelation

(Datta, 2010, sec. 3.8).

Saddlepoint approximations for mixed distributions were considered in Lund, But-

ler and Paige (1999). Here it is shown that the Luganani and Rice CDF approximation

naturally detects and adjusts for point masses in the support of a mixed random vari-

able. This means that the Luganani and Rice CDF approximation should be accurate

when one does not condition upon the event
∑

∆i > 0. This unconditional approxi-

mation, which is similar to the conditional approximation in equation (6.3), is of the

form P̂
(
λ̂ ≤ λ̂obs|λ0, θ0

)
where the unconditional MGF of random estimating equation

U (λ);

MU(λ) (s) = [M (s/λ,−s)]n

with M (·, ·) given in equation (4.1) is used. In the overwhelming majority of simulated

data sets, both types of Luganani and Rice approximations (conditional and uncondi-

tional) were computable and we found that the coverage probabilities of the resulting

confidence intervals were nearly identical to three significant digits. As a result, in our

simulations we used the unconditional Luganani and Rice approximation.

We took the survival rate λ0 to be 1 and assumed four types of censoring distri-

butions: Type 1, Exponential, Gamma and Weibull. The assumed parameter values
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for these distributions depended in part on the censoring fraction (cf) which is the

probability that the survival time for either a single subject or item is censored, or

equivalently the expected fraction of censored observations in the sample. Recall that

this probability is given in terms of MC (·) as

cf =

∫ ∞
0

e−λcdFg (c) dc = MC (−λ0) . (13.1)

For each censoring distribution, we defined a grid of censoring fraction values;

cf = (0.5, 0.6, 0.7, 0.8, 0.9)

and a grid of sample size values;

n = (10, 15, 20, 30) .

At each configuration, where the censoring distribution, censoring model, cf and n

values are set, we performed 10, 000 simulations to estimate the coverage of the nominal

95% lower confidence bounds.

From equation (13.1), θ = − ln (cf) /λ0 for Type 1 censoring times and for Ex-

ponential censoring times this means that θ = λ0cf/ (1− cf). For Gamma censoring

times we took rate parameter θ1 to be 1 and let shape parameter θ2 vary so that

θ2 = − ln (cf) / ln (2). With this choice of parameters, the Gamma censoring time dis-

tribution becomes increasing thin tailed (in comparison with the Exponential) as the

censoring fraction increases. For the Weibull censoring times we set θ2 at 3 and de-

termined θ1 numerically. With this choice of parameters, the Weibull censoring time

distribution goes from being strongly right skewed to being very diffuse and symmetric

as censoring fraction cf approaches 1.
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In the following sections we discuss our simulation results first for Type 1 censoring

and then for random censoring.

13.1. TYPE 1 CENSORING

Table 13.1 displays results for Type 1 censoring. In this table all numerical entries

are percentages, and column heading “
∑
δi = 0” represents the percentage of times

there was total censoring. Column heading “SPA” represents the saddlepoint based-

bootstrap coverage. In addition, column heading “Exact” represents the coverage prob-

ability for Abe-Iwasaki confidence intervals which make use of the exact unconditional

CDF formula in (2.2). Next to each estimated coverage probability is either a “b” or a

“g”. When the 95% large-sample confidence interval for the true coverage probability,

(p̂cL, p̂
c
U , ), does not contain 0.95 then we assign a “b” which is short for a “bad” cover-

age probability that differs significantly from the nominal value. In a similar fashion,

when confidence interval (p̂cL, p̂
c
U , ) contains 0.95 we assign a “g” for a “good” coverage

probability that does not differ significantly from the nominal value. Here we see that

the SPBB method (SPA) generally outperforms the generalized Bartholomew meth-

ods; the Clopper-Pearson interval (Clopper), Jeffreys confidence interval (Jeffreys), the

Agresti-Coull confidence interval (Agresti), and the Wilson confidence interval (Wilson)

in terms of coverage. Furthermore, this performance does not seem to depend upon the

percentage of times there was total censoring. The poorer performance of the SPBB

method, in comparison to Abe and Iwasaki’s exact method, for the cf = 0.9 cases

seems to be due to the following reasons: (i) numerical instabilities which occur when

one approaches the edge of the support for estimator λ̂ when
∑
δi has a value of 1 or

2 and (ii) the inaccuracies that result from replacing the conditional saddlepoint CDF

for λ̂ with the unconditional saddlepoint CDF. The Luganani and Rice CDF approx-

imation does detect and adjust for point mass at 0, but as seen in Lund, Butler and

Paige(1999) this adjustment can exhibit varying degrees of accuracy. Nonetheless, the

SPBB method generally outperforms the generalized Bartholomew methods. Note also

that the generalized Jeffreys, Agresti and Wilson Bartholomew methods yield the same

coverage probabilities for each configuration. This is due to the fact that the underlying
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confidence interval methods, for proportions, are generally comparable in terms of per-

formance. Furthermore, with Type 1 censoring we have no censoring time parameter

to estimate so, as a result, there is no added variation when one inverts censoring time

MGF MC (s), as in (8.1), to obtain the confidence interval for λ0 from the confidence

interval for p = MC (−λ0).
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Table 13.1. Coverage Probabilities for the Type 1 Censoring.

Type 1 Censoring Times and Model

cf n SPA Exact Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.90,g 94.96,g 99.05,b 94.52,b 94.52,b 94.52,b 0.13

0.5 15 94.75,g 94.75,g 97.93,b 94.05,b 94.05,b 94.05,b 0.01

0.5 20 95.00,g 95.00,g 98.11,b 94.30,b 94.30,b 94.30,b 0.00

0.5 30 95.20,g 95.20,g 95.24,g 95.24,g 95.24,g 95.24,g 0.00

0.6 10 95.06,g 95.02,g 98.68,b 94.59,g 94.59,g 94.59,g 0.70

0.6 15 94.55,b 94.57,g 96.47,b 96.47,b 96.47,b 96.47,b 0.03

0.6 20 94.97,g 94.97,g 97.89,b 94.09,b 94.09,b 94.09,b 0.00

0.6 30 95.14,g 95.13,g 95.30,g 95.30,g 95.30,g 95.30,g 0.00

0.7 10 95.24,g 95.07,g 95.22,g 95.22,g 95.22,g 95.22,g 2.66

0.7 15 95.08,g 95.02,g 98.34,b 94.98,g 94.98,g 94.98,g 0.36

0.7 20 95.17,g 95.15,g 95.28,g 95.28,g 95.28,g 95.28,g 0.05

0.7 30 95.02,g 95.06,g 96.12,b 96.12,b 96.12,b 96.12,b 0.00

0.8 10 95.20,g 94.60,g 96.51,b 96.51,b 96.51,b 96.51,b 10.63

0.8 15 94.55,b 94.83,g 98.12,b 93.83,b 93.83,b 93.83,b 3.31

0.8 20 95.23,g 95.13,g 97.07,b 97.07,b 91.13,b 91.13,b 1.25

0.8 30 94.63,g 95.01,g 97.46,b 93.79,b 93.79,b 93.79,b 0.11

0.9 10 93.29,b 95.00,g 98.62,b 92.83,b 92.83,b 92.83,b 34.53

0.9 15 94.23,b 94.83,g 98.59,b 94.23,b 94.23,b 94.23,b 20.67

0.9 20 95.67,b 95.03,g 95.67,b 95.67,b 95.67,b 95.67,b 12.27

0.9 30 93.96,b 94.18,b 97.33,b 92.66,b 92.66,b 92.66,b 4.58
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13.2. RANDOM CENSORING TIMES

13.2.1. Exponential Censoring Times. Table 13.2 displays results for

simulations where the censoring distribution is Exponential and the assumed censoring

model is also Exponential. Here column heading “Exact” refers to coverage probabilities

for 95% lower confidence bounds obtained with the exact unconditional distribution of

λ̂ given in Appendix A. Here we see that the SPBB method generally outperforms the

Bartholomew methods and basically performs as well as the exact procedure with the

exception of the cf = 0.9 and n = 20 case (and here the difference in simulated coverage

probabilities is 0.02%). Furthermore, its’ performance is good as long as “
∑

δi = 0”

is not too large. Tables 13.3 and 13.4 display results for when the assumed censoring

model is Gamma and Weibull, respectively. Here exact procedures are not available but

one sees that the SPBB method continues to outperform the Bartholomew methods

for nearly every configuration; one exception is the Wilson method which performs

exceedingly well when cf = 0.9 and n = 30 and the Agresti method which often

performs well for cf = 0.9 cases. In addition, the Jeffreys method on occasion performs

well. Tables 13.5, 13.6, 13.7 and 13.8 display results for the KM Exponential, KM

Efron, KM Weibull and KM EOS censoring models, respectively. The column heading

“Adjust” refers to the percentage of times that the largest time on study was a survival

time and therefore the KM estimator required tail completion. This tail adjustment

percentage is particularly high for small cf values meaning that the choice of KM tail

completion method is particularly important when the level of censoring is relatively

modest. Here we see that the KM Efron method yields coverage probabilities which seem

to be different from those obtained from the other tail completion methods and, as a

result, the KM Efron model may not be the best choice in such settings. Overall, for KM

tail completion models we have the same basic conclusions as those for the Exponential,

Gamma and Weibull censoring models: (i) the SPBB method generally outperforms the

Bartholomew methods (regardless of the values of “Adjust” and “
∑

δi = 0”) and (ii)

and the Wilson and Agresti methods can be competitors to the SPBB method when
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cf = 0.9. For small censoring fraction values, the occasional good performance of these

methods is probably due to a “Lucky n, Lucky p” phenomenon like that discussed in

Brown, Cai and DasGupta (2001, sec. 2.1) wherein, for certain values of n and p,

the oscillatory coverage probability of binomial confidence interval happens to be very

close to the nominal confidence level. Overall, the four tail-completed KM models yield

very similar results. In terms of computation complexity, one would prefer the KM

Exponential or perhaps KM Efron methods since, unlike the KM Weibull and KM EOS

methods, one does not need to fit a Weibull model to the data.
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Table 13.2. Coverage Probabilities for the Exponential Censoring Distribution and the
Exponential Censoring Model.

Exponential Censoring Model

cf n SPA Exact Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.98,g 94.96,g 99.76,b 99.13,b 99.12,b 99.03,b 0.01

0.5 15 95.06,g 95.05,g 99.73,b 99.30,b 99.28,b 99.26,b 0.01

0.5 20 95.19,g 95.19,g 99.71,b 99.17,b 99.22,b 99.20,b 0.00

0.5 30 95.17,g 95.16,g 99.73,b 99.21,b 99.25,b 99.23,b 0.00

0.6 10 95.13,g 95.12,g 99.59,b 98.57,b 98.46,b 98.44,b 0.72

0.6 15 95.13,g 95.12,g 99.50,b 98.66,b 98.54,b 98.49,b 0.04

0.6 20 95.19,g 95.19,g 99.27,b 98.43,b 98.36,b 98.36,b 0.00

0.6 30 95.28,g 95.28,g 99.32,b 98.56,b 98.53,b 98.53,b 0.00

0.7 10 94.87,g 94.85,g 99.26,b 97.74,b 97.42,b 97.38,b 3.10

0.7 15 95.07,g 95.06,g 99.12,b 97.64,b 97.33,b 97.30,b 0.42

0.7 20 94.63,g 94.63,g 98.74,b 97.60,b 97.28,b 97.25,b 0.04

0.7 30 95.21,g 95.21,g 98.82,b 97.78,b 97.55,b 97.50,b 0.00

0.8 10 95.32,g 95.31,g 98.66,b 96.71,b 96.12,b 95.95,b 11.16

0.8 15 95.37,g 95.36,g 98.39,b 96.52,b 96.05,b 95.96,b 3.24

0.8 20 94.97,g 94.96,g 98.21,b 96.57,b 96.19,b 96.04,b 1.18

0.8 30 95.25,g 95.25,g 98.12,b 96.70,b 96.27,b 96.20,b 0.08

0.9 10 95.49,b 95.48,b 98.14,b 95.56,b 95.10,g 94.00,b 35.33

0.9 15 95.27,g 95.25,g 98.12,b 95.57,b 95.14,g 94.31,b 20.10

0.9 20 95.38,b 95.36,g 97.87,b 95.86,b 95.39,g 94.65,g 12.03

0.9 30 95.39,g 95.38,g 97.70,b 95.90,b 95.56,b 95.05,g 4.46
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Table 13.3. Coverage Probabilities for the Exponential Censoring Distribution and the
Gamma Censoring Model.

Gamma Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.84,g 99.18,b 98.06,b 98.09,b 98.02,b 0.01

0.5 15 95.06,g 99.39,b 98.59,b 98.62,b 98.60,b 0.01

0.5 20 95.16,g 99.41,b 98.78,b 98.78,b 98.75,b 0.00

0.5 30 95.16,g 99.62,b 99.09,b 99.10,b 99.08,b 0.00

0.6 10 95.07,g 99.09,b 97.73,b 97.55,b 97.51,b 0.72

0.6 15 95.04,g 99.22,b 98.22,b 98.11,b 98.08,b 0.04

0.6 20 95.18,g 99.14,b 98.11,b 98.06,b 98.05,b 0.00

0.6 30 95.26,g 99.17,b 98.42,b 98.35,b 98.33,b 0.00

0.7 10 94.84,g 98.87,b 97.05,b 96.77,b 96.69,b 3.10

0.7 15 94.97,g 98.94,b 97.26,b 96.88,b 96.84,b 0.42

0.7 20 94.65,g 98.61,b 97.50,b 97.11,b 97.09,b 0.04

0.7 30 95.18,g 98.77,b 97.66,b 97.43,b 97.40,b 0.00

0.8 10 95.25,g 98.50,b 96.36,b 95.72,b 95.55,b 11.16

0.8 15 95.31,g 98.32,b 96.45,b 95.91,b 95.80,b 3.24

0.8 20 94.99,g 98.09,b 96.51,b 95.94,b 95.84,b 1.18

0.8 30 95.25,g 98.14,b 96.63,b 96.28,b 96.20,b 0.08

0.9 10 95.42,b 98.06,b 95.48,b 94.98,g 93.99,b 35.33

0.9 15 95.27,g 98.09,b 95.55,b 95.03,g 94.31,b 20.10

0.9 20 95.33,g 97.88,b 95.64,b 95.26,g 94.55,b 12.03

0.9 30 95.34,g 97.70,b 95.82,b 95.49,b 94.99,g 4.46
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Table 13.4. Coverage Probabilities for the Exponential Censoring Distribution and the
Weibull Censoring Model.

Weibull Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.87,g 99.12,b 97.95,b 98.00,b 97.94,b 0.01

0.5 15 95.06,g 99.38,b 98.51,b 98.57,b 98.51,b 0.01

0.5 20 95.18,g 99.35,b 98.61,b 98.65,b 98.62,b 0.00

0.5 30 95.15,g 99.57,b 99.01,b 99.03,b 99.01,b 0.00

0.6 10 95.09,g 99.07,b 97.66,b 97.49,b 97.43,b 0.72

0.6 15 95.08,g 99.21,b 98.15,b 98.04,b 98.00,b 0.04

0.6 20 95.17,g 98.99,b 98.12,b 98.04,b 98.04,b 0.00

0.6 30 95.27,g 99.17,b 98.44,b 98.41,b 98.38,b 0.00

0.7 10 94.82,g 98.84,b 97.12,b 96.76,b 96.68,b 3.10

0.7 15 94.95,g 98.92,b 97.32,b 96.89,b 96.88,b 0.42

0.7 20 94.64,g 98.61,b 97.52,b 97.09,b 97.04,b 0.04

0.7 30 95.20,g 98.72,b 97.77,b 97.54,b 97.51,b 0.00

0.8 10 95.31,g 98.57,b 96.50,b 95.83,b 95.64,b 11.16

0.8 15 95.28,g 98.32,b 96.56,b 96.02,b 95.87,b 3.24

0.8 20 94.98,g 98.08,b 96.60,b 96.03,b 95.88,b 1.18

0.8 30 95.23,g 98.13,b 96.69,b 96.34,b 96.25,b 0.08

0.9 10 95.44,b 98.14,b 95.62,b 95.22,g 94.18,b 35.33

0.9 15 95.26,g 98.11,b 95.71,b 95.22,g 94.45,b 20.10

0.9 20 95.34,g 97.92,b 95.71,b 95.39,g 94.69,g 12.03

0.9 30 95.35,g 97.75,b 95.82,b 95.55,b 94.98,g 4.46
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Table 13.5. Coverage Probabilities for the Exponential Censoring Distribution and the
Kaplan-Meier Exponential Censoring Model.

KM Exponential Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.90,g 99.34,b 98.30,b 98.29,b 98.19,b 0.01 49.76

0.5 15 95.07,g 99.48,b 98.78,b 98.81,b 98.74,b 0.01 49.97

0.5 20 95.12,g 99.26,b 98.59,b 98.64,b 98.60,b 0.00 49.70

0.5 30 95.17,g 99.48,b 98.93,b 98.92,b 98.92,b 0.00 49.87

0.6 10 95.05,g 99.06,b 97.83,b 97.55,b 97.53,b 0.72 39.76

0.6 15 95.01,g 99.24,b 98.15,b 97.95,b 97.93,b 0.04 39.76

0.6 20 95.11,g 98.93,b 97.92,b 97.75,b 97.74,b 0.00 40.05

0.6 30 95.25,g 99.02,b 98.31,b 98.23,b 98.23,b 0.00 39.95

0.7 10 94.88,g 98.73,b 96.98,b 96.68,b 96.59,b 3.10 29.68

0.7 15 94.90,g 98.83,b 97.13,b 96.74,b 96.72,b 0.42 30.63

0.7 20 94.67,g 98.42,b 97.19,b 96.90,b 96.87,b 0.04 30.32

0.7 30 95.14,g 98.70,b 97.63,b 97.32,b 97.31,b 0.00 30.02

0.8 10 95.17,g 98.54,b 96.24,b 95.60,b 95.48,b 11.16 20.64

0.8 15 95.31,g 98.24,b 96.38,b 95.91,b 95.76,b 3.24 20.19

0.8 20 94.97,g 98.02,b 96.39,b 95.89,b 95.72,b 1.18 19.99

0.8 30 95.20,g 98.10,b 96.71,b 96.43,b 96.34,b 0.08 19.89

0.9 10 95.41,b 98.02,b 95.29,g 94.87,g 93.73,b 35.33 9.31

0.9 15 95.22,g 97.97,b 95.40,g 95.03,g 94.24,b 20.10 9.31

0.9 20 95.36,g 97.82,b 95.59,b 95.16,g 94.43,b 12.03 9.31

0.9 30 95.34,g 97.68,b 95.78,b 95.49,b 94.88,g 4.46 9.62
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Table 13.6. Coverage Probabilities for the Exponential Censoring Distribution and the
Kaplan-Meier Efron Censoring Model.

KM Efron Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 95.06,g 97.59,b 95.03,g 95.24,g 94.95,g 0.01 49.76

0.5 15 95.20,g 98.09,b 96.08,b 96.21,b 96.09,b 0.01 49.97

0.5 20 95.20,g 98.10,b 96.68,b 96.77,b 96.68,b 0.00 49.70

0.5 30 95.28,g 98.70,b 97.71,b 97.80,b 97.74,b 0.00 49.87

0.6 10 95.14,g 97.67,b 95.18,g 94.88,g 94.79,g 0.72 39.76

0.6 15 95.09,g 98.13,b 96.13,b 95.79,b 95.78,b 0.04 39.76

0.6 20 95.16,g 97.99,b 96.61,b 96.33,b 96.32,b 0.00 40.05

0.6 30 95.36,g 98.29,b 97.19,b 97.03,b 97.02,b 0.00 39.95

0.7 10 95.04,g 97.59,b 94.86,g 94.44,b 94.35,b 3.10 29.68

0.7 15 95.00,g 97.84,b 95.69,b 95.26,g 95.21,g 0.42 30.63

0.7 20 94.79,g 97.86,b 96.06,b 95.58,b 95.54,b 0.04 30.32

0.7 30 95.18,g 98.03,b 96.85,b 96.47,b 96.45,b 0.00 30.02

0.8 10 95.25,g 97.72,b 94.91,g 94.12,b 93.96,b 11.16 20.64

0.8 15 95.38,g 97.63,b 95.59,b 95.04,g 94.88,g 3.24 20.19

0.8 20 95.03,g 97.58,b 95.77,b 95.20,g 95.04,g 1.18 19.99

0.8 30 95.24,g 97.75,b 96.17,b 95.90,b 95.75,b 0.08 19.89

0.9 10 95.56,b 97.72,b 94.78,g 94.39,b 93.08,b 35.33 9.31

0.9 15 95.24,g 97.76,b 95.09,g 94.73,g 93.80,b 20.10 9.31

0.9 20 95.39,g 97.63,b 95.33,g 94.92,g 94.17,b 12.03 9.31

0.9 30 95.35,g 97.54,b 95.62,b 95.33,g 94.69,g 4.46 9.62
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Table 13.7. Coverage Probabilities for the Exponential Censoring Distribution and the
Kaplan-Meier Weibull Censoring Model.

KM Weibull Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.90,g 99.00,b 97.95,b 98.03,b 97.87,b 0.01 49.76

0.5 15 95.07,g 99.35,b 98.63,b 98.63,b 98.60,b 0.01 49.97

0.5 20 95.12,g 99.20,b 98.52,b 98.51,b 98.48,b 0.00 49.70

0.5 30 95.17,g 99.48,b 98.91,b 98.91,b 98.90,b 0.00 49.87

0.6 10 95.08,g 98.94,b 97.60,b 97.32,b 97.30,b 0.72 39.76

0.6 15 95.01,g 99.20,b 98.07,b 97.92,b 97.90,b 0.04 39.76

0.6 20 95.12,g 98.89,b 97.94,b 97.80,b 97.80,b 0.00 40.05

0.6 30 95.24,g 99.02,b 98.33,b 98.26,b 98.25,b 0.00 39.95

0.7 10 94.92,g 98.72,b 96.85,b 96.54,b 96.45,b 3.10 29.68

0.7 15 94.91,g 98.76,b 97.08,b 96.81,b 96.78,b 0.42 30.63

0.7 20 94.67,g 98.47,b 97.15,b 96.85,b 96.81,b 0.04 30.32

0.7 30 95.13,g 98.73,b 97.69,b 97.37,b 97.36,b 0.00 30.02

0.8 10 95.16,g 98.56,b 96.33,b 95.68,b 95.57,b 11.16 20.64

0.8 15 95.32,g 98.21,b 96.46,b 95.98,b 95.87,b 3.24 20.19

0.8 20 94.97,g 98.04,b 96.49,b 95.94,b 95.80,b 1.18 19.99

0.8 30 95.20,g 98.15,b 96.73,b 96.49,b 96.38,b 0.08 19.89

0.9 10 95.42,b 98.07,b 95.36,g 95.02,g 93.92,b 35.33 9.31

0.9 15 95.22,g 97.99,b 95.46,b 95.11,g 94.34,b 20.10 9.31

0.9 20 95.35,g 97.86,b 95.66,b 95.27,g 94.49,b 12.03 9.31

0.9 30 95.34,g 97.71,b 95.78,b 95.51,b 94.91,g 4.46 9.62
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Table 13.8. Coverage Probabilities for the Exponential Censoring Distribution and the
Kaplan-Meier with Expected Order Statistics Censoring Model.

KM EOS Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.91,g 99.04,b 97.91,b 97.90,b 97.78,b 0.01 49.76

0.5 15 95.07,g 99.34,b 98.63,b 98.64,b 98.59,b 0.01 49.97

0.5 20 95.12,g 99.24,b 98.53,b 98.57,b 98.54,b 0.00 49.70

0.5 30 95.16,g 99.51,b 98.93,b 98.97,b 98.96,b 0.00 49.87

0.6 10 95.03,g 98.92,b 97.53,b 97.34,b 97.31,b 0.72 39.76

0.6 15 95.02,g 99.23,b 97.99,b 97.84,b 97.81,b 0.04 39.76

0.6 20 95.09,g 98.95,b 97.98,b 97.86,b 97.85,b 0.00 40.05

0.6 30 95.22,g 99.05,b 98.43,b 98.35,b 98.35,b 0.00 39.95

0.7 10 94.88,g 98.67,b 96.90,b 96.59,b 96.48,b 3.10 29.68

0.7 15 94.89,g 98.78,b 97.14,b 96.80,b 96.76,b 0.42 30.63

0.7 20 94.63,g 98.44,b 97.21,b 96.90,b 96.88,b 0.04 30.32

0.7 30 95.13,g 98.77,b 97.71,b 97.38,b 97.37,b 0.00 30.02

0.8 10 95.13,g 98.57,b 96.39,b 95.59,b 95.49,b 11.16 20.64

0.8 15 95.32,g 98.18,b 96.48,b 95.99,b 95.85,b 3.24 20.19

0.8 20 94.96,g 98.06,b 96.42,b 95.89,b 95.77,b 1.18 19.99

0.8 30 95.20,g 98.15,b 96.74,b 96.49,b 96.39,b 0.08 19.89

0.9 10 95.38,g 98.04,b 95.41,b 94.99,g 93.87,b 35.33 9.31

0.9 15 95.21,g 98.01,b 95.46,b 95.10,g 94.33,b 20.10 9.31

0.9 20 95.35,g 97.84,b 95.64,b 95.23,g 94.48,b 12.03 9.31

0.9 30 95.34,g 97.71,b 95.78,b 95.51,b 94.89,g 4.46 9.62
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13.2.2. Gamma Censoring Times. Tables 13.9, 13.10, 13.11, 13.12,

13.13, 13.14 and 13.15 present results for simulations where the censoring distribution

is Gamma. The SPBB method again generally outperforms the Bartholomew methods

and the Wilson, Agresti and Jeffreys methods are sometimes competitive with the SPBB

method especially when cf = 0.9. For smaller values of the censoring fraction, these

methods on occasion yield very good coverage probabilities most likely due to some form

of “Lucky n, Lucky p” phenomenon, as discussed in the previous section. In compar-

ison, with the Exponential censoring results, the SPBB method and the Bartholomew

methods do not perform as well overall, except for when the assumed censoring model

is correctly specified as Gamma. This suggests that when the censoring distribution is

thin tailed the proper choice of censoring model is important and especially so when

one wants to make inference about λ0 at higher censoring fraction values. Furthermore,

among the KM tail-completed models one should probably choose the KM Exponential

or KM Efron methods since they appear to perform as well as the KM Weibull and

KM EOS but with much less programming and computation. Furthermore, for lower

cf values one should probably choose the KM Exponential method.
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Table 13.9. Coverage Probabilities for the Gamma Censoring Distribution and the Ex-
ponential Censoring Model.

Exponential Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.98,g 99.76,b 99.13,b 99.12,b 99.03,b 0.01

0.5 15 95.06,g 99.73,b 99.30,b 99.28,b 99.26,b 0.01

0.5 20 95.19,g 99.71,b 99.17,b 99.22,b 99.20,b 0.00

0.5 30 95.16,g 99.73,b 99.21,b 99.25,b 99.23,b 0.00

0.6 10 95.50,b 99.58,b 98.64,b 98.50,b 98.46,b 0.64

0.6 15 95.22,g 99.34,b 98.32,b 98.18,b 98.15,b 0.05

0.6 20 95.48,b 99.33,b 98.39,b 98.32,b 98.30,b 0.01

0.6 30 95.41,g 99.19,b 98.58,b 98.52,b 98.51,b 0.00

0.7 10 95.15,g 98.89,b 97.18,b 96.70,b 96.54,b 2.73

0.7 15 94.74,g 98.68,b 97.06,b 96.64,b 96.58,b 0.42

0.7 20 94.77,g 98.64,b 97.18,b 96.82,b 96.76,b 0.04

0.7 30 94.97,g 98.52,b 97.37,b 97.12,b 97.04,b 0.00

0.8 10 94.79,g 98.36,b 95.73,b 95.12,g 94.66,g 10.75

0.8 15 94.88,g 98.12,b 95.94,b 95.33,g 95.03,g 3.44

0.8 20 95.18,g 98.27,b 96.41,b 95.95,b 95.70,b 1.18

0.8 30 95.03,g 97.94,b 96.46,b 96.02,b 95.83,b 0.12

0.9 10 93.18,b 97.72,b 93.22,b 94.57,g 91.28,b 34.55

0.9 15 93.84,b 97.48,b 93.66,b 94.04,b 91.78,b 20.53

0.9 20 94.34,b 97.44,b 94.47,b 94.59,g 92.93,b 12.28

0.9 30 94.49,b 97.09,b 94.78,g 94.66,g 93.45,b 4.14
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Table 13.10. Coverage Probabilities for the Gamma Censoring Distribution and the
Gamma Censoring Model.

Gamma Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.86,g 99.17,b 97.90,b 98.03,b 97.93,b 0.01

0.5 15 95.09,g 99.36,b 98.47,b 98.55,b 98.51,b 0.01

0.5 20 95.19,g 99.39,b 98.66,b 98.72,b 98.68,b 0.00

0.5 30 95.16,g 99.61,b 99.07,b 99.09,b 99.07,b 0.00

0.6 10 95.66,b 99.29,b 98.17,b 98.10,b 98.03,b 0.64

0.6 15 95.30,g 99.37,b 98.42,b 98.40,b 98.33,b 0.05

0.6 20 95.63,b 99.40,b 98.77,b 98.69,b 98.68,b 0.01

0.6 30 95.48,b 99.49,b 98.97,b 98.91,b 98.89,b 0.00

0.7 10 95.42,b 99.37,b 98.03,b 97.63,b 97.54,b 2.73

0.7 15 95.05,g 99.27,b 98.11,b 97.87,b 97.84,b 0.42

0.7 20 95.02,g 99.36,b 98.52,b 98.29,b 98.25,b 0.04

0.7 30 95.17,g 99.44,b 98.81,b 98.59,b 98.56,b 0.00

0.8 10 95.27,g 99.15,b 97.21,b 96.87,b 96.55,b 10.75

0.8 15 95.28,g 99.09,b 97.72,b 97.31,b 96.96,b 3.44

0.8 20 95.58,b 99.16,b 97.95,b 97.65,b 97.40,b 1.18

0.8 30 95.21,g 99.15,b 97.95,b 97.73,b 97.63,b 0.12

0.9 10 94.58,g 98.62,b 94.60,g 95.97,b 92.90,b 34.55

0.9 15 94.27,b 98.32,b 95.16,g 95.48,b 93.58,b 20.53

0.9 20 94.64,g 98.33,b 95.72,b 95.78,b 94.42,b 12.28

0.9 30 94.63,g 97.98,b 96.03,b 95.94,b 94.98,g 4.14
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Table 13.11. Coverage Probabilities for the Gamma Censoring Distribution and the
Weibull Censoring Model.

Weibull Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.94,g 98.93,b 97.66,b 97.80,b 97.68,b 0.01

0.5 15 95.14,g 99.26,b 98.17,b 98.24,b 98.18,b 0.01

0.5 20 95.23,g 99.23,b 98.28,b 98.35,b 98.31,b 0.00

0.5 30 95.18,g 99.52,b 98.96,b 98.98,b 98.96,b 0.00

0.6 10 95.82,b 99.21,b 98.37,b 98.36,b 98.31,b 0.64

0.6 15 95.37,g 99.45,b 98.64,b 98.57,b 98.55,b 0.05

0.6 20 95.60,b 99.45,b 98.92,b 98.80,b 98.79,b 0.01

0.6 30 95.49,b 99.56,b 99.21,b 99.12,b 99.11,b 0.00

0.7 10 95.61,b 99.48,b 98.61,b 98.34,b 98.27,b 2.73

0.7 15 95.17,g 99.54,b 98.87,b 98.71,b 98.67,b 0.42

0.7 20 95.14,g 99.66,b 99.18,b 99.11,b 99.07,b 0.04

0.7 30 95.23,g 99.71,b 99.40,b 99.31,b 99.31,b 0.00

0.8 10 95.85,b 99.48,b 98.09,b 97.82,b 97.52,b 10.75

0.8 15 95.82,b 99.39,b 98.38,b 98.13,b 97.88,b 3.44

0.8 20 95.96,b 99.46,b 98.59,b 98.41,b 98.23,b 1.18

0.8 30 95.68,b 99.46,b 98.70,b 98.41,b 98.31,b 0.12

0.9 10 95.29,g 98.17,b 95.06,g 94.60,g 93.50,b 34.55

0.9 15 95.86,b 97.70,b 92.26,b 92.57,b 90.08,b 20.53

0.9 20 96.36,b 96.34,b 92.66,b 92.36,b 90.92,b 12.28

0.9 30 96.66,b 94.65,g 89.32,b 90.44,b 86.85,b 4.14
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Table 13.12. Coverage Probabilities for the Gamma Censoring Distribution and the
Kaplan-Meier Exponential Censoring Model.

KM Exponential Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.90,g 99.34,b 98.30,b 98.29,b 98.19,b 0.01 49.76

0.5 15 95.07,g 99.48,b 98.78,b 98.81,b 98.74,b 0.01 49.97

0.5 20 95.12,g 99.26,b 98.59,b 98.64,b 98.60,b 0.00 49.70

0.5 30 95.17,g 99.48,b 98.93,b 98.92,b 98.92,b 0.00 49.87

0.6 10 95.68,b 99.22,b 98.24,b 98.12,b 98.10,b 0.64 46.50

0.6 15 95.31,g 99.40,b 98.46,b 98.40,b 98.38,b 0.05 46.26

0.6 20 95.59,b 99.28,b 98.50,b 98.36,b 98.36,b 0.01 46.70

0.6 30 95.41,g 99.35,b 98.70,b 98.60,b 98.60,b 0.00 47.47

0.7 10 95.50,b 99.05,b 97.84,b 97.46,b 97.42,b 2.73 42.67

0.7 15 95.14,g 99.07,b 98.00,b 97.73,b 97.69,b 0.42 43.86

0.7 20 95.11,g 99.14,b 98.14,b 97.80,b 97.76,b 0.04 44.18

0.7 30 95.16,g 99.19,b 98.44,b 98.26,b 98.24,b 0.00 45.17

0.8 10 95.66,b 98.96,b 97.08,b 96.60,b 96.22,b 10.75 38.27

0.8 15 95.52,b 99.11,b 97.56,b 97.20,b 96.90,b 3.44 39.34

0.8 20 95.77,b 99.22,b 98.02,b 97.69,b 97.45,b 1.18 40.72

0.8 30 95.41,g 99.37,b 98.38,b 98.12,b 98.04,b 0.12 41.31

0.9 10 95.66,b 98.74,b 95.21,g 96.52,b 93.61,b 34.55 32.21

0.9 15 95.77,b 98.69,b 96.36,b 96.73,b 94.98,g 20.53 34.42

0.9 20 95.99,b 98.84,b 96.95,b 97.11,b 95.96,b 12.28 35.79

0.9 30 95.61,b 98.97,b 97.51,b 97.48,b 96.76,b 4.14 37.61
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Table 13.13. Coverage Probabilities for the Gamma Censoring Distribution and the
Kaplan-Meier Efron Censoring Model.

KM Efron Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 95.06,g 97.59,b 95.03,g 95.24,g 94.95,g 0.01 49.76

0.5 15 95.20,g 98.09,b 96.08,b 96.21,b 96.09,b 0.01 49.97

0.5 20 95.20,g 98.10,b 96.68,b 96.77,b 96.68,b 0.00 49.70

0.5 30 95.28,g 98.70,b 97.71,b 97.80,b 97.74,b 0.00 49.87

0.6 10 95.82,b 97.91,b 95.45,b 95.15,g 95.10,g 0.64 46.50

0.6 15 95.39,g 98.22,b 96.38,b 96.20,b 96.15,b 0.05 46.26

0.6 20 95.68,b 98.48,b 97.11,b 96.87,b 96.84,b 0.01 46.70

0.6 30 95.46,b 98.65,b 97.65,b 97.54,b 97.52,b 0.00 47.47

0.7 10 95.59,b 97.91,b 95.41,g 94.78,g 94.69,g 2.73 42.67

0.7 15 95.25,g 98.08,b 95.96,b 95.60,b 95.55,b 0.42 43.86

0.7 20 95.22,g 98.27,b 96.67,b 96.25,b 96.16,b 0.04 44.18

0.7 30 95.25,g 98.60,b 97.50,b 97.26,b 97.24,b 0.00 45.17

0.8 10 95.72,b 97.83,b 94.85,g 94.25,b 93.70,b 10.75 38.27

0.8 15 95.61,b 98.10,b 95.90,b 95.37,g 94.95,g 3.44 39.34

0.8 20 95.84,b 98.50,b 96.89,b 96.48,b 96.13,b 1.18 40.72

0.8 30 95.53,b 98.63,b 97.34,b 97.07,b 96.92,b 0.12 41.31

0.9 10 95.70,b 97.84,b 92.88,b 94.34,b 90.90,b 34.55 32.21

0.9 15 95.87,b 97.78,b 94.53,b 94.89,g 92.62,b 20.53 34.42

0.9 20 96.08,b 98.11,b 95.68,b 95.74,b 94.24,b 12.28 35.79

0.9 30 95.72,b 98.32,b 96.48,b 96.39,b 95.42,b 4.14 37.61
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Table 13.14. Coverage Probabilities for the Gamma Censoring Distribution and the
Kaplan-Meier Weibull Censoring Model.

KM Weibull Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.90,g 99.00,b 97.95,b 98.03,b 97.87,b 0.01 49.76

0.5 15 95.07,g 99.34,b 98.62,b 98.62,b 98.59,b 0.01 49.97

0.5 20 95.12,g 99.20,b 98.51,b 98.50,b 98.47,b 0.00 49.70

0.5 30 95.17,g 99.48,b 98.91,b 98.91,b 98.90,b 0.00 49.87

0.6 10 95.68,b 99.17,b 98.18,b 98.08,b 98.05,b 0.64 46.50

0.6 15 95.32,g 99.38,b 98.53,b 98.44,b 98.42,b 0.05 46.26

0.6 20 95.59,b 99.30,b 98.58,b 98.47,b 98.47,b 0.01 46.70

0.6 30 95.41,g 99.38,b 98.72,b 98.65,b 98.65,b 0.00 47.47

0.7 10 95.50,b 99.21,b 98.09,b 97.79,b 97.75,b 2.73 42.67

0.7 15 95.14,g 99.21,b 98.28,b 98.05,b 98.04,b 0.42 43.86

0.7 20 95.09,g 99.33,b 98.45,b 98.13,b 98.10,b 0.04 44.18

0.7 30 95.15,g 99.34,g 98.65,b 98.49,b 98.48,b 0.00 45.17

0.8 10 95.66,b 99.34,b 97.87,b 97.54,b 97.19,b 10.75 38.27

0.8 15 95.53,b 99.33,b 98.22,b 97.99,b 97.75,b 3.44 39.34

0.8 20 95.76,b 99.41,b 98.49,b 98.23,b 98.02,b 1.18 40.72

0.8 30 95.40,g 99.47,b 98.79,b 98.61,b 98.53,b 0.12 41.31

0.9 10 95.75,b 99.25,b 96.52,b 97.58,b 95.29,g 34.55 32.21

0.9 15 95.79,b 99.18,b 97.26,b 97.66,b 96.38,b 20.53 34.42

0.9 20 96.02,b 99.17,b 97.79,b 97.86,b 96.91,b 12.28 35.79

0.9 30 95.62,b 99.24,b 98.16,b 98.13,b 97.53,b 4.14 37.61
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Table 13.15. Coverage Probabilities for the Gamma Censoring Distribution and the
Kaplan-Meier with Expected Order Statistics Censoring Model.

KM EOS Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.91,g 99.04,b 97.91,b 97.90,b 97.78,b 0.01 49.76

0.5 15 95.06,g 99.34,b 98.62,b 98.63,b 98.58,b 0.01 49.97

0.5 20 95.12,g 99.23,b 98.52,b 98.56,b 98.53,b 0.00 49.70

0.5 30 95.16,g 99.51,b 98.93,b 98.97,b 98.96,b 0.00 49.87

0.6 10 95.64,b 99.21,b 98.26,b 98.16,b 98.12,b 0.64 46.50

0.6 15 95.27,g 99.43,b 98.59,b 98.52,b 98.49,b 0.05 46.26

0.6 20 95.57,b 99.33,b 98.66,b 98.54,b 98.54,b 0.01 46.70

0.6 30 95.37,g 99.46,b 98.92,b 98.82,b 98.82,b 0.00 47.47

0.7 10 95.48,b 99.28,b 98.21,b 97.92,b 97.88,b 2.73 42.67

0.7 15 95.11,g 99.30,b 98.42,b 98.22,b 98.21,b 0.42 43.86

0.7 20 95.03,g 99.42,b 98.67,b 98.43,b 98.39,b 0.04 44.18

0.7 30 95.14,g 99.43,b 98.82,b 98.66,b 98.65,b 0.00 45.17

0.8 10 95.62,b 99.39,b 98.14,b 97.85,b 97.45,b 10.75 38.27

0.8 15 95.51,b 99.37,b 98.32,b 98.12,b 97.88,b 3.44 39.34

0.8 20 95.72,b 99.47,b 98.64,b 98.38,b 98.19,b 1.18 40.72

0.8 30 95.38,g 99.54,b 98.89,b 98.75,b 98.67,b 0.12 41.31

0.9 10 95.74,b 99.24,b 96.38,b 97.37,b 95.21,g 34.55 32.21

0.9 15 95.73,b 99.15,b 97.14,b 97.52,b 96.03,b 20.53 34.42

0.9 20 95.92,b 99.07,b 97.60,b 97.67,b 96.75,b 12.28 35.79

0.9 30 95.56,b 99.20,b 98.06,b 97.98,b 97.26,b 4.14 37.61
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13.2.3. Weibull Censoring Times. Tables 13.16 , 13.17, 13.18, 13.19,

13.20, 13.21 and 13.22 present results for simulations where the censoring distribution

is Weibull. Once again the SPBB method basically outperforms the Bartholomew meth-

ods and the Wilson and Agresti methods are sometimes competitive with the SPBB

method when cf = 0.9 and sometimes perform very well for smaller cf values which

probably correspond to “Lucky n, Lucky p” cases. As one might expect, all of the

methods perform very well when the assumed censoring model is Weibull. It is sur-

prising to see that all of the other censoring models, with exception of the Exponential

model, yield results for all of the confidence interval methods which are quite similar to

those obtained with the Weibull censoring model. Furthermore, the unexpected strong

performance of the SPBB method with the Exponential censoring model for cf = 0.9

maybe due to the fact that the associated Weibull censoring distribution has a thick

exponential-like tail. Here again we see that overall, in terms of computation simplicity

and accuracy, one would probably prefer the KM Exponential method over the other

KM tail completed methods.
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Table 13.16. Coverage Probabilities for the Weibull Censoring Distribution and the Ex-
ponential Censoring Model.

Exponential Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 95.52,b 99.92,b 99.85,b 99.89,b 99.88,b 0.17

0.5 15 95.22,g 99.94,b 99.82,b 99.87,b 99.86,b 0.02

0.5 20 95.42,b 99.98,b 99.76,b 99.81,b 99.80,b 0.00

0.5 30 95.31,g 99.89,b 99.62,b 99.68,b 99.63,b 0.00

0.6 10 95.44,b 99.93,b 99.55,b 99.61,b 99.55,b 0.69

0.6 15 95.39,g 99.87,b 99.34,b 99.38,b 99.36,b 0.04

0.6 20 95.48,b 99.75,b 99.15,b 99.15,b 99.13,b 0.01

0.6 30 95.44,b 99.50,b 98.89,b 98.91,b 98.89,b 0.00

0.7 10 95.64,b 99.72,b 98.67,b 98.55,b 98.51,b 3.19

0.7 15 95.47,b 99.43,b 98.47,b 98.23,b 98.21,b 0.50

0.7 20 95.28,g 99.22,b 98.07,b 97.90,b 97.89,b 0.06

0.7 30 95.26,g 98.91,b 98.12,b 97.93,b 97.93,b 0.00

0.8 10 95.71,b 99.08,b 97.31,b 96.72,b 96.68,b 11.20

0.8 15 95.60,b 98.91,b 97.29,b 96.86,b 96.80,b 3.57

0.8 20 95.08,g 98.47,b 96.78,b 96.41,b 96.32,b 1.09

0.8 30 95.42,b 98.48,b 97.21,b 96.87,b 96.79,b 0.13

0.9 10 94.59,g 98.63,b 95.02,g 93.97,b 93.52,b 35.29

0.9 15 94.82,g 98.22,b 95.24,g 94.76,g 94.51,b 20.03

0.9 20 95.39,g 97.98,b 95.63,b 95.41,g 95.02,g 12.18

0.9 30 95.08,g 97.68,b 95.83,b 95.37,g 94.77,g 4.26
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Table 13.17. Coverage Probabilities for the Weibull Censoring Distribution and the
Gamma Censoring Model.

Gamma Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.91,g 98.29,b 95.94,b 96.58,b 96.18,b 0.17

0.5 15 94.88,g 98.05,b 96.22,b 96.60,b 96.43,b 0.02

0.5 20 95.03,g 97.91,b 96.23,b 96.39,b 96.32,b 0.00

0.5 30 94.99,g 97.71,b 96.30,b 96.49,b 96.43,b 0.00

0.6 10 94.88,g 98.17,b 95.54,b 95.55,b 95.41,g 0.69

0.6 15 94.88,g 97.86,b 95.69,b 95.57,b 95.52,b 0.04

0.6 20 95.07,g 97.45,b 95.63,b 95.52,b 95.47,b 0.01

0.6 30 95.06,g 97.27,b 95.77,b 95.70,b 95.69,b 0.00

0.7 10 94.92,g 97.73,b 95.30,g 94.86,g 94.85,g 3.19

0.7 15 95.08,g 97.56,b 95.47,b 95.09,g 95.09,g 0.50

0.7 20 94.89,g 97.22,b 95.25,g 94.91,g 94.88,g 0.06

0.7 30 94.99,g 97.08,b 95.49,b 95.11,g 95.11,g 0.00

0.8 10 94.96,g 97.52,b 95.21,g 94.34,b 94.26,b 11.20

0.8 15 95.04,g 97.60,b 95.21,g 94.45,b 94.32,b 3.57

0.8 20 94.65,g 96.98,b 94.80,g 94.29,b 94.18,b 1.09

0.8 30 95.09,g 97.22,b 95.22,g 94.74,g 94.56,g 0.13

0.9 10 93.56,b 98.36,b 93.65,b 93.06,b 92.84,b 35.29

0.9 15 94.47,b 97.74,b 94.75,g 94.38,b 94.21,b 20.03

0.9 20 95.05,g 97.15,b 95.25,g 95.05,g 94.55,b 12.18

0.9 30 94.70,g 97.36,b 95.23,g 94.80,g 94.10,b 4.26
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Table 13.18. Coverage Probabilities for the Weibull Censoring Distribution and the
Weibull Censoring Model.

Weibull Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0

0.5 10 94.90,g 98.00,b 95.79,b 96.36,b 96.02,b 0.17

0.5 15 94.92,g 97.88,b 96.05,b 96.33,b 96.15,b 0.02

0.5 20 95.03,g 97.69,b 96.01,b 96.14,b 96.08,b 0.00

0.5 30 94.98,g 97.49,b 96.07,b 96.18,b 96.15,b 0.00

0.6 10 94.87,g 97.97,b 95.34,g 95.39,g 95.23,g 0.69

0.6 15 94.87,g 97.65,b 95.51,b 95.37,g 95.32,g 0.04

0.6 20 95.03,g 97.25,b 95.46,b 95.37,g 95.35,g 0.01

0.6 30 95.04,g 97.08,b 95.63,b 95.45,b 95.45,b 0.00

0.7 10 94.94,g 97.57,b 95.14,g 94.69,g 94.63,g 3.19

0.7 15 95.08,g 97.45,b 95.38,g 94.88,g 94.88,g 0.50

0.7 20 94.87,g 97.17,b 95.15,g 94.83,g 94.83,g 0.06

0.7 30 94.99,g 96.91,b 95.33,g 95.03,g 95.02,g 0.00

0.8 10 95.00,g 97.36,b 95.00,g 94.07,b 94.02,b 11.20

0.8 15 95.02,g 97.56,b 95.08,g 94.33,b 94.21,b 3.57

0.8 20 94.66,g 96.91,b 94.71,g 94.19,b 94.06,b 1.09

0.8 30 95.09,g 97.17,b 95.08,g 94.70,g 94.54,b 0.13

0.9 10 93.70,b 98.03,b 93.17,b 92.75,b 92.60,b 35.29

0.9 15 94.53,b 97.43,b 94.42,b 94.30,b 94.07,b 20.03

0.9 20 95.12,g 96.78,b 95.03,g 94.78,g 94.02,b 12.18

0.9 30 94.74,g 97.05,b 94.74,g 94.22,b 93.54,b 4.26
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Table 13.19. Coverage Probabilities for the Weibull Censoring Distribution and the
Kaplan-Meier Exponential Censoring Model.

KM Exponential Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.88,g 98.80,b 97.03,b 97.65,b 97.29,b 0.17 16.82

0.5 15 94.81,g 98.45,b 96.71,b 97.12,b 96.94,b 0.02 15.37

0.5 20 95.03,g 98.11,b 96.41,b 96.60,b 96.51,b 0.00 14.23

0.5 30 94.97,g 97.63,b 96.33,b 96.48,b 96.42,b 0.00 13.06

0.6 10 94.78,g 98.39,b 95.97,b 96.03,b 95.87,b 0.69 11.66

0.6 15 94.86,g 97.98,b 95.87,b 95.82,b 95.70,b 0.04 10.26

0.6 20 95.05,g 97.47,b 95.59,b 95.50,b 95.46,b 0.01 9.37

0.6 30 95.06,g 97.14,b 95.65,b 95.57,b 95.56,b 0.00 8.57

0.7 10 94.87,g 97.94,b 95.44,b 94.94,g 94.90,g 3.19 8.18

0.7 15 95.05,g 97.59,b 95.58,b 95.16,g 95.16,g 0.50 7.03

0.7 20 94.86,g 97.16,b 95.28,g 94.95,g 94.95,g 0.06 6.60

0.7 30 94.98,g 96.99,b 95.46,b 95.11,g 95.10,g 0.00 5.75

0.8 10 94.97,g 97.50,b 95.07,g 94.17,b 94.14,b 11.20 5.00

0.8 15 95.02,g 97.63,b 95.17,g 94.48,b 94.37,b 3.57 4.45

0.8 20 94.63,g 96.93,b 94.72,g 94.22,b 94.12,b 1.09 4.16

0.8 30 95.09,g 97.16,b 95.17,g 94.66,g 94.49,b 0.13 3.61

0.9 10 93.70,b 98.07,b 93.24,b 92.76,b 92.61,b 35.29 1.92

0.9 15 94.52,b 97.42,b 94.43,b 94.29,b 94.03,b 20.03 1.81

0.9 20 95.11,g 96.80,b 95.03,g 94.82,g 94.04,b 12.18 1.54

0.9 30 94.73,g 97.05,b 94.73,g 94.17,b 93.55,b 4.26 1.45
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Table 13.20. Coverage Probabilities for the Weibull Censoring Distribution and the
Kaplan-Meier Efron Censoring Model.

KM Efron Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.93,g 97.36,b 94.97,g 95.54,b 95.19,g 0.17 16.82

0.5 15 94.91,g 97.51,b 95.51,b 95.86,b 95.68,b 0.02 15.37

0.5 20 95.08,g 97.54,b 95.70,b 95.81,b 95.76,b 0.00 14.23

0.5 30 95.02,g 97.26,b 95.87,b 96.04,b 95.94,b 0.00 13.06

0.6 10 94.85,g 97.64,b 95.04,g 95.07,g 94.90,g 0.69 11.66

0.6 15 94.89,g 97.42,b 95.24,g 95.19,g 95.07,g 0.04 10.26

0.6 20 95.08,g 97.23,b 95.28,g 95.13,g 95.11,g 0.01 9.37

0.6 30 95.09,g 96.96,b 95.51,b 95.41,g 95.41,g 0.00 8.57

0.7 10 94.93,g 97.46,b 95.02,g 94.52,b 94.49,b 3.19 8.18

0.7 15 95.05,g 97.43,b 95.28,g 94.83,g 94.82,g 0.50 7.03

0.7 20 94.89,g 97.04,b 95.10,g 94.71,g 94.71,g 0.06 6.60

0.7 30 94.99,g 96.88,b 95.34,g 94.96,g 94.95,g 0.00 5.75

0.8 10 94.98,g 97.35,b 94.91,g 93.87,b 93.84,b 11.20 5.00

0.8 15 95.02,g 97.55,b 95.07,g 94.35,b 94.25,b 3.57 4.45

0.8 20 94.66,g 96.89,b 94.68,g 94.14,b 94.03,b 1.09 4.16

0.8 30 95.11,g 97.11,b 95.09,g 94.59,g 94.42,b 0.13 3.61

0.9 10 93.75,b 98.01,b 93.16,b 92.72,b 92.60,b 35.29 1.92

0.9 15 94.54,b 97.38,b 94.42,b 94.28,b 94.03,b 20.03 1.81

0.9 20 95.11,g 96.77,b 95.01,g 94.80,g 94.03,b 12.18 1.54

0.9 30 94.74,g 97.04,b 94.70,g 94.17,b 93.52,b 4.26 1.45
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Table 13.21. Coverage Probabilities for the Weibull Censoring Distribution and the
Kaplan-Meier Weibull Censoring Model.

KM Weibull Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.90,g 98.10,b 95.90,b 96.51,b 96.19,b 0.17 16.82

0.5 15 94.88,g 97.93,b 96.14,b 96.48,b 96.27,b 0.02 15.37

0.5 20 95.03,g 97.81,b 96.06,b 96.22,b 96.12,b 0.00 14.23

0.5 30 94.99,g 97.43,b 96.06,b 96.22,b 96.15,b 0.00 13.06

0.6 10 94.82,g 97.92,b 95.40,g 95.44,b 95.29,g 0.69 11.66

0.6 15 94.87,g 97.69,b 95.42,b 95.37,g 95.25,g 0.04 10.26

0.6 20 95.08,g 97.31,b 95.44,b 95.31,g 95.29,g 0.01 9.37

0.6 30 95.08,g 97.02,b 95.55,b 95.48,b 95.48,b 0.00 8.57

0.7 10 94.90,g 97.61,b 95.18,g 94.65,g 94.61,g 3.19 8.18

0.7 15 95.05,g 97.47,b 95.38,g 94.93,g 94.93,g 0.50 7.03

0.7 20 94.88,g 97.09,b 95.17,g 94.78,g 94.78,g 0.06 6.60

0.7 30 94.99,g 96.94,b 95.38,g 95.01,g 95.00,g 0.00 5.75

0.8 10 94.97,g 97.41,b 94.97,g 94.03,b 94.00,b 11.20 5.00

0.8 15 95.02,g 97.56,b 95.12,g 94.39,b 94.30,b 3.57 4.45

0.8 20 94.65,g 96.91,b 94.70,g 94.15,b 94.05,b 1.09 4.16

0.8 30 95.10,g 97.12,b 95.11,g 94.61,g 94.45,b 0.13 3.61

0.9 10 93.73,b 98.03,b 93.16,b 92.73,b 92.60,b 35.29 1.92

0.9 15 94.53,b 97.40,b 94.42,b 94.28,b 94.03,b 20.03 1.81

0.9 20 95.11,g 96.78,b 95.02,g 94.80,g 94.03,b 12.18 1.54

0.9 30 94.74,g 97.04,b 94.70,g 94.17,b 93.52,b 4.26 1.45
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Table 13.22. Coverage Probabilities for the Weibull Censoring Distribution and the
Kaplan-Meier with Expected Order Statistics Censoring Model.

KM EOS Censoring Model

cf n SPA Clopper Jeffreys Agresti Wilson
∑

δi= 0 Adjust

0.5 10 94.90,g 98.05,b 95.81,b 96.39,b 96.06,b 0.17 16.82

0.5 15 94.87,g 97.92,b 96.10,b 96.40,b 96.23,b 0.02 15.37

0.5 20 95.03,g 97.79,b 96.04,b 96.19,b 96.10,b 0.00 14.23

0.5 30 94.99,g 97.42,b 96.03,b 96.20,b 96.11,b 0.00 13.06

0.6 10 94.81,g 97.90,b 95.38,g 95.40,g 95.27,g 0.69 11.66

0.6 15 94.87,g 97.67,b 95.43,b 95.39,g 95.26,g 0.04 10.26

0.6 20 95.08,g 97.30,b 95.43,b 95.31,g 95.30,g 0.01 9.37

0.6 30 95.08,g 97.01,b 95.56,b 95.50,b 95.50,b 0.00 8.57

0.7 10 94.90,g 97.60,b 95.15,g 94.60,g 94.55,b 3.19 8.18

0.7 15 95.05,g 97.47,b 95.39,g 94.91,g 94.91,g 0.50 7.03

0.7 20 94.89,g 97.07,b 95.16,g 94.77,g 94.77,g 0.06 6.60

0.7 30 94.99,g 96.92,b 95.38,g 95.00,g 94.99,g 0.00 5.75

0.8 10 94.97,g 97.40,b 94.97,g 94.02,b 93.97,b 11.20 5.00

0.8 15 95.02,g 97.56,b 95.12,g 94.39,b 94.30,b 3.57 4.45

0.8 20 94.65,g 96.90,b 94.67,g 94.16,b 94.05,b 1.09 4.16

0.8 30 95.10,g 97.12,b 95.11,g 94.61,g 94.45,b 0.13 3.61

0.9 10 93.73,b 98.03,b 93.17,b 92.73,b 92.60,b 35.29 1.92

0.9 15 94.54,b 97.39,b 94.42,b 94.28,b 94.03,b 20.03 1.81

0.9 20 95.11,g 96.77,b 95.02,g 94.80,g 94.03,b 12.18 1.54

0.9 30 94.73,g 97.04,b 94.70,g 94.17,b 93.52,b 4.26 1.45
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14. CONCLUSIONS

We have developed novel methods of unconditional confidence interval construc-

tion for the rate parameter of exponential survival times in the presence of heavy

right censoring. These methods consist of a saddlepoint method and four general-

ized Bartholomew methods. In addition, we have proven some large sample results for

these methods including weak convergence of our saddlepoint approximations and con-

sistency of the Bartholomew methods. Simulation results show that the SPBB method

is clearly superior to the Bartholomew methods and the latter should only be given

serious consideration when the censoring fraction is at least 90%. Furthermore, these

studies suggest that when one does not have a parametric model for the censoring time

distribution one would probably prefer the KM Exponential censoring model over the

KM Efron, KM Weibull, KM EOS methods due to its computational simplicity and ac-

curacy. Heavy censoring often occurs because of poor study design and as a result may

provide little information about survival rates. In such settings, the saddlepoint method

could be used to glean more information about the survival rate, than one might nor-

mally obtain, which could then be used for the design of future studies. Related future

work involves the use of the joint MGF of (
∑

∆i,
∑
Zi) to make small-sample inference

about the parameters in the exponential regression model and for making inference

about exponential rates in a multiple-sample setting. In addition to that, work is under

way on the approximation of PDFs which are Meijer G-functions.
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Cumulative distribution function P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
is available in closed-

form for IID exponential censoring times, with hazard rate θ. To see this first note that

P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
= P

(
λ̂−1 ≥ c−1|λ0, θ0,

∑
∆i > 0

)
= P

(
[
∑

∆i]
−1∑Zi ≥ c−1|λ0, θ0,

∑
∆i > 0

)
=

n∑
k=1

P
(
[
∑

∆i]
−1∑Zi ≥ c−1|λ0, θ0,

∑
∆i = k

)
× P (

∑
∆i = k|λ0, θ0,

∑
∆i > 0)

=
n∑
k=1

P
(∑

Zi ≥ kc−1|λ0, θ0,
∑

∆i = k
)

× P (
∑

∆i = k|λ0, θ0,
∑

∆i > 0)

=
n∑
k=1

P
(∑

Zi ≥ kc−1|λ0, θ0

)
× P (

∑
∆i = k|λ0, θ0,

∑
∆i > 0) .

The last expression follows from the proportionality of the failure and censoring time

hazard functions which implies that the time on study variables, Z1, Z2, . . . , Zn, are

independent of the associated survival indicators, ∆1,∆2, . . . ,∆n. As a result,
∑
Zi has

a gamma distribution with rate parameter λ0 + θ0 and shape parameter n, and

P
(∑

Zi ≥ kc−1|λ0, θ0

)
=

n−1∑
i=1

[(λ0 + θ0) kc−1]
i

i!
exp

{
− (λ0 + θ0) kc−1

}
.

Also, since ∆1,∆2, . . . ,∆n are IID Bernoulli random variables with probability of suc-

cess λ0/ (λ0 + θ0) then

P (
∑

∆i = k|λ0, θ0,
∑

∆i > 0) =

(
n
k

) (
λ0

λ0+θ0

)k (
θ0

λ0+θ0

)n−k
1−

(
θ0

λ0+θ0

)n .

Finally, we obtain, after a bit of simplification,

P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
=

n∑
k=1

[
n−1∑
i=1

[(λ0 + θ0) kc−1]
i

i!
exp

{
− (λ0 + θ0) kc−1

}]
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×

(
n
k

) (
λ0

λ0+θ0

)k (
θ0

λ0+θ0

)n−k
1−

(
θ0

λ0+θ0

)n
=

n−1∑
i=1

n∑
k=1

[(λ0 + θ0) kc−1]
i

i!
exp

{
− (λ0 + θ0) kc−1

}

×

(
n
k

) (
λ0

λ0+θ0

)k (
θ0

λ0+θ0

)n−k
1−

(
θ0

λ0+θ0

)n
=

n−1∑
i=1

[(λ0 + θ0) c−1]
i

i!
M

(i)∑
∆i|
∑

∆i>0

[
− (λ0 + θ0) c−1

]

where M
(i)∑

∆i|
∑

∆i>0
(s) is the ith derivative of the MGF for a zero-truncated binomial

random variable with n trials and probability of success λ0/ (λ0 + θ0). Notice that in

fact this CDF does not approach one as λ0 → 0 which is contrary to what one would

normally expect to happen. Application of L’Hôpital’s rule shows that

P
(
λ̂ ≤ c|λ0, θ0,

∑
∆i > 0

)
→ P

(∑
Zi ≥ c−1|λ0, θ0

)
,

where
∑
Zi has a gamma distribution with rate parameter θ0, as λ0 → 0. This provides

further evidence that the unconditional approach is the proper approach for making

inference about λ0.
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The MGF of random score function U (λ), when one does not condition upon the

event
∑

∆i > 0, is given as

MU(λ) (s) = [M (s/λ,−s)]n

where the joint MGF of (∆i, Zi) is given in (4.1). From this we obtain

M (s/λ,−s) = MC(−s− λ0) +
λ0e

s/λ

λ0 + s
{1−MC(−s− λ0)}

and

dM (s/λ,−s)
ds

= −M ′
C(−s− λ0) +

(
λ0e

s/λ/λ

λ0 + s
− λ0e

s/λ

(λ0 + s)2

)
{1−MC(−s− λ0)}

+
λ0e

s/λ

λ0 + s
M ′

C(−s− λ0)

which yields

E [U (λ)] =

(
1

λ
− 1

λ0

)
{1−MC(−λ0)} .

This means that E [U (λ0)] = 0 so that U (λ) is an unbiased estimating equation when

one does not condition upon the event
∑

∆i > 0.

In contrast, when one does condition upon
∑

∆i > 0, the MGF of U (λ) is

MU(λ) (s|
∑

∆i > 0) = M (s/λ,−s|
∑

∆i > 0)

=
[M(s/λ,−s)]n − [MC(−s− λ0)]n

1− [MC(−λ0)]n

and as a result

dMU(λ) (s|
∑

∆i > 0)

ds

=
n [M(s/λ,−s)]n−1M ′(s/λ,−s) + n [MC(−s− λ0)]n−1M ′

C(−s− λ0)

1− [MC(−λ0)]n
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so that

E [U (λ0) |
∑

∆i > 0] =
n [MC(−λ0)]n−1M ′

C(−λ0)

1− [MC(−λ0)]n
.

As a result, U (λ) is a biased estimating equation when one conditions upon the event∑
∆i > 0.
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